[B-expansions and multiple tilings

(-expansions and multiple tilings

Charlene Kalle,
joint work with Wolfgang Steiner
(PhD supervisor Karma Dajani)

29 October 2009

v,
8 2 Charlene Kalle, joint work with Wolfgang Steiner
WARWICK



B-expansions and multiple tilings > Introduction

Introduction

=

WARWICK

Let 3 >1and A= {ag,...,am} a set of real numbers with
ap < a1 < ... < anp. Expressions of the form

with b, € A for all n > 1, are called (- expansions with arbitrary digits.
am ]

Q‘z

This gives numbers in the interval [

g — 1 p—
0 is called the base, A is the digit set and elements of A are called
digits.
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Allowable digit sets

If, for a given 3 > 1, a set of real numbers A ={ay,...,an} satisfies
(i) ap < ...< am,

am — 4o

-1

it is called an allowable digit set. Then

(i) maxi<j<m(aj — aj-1) <
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Allowable digit sets

If, for a given 3 > 1, a set of real numbers A ={ay,...,an} satisfies

(i) ap < ...< am,
. dm — a
(i) maxicjem(aj — aj-1) < ;flo

it is called an allowable digit set. Then
a0 am

B-1"p-1

(Pedicini, 2005)

@ every x € has a (3-expansion with digits in A.
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Allowable digit sets

If, for a given 3 > 1, a set of real numbers A ={ay,...,an} satisfies

(i) ap < ...< am,
. dm — a
(i) maxicjem(aj — aj-1) < ;flo

it is called an allowable digit set. Then
a0 am

B-1"p-1
(Pedicini, 2005)

@ the minimal amount of digits in A is [5].

@ every x € has a (3-expansion with digits in A.
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o Introduce a class of transformations that generate (3-expansions.
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o Introduce a class of transformations that generate (3-expansions.

o Characterize the set of digit sequences given by such a
transformation.
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line

o Introduce a class of transformations that generate (3-expansions.

o Characterize the set of digit sequences given by such a
transformation.

o For specific 3's (Pisot units) give a construction of a natural
extension for the transformation.

o
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line

o Introduce a class of transformations that generate (3-expansions.

o Characterize the set of digit sequences given by such a
transformation.

o For specific 3's (Pisot units) give a construction of a natural
extension for the transformation.

o From the natural extension, get an absolutely continuous invariant
measure.

o
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Introduce a class of transformations that generate -expansions.

Characterize the set of digit sequences given by such a
transformation.

For specific 3's (Pisot units) give a construction of a natural
extension for the transformation.

From the natural extension, get an absolutely continuous invariant
measure.

Under a further assumption, construct a multiple tiling of a
Euclidean space and give an example that shows that the Pisot
conjecture does not hold in this more general setting.
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Transformations

For each > 1 and allowable digit set A = {ao,...,am} there exist
transformations that generate J-expansions with digits in A by
iteration.

Example: Classic (3-expansions

Consider a non-integer 3 > 1 and digit set A={0,1,...,|3]}. This
gives ‘classic’ B-expansions for all x € [O, %} A transformation
that generates these is
- Bx(mod1), ifx € [0,1),
X = .
Bx —|B], ifxe [1,%}.
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This is the classic greedy
(-transformation.
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7 Assign a digit to each interval.

b
N
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The classic 3-expansions

7 Assign a digit to each interval.
Make a digit sequence by setting

. . L j ]_
J, if x € [5,ﬁ },
J 18],

and bp(x) = by(T""'x) for n > 1.
Then we have Tx = Ox — b; and
B-1  T2x = [3Tx — by, etc.

o
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The classic 3-expansions

7 Assign a digit to each interval.
Make a digit sequence by setting

. . L j ]_
J, if x € [5,ﬁ },
J 18],

and bp(x) = by(T""'x) for n > 1.
Then we have Tx = Ox — b; and
B-1  T2x = [3Tx — by, etc.

o
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The classic 3-expansions

If Tx = Bx — bi(x), then x = % + % Iterating this, we get after n

steps,

by by T%x by b by

TBTRTR TR

X

Since T"x € [0, %) for all n, this converges and gives

[e) bn
X = —.
2 o
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Other transformations: greedy and lazy

Take (3 to be the golden mean and A = {0,1,3}. These are the greedy
and lazy (-transformations with digits in A. [Dajani & K., 2007]

