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β-expansions and multiple tilings > Introduction

Introduction

Let β > 1 and A = {a0, . . . , am} a set of real numbers with
a0 < a1 < . . . < am. Expressions of the form

x =
∞∑

n=1

bn

βn
,

with bn ∈ A for all n ≥ 1, are called β-expansions with arbitrary digits.

This gives numbers in the interval
[ a0

β − 1
,

am

β − 1

]
.

β is called the base, A is the digit set and elements of A are called
digits.
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β-expansions and multiple tilings > Introduction

Allowable digit sets

If, for a given β > 1, a set of real numbers A = {a0, . . . , am} satisfies

(i) a0 < . . . < am,

(ii) max1≤j≤m(aj − aj−1) ≤ am − a0

β − 1
,

it is called an allowable digit set. Then

every x ∈
[ a0

β − 1
,

am

β − 1

]
has a β-expansion with digits in A.

(Pedicini, 2005)

the minimal amount of digits in A is dβe.
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Outline

Introduce a class of transformations that generate β-expansions.

Characterize the set of digit sequences given by such a
transformation.

For specific β’s (Pisot units) give a construction of a natural
extension for the transformation.

From the natural extension, get an absolutely continuous invariant
measure.

Under a further assumption, construct a multiple tiling of a
Euclidean space and give an example that shows that the Pisot
conjecture does not hold in this more general setting.
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β-expansions and multiple tilings > Transformations and admissible sequences

Transformations

For each β > 1 and allowable digit set A = {a0, . . . , am} there exist
transformations that generate β-expansions with digits in A by
iteration.

Example: Classic β-expansions

Consider a non-integer β > 1 and digit set A = {0, 1, . . . , bβc}. This

gives ‘classic’ β-expansions for all x ∈
[
0,
bβc
β − 1

]
. A transformation

that generates these is

Tx =

{
βx (mod 1), if x ∈ [0, 1),

βx − bβc, if x ∈
[
1, bβcβ−1

]
.
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The classic β-expansions

0 1
β

2
β

2
β−1

1

βx

βx − 1

βx − 2

This is the classic greedy
β-transformation.
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The classic β-expansions

0 1
β

2
β

2
β−1

210
1

Assign a digit to each interval.
Make a digit sequence by setting

b1(x) =


j , if x ∈

[
j
β ,

j+1
β−1

]
,

for 0 ≤ j ≤ bβc,
bβc, if x ∈

[
bβc
β ,

bβc
β−1

]
.

and bn(x) = b1(T n−1x) for n ≥ 1.
Then we have Tx = βx − b1 and
T 2x = βTx − b2, etc.
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The classic β-expansions

If Tx = βx − b1(x), then x = b1
β + Tx

β . Iterating this, we get after n
steps,

x =
b1

β
+

b2

β2
+

T 2x

β2
= · · · =

b1

β
+

b2

β2
+ · · ·+ bn

βn
+

T nx

βn
.

Since T nx ∈
[
0, bβcβ−1

)
for all n, this converges and gives

x =
∞∑

n=1

bn

βn
.
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Other transformations: greedy and lazy

Take β to be the golden mean and A = {0, 1, 3}. These are the greedy
and lazy β-transformations with digits in A. [Dajani & K., 2007]

0 1
β

3
β

3
β−1

310

βx βx − 1

βx − 3

0 3 a 3
β−1

310

βx

βx − 1

βx − 3
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Other transformations: the minimal weight transformation

Take β to be the golden mean and A = {−1, 0, 1}. This is a minimal
weight transformation, i.e. if an x has a finite β-expansion, then the
expansion generated by this transformation has the highest number of
0’s. [Frougny & Steiner, 2009]

−β
2

β
2

−1
2

1
2

0
βx + 1

βx

βx − 1
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Other transformations: the linear mod 1 transformation

Take β > 1 and 0 ≤ α < 1. Suppose n < β + α ≤ n + 1. The linear
mod 1 transformation below (Tx = βx + α (mod 1)) gives
β-expansions with digits in {j − α : 0 ≤ j ≤ n}.

0
1−α
β

2−α
β

1

α βx + α

βx − 1 + α

βx − 2 + α
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The class of transformations

Given a real number β > 1 and a digit set A = {a0, . . . , am}, we
consider the class of transformations that have the following
properties.

For each digit in the digit set ai , there is a bounded interval Xi

and if i 6= j , then Xi ∩ Xj = ∅.
On the interval Xi the transformation is given by Tx = βx − ai .

