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Outline
Certain large combinatorial objects, such as paths, trees and graphs,
can be rescaled so that they are close to continuous models. Often the
scaling limits are universal, meaning that the same continuous model
corresponds to the limit of many different classes of discrete objects.
There are at least two reasons for studying these scaling limits:

Often the continuous model is of interest in its own.
Knowing the continuous model gives insight into the properties of
the large discrete objects.

Here we discuss scaling limits for trees and especially for planar maps.

1 Introduction: planar maps
2 Bijections between maps and trees
3 Asymptotics for trees
4 The scaling limit of planar maps
5 Geodesics in the Brownian map
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1. Introduction: Planar maps

Definition
A planar map is a proper embedding of a connected graph into the
two-dimensional sphere (considered up to orientation-preserving
homeomorphisms of the sphere).

v
v v

v

vv
v
vv

root
vertex

root
edge

Faces = connected components of the
complement of edges

p-angulation:
each face has p adjacent edges

p = 3: triangulation
p = 4: quadrangulation

Rooted map: distinguished oriented edge

A rooted quadrangulation
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A large triangulation of the sphere (simulation by G. Schaeffer)
Can we get a continuous model out of this ?
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What is meant by the continuous limit ?
M planar map

V (M) = set of vertices of M
dgr graph distance on V (M)

(V (M),dgr) is a (finite) metric space
Mp

n = {rooted p − angulations with n faces}
(modulo deformations of the sphere)

Mp
n is a finite set

u
u u
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uu

u
uu
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1
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2
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2
2

Goal
Let Mn be chosen uniformly at random in Mp

n. For some a > 0,

(V (Mn),n−adgr) −→n→∞
“continuous limiting space”

in the sense of the Gromov-Hausdorff distance.

Remarks.
a. Needs rescaling of the graph distance for a compact limit.
b. It is believed that the limit does not depend on p (universality).
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The Gromov-Hausdorff distance
The Hausdorff distance. K1, K2 compact subsets of a metric space

dHaus(K1,K2) = inf{ε > 0 : K1 ⊂ Uε(K2) and K2 ⊂ Uε(K1)}
(Uε(K1) is the ε-enlargement of K1)

Definition (Gromov-Hausdorff distance)
If (E1,d1) and (E2,d2) are two compact metric spaces,

dGH(E1,E2) = inf{dHaus(ψ1(E1), ψ2(E2))}
the infimum is over all isometric embeddings ψ1 : E1 → E and
ψ2 : E2 → E of E1 and E2 into the same metric space E .

ψ2

E2E1

ψ1
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Gromov-Hausdorff convergence of rescaled maps

Fact
If K = {isometry classes of compact metric spaces}, then

(K,dGH) is a separable complete metric space (Polish space)

→ It makes sense to study the convergence of

(V (Mn),n−adgr)

as random variables with values in K.
(Problem stated for triangulations by O. Schramm [ICM06])

Choice of a. The parameter a is chosen so that diam(V (Mn)) ≈ na.

⇒ a = 1
4 [cf Chassaing-Schaeffer PTRF 2004 for quadrangulations]
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Why study planar maps and their continuous limits ?

combinatorics [Tutte ’60, four color theorem, etc.]
theoretical physics

I enumeration of maps related to matrix integrals [’t Hooft 74, Brézin,
Itzykson, Parisi, Zuber 78, etc.]

I large random planar maps as models of random geometry
(quantum gravity, cf Ambjørn, Durhuus, Jonsson 95,
Duplantier-Sheffield 08)

probability theory: models for a Brownian surface
I analogy with Brownian motion as continuous limit of discrete paths
I universality of the limit (conjectured by physicists)

metric geometry: examples of singular metric spaces
algebraic and geometric motivations: cf Lando-Zvonkin 04 Graphs
on surfaces and their applications
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2. Bijections between maps and trees

v
v

v
v v v
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∅

v21
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122121
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1231

A planar tree τ = {∅,1,2,11, . . .}

v
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1

1
2

32

423

1

3

A well-labeled tree (τ, (`v )v∈τ )

(rooted ordered tree)

the lexicographical order on
vertices will play an important role
in what follows

Properties of labels:
`∅ = 1
`v ∈ {1,2,3, . . .}, ∀v
|`v − `v ′ | ≤ 1, if v , v ′ neighbors
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Coding maps with trees, the case of quadrangulations

Tn = {well-labeled trees with n edges}
M4

n = {rooted quadrangulations with n faces}

Theorem (Cori-Vauquelin, Schaeffer)

There is a bijection Φ : Tn −→M4
n such that, if M = Φ(τ, (`v )v∈τ ), then

V (M) = τ ∪ {∂} (∂ is the root vertex of M)

dgr(∂, v) = `v , ∀v ∈ τ

Key facts.
Vertices of τ become vertices of M
The label in the tree becomes the distance from the root in the
map.