WARWICK

0

3 0 1/]
,’ Y Ox —3
JBXj’g 28
IBx 41
) ax

}/ 0 1 [

103 30 3 a3

3 B 5—1 A—1
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Other transformations: the minimal weight transformation

Take (3 to be the golden mean and A = {—1,0,1}. This is a minimal
weight transformation, i.e. if an x has a finite G-expansion, then the
expansion generated by this transformation has the highest number of
0's. [Frougny & Steiner, 2009]
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Other transformations: the linear mod 1 transformation

Take 6 >1and 0 < a < 1. Suppose n < B+ a < n+ 1. The linear
mod 1 transformation below (Tx = x + a (mod 1)) gives
(-expansions with digits in {j —a : 0 <j < n}.
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The class of transformations

Given a real number 5 > 1 and a digit set A= {ag,...,am}, we
consider the class of transformations that have the following
properties.

o For each digit in the digit set aj, there is a bounded interval X;
and if i # j, then X; N X; = 0.
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The class of transformations

Given a real number 5 > 1 and a digit set A= {ag,...,am}, we
consider the class of transformations that have the following
properties.
o For each digit in the digit set aj, there is a bounded interval X;
and if i # j, then X; N X; = 0.

@ On the interval X; the transformation is given by Tx = (3x — a;.
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The class of transformations

Given a real number 5 > 1 and a digit set A= {ag,...,am}, we
consider the class of transformations that have the following
properties.

o For each digit in the digit set aj, there is a bounded interval X;
and if i # j, then X; N X; = 0.
@ On the interval X; the transformation is given by Tx = (3x — a;.

o If X =Ujpen Xir then TX = X.
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Admissible sequences: The golden mean

We can characterise the digit sequences generated by a transformation.
For the classic greedy (-transformation with § the golden mean, we

have the following.
1 O 1 O
0 1 1 0 1
g g

0 can be followed by 0 or 1, but 1 is always followed by 0. This is
given by the orbit of 1. Hence, T produces precisely the sequences
from the set {ujup -+ | Uptpt1 # 11, n > 1},
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The set of admissible sequences

Given a transformation T for a G > 1 and digit set A, we call a
sequence uytp - - - € AN admissible for T if there is an x € X such that

uup -+ - = b(x).
A two-sided sequence --- u_jugus - - - is called admissible if for each
n € Z there is an x € X, such that upupy1- -+ = b(x).

Notation: S is the set of two sided admissible sequences.
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Relation between expansions and sequences

To a (-transformation on an interval, there corresponds a
shift-transformation on a set of digit sequences.

-
x = Y28 = b(x)=biby---.

Tx = Yoo, % = b(Tx)=bybs---.

T is not invertible: after applying T to x we ‘lose’ the first digit b;.
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Admissible sequences

We can characterise the digit sequences generated by a transformation.

i

Y0 Y12 3 0 Y1 2 73

(a) (b)

Let b(x) be a digit sequence given by (a) and b(x) the one given by
(b). Then we have the following characterization in terms of the
sequences b(~;) and b(7;).
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Admissible sequences

p
apg §
@]
T :
Y Y2 )3 0 71 72 3
Admissible sequences
A sequence uup - - € {ag,...,am}" is generated by T iff for each

n> 1, if u, = a;, then

where < denotes the lexicographical ordering.

b(’yj) = Uplpyy--- <

B(’yj—i-l)?

WARWICK
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The classic admissible sequences

S
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In the case of the classic greedy (-
transformation, only the orbit of 1
is important. This gives the Parry
condition.

Theorem (Parry, 1960)

Let b(1) be the expansion of 1
generated by T. Then a sequence
ujup -+ € {0,1,...,|_5J}N is
generated by T iff for each n > 1,

UpUpyt -+ < b(1).
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B-expansions and multiple tilings > Natural extensions and invariant measures

Invariant measures

The classic greedy (3-transformation T3 has the following properties.

@ It has an invariant measure that is equivalent to the Lebesgue
measure on the unit interval [0,1). (Rényi, 1957)
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Invariant measures

The classic greedy (3-transformation T3 has the following properties.