If X =
⋃

i :ai∈A Xi , then TX = X .
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Admissible sequences: The golden mean

We can characterise the digit sequences generated by a transformation.
For the classic greedy β-transformation with β the golden mean, we
have the following.

0 1
β

1

10
1

0 1
β

1

10
1

0 1
β

1

10
1

0 can be followed by 0 or 1, but 1 is always followed by 0. This is
given by the orbit of 1. Hence, T produces precisely the sequences
from the set {u1u2 · · · | unun+1 6= 11, n ≥ 1}.
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The set of admissible sequences

Given a transformation T for a β > 1 and digit set A, we call a
sequence u1u2 · · · ∈ AN admissible for T if there is an x ∈ X such that
u1u2 · · · = b(x).

A two-sided sequence · · · u−1u0u1 · · · is called admissible if for each
n ∈ Z there is an x ∈ X , such that unun+1 · · · = b(x).

Notation: S is the set of two sided admissible sequences.
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Relation between expansions and sequences

To a β-transformation on an interval, there corresponds a
shift-transformation on a set of digit sequences.

T

x =
∑∞

n=1
bn
βn ⇒ b(x) = b1b2 · · · .

Tx =
∑∞

n=1
bn+1

βn ⇒ b(Tx) = b2b3 · · · .

T is not invertible: after applying T to x we ‘lose’ the first digit b1.

Charlene Kalle, joint work with Wolfgang Steiner (PhD supervisor Karma Dajani)T
H

E
•

U
N

I V E R S
I

T

Y
•

O
F

M
A

E
G
NS

I
T A T

MOLEM

U
N IVERSITAS  WARWICENSIS



β-expansions and multiple tilings > Transformations and admissible sequences

Admissible sequences

We can characterise the digit sequences generated by a transformation.

γ0 γ1

(a)
γ2 γ3

a2a1a0

γ0 γ1

(b)
γ2 γ3

a2a1a0

Let b(x) be a digit sequence given by (a) and b̃(x) the one given by
(b). Then we have the following characterization in terms of the
sequences b(γj) and b̃(γj).
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Admissible sequences

γ0 γ1 γ2 γ3

a2a1a0

T :

γ0 γ1 γ2 γ3

a2a1a0

T̃ :

Admissible sequences

A sequence u1u2 · · · ∈ {a0, . . . , am}N is generated by T iff for each
n ≥ 1, if un = aj , then

b(γj) � unun+1 · · · ≺ b̃(γj+1),

where � denotes the lexicographical ordering.

Charlene Kalle, joint work with Wolfgang Steiner (PhD supervisor Karma Dajani)T
H

E
•

U
N

I V E R S
I

T

Y
•

O
F

M
A

E
G
NS

I
T A T

MOLEM

U
N IVERSITAS  WARWICENSIS



β-expansions and multiple tilings > Transformations and admissible sequences

The classic admissible sequences

0 1
β

2
β

1

In the case of the classic greedy β-
transformation, only the orbit of 1
is important. This gives the Parry
condition.

Theorem (Parry, 1960)

Let b̃(1) be the expansion of 1
generated by T . Then a sequence
u1u2 · · · ∈ {0, 1, . . . , bβc}N is
generated by T iff for each n ≥ 1,

unun+1 · · · ≺ b̃(1).
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β-expansions and multiple tilings > Natural extensions and invariant measures

Invariant measures

The classic greedy β-transformation Tβ has the following properties.

It has an invariant measure that is equivalent to the Lebesgue
measure on the unit interval [0, 1). (Rényi, 1957)

The density function is given by

hc : [0, 1)→ [0, 1) : x 7→ 1

F (β)

∞∑
n=0

1

βn
1[0,T n1)(x),

where F (β) is a normalizing constant. (Gel’fond, 1959, and Parry,
1960)

In general, one knows that an invariant measure equivalent to the
Lebesgue measure exists for these transformations (Lasota and Yorke,
1974).
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Natural extensions

A way to find an invariant measure is by studying the natural extension
of the dynamical system.

Consider the non-invertible system (X ,B,T ), where B is the Lebesgue
σ-algebra on X . Then a version of the natural extension of (X ,B,T )
is an invertible system (X̂ , B̂, T̂ ), such that

There is a map π : X̂ → X that is surjective, measurable and such
that π ◦ T̂ = T ◦ π.

This system is the smallest in the sense of σ-algebras:∨
n≥0 T̂ n(π−1(B)) = B̂.
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Pisot β’s

To be able to say more, we assume that the real number β > 1 has
some additional properties. Numbers with all these properties are
called Pisot units.

