Measures of maximal entropy for random β -transformations.

Karma Dajani (UU)

Abstract. Let $\beta > 1$ be a non-integer. We consider β -expansions of the form $\sum_{i=1}^{\infty} \frac{d_i}{\beta^i}$, where the digits $(d_i)_{i\geq 1}$ are generated by means of a random map K_{β} defined on $\{0,1\} \times [0,\lfloor \beta \rfloor/(\beta-1)]$. We show that K_{β} has a unique measure ν_{β} of maximal entropy $\log(1+\lfloor \beta \rfloor)$. Under this measure, the digits $(d_i)_{i\geq 1}$ form a uniform Bernoulli process, and the projection of this measure in the second coordinate is an infinite convolution of Bernoulli measures. In case 1 has a finite greedy expansion with positive coefficients, the measure of maximal entropy is Markov.