Coding of more general maps: Bouttier, Di Francesco, Guitter (2004)
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Schaeffer’s bijection between quadrangulations and
well-labeled trees
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xx
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x∂ 1

2

1 3

22

1

0

Rules.
add extra vertex
∂ labeled 0
follow the
contour of the
tree, connect
each vertex to
the last visited
vertex with
smaller label

well-labeled tree quadrangulation

Jean-François Le Gall (Université Paris-Sud) Random trees and planar maps Monna Lecture, Utrecht 2009 11 / 46



Schaeffer’s bijection between quadrangulations and
well-labeled trees

6

o

o

w

w

6
?

/

/

7

7

x
x

xx
xx

x

1

2

1 3

22

1

x
x

x
xx

x

x

x∂ 1

2

1 3

22

1

0

Rules.
add extra vertex
∂ labeled 0
follow the
contour of the
tree, connect
each vertex to
the last visited
vertex with
smaller label

well-labeled tree quadrangulation

Jean-François Le Gall (Université Paris-Sud) Random trees and planar maps Monna Lecture, Utrecht 2009 12 / 46



Schaeffer’s bijection between quadrangulations and
well-labeled trees

6

o

o

w

w

6
?

/

/

7

7

x
x

xx
xx

x

1

2

1 3

22

1

x
x

x
xx

x

x

x∂ 1

2

1 3

22

1

0

Rules.
add extra vertex
∂ labeled 0
follow the
contour of the
tree, connect
each vertex to
the last visited
vertex with
smaller label

well-labeled tree quadrangulation

Jean-François Le Gall (Université Paris-Sud) Random trees and planar maps Monna Lecture, Utrecht 2009 13 / 46



Schaeffer’s bijection between quadrangulations and
well-labeled trees

6

o

o

w

w

6
?

/

/

7

7

x
x

xx
xx

x

1

2

1 3

22

1

x
x

x
xx

x

x

x∂ 1

2

1 3

22

1

0

Rules.
add extra vertex
∂ labeled 0
follow the
contour of the
tree, connect
each vertex to
the last visited
vertex with
smaller label

well-labeled tree quadrangulation

Jean-François Le Gall (Université Paris-Sud) Random trees and planar maps Monna Lecture, Utrecht 2009 14 / 46



Schaeffer’s bijection between quadrangulations and
well-labeled trees

6

o

o

w

w

6
?

/

/

7

7

x
x

xx
xx

x

1

2

1 3

22

1

x
x

x
xx

x

x

x∂ 1

2

1 3

22

1

0

Rules.
add extra vertex
∂ labeled 0
follow the
contour of the
tree, connect
each vertex to
the last visited
vertex with
smaller label

well-labeled tree quadrangulation

Jean-François Le Gall (Université Paris-Sud) Random trees and planar maps Monna Lecture, Utrecht 2009 15 / 46



Schaeffer’s bijection between quadrangulations and
well-labeled trees

6

o

o

w

w

6
?

/

/

7

7

x
x

xx
xx

x

1

2

1 3

22

1

x
x

x
xx

x

x

x∂ 1

2

1 3

22

1

0

Rules.
add extra vertex
∂ labeled 0
follow the
contour of the
tree, connect
each vertex to
the last visited
vertex with
smaller label

well-labeled tree quadrangulation

Jean-François Le Gall (Université Paris-Sud) Random trees and planar maps Monna Lecture, Utrecht 2009 16 / 46



Schaeffer’s bijection between quadrangulations and
well-labeled trees

6

o

o

w

w

6
?

