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starting point: Marcel van der Vlugt (Leiden),

“An application of elementary algebraic geometry

in coding theory ”,

Nieuw Archief voor Wiskunde (4th series, vol. 14, 1996)

same result using elliptic curves by G. van der Geer and M. van

der Vlugt (1994) and elementary proof by coding theorists

G. L. Feng, K. K. Tzeng, and V. K. Wei (1992)
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Problem: fix m ≥ 1, put n := 2m − 1 and enumerate

F2m = {0, α1, α2, . . . , αn} .

The binary code

BCH(m) :=
{
(a1, a2, . . . , an) ∈ Fn

2 ;
∑

aiαi = 0 =
∑

aiα
3
i

}
.

Alternative: put F2m = {0} ∪ {α` ; ` ∈ Z}.

Then

BCH(m) =
{
f =

∑
aix

i ∈ F2[x]/(x
n − 1) ; f(α) = 0 = f(α3)

}
.
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Easy: every v 6= 0 in BCH(m) has at least 5 coordinates 1.

How many v have precisely 5 coordinates 1?

Idea: if x1, x2, x3, x4, x5 ∈ F2m are the powers of α which give v,

then {
x1 + x2 + x3 + x4 + x5 = 0
x3
1 + x3

2 + x3
3 + x3

4 + x3
5 = 0.

So the problem boils down to: count the points with coordinates

in F2m on the projective surface S defined here.
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S defines a (smooth) cubic surface.

It was first studied by Alfred Clebsch:

Mathematische Annalen Vol. 4 (1871), see page 331.

Let P := (1 : ζ1 : ζ2 : ζ3 : ζ4) ∈ S and P̄ := (1 : ζ4
1 : ζ4

2 : ζ4
3 : ζ4

4) ∈
S, in which the ζj are the four different primitive 5th roots of

unity (in F16).

The line containing P and P̄ is contained in S. Permuting the

primitive roots of 1 gives 12 such lines in S (in fact, two sets of

6 pairwise disjoint lines).
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There are more straight lines contained in S: any system xi+xj =

0 = xk + x` with 1 ≤ i, j, k, ` ≤ 5 pairwise different, also yields a

line in S. In total, this yields another 15 lines.

Using 4 of the rational lines and a pair of conjugate ones, it is

possible to obtain a set of 6 pairwise disjoint lines (which as a

set is defined over F2).

One now contracts this set of 6 lines to 6 points. This can be

done over F2. The image of S under this turns out to be (over

F2) isomorphic to the projective plane.

Since counting on the projective plane is trivial, this allows one to

count on S as well, and hence to determine the desired number

of vectors v in BCH(m).
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Alfred Clebsch (1833–1872)
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student Adolf Weiler (Göttingen) instructed by Clebsch made a

plaster model of the real surface given by the same equations.

More precisely: take (x, y, z) such that

−
√

6x + y +
√

2z = 3x1 + 3√
6x + y +

√
2z = 3x2 + 3

y −
√

8z = 3 + x3
y = x4 − 3

− 2y = x5

yields in x, y, z coordinates:
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Clebsch’s diagonal surface
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1872, Sitzungsbericht der Königlichen Gesellschaft der Wissenschaften

zu Göttingen, August 3:
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Same journal, 1872, August 3:

A reproduction is since 2009 used for the Compositio Prize
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Also 1872, 3 months later,

Abhandlungen der Königlichen Gesellschaft der Wissenschaften

in Göttingen:
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Reproductions of plaster and string and wire models were made

and sold (and advertized) by L. Brill in Halle (brother of Alexan-

der) and later by M. Schilling in Leipzig.

The mathematics departments in Amsterdam, Leiden, Utrecht

and Groningen still own many such models.

In Groningen this is due to P.H. Schoute (1842 - 1910)
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Pieter Hendrik Schoute (1842–1910)
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July 1890, American Journal of Mathematics
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Question: is one of the original Clebsch diagonal surface plaster

reproductions still present in a Dutch institute?