@ It has an invariant measure that is equivalent to the Lebesgue
measure on the unit interval [0,1). (Rényi, 1957)

@ The density function is given by

1 1
he:10,1) = [0,1) : x — % ;)Bnl[o,T"l)(X)a

where F([3) is a normalizing constant. (Gel'fond, 1959, and Parry,
1960)
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Invariant measures

The classic greedy (3-transformation T3 has the following properties.

o The greedy (3-transformation has an invariant measure that is
equivalent to the Lebesgue measure on the unit interval [0, 1).
(Rényi, 1957)

o The density function is given by
he:10,1) = [0,1) : x — b EOO 1 1 (x)
: ’ ) : n )
c F(,B) ~ An [0,7"1)

where F([3) is a normalizing constant. (Gel'fond, 1959, and Parry,
1960)

In general, one knows that an invariant measure equivalent to the
Lebesgue measure exists for these transformations (Lasota and Yorke,
1974).
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Natural extensions

A way to find an invariant measure is by studying the natural extension
of the dynamical system.

Consider the non-invertible system (X, B, T), where B is the Lebesgue
o-algebra on X. Then a version of the natural extension of (X, B, T)
is an invertible system (X, 5, T), such that

o Thereisamap 7 : X — X that is surjective, measurable and such
that ro T =T om.
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Natural extensions

A way to find an invariant measure is by studying the natural extension
of the dynamical system.

Consider the non-invertible system (X, B, T), where B is the Lebesgue
o-algebra on X. Then a version of the natural extension of (X, B, T)
is an invertible system (X, 5, T), such that

o Thereisamap 7 : X — X that is surjective, measurable and such
that ro T =T om.

o This system is the smallest in the sense of o-algebras:

Vo T"(n~1(B)) = B.
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To be able to say more, we assume that the real number 3 > 1 has
some additional properties. Numbers with all these properties are
called Pisot units.

o (3 is an algebraic unit: it is a root of a minimal polynomial of the
form x4 — ;x4 — ... — ¢4, with ¢; € Z for all i and
Cd € {—1, 1}.
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To be able to say more, we assume that the real number 3 > 1 has
some additional properties. Numbers with all these properties are
called Pisot units.

o [ is an algebraic unit: it is a root of a minimal polynomial of the

form x4 — ;x4 — ... — ¢4, with ¢; € Z for all i and
Cd € {—1, 1}.

o Denote all the other roots of the polynomial
x4 —c1x471 — ... — ¢4 by B3, then |B;j| < 1 for all j.
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Contracting and expanding eigenspaces

Let 5 > 1 be a Pisot unit with minimal polynomial
d

xd — x4l — ... —¢,. Let Bo,..., B4 be the Galois conjugates of 3.
Consider the matrix M:
G @ Cd—-1 Cd
1 0 0 0
M = 0 1 0 0
0 O 1 0
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Contracting and expanding eigenspaces

Let 5 > 1 be a Pisot unit with minimal polynomial

xd — x4l — ... —¢4. Let Bo,..., B4 be the Galois conjugates of 3.
Ci C -+ Cqd—-1 Cd d—1 d—1
1o 0 o | (7, ali Lt
0 1 --- 0 0 5 - b
o 0 --- 1 0 1 B

39
go-1

= J: :ﬁjvj
bj

o - T
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B-expansions and multiple tilings > Natural extensions and invariant measures

Contracting and expanding eigenspaces

Let 5 > 1 be a Pisot unit with minimal polynomial

xd — x4l — ... —¢4. Let Bo,..., B4 be the Galois conjugates of 3.
G & - Cd-1 Cd
1 0 -- 0 0

M = o 1 .- 0 0
o 0 .- 1 0

Eigenvalues: 61 = 03,02,...,04.
Eigenvectors: vi,...,vq.

(Rauzy (1982), Thurston (1989), Berthé and Siegel (2005))
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Contracting and expanding eigenspaces

Let 5 > 1 be a Pisot unit with minimal polynomial

xd — x4l — ... —¢4. Let Bo,..., B4 be the Galois conjugates of 3.
Gt & -+ Cdg-1 Cd
1 0 --- 0 0

M = o 1 .- 0 0
o 0 .- 1 0

Eigenvalues: 61 = 03,02,...,04.
Eigenvectors: vi,...,vq.

|det M| = 1.

(Rauzy (1982), Thurston (1989), Berthé and Siegel (2005))
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Contracting and expanding eigenspaces

Let 5 > 1 be a Pisot unit with minimal polynomial
xd — x4l — ... —¢4. Let Bo,..., B4 be the Galois conjugates of 3.

Let H be the hyperplane of

C11 %2 cd0_1 COd RY which is spanned by the
real and imaginary parts of

M= 0 1 -« 0 o0 v
o 0 - 1 0 Consider the space H + Rvy.