/

/

7

7

x
x

xx
xx

x

1

2

1 3

22

1

x
x

x
xx

x

x

x∂ 1

2

1 3

22

1

0

Rules.
add extra vertex
∂ labeled 0
follow the
contour of the
tree, connect
each vertex to
the last visited
vertex with
smaller label

well-labeled tree quadrangulation

Jean-François Le Gall (Université Paris-Sud) Random trees and planar maps Monna Lecture, Utrecht 2009 17 / 46



Schaeffer’s bijection between quadrangulations and
well-labeled trees

6

o

o

w

w

6
?

/

/

7

7

x
x

xx
xx

x

1

2

1 3

22

1

x
x

x
xx

x

x

x∂ 1

2

1 3

22

1

0

Rules.
add extra vertex
∂ labeled 0
follow the
contour of the
tree, connect
each vertex to
the last visited
vertex with
smaller label

well-labeled tree quadrangulation

Jean-François Le Gall (Université Paris-Sud) Random trees and planar maps Monna Lecture, Utrecht 2009 18 / 46



Schaeffer’s bijection between quadrangulations and
well-labeled trees

x
x

xx
xx

x

1

2

1 3

22

1

6

o

o

w

w

6
?

/

/

7

7

x
x

x
xx

x

x

x∂ 1

2

1 3

22

1

0

Rules.
add extra vertex
∂ labeled 0
follow the
contour of the
tree, connect
each vertex to
the last visited
vertex with
smaller label

well-labeled tree quadrangulation

Jean-François Le Gall (Université Paris-Sud) Random trees and planar maps Monna Lecture, Utrecht 2009 19 / 46



General strategy

Understand continuous limits of trees (“easy”)

in order to understand continuous limits of maps (“more difficult”)

Key point. The bijections with trees allow us to handle distances from
the root vertex, but not distances between two arbitrary vertices of the
map (required if one wants to get Gromov-Hausdorff convergence)
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3. Asymptotics for trees
The case of planar trees

T planar
n = {planar trees with n edges}

Theorem (reformulation of Aldous 1993)
One can construct, for every n, a tree τn uniformly distributed over
T planar

n , in such a way that

(τn,
1√
2n

dgr) −→ (Te,de) as n→∞

almost surely, in the Gromov-Hausdorff sense.
Here (Te,de) is the CRT (Continuum Random Tree)

The notation (Te,de) comes from the fact that the CRT is
the tree coded by a Brownian excursion e
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Aldous’ theorem in terms of contour functions

6

6
K

O W


�

?

�

�

?
t

et

tree τn (n edges) contour function Brownian excursion e

11

1/
√

2n

1/2n

−→
n→∞

s
s s s

ss
s s

s s s

The CRT can be viewed as the random tree whose “contour function”
is a Brownian excursion e = (et )0≤t≤1 = Brownian motion starting from
0, conditioned to be at 0 at time 1 and to stay nonnegative over [0,1]
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An application of Aldous’ theorem

Let h(τn) = height of τn (= maximum of contour function). Then

P[h(τn) ≥ x
√

2n] −→
n→∞

P
[

max
0≤s≤1

es ≥ x
]

= 2
∞∑

k=1

(4k2x2−1) exp(−2k2x2)

gives the asymptotic proportion of those trees with n edges whose
height is greater than x

√
n.

cf Flajolet-Odlyzko (1982)

General philosophy:
“Big” limit theorem for the tree τn (the map Mn)
⇒ Many asymptotics for specific functions of the tree (the map)

e.g. height of the tree, radius of the map, etc.
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Definition of the CRT: notion of a real tree

Definition
A real tree is a (compact) metric space T such
that:

any two points a,b ∈ T are joined by a
unique arc
this arc is isometric to a line segment

It is a rooted real tree if there is a distinguished
point ρ, called the root.

a
b

ρ

Remark. A real tree can have
infinitely many branching points
(uncountably) infinitely many leaves

Fact. The coding of discrete trees by contour functions (Dyck paths)
can be extended to real trees.
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The real tree coded by a function g

g : [0,1] −→ [0,∞)
continuous,
g(0) = g(1) = 0

mg(s,t)

g(s)

g(t)

s t ′t 1

mg(s, t) = mg(t , s) = mins≤r≤t g(r)

dg(s, t) = g(s) + g(t)− 2mg(s, t) t ∼ t ′ iff dg(t , t ′) = 0

Proposition (Duquesne-LG)
Tg := [0,1]/∼ equipped with dg is a real tree, called the tree coded by
g. It is rooted at ρ = 0.