β is an algebraic unit: it is a root of a minimal polynomial of the
form xd − c1x

d−1 − · · · − cd , with ci ∈ Z for all i and
cd ∈ {−1, 1}.
Denote all the other roots of the polynomial
xd − c1x

d−1 − . . .− cd by βj , then |βj | < 1 for all j .
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Contracting and expanding eigenspaces

Let β > 1 be a Pisot unit with minimal polynomial
xd − c1x

d−1 − · · · − cd . Let β2, . . . , βd be the Galois conjugates of β.
Consider the matrix M:

M =


c1 c2 · · · cd−1 cd

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .
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βd−1
j

βd−2
j
...
1

 =


c1β

d−1
j + · · ·+ cd

βd−1
j
...
βj



=


βd

j

βd−1
j
...
βj

 = βjvj .
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Contracting and expanding eigenspaces

Let β > 1 be a Pisot unit with minimal polynomial
xd − c1x

d−1 − · · · − cd . Let β2, . . . , βd be the Galois conjugates of β.

M =


c1 c2 · · · cd−1 cd

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

Eigenvalues: β1 = β, β2, . . . , βd .
Eigenvectors: v1, . . . , vd .
| det M| = 1.

Let H be the hyperplane of
Rd which is spanned by the
real and imaginary parts of
v2, . . . , vd .

Consider the space H + Rv1.
M is expanding by a factor
β in the direction of v1 and
contracting by a factor 1/β
on H.

(Rauzy (1982), Thurston (1989), Berthé and Siegel (2005))
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Example: the golden mean

Take β > 1 such that β2 − β − 1 = 0. Then 1
β = β − 1. So, β is an

algebraic unit. Then(
− 1

β

)2
−
(
− 1

β

)
− 1 = (1− β)2 + (β − 1)− 1 = β2 − β − 1 = 0.

Hence, β2 = − 1
β and β is a Pisot unit. We have

M =

(
1 1
1 0

)
, v1 =

(
β
1

)
, v2 =

(
− 1
β

1

)
.

Then H = Rv2 and R2 is spanned by v1 and v2.
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Example: the tribonacci number

Take β > 1 such that β3 − β2 − β − 1 = 0. Since 1
β = β2 − β − 1, β is

an algebraic unit. We have β2 ∈ C and β3 = β2. Also,

M =

 1 1 1
1 0 0
0 1 0

 , v1 =

 β2

β
1

 , v2 =

 β2
2

β2

1

 , v3 =

 β2
3

β3

1

 .

Since v3 = v2, H is spanned by <(v2) and =(v2).
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Set-up

We now have the following set-up:

β > 1 is a Pisot unit.
This gives a matrix M with eigenvalues β = β1, β2, . . . , βd and
eigenvectors v1, . . . , vd .
The space H is the hyperplane of Rd spanned by the real and
imaginary parts of v2, . . . , vd . Every point in x ∈ Rd can be
written as xv1 −

∑d
j=2 yjvj with x ∈ R and yj ∈ C, 2 ≤ j ≤ d .

The transformation T : X → X is given by β, an allowable digit
set A ⊂ Q(β) and a finite union of bounded intervals X . For each
digit ai ∈ A, let Xi ⊆ X be the interval on which T is given by
Tx = βx − ai .
For x ∈ X , b(x) denotes de digit sequence of x generated by T .
The transformation T specifies a set of two-sided admissible
sequences

S = {· · · u−1u0u1u2 · · · | ∀n ∈ Z∃x ∈ X : unun+1 · · · = b(x)}.
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The natural extension space

We define the natural extension space by mapping the admissible
sequences into Rd .

For 1 ≤ j ≤ d , let Γj : Q(β)→ Q(βj) be given by Γj(β) = βj and
Γj(q) = q for q ∈ Q.

Let w · u = · · ·w−1w0u1u2 · · · ∈ S. The map φ maps the sequence w
into H:

φ(w) = φ(· · ·w−1w0) =
d∑

j=2

∞∑
n=0

w−nβ
n
j vj .

Then ψ maps w · u into Rd :

ψ(w · u) = ψ(· · ·w−1w0u1u2 · · · ) =
∞∑

n=1

un

βn
v1 − φ(w).

Set X̂ = ψ(S). This is the natural extension space.
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The natural extension transformation

For the natural extension transformation T̂ : X̂ → X̂ we want the
following.

T̂ is a.e. invertible.

T̂ preserves the dynamics of T .

T̂ is invariant wrt the Lebesgue measure.