M is expanding by a factor
Eigenvalues: 51 = 3, Ba, - . ., Bd. G in the.direction of v1 and
Eigenvectors: vi, ..., Vy. contracting by a factor 1/
|det M| = 1. on H.

(Rauzy (1982), Thurston (1989), Berthé and Siegel (2005))
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Example: the golden mean

Take 3 > 1 such that 2 — 3 —1=0. Then%:ﬁ—l. So, 3 is an

algebraic unit. Then

(-5) - (-5)-1=0-pr+@-n-1-5-p-1-0

Hence, (2 = —% and 3 is a Pisot unit. We have

(1)) (D)

Then H = Rv, and R? is spanned by v; and vs.

E Charlene Kalle, joint work with Wolfgang Steiner
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Example: the tribonacci number

Take 3 > 1 such that 33 — 32 — 3—1=0. Since % =p32—-p3—1,0is
an algebraic unit. We have 3, € C and 33 = 3,. Also,

111 32 3 5
M=100|,vi=| 8 |,va=1| B |,v3=1| B
010 1 1 1

Since v3 = Vi, H is spanned by R(v2) and (v2).
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We now have the following set-up:
e # > 1is a Pisot unit.
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We now have the following set-up:
e # > 1is a Pisot unit.
o This gives a matrix M with eigenvalues 3 = (1, B2, ..., B4 and
eigenvectors vy, ..., V4.
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We now have the following set-up:
e # > 1is a Pisot unit.
o This gives a matrix M with eigenvalues 3 = (1, B2, ..., B4 and
eigenvectors vy, ..., V4.
o The space H is the hyperplane of RY spanned by the real and
imaginary parts of vo, ..., vy. Every point in x € R? can be
written as xvq — 27:2 yiviwithx € Rand y; € C,2<j <d.
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We now have the following set-up:

(*]
(*]
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B > 1is a Pisot unit.

This gives a matrix M with eigenvalues 8 = (31, 02,..., 084 and
eigenvectors vy, ..., V4.

The space H is the hyperplane of R? spanned by the real and
imaginary parts of vo, ..., vy. Every point in x € R? can be
written as xv; — 27:2 yiviwithx € Rand y; € C,2<j <d.
The transformation T : X — X is given by 3, an allowable digit
set A C Q(3) and a finite union of bounded intervals X. For each
digit a; € A, let X; C X be the interval on which T is given by
Tx = Bx — a;.

Charlene Kalle, joint work with Wolfgang Steiner
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We now have the following set-up:

(*]
(*]
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B > 1is a Pisot unit.

This gives a matrix M with eigenvalues 8 = (31, 02,..., 084 and
eigenvectors vy, ..., V4.

The space H is the hyperplane of R? spanned by the real and
imaginary parts of vo, ..., vy. Every point in x € R? can be
written as xv; — 27:2 yiviwithx € Rand y; € C,2<j <d.
The transformation T : X — X is given by 3, an allowable digit
set A C Q(3) and a finite union of bounded intervals X. For each
digit a; € A, let X; C X be the interval on which T is given by
Tx = Bx — a;.

For x € X, b(x) denotes de digit sequence of x generated by T.
The transformation T specifies a set of two-sided admissible
sequences

S={vu_quuuy--- |Vn€Z3Ix € X : uptipt1--- = b(x)}.
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The natural extension space

We define the natural extension space by mapping the admissible
sequences into RY.

For 1 <j<d, let [;: Q(3) — Q(5;) be given by I';(3) = §; and
i(q) = qfor g Q.
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B-expansions and multiple tilings > Natural extensions and invariant measures
The natural extension space

We define the natural extension space by mapping the admissible
sequences into RY.

For 1 <j<d, let [;: Q(3) — Q(5;) be given by I';(3) = §; and
i(q) = qfor g Q.

Let w-u="---w_iwourtp--- €S. The map ¢ maps the sequence w
into H:

d oo
Bw) = (- worwe) = D05~ w5y,

S e,
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The natural extension space

We define the natural extension space by mapping the admissible
sequences into RY.

For 1 <j<d, let [;: Q(3) — Q(5;) be given by I';(3) = §; and
Mj(q) = qfor g € Q.

