Groupoids, KK-theory and boundary actions

Bram Mesland

1st October 2009

Definition 1. Let $\Gamma \subset \text{Isom}^+(\mathbb{H}^{n+1})$ be a finitely generated discrete group. The *limit set* of Γ is the set of accumulation points of a given orbit:

$$\Lambda_{\Gamma} = \overline{\{p\gamma : \gamma \in \Gamma\}} \setminus \mathbb{H}^{n+1} \subset S^n.$$

Theorem 2. Γ acts properly discontinuously on $S^n \setminus \Lambda$ and with dense orbits on Λ .

Definition 3. Fix $p \in \mathbb{H}^{n+1}$, and for each $x \in \Lambda$ choose a sequence $p_n \to x$. The *Busemann* function is defined as

$$h_{\gamma}(x) := \lim_{n \to \infty} d(p, p_n) - d(p\gamma, p_n).$$

Definition 4. The *Poincaré series* of Γ is the series

$$\sum_{\gamma \in \Gamma} e^{-sd(p,p\gamma)}.$$

The critical exponent of Γ is the extended real number

$$\delta_{\Gamma} := \inf\{s \in \mathbb{R} : \sum_{\gamma \in \Gamma} e^{-sd(p,p\gamma)} < \infty\}.$$

Theorem 5 (Sullivan). Let Γ be of finite critical exponent. Then for each $p \in \mathbb{H}^{n+1}$ there exists a meausre μ_p on Λ such that

$$\frac{d\gamma\mu_p}{d\mu_p}(x) = e^{\delta_{\Gamma}h_{\gamma}(x)}.$$

Definition 6. The crossed product algebra $C(\Lambda) \rtimes \Gamma$ is a completion of the algebra $C_c(\Lambda \rtimes \Gamma)$ with convolution product:

$$f * g(x, \gamma) = \sum_{\delta \in \Gamma} f(x, \delta) g(x\delta, \delta^{-1}\gamma).$$

The same formula represents $C_c(\Lambda \times \Gamma)$ on $L^2(\Lambda \rtimes \Gamma)$ Γ) and $C(\Lambda) \rtimes \Gamma$ is the completion of $C_c(\Lambda \rtimes \Gamma)$ in this representation. It carries a natural involution given by $f^*(x,\gamma) := \overline{f(x\gamma,\gamma^{-1})}$. **Definition 7.** A groupoid is a small category \mathcal{G} in which all morphisms are invertible. It is *locally compact Hausdorff* if the morphism set of \mathcal{G} carries such a topology and the domain and range maps $r, d : \mathcal{G} \to \mathcal{G}^{(0)}$ are continuous. It is *étale* if these maps are local homeomorphisms.

Example 8. $\Lambda \rtimes \Gamma$ is a groupoid with objects Λ and morphisms $\Lambda \times \Gamma$.

 $d(x,\gamma) = x\gamma, \quad r(x,\gamma) = x, \quad (x,\gamma)(x\gamma,\delta) = (x,\gamma\delta).$

Definition 9. A C^* -algebra is a norm closed *-subalgebra of $B(\mathcal{H})$ for some Hilbert space \mathcal{H} .

Theorem 10 (Gelfand-Naimark). Any commutative unital C^* -algebra is isomorphic to C(X)for X some locally compact Hausdorff space. **Definition 11.** Let *B* be a C^* -algebra. A *right* C^* -*B*-*module* is a complex vector space \mathcal{E} which is also a right *B*-module, equipped with a bilinear pairing

$$\begin{aligned} \mathcal{E} \times \mathcal{E} &\to B\\ (e_1, e_2) &\mapsto \langle e_1, e_2 \rangle, \end{aligned}$$

such that

•
$$\langle e_1, e_2 \rangle = \langle e_2, e_1 \rangle^*,$$

•
$$\langle e_1, e_2 b \rangle = \langle e_1, e_2 \rangle b$$
,

- $\langle e, e \rangle \ge 0$ and $\langle e, e \rangle = 0 \Leftrightarrow e = 0$,
- \mathcal{E} is complete in the norm $||e||^2 := ||\langle e, e \rangle||$.

We use the notation $\mathcal{E} \rightleftharpoons B$ to indicate this structure. \mathcal{E} is *full* if $\langle \mathcal{E}, \mathcal{E} \rangle$ is dense in B.

Definition 12.

 $\mathsf{End}_B^*(\mathcal{E}) := \{T : \mathcal{E} \to \mathcal{E} : \exists T^* : \mathcal{E} \to \mathcal{E}\};\$

$$\mathbb{K}_B(\mathcal{E}) := \overline{\mathcal{E} \widetilde{\otimes}_B \mathcal{E}},$$

where the action of $\mathcal{E} \widetilde{\otimes}_B \mathcal{E}$ on \mathcal{E} is given by $e \otimes e'(f) = e \langle e', f \rangle$. Two C^* -algebras A, B are *Morita equivalent* if there exists a full C^* -module $\mathcal{E} = B$ such that $A \cong \mathbb{K}_B(\mathcal{E})$.

Theorem 13. Two commutative C*-algebras are Morita equivalent if and only if they are isomorphic.

Theorem 14. Let Γ act properly discontinuously on a space X. Then $C(X) \rtimes \Gamma$ and $C(X/\Gamma)$ are Morita equivalent. **Definition 15.** Let \mathcal{E}, \mathcal{F} be C^* -*B*-modules. A densely defined closed operator $D : \mathfrak{Dom}D \to \mathcal{F}$ is called *regular* if

- D^* is densely defined in $\mathcal F$
- $1 + D^*D$ has dense range.