Remark. Tg inherits a “lexicographical order” from the coding.
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Back to Aldous’ theorem and the CRT
Aldous’ theorem: τn uniformly distributed over T planar

n

(τn,
1√
2n

dgr)
a.s.−→

n→∞
(Te,de)

in the Gromov-Hausdorff sense.

The limit (Te,de) is the (random) real tree coded by a Brownian
excursion e.

1
t

et

ρ

tree Te

�
I

yzI
w
�
o
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The stick-breaking construction of the CRT
Consider a sequence X1,X2, . . . of positive random variables such that,
for every n ≥ 1, the vector (X1,X2, . . . ,Xn) has density

an x1(x1 + x2) · · · (x1 + · · ·+ xn) exp(−2(x1 + · · ·+ xn)2)

Then “break” the positive half-line into segments of lengths X1,X2, . . .
and paste them together to form a tree :

X1

The first branch has length X1

The second branch has length X2 and is
attached at a point uniform over the first branch
The third branch has length X3 and is attached
at a point uniform over the union of the first two
branches
And so on
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an x1(x1 + x2) · · · (x1 + · · ·+ xn) exp(−2(x1 + · · ·+ xn)2)

Then “break” the positive half-line into segments of lengths X1,X2, . . .
and paste them together to form a tree :

X1

X3

X2

The first branch has length X1

The second branch has length X2 and is
attached at a point uniform over the first branch
The third branch has length X3 and is attached
at a point uniform over the union of the first two
branches
And so on

Jean-François Le Gall (Université Paris-Sud) Random trees and planar maps Monna Lecture, Utrecht 2009 29 / 46



The stick-breaking construction of the CRT
Consider a sequence X1,X2, . . . of positive random variables such that,
for every n ≥ 1, the vector (X1,X2, . . . ,Xn) has density

an x1(x1 + x2) · · · (x1 + · · ·+ xn) exp(−2(x1 + · · ·+ xn)2)

Then “break” the positive half-line into segments of lengths X1,X2, . . .
and paste them together to form a tree :

X1

X3

X2

X4

The first branch has length X1

The second branch has length X2 and is
attached at a point uniform over the first branch
The third branch has length X3 and is attached
at a point uniform over the union of the first two
branches
And so on
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The stick-breaking construction of the CRT
Consider a sequence X1,X2, . . . of positive random variables such that,
for every n ≥ 1, the vector (X1,X2, . . . ,Xn) has density

an x1(x1 + x2) · · · (x1 + · · ·+ xn) exp(−2(x1 + · · ·+ xn)2)

Then “break” the positive half-line into segments of lengths X1,X2, . . .
and paste them together to form a tree :

The first branch has length X1

The second branch has length X2 and is
attached at a point uniform over the first branch
The third branch has length X3 and is attached
at a point uniform over the union of the first two
branches
And so on

Tn (tree after n steps) converges as n→∞ to the CRT
Jean-François Le Gall (Université Paris-Sud) Random trees and planar maps Monna Lecture, Utrecht 2009 31 / 46



Assigning labels to a real tree
Need to assign (random) labels to the vertices of a real tree (T ,d)

(Za)a∈T : Brownian motion indexed by (T ,d)
= centered Gaussian process such that

Zρ = 0 (ρ root of T )
E [(Za − Zb)2] = d(a,b), a,b ∈ T

ρ

a
b

a∧b

Labels evolve like Brownian motion along the
branches of the tree:

The label Za is the value at time d(ρ,a) of a
standard Brownian motion
Similar property for Zb, but one uses

I the same BM between 0 and d(ρ,a ∧ b)
I an independent BM between d(ρ,a ∧ b) and

d(ρ,b)

Problem. The positivity constraint is not satisfied !
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The scaling limit of well-labeled trees
Recall Tn = {well-labeled trees with n edges}