Let w-u="---w_iwourtp--- €S. The map ¢ maps the sequence w
into H:

j=2 n=0
Then v maps w - u into RY:
oo
Y(w-u) =Y(---wowourup - - ) = Z %Vl — ¢(w).
n=1

g
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The natural extension space

We define the natural extension space by mapping the admissible
sequences into RY.

For 1 <j<d, let [;: Q(3) — Q(5;) be given by I';(3) = §; and
Mj(q) = qfor g € Q.

Let w-u="---w_iwourtp--- €S. The map ¢ maps the sequence w
into H:

j=2 n=0
Then v maps w - u into RY:
oo
Y(w-u) =Y(---wowourup - - ) = Z %Vl — ¢(w).
n=1

Set X = (8). This is the natural extension space.
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The natural extension transformation

A

For the natural extension transformation 7 : X — X we want the
following.

o T is a.e. invertible.
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The natural extension transformation

A

For the natural extension transformation 7 : X — X we want the
following.

o T is a.e. invertible.
o T preserves the dynamics of T.

N
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The natural extension transformation

A

For the natural extension transformation 7 : X — X we want the
following.

o T is a.e. invertible.

o T preserves the dynamics of T.

o T is invariant wrt the Lebesgue measure.
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B-expansions and multiple tilings > Natural extensions and invariant measures

The natural extension transformation

A A A

For the natural extension transformation T : X — X we want the
following.

o T is a.e. invertible.

o T preserves the dynamics of T.

o T is invariant wrt the Lebesgue measure.
Partition X = Uics Xi with Xi = {¢)(w - u) | up = a;}. For x € X, write
X = XV] — Zj’:z yjvj. If x € X;, take

Tx
N /—Aﬁ

d
Tx = (Bx—aj)v Z@yj—l—r ai))vj
j=2

v,
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The natural extension transformation

A A A

For the natural extension transformation T : X — X we want the
following.

o T is a.e. invertible.
o T preserves the dynamics of T.
o T is invariant wrt the Lebesgue measure.
Partition X = Uics Xi with Xi = {¢)(w - u) | up = a;}. For x € X, write
X = XV] — Zj’:z yjvj. If x € X;, take
Tx
PN /_Aﬁ

d
Tx = (Bx—aj)v Z@yj—l—r ai))vj
j=2

= Mx-— Z Fi(ai)v
j=1
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An invariant measure for T

The Lebesgue measure on A9 is invariant for T.Letm: X — X be
given by 7r(xv1 — 27:2 ijj) = X.

Define the measure p on (X, £) by u(E) = (A9 o 77 1)(E) for each
E € L. Then p is invariant for T.

Note: Since T is only invertible a.e. we need to remove the right sets
of measure zero everywhere.

S
=

& 8 Charlene Kalle, joint work with Wolfgang Steiner
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An example: the golden mean

Take (8 to be the golden mean and T the classic greedy
B-transformation, then A = {0,1}. Recall that

(1)) (D)

V1

v,
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An example: the smallest Pisot number
Let 3 be the real solution of x> — x — 1 = 0. This is the smallest Pisot
7 6
number. Take A= {-1,0,1}, X_; = [— %, —%)
6 6 i 6 7 . ..
Xo = {— %, %) and X; = _%, %) Then T is a minimal

weight transformation.

-1 D oy

s,
: E E Charlene Kalle, joint work with Wolfgang Steiner
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An example: the tribonacci number

Let 5 be the tribonacci number. Take A ={-1,0,1},

_ 8 1 _ 11 _ |1 B
Xa=| - -gh) Xo= | - ghroar) and X = [ o)
Then T is a minimal weight transformation.

RO
8 8 Charlene Kalle, joint work with Wolfgang Steiner
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Multiple tilings

Under a certain condition we can say more about the invariant
measure for T given by its natural extension. Moreover, this condition
allows us to construct a tiling of the space H. A tiling is the following.

Start with a finite set of prototiles in H, compact sets that are the
closure of their interior. D = {Dy,..., Di}.

A tile is a translation of a prototile. 7, = D; + v, for some vector
v, € H.

Let M > 1. A multiple tiling of degree M of H is a covering of H such
that almost all elements are in exactly M different tiles.

A tiling of H is a multiple tiling of degree 1.

S
z E E Charlene Kalle, joint work with Wolfgang Steiner
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Tilings

s E ° Charlene Kalle, joint work with Wolfgang Steiner
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A finite set of prototiles

For each x € X, let Dy = {¢(w) | w - b(x) € S}. Then each set Dy is
compact and
X = U xvy + Dy.
xeX
We will construct a multiple tiling of H with {D, | x € Z[5] N X} as
the set of prototiles. Therefore, we would like to have only finitely
many different sets Dy.