(a modern one, Groningen)
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Duco van Straten and Stephan Endraß had many copies made

using a 3D printer in Mainz
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Heinrich Heine Universität, Düsseldorf
(1999, Claudia Weber & Ulrich Forster, ceramics)
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Special property of Clebsch’s diagonal surface S: each of the
planes xj + xk = 0 intersects S in a union of three concurrent
lines.

Point of intersection of three such lines is called Eckardt point.
The Clebsch surface is the unique cubic with 10 such points.
The Fermat cubic x3 + y3 + z3 + w3 = 0 is the unique one with
18 such points.
All other cubic surfaces have 0,1,2,3,4,6 or 9 such points, as
Beniamino Segre proved in 1942.

F.E. Eckardt: highschool teacher in Chemnitz. He has exactly
one paper, published after he died: Mathematische Annalen
Vol. 10 (1876)

In Utrecht, Tu Nguyen finished his PhD thesis in 2000 concerning
Eckardt points.
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Math. Annalen 10 (1876) p. 227
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The starting point

1849, Arthur Cayley & George Salmon

Theorem. a (smooth, projective) cubic surface over C contains

precisely 27 lines
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1866, Alfred Clebsch

Theorem. any smooth cubic surface over C is the closure of
ϕ(P2(C)− {p1, . . . , p6}) for certain p1, . . . , p6 ∈ P2,
with ϕ(p) = (f1(p) : f2(p) : f3(p) : f4(p)) bijective, and∑

Cfj = {f ∈ C[x, y, z] homog. of degree 3 & f(pn) = 0, n = 1, . . . ,6} .
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example: Clebsch diagonal surface

x1 = (b− c)(ab + ac− c2)
x2 = ac2 + bc2 − a3 − c3

x3 = a(c2 − ac− b2)
x4 = c(a2 − ac + bc− b2)
x5 = −v − w − x− y.
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modern proof: choose skew lines `, m ⊂ S

consider S → `×m: P 7→ (Q, R) where P, Q, R are collinear

there are five lines in S meeting ` as well as m, they have a point

as image (but: every line in S meets at least one of the given

five; so adapt:)

select one of these five image points (Q, R), ‘blow up’ ` ×m in

(Q, R) and ‘blow down’ the lines Q × m and ` × R. result: P2,

and inverse is P2 → S given by cubic polynomials.

(with Irene Polo, CAGD vol. 26 (2009))
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Theorem: this is possible over R if and only if the real surface

given by the cubic equation is connected.

x3 + y3 + z3 + x2y + x2z + xy2 + y2z − 6z2 + 11z − 6 = 0
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Following Silhol & Kollár, all non-connected cubics are obtained

as follows:
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Take two conics f = 0 and g = 0 intersecting in 1,2,3,4.

Take 5 on f = 0 and 6 on the tangent line to f = 0 at 5.

If no three of 1,2, . . .6 are on a line, let S0 be the cubic surface

corresponding to these points.

Define a rational involution τ on P2 by the rule:

{P, τ(P )} are the intersection points of the line through P and

6, with the conic through P and 1,2,3,4.

Then S := S0⊗C/(τ ⊗c) (with c = complex conjugation) defines

a cubic surface over R having two real connected components.

(with Irene Polo, Canad. Math. Bull. vol. 51 (2008))
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What about cubic surfaces over Q (or, over number fields)?

Thm. (Swinnerton-Dyer, 1970). A smooth cubic surface over

Q is over Q birational to P2, if and only if it contains a rational

point, and it contains a Galois-stable set of 2 or 3 or 6 pairwise

skew straight lines.

( Michigan Math. Journal vol. 7, 1970 )
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N.B.: in the case of a Galois-stable set of two skew lines, there

is automatically a rational point: fix any rational point P in P3.

Then P2 can be identified with the planes in P3 containing P .

Any such plane meets each of the two skew lines in a point, and

the two points obtained this way determine a line. The third

point of intersection of this line with the cubic surface is rational

in case the plane we started with is rational.

In fact, this argument constructs a birational map from P2 to

the cubic surface.
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In the case of a Galois-stable set of 6 pairwise skew lines, the map

contracting (“blowing down”) these 6 lines is birational and since

the image has a rational point, it is actually isomorphic (over Q)

to P2.