(θn, (`
n
v )v∈θn ) uniformly distributed over Tn

Rescaling:
Distances on θn are rescaled by 1√

n
(Aldous’ theorem)
Labels `nv are rescaled by 1√√

n
= 1

n1/4

(“central limit theorem”)
u

u
u

u u u
u

u
u

∅

u21

11 12

123
122121

111

1231

1

1
2

32

423
1

3

Fact
The scaling limit of (θn, (`

n
v )v∈θn ) is (Te, (Z a)a∈Te), where

Te is the CRT
(Za)a∈Te is Brownian motion indexed by the CRT
Z a = Za − Z∗, where Z∗ = min{Za,a ∈ Te}
Te is re-rooted at vertex minimizing Z
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Application to the radius of a planar map
Recall

Schaeffer’s bijection : quadrangulations↔ well-labeled trees
labels on the tree correspond to distances from the root in the map

Theorem (Chassaing-Schaeffer 2004)
Let Rn be the maximal distance from the root in a quadrangulation with
n faces chosen at random. Then,

n−1/4Rn
(d)−→

n→∞
(
8
9

)1/4 (max Z −min Z )

where (Za)a∈Te is Brownian motion indexed by the CRT.

Extensions to much more general planar maps (including
triangulations, etc.) by

Marckert-Miermont (2006), Miermont, Miermont-Weill (2007), ...

⇒ Strongly suggests the universality of the scaling limit of maps.
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4. The scaling limit of planar maps
M2p

n = {rooted 2p − angulations with n faces} (bipartite case)
Mn uniform over M2p

n , V (Mn) vertex set of Mn, dgr graph distance

Theorem (The scaling limit of 2p-angulations)
At least along a sequence nk ↑ ∞, one can construct the random
maps Mn so that

(V (Mn), cp
1

n1/4 dgr)
a.s.−→

n→∞
(m∞,D)

in the sense of the Gromov-Hausdorff distance.
Furthermore, m∞ = Te/≈ where

Te is the CRT (re-rooted at vertex minimizing Z)
(Za)a∈Te is Brownian motion indexed by Te, and Z a = Za −min Z
≈ equivalence relation on Te: a ≈ b ⇔ Z a = Z b = minc∈[a,b] Z c
([a,b] lexicographical interval between a and b in the tree)
D distance on m∞ such that D(ρ,a) = Z a
D induces the quotient topology on m∞ = Te/≈

Jean-François Le Gall (Université Paris-Sud) Random trees and planar maps Monna Lecture, Utrecht 2009 35 / 46



Interpretation of the equivalence relation ≈

Recall Schaeffer’s bijection:
∃ edge between u and v if

`u = `v − 1
`w ≥ `v , ∀w ∈]u, v ]

Explains why in the continuous limit

a ≈ b ⇒ Z a = Z b = min
c∈[a,b]

Z c

⇒ a and b are identified
v

v
v

v v v
v

v
v

1

1
2

32

423

1

3

v
u

v

Key point: Prove the converse (no other pair of points are identified)

Remark: Equivalence classes for ≈ contain 1, 2 or 3 points.
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Consequence and open problems

Corollary
The topological type of any Gromov-Hausdorff sequential limit of
(V (Mn),n−1/4dgr) is determined:

m∞ = Te/≈ with the quotient topology.

Open problems
Identify the distance D on m∞
(would imply that there is no need for taking a subsequence)
Show that D does not depend on p
(universality property, expect same limit for triangulations, etc.)

STILL MUCH CAN BE PROVED ABOUT THE LIMIT !

The limiting space (m∞,D) is called the Brownian map [Marckert,
Mokkadem 2006, with a different approach]
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Two theorems about the Brownian map
Theorem (Hausdorff dimension)

dim(m∞,D) = 4 a.s.

(Already “known” in the physics literature.)

Theorem (topological type, LG-Paulin 2007)

Almost surely, (m∞,D) is homeomorphic to the 2-sphere S2.

Consequence: for n large,
no separating cycle of size
o(n1/4) in Mn,
such that both sides have
diameter ≥ εn1/4

Alternative proof of the homeomorphism theorem: Miermont (2008)
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5. Geodesics in the Brownian map

Geodesics in quadrangulations

Use Schaeffer’s bijection between
quadrangulations and well-labeled trees.