V2

SN
8 8 Charlene Kalle, joint work with Wolfgang Steiner
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A finite set of prototiles

Recall the transformation T:

i

V3

%o 2 3 .
T T

For ~;, let n; be the minimal k such that kay,- = 7"‘7,- with n; = oo if
this doesn’t happen.

v,
8 8 Charlene Kalle, joint work with Wolfgang Steiner
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A finite set of prototiles

Suppose that A= {ao,...,am}.

If the set
m+1
v=J v U {T*yi, Tovi}
i=0 1<k<n;,vi€X,i#0

is finite, then there are only finitely many different sets Dy, x € X.

Under this condition the density of the invariant measure for T,
=X on1is a finite sum of indicator functions. Let Dy, ..., D, be
these sets and X7, ..., X/ the corresponding subsets of X. Then

u([s, 1)) —c/ Z)\d H(Di)1x;dA.
[s,t) &

Charlene Kalle, joint work with Wolfgang Steiner
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An example: the classic greedy tribonacci-transformation

m+1
v={J{u U {T5 i, T}
i=0 1<k<n;,vieX,i#0

° U?:O{’Yi} = {07 %7 1}'

v,
8 8 Charlene Kalle, joint work with Wolfgang Steiner
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An example: the classic greedy tribonacci-transformation

m+1
v={J{u U {T5 i, T}
i=0 1<k<n;,vieX,i#0

° U?:O{’Yi} = {07 %7 1}'
o {1 Xi#0} = {1/5}

v,
8 8 Charlene Kalle, joint work with Wolfgang Steiner
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An example: the classic greedy tribonacci-transformation

m+1
v={J{u U {T5 i, T}
i=0 1<k<n;,vieX,i#0

° UI?IO{’.Y"} = {07 %7 1}'

o {vieX|i#0}={1/p}.

o TH(§) =0forall k> 1.
P =1 ()= g1 () = b
So, n; = oo, but 7 is periodic for T.

v,
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An example: the classic greedy tribonacci-transformation

m+1
v={J{u U {T5 i, T}
i=0 1<k<n;,vieX,i#0

° U O{f)/l} - {07 /37 }

o {vieX|i#0}={1/p}.

o TH(§) =0forall k> 1.
T3) =1 F(3) =51 P = b
So, n; = oo, but 7 is periodic for T.

o V=1{0,1 53:0-1 1} is a finite set.
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An example: the classic greedy tribonacci-transformation

m+1
v={J{u U {T5 i, T}
i=0 1<k<n;,vieX,i#0

o Uofri} = {0, 4.1},
o {nieX|i#0}={1/5}.
o TH(§) =0forall k> 1.
T() =1 72 =51 P(3) = b
So, n; = oo, but 7 is periodic for T.
o V=1{0,1 53:0-1 1} is a finite set.
o This gives 3 different prototiles Dy.

8 8 Charlene Kalle, joint work with Wolfgang Steiner
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The translation vectors

Suppose that V is a finite set. The set {Dx | x € X} is finite and is the
set of prototiles. We now want a set of translation vectors, so that

o all the translates of Dy together cover the whole space H, and

v,
8 8 Charlene Kalle, joint work with Wolfgang Steiner
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The translation vectors

Suppose that V is a finite set. The set {Dx | x € X} is finite and is the
set of prototiles. We now want a set of translation vectors, so that
o all the translates of Dy together cover the whole space H, and

o there is an M > 1 such that a.e. point in H is in exactly M
translates of prototiles.

v,
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The translation vectors

Suppose that V is a finite set. The set {Dx | x € X} is finite and is the
set of prototiles. We now want a set of translation vectors, so that

o all the translates of Dy together cover the whole space H, and

o there is an M > 1 such that a.e. point in H is in exactly M
translates of prototiles.

So the set of translation vectors must be big enough, but not too big.

SN
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The multiple tiling

Define the function ® : Q(8) — H by ®(x) = > 7, I;(x)v;.
For x € Z[B] N X, define the tiles 7T, = ®(x) + D.

There is an M > 1, such that the set {7, } cz[gnx is a multiple tiling
of degree M of H.