Definition 16. Let $A \to \mathcal{E} \rightleftharpoons B$ be a graded bimodule and $D : \mathfrak{Dom}D \to \mathcal{E}$ an odd regular operator. (\mathcal{E}, D) is an *KK-cycle* for (A, B) if, for all $a \in \mathcal{A}$, a dense subalgebra of A

• [D, a] extends to an adjointable operator in $\operatorname{End}_B^*(\mathcal{E})$

•
$$a(1+D^*D)^{-\frac{1}{2}} \in \mathbb{K}_B(\mathcal{E}).$$

Example 17. $B = \mathbb{C}$, A = C(M), M a compact spin manifold. Take D to be the Dirac operator in $L^2(S)$, where S is the spinor bundle on M. Then the metric on M is given by the formula

 $d(x,y) = \sup\{|f(x) - f(y)| : ||[D,f]|| \le 1\}.$

Theorem 18. Let $c : \Lambda \rtimes \Gamma \to \mathbb{R}$ be a cocycle. The operator $D_c : C_c(\Lambda \rtimes \Gamma) \to C_c(\Lambda \rtimes \Gamma)$ defined by

$$D_c f(x, \gamma) = c(x, \gamma) f(x, \gamma),$$

is a $C_c(\mathcal{H})$ -linear derivation, where $\mathcal{H} = \ker c$. It extends to a selfadjoint regular operator on the C^* -module completion \mathcal{E}_c of $C_c(\Lambda \rtimes \Gamma)$ with respect to the inner product

 $\langle f,g\rangle := \rho(f^* * g),$

where $\rho : C_c(\mathcal{G}) \to C_c(\mathcal{H})$ is the restriction map. If the map $\mathcal{G} \to \mathcal{G}/\mathcal{H}$ is closed then D_c has compact resolvent, and (\mathcal{E}_c, D_C) is a KK-cycle for $(C(\Lambda) \rtimes \Gamma, C^*(\mathcal{H}))$. **Definition 19.** Let (\mathcal{E}, D) be a *KK*-cycle for (A, B). The bounded transform of D is the operator $F = \mathfrak{b}(D) := D(1 + D^*D)^{-\frac{1}{2}}$. It satisfies

$$a(F-F^*), a(F^2-1), [F,a] \in \mathbb{K}_B(\mathcal{E}).$$

The pair (\mathfrak{E}, F) is called a *Kasparov module*. Two Kasparov modules (\mathfrak{E}', F') and (\mathfrak{E}'', F'') are *homotopic* if there is a Kasparov module (\mathfrak{E}, F) for $(A, B \otimes C([0, 1]))$ such that $(\mathfrak{E}_0, F_0) =$ (\mathfrak{E}', F') and $(\mathfrak{E}_1, F_1) = (\mathfrak{E}'', F'')$. Two *KK*cycles are called *equivalent* if their bounded transforms are homotopic, and the set of equivalence classes of *KK*-cycles for (A, B) is denoted *KK*_{*}(A, B).

Theorem 20. $KK_*(A, B)$ is an abelian group.

KK-theory comes equipped with the structure of a category by the intricate Kasparov product

 $KK_*(A,B) \otimes KK_*(B,C) \rightarrow KK_*(A,C),$

where A, B and C are C^* -algebras. It unifies *K*-theory and *K*-homology in the sense that there are natural isomorphisms

 $KK_*(\mathbb{C}, A) \cong K_*(A), \quad KK_*(A, \mathbb{C}) \cong K^*(A).$

The Patterson-Sullivan measure induces a cocycle

$$c: \Lambda \rtimes \Gamma \to \mathbb{R}$$

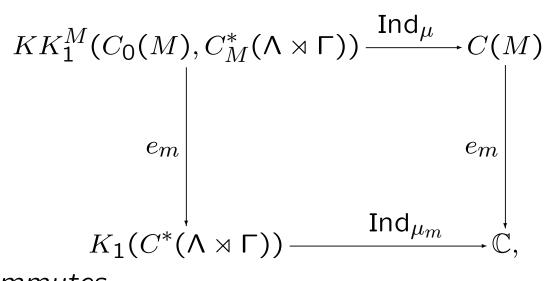
 $(x, \gamma) \mapsto \ln \frac{d\gamma \mu_p}{d\mu}(x\gamma).$

This cocycle is closed for Kleinian groups of the first kind. Therefore it induces a map $K_1(C(\Lambda \rtimes \Gamma) \to K_0(C^*(\mathcal{H})))$. The groupoid \mathcal{H} is unimodular, so integration over the unit space induces a trace $C^*(\mathcal{H}) \to \mathbb{C}$, which gives a map $K_0(C^*(\mathcal{H})) \to \mathbb{C}$. Thus, for such groups we get a homomorphism $K_1(C(\Lambda) \rtimes \Gamma)) \to \mathbb{C}$. We can let the basepoint p vary to obtain a more general result.

Theorem 21. There is a globalized index map

Ind_{μ} : $KK_1^M(C_0(M), C_M^*(\Lambda \rtimes \Gamma)) \to C(M)$.

This map is compatible with the maps $\operatorname{Ind}_{\mu_p}$: $K_1(C^*(\Lambda \rtimes \Gamma)) \to \mathbb{C}$ in the sense that the diagram



commutes.