So in this case we are in the situation of Clebsch’s theorem; in

particular, the surface can be parametrized using polynomials of

degree 3.

An example: x3 + y3 + z3 + w3 = 0. Here a Galois-stable set of

6 pairwise skew lines exists. So a parametrization over Q using

degree 3 polynomials exists.

In this case Leonhard Euler (1707 - 1783) found a parametriza-

tion, however, it uses polynomials of degree 4 . . .
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So it is possible to improve Euler’s result!

parametrizations using cubic polynomials were recently found al-

gebraically by Noam Elkies and geometrically (using the modern

proof of Clebsch’s theorem above) by Irene Polo and me:

x = −a3 − 2a2c + 3a2b + 12abc− 3ab2 − 4ac2 + 6b2c + 12bc2 + 9b3

y = a3 + 2a2c + 3a2b + 12abc + 3ab2 + 4ac2 − 6b2c + 12bc2 + 9b3

z = −8c3 − 8ac2 − 9b3 − a3 − 3a2b− 3ab2 − 4a2c− 12b2c

w = 8c3 + 8ac2 − 9b3 + a3 − 3a2b + 3ab2 + 4a2c + 12b2c.
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Interest in cubic surfaces increased enormously because of appli-

cations in Computer Aided Geometric Design. Idea: use patches

of cubic surfaces to approximate a surface in 3-space. Store the

equation, and for displaying the surface, calculate a parametriza-

tion.

Fast calculation of parametrizations (and of equations), and low

degrees in the polynomials giving the parametrization, means

improved efficiency.

Recent work of C.L. Bajaj, T.G. Berry, R.L. Holt, L. Gonzalez-

Vega, S. Lodha, A.N. Netravali, M. Paluszny, R.R. Patterson,

T.W. Sederberg, J.P. Snively, J. Warren and others.
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Simple practical Maple algorithm for finding the 27 lines: part

of René Pannekoek’s master’s thesis (2009):

35



If S is not birational to P2, then a “next best” is that S might be
‘unirational’: there is a rational map P2 → S of positive degree
(not necessarily degree 1).

Thm. (proven in Manin’s book “Cubic Forms”, 1972) A smooth,
cubic surface over Q is unirational if and only if it contains a
rational point.

Idea: take the rational point. If it is on a line contained in the
surface, the proof is easy. If not, then the tangent plane to the
surface in the point intersects the surface in a rational curve
(a singular cubic). Now repeat this idea for all points on this
rational curve.

Using this and Swinnerton-Dyer’s result, one finds counter ex-
amples to “Lüroth’s problem for transcendence degree 2” (work
of Iskovskikh and Manin, 1971).
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Explicit construction of smooth cubic surfaces containing a Galois-

stable set of 6 pairwise skew lines, but not containing any rational

point.

This is work with René Pannekoek, to appear in the Journal of

Symbolic Computation.

Idea: change P2 into a variety over Q which is birational to

it over an extension field, but not over Q. Then use Clebsch’s

method to “blow up” a Galois orbit consisting of 6 points on this

“Severi-Brauer” surface, resulting in a cubic surface as desired.
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Explicit example:

−22751x3 − 103032x2y + 492480xy2 − 373248y3+
+908712x2z − 2612736xyz + 2612736y2z − 2387737268z3+

+210066063732z2w − 61927476156zw2 + 60162954012w3 = 0.
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Variant of Manin’s unirationality result, with possibly a lower

degree:

Thm. (Pannekoek, master’s thesis, 2009) Let S be a smooth

cubic surface containing a rational point and a Galois-stable orbit

of three pairwise disjoint lines.

Then the following construction shows that S is unirational over

the base field.
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Construction: Let p ∈ S be a rational point. Consider the P2 of

planes P ⊂ P3 containing p.

For almost all such P one has: P ∩ S is a smooth plane cubic

curve C containing p as a rational point. The three given lines

yield, when intersected with P , three points in C.

Add these points in the group law on C with unit element p. The

result is a point q ∈ C ⊂ S.

The assignment P 7→ q yields a rational map of positive degree,

defined over the base field.
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