4

Pisot conjecture (Akiyama, 2002 and Sidorov, 2003)

If 3 is a Pisot number and T is the classic greedy [-transformation,
then this construction gives a tiling of the space H.

v,
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An example: the Rauzy tiling (Rauzy, 1982)

Let 8 be the tribonacci number and T the classic greedy
(B-transformation.

1 y

1
B

v,
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ample: the Rauzy tiling (Rauzy, 1982)

.010101

S
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A tiling: the tribonacci number

Let 5 be the tribonacci number. Take A ={-1,0,1},

_ 8 1 _ 11 _ |1 B
Xa=| - -gh) Xo= | - ghroar) and X = [ o)
Then T is a minimal weight transformation.
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A tiling: the tribonacci number

b

=

WARWICK

10

Charlene Kalle, joint work with Wolfgang Steiner
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A tiling: the smallest Pisot number

Let 3 be the real solution of x3 —x — 1 = 0. This is the smallest Pisot
7 6
number. Take A= {-1,0,1}, X_; = {— %:‘%)v
6 6 [ 36 7 . ..
Xo = {— %, %) and X1 = _%, %) Then T is a minimal
weight transformation.

1 0 £5

S
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A tiling: the smallest Pisot number
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A double tiling: the tribonacci number

Let 3 be the tribonacci number. Take A= {-1,0,1},
X1 = [—%,—%), Xo = [ 5,26) and X; = [ 5,2)

v,
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A double tiling: the tribonacci number

and 71 .

Consider 2 tiles 7,
3

1
B
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A double tiling: the tribonacci number

and 71 .

1 1
B B 3

Consider 2 tiles 7, _

=
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A double tiling: the tribonacci number

Consider 2 tiles 7, -1 and Tl )

Take a point y from the yeIIow
ball in 77%.

Theny = ®(1 — %) + ¢(w) for

?S(?me w such that W'b(l—%) €

8 8 Charlene Kalle, joint work with Wolfgang Steiner
WARWICK



B-expansions and multiple tilings > Multiple tilings

A double tiling: the tribonacci number

Consider 2 tiles 7; 1 and 71 .
B B3

Take a point y from the yellow
ball in ’]’17%.

Theny = ®(1 — %) + ¢(w) for
some w such that W'b(l—%) €
S.

Show that there is a sequence
w’, such that W"b(%) andy =

o) +o(w).

8 8 Charlene Kalle, joint work with Wolfgang Steiner
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A double tiling: the smallest Pisot number

Let 8 be the smallest Pisot number Take A={-1,0,1},
Xa=[=3-%) Xo= |- 3) and X = [25’2)

v,
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A double tiling: the smallest Pisot number
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Properties of the multiple tiling

o The tiles that contain the origin are precisely the tiles 7, for
which x has a purely periodic digit sequence b(x).
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Properties of the multiple tiling

o The tiles that contain the origin are precisely the tiles 7, for
which x has a purely periodic digit sequence b(x).

o The multiple tiling is self-replicating.
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Properties of the multiple tiling

o The tiles that contain the origin are precisely the tiles 7, for
which x has a purely periodic digit sequence b(x).

o The multiple tiling is self-replicating.
@ The multiple tiling is quasi-periodic: Vr > 0 IR such that for all

Y,y € H, the local configuration that we see in the ball B(y, r)
also occurs in the ball B(y’, R).
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Properties of the multiple tiling

o The tiles that contain the origin are precisely the tiles 7, for
which x has a purely periodic digit sequence b(x).

o The multiple tiling is self-replicating.

@ The multiple tiling is quasi-periodic: Vr > 0 IR such that for all
Y,y € H, the local configuration that we see in the ball B(y, r)
also occurs in the ball B(y’, R).

o If the multiple tiling is a tiling, then the closure of the natural
extension domain gives a tiling of the torus.
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Properties of the multiple tiling

(4]

The tiles that contain the origin are precisely the tiles 7 for
which x has a purely periodic digit sequence b(x).

o The multiple tiling is self-replicating.
@ The multiple tiling is quasi-periodic: Vr > 0 IR such that for all

Y,y € H, the local configuration that we see in the ball B(y, r)
also occurs in the ball B(y’, R).

o If the multiple tiling is a tiling, then the closure of the natural
extension domain gives a tiling of the torus.

o If we have a tiling and every set D, contains the origin, then there
is a direct way to determine the n-th digit of the expansions.

o - T
& 8 Charlene Kalle, joint work with Wolfgang Steiner
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