To construct a geodesic from v to ∂:
Look for the last visited vertex (before
v ) with label `v − 1. Call it v ′.
Proceed in the same way from v ′ to
get a vertex v ′′.
And so on.
Eventually one reaches the root ∂. u

u
uu

u u uuu
uu u

uuuu
u

u
u
u u

u
uu

u∂

vv ′

v ′′

u
u
uu
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Simple geodesics in the Brownian map

Brownian map: m∞ = Te/≈, root ρ
≺ lexicographical order on Te

Recall D(ρ,a) = Z a (labels on Te)

Fix a ∈ Te and for t ∈ [0,Z a], set

ϕa(t) = sup{b ≺ a : Z b = t}

(same formula as in the discrete case !)

Then (ϕa(t))0≤t≤Z a
is a geodesic from ρ to a

(called a simple geodesic)
ρ

a

ϕa(t)

Fact
Simple geodesics visit only leaves of Te (except possibly at the
endpoint)
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How many simple geodesics from a given point ?

If a is a leaf of Te,
there is a unique simple geodesic
from ρ to a
Otherwise, there are

I 2 distinct simple geodesics if a is a
simple point

I 3 distinct simple geodesics if a is a
branching point

(3 is the maximal multiplicity in Te)

ρ

a

Proposition (key result)
All geodesics from the root are simple geodesics.
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The main result about geodesics
Define the skeleton of Te by Sk(Te) = Te\{leaves of Te} and set

Skel = π(Sk(Te)) (π : Te → Te/≈= m∞ canonical projection)

Then
the restriction of π to Sk(Te) is a homeomorphism onto Skel
dim(Skel) ≤ 2 (recall dim(m∞) = 4)

Theorem (Geodesics from the root)
Let x ∈ m∞. Then,

if x /∈ Skel, there is a unique geodesic from ρ to x
if x ∈ Skel, the number of distinct geodesics from ρ to x is the
multiplicity m(x) of x in Skel (note: m(x) ≤ 3).

Remarks
Skel is the cut-locus of m∞ relative to ρ: cf classical Riemannian
geometry [Poincaré, Myers, ...], where the cut-locus is a tree.
same results if ρ replaced by a point chosen “at random” in m∞.
other approach to the uniqueness of geodesics: Miermont (2007)
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Confluence property of geodesics

Fact: Two simple geodesics coincide near the root.
(easy from the definition)

Corollary
Given δ > 0, there exists ε > 0 s.t.

if D(ρ, x) ≥ δ, D(ρ, y) ≥ δ
if γ is any geodesic from ρ to x
if γ′ is any geodesic from ρ to y

then

γ(t) = γ′(t) for all t ≤ ε

�

?

ρ

ε

δ

x

y

“Only one way” of leaving ρ along a geodesic.
(also true if ρ is replaced by a typical point of m∞)
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Uniqueness of geodesics in discrete maps
Mn uniform distributed over M2p

n = {2p − angulations with n faces}
V (Mn) set of vertices of Mn, ∂ root vertex of Mn, dgr graph distance

For v ∈ V (Mn), Geo(∂ → v) = {geodesics from ∂ to v}
If γ, γ′ are two discrete paths (with the same length)

d(γ, γ′) = max
i

dgr(γ(i), γ′(i))

Corollary
Let δ > 0. Then,

1
n

#{v ∈ V (Mn) : ∃γ, γ′ ∈ Geo(∂ → v), d(γ, γ′) ≥ δn1/4} −→
n→∞

0

Macroscopic uniqueness of geodesics, also true for
“approximate geodesics”= paths with length dgr(∂, v) + o(n1/4)
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Exceptional points in discrete maps
Mn uniformly distributed 2p-angulation with n faces
For v ∈ V (Mn), and δ > 0, set

Multδ(v) = max{k : ∃γ1, . . . , γk ∈ Geo(∂, v), d(γi , γj) ≥ δn1/4 if i 6= j}

(number of “macroscopically different” geodesics from ∂ to v )

Corollary
1. For every δ > 0,

P[∃v ∈ V (Mn) : Multδ(v) ≥ 4] −→
n→∞

0

2. But
lim
δ→0

(
lim inf
n→∞

P[∃v ∈ V (Mn) : Multδ(v) = 3]
)

= 1

There can be at most 3 macroscopically different geodesics from ∂ to
an arbitrary vertex of Mn.

Remark. ∂ can be replaced by a vertex chosen at random in Mn.
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