Partition X̂ =
⋃

i∈I X̂i with X̂i = {ψ(w · u) | u1 = ai}. For x ∈ X̂ , write

x = xv1 −
∑d

j=2 yjvj . If x ∈ X̂i , take

T̂x =

Tx︷ ︸︸ ︷
(βx − ai ) v1 −

d∑
j=2

(βjyj + Γj(ai ))vj

= Mx−
d∑

j=1

Γj(ai )vj .
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(βjyj + Γj(ai ))vj

= Mx−
d∑

j=1

Γj(ai )vj .
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β-expansions and multiple tilings > Natural extensions and invariant measures

The natural extension transformation
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following.
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β-expansions and multiple tilings > Natural extensions and invariant measures

An invariant measure for T

The Lebesgue measure on λd is invariant for T̂ . Let π : X̂ → X be
given by π

(
xv1 −

∑d
j=2 yjvj

)
= x .

Define the measure µ on (X ,L) by µ(E ) = (λd ◦ π−1)(E ) for each
E ∈ L. Then µ is invariant for T .

Note: Since T̂ is only invertible a.e. we need to remove the right sets
of measure zero everywhere.
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β-expansions and multiple tilings > Natural extensions and invariant measures

An example: the golden mean

Take β to be the golden mean and T the classic greedy
β-transformation, then A = {0, 1}. Recall that

M =

(
1 1
1 0

)
, v1 =

(
β
1

)
, v2 =

(
− 1
β

1

)
.

0 1
β

1

10

X̂0 X̂1

v1

v2

T̂ X̂0

T̂ X̂1
v1

v2
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β-expansions and multiple tilings > Natural extensions and invariant measures

An example: the smallest Pisot number

Let β be the real solution of x3 − x − 1 = 0. This is the smallest Pisot

number. Take A = {−1, 0, 1}, X−1 =
[
− β7

β8−1
,− β6

β8−1

)
,

X0 =
[
− β6

β8−1
, β6

β8−1

)
and X1 =

[
β6

β8−1
, β7

β8−1

)
. Then T is a minimal

weight transformation.

−1 0 1
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β-expansions and multiple tilings > Natural extensions and invariant measures

An example: the tribonacci number

Let β be the tribonacci number. Take A = {−1, 0, 1},
X−1 =

[
− β

β+1 ,−
1

β+1

)
, X0 =

[
− 1

β+1 ,
1

β+1

)
and X1 =

[
1

β+1 ,
β
β+1

)
.

Then T is a minimal weight transformation.

−1 0 1
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β-expansions and multiple tilings > Multiple tilings

Multiple tilings

Under a certain condition we can say more about the invariant
measure for T given by its natural extension. Moreover, this condition
allows us to construct a tiling of the space H. A tiling is the following.

Start with a finite set of prototiles in H, compact sets that are the
closure of their interior. D = {D1, . . . ,Dk}.

A tile is a translation of a prototile. Tx = Di + vx for some vector
vx ∈ H.

Let m ≥ 1. A multiple tiling of degree m of H is a covering of H such
that almost all elements are in exactly m different tiles.

A tiling of H is a multiple tiling of degree 1.
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β-expansions and multiple tilings > Multiple tilings

Tilings
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β-expansions and multiple tilings > Multiple tilings

A finite set of prototiles

For each x ∈ X , let Dx = {φ(w) |w · b(x) ∈ S}. Then each set Dx is
compact and

X̂ =
⋃
x∈X

xv1 +Dx .

We will construct a multiple tiling of H with {Dx | x ∈ Z[β] ∩ X} as
the set of prototiles. Therefore, we would like to have only finitely
many different sets Dx .

0 1
β

1

10

X̂0 X̂1

v1

v2

T̂ X̂0

T̂ X̂1
v1

v2
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β-expansions and multiple tilings > Multiple tilings

A finite set of prototiles

Recall the transformation T̃ :

γ0 γ1

T
γ2 γ3

a2a1a0

γ0 γ1

T̃

γ2 γ3

a2a1a0

For γi , let ni be the minimal k such that T kγi = T̃ kγi with ni =∞ if
this doesn’t happen.
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β-expansions and multiple tilings > Multiple tilings

A finite set of prototiles

Suppose that A = {a0, . . . , am}.

Theorem

If the set

V =
m+1⋃
i=0

{γi} ∪
⋃

1≤k<ni ,γi∈X ,i 6=0

{T kγi , T̃
kγi}

is finite, then there are only finitely many different sets Dx , x ∈ X .

Under this condition the density of the invariant measure for T ,
µ = λd ◦ π−1 is a finite sum of indicator functions. Let D1, . . . ,Dκ be
these sets and X ′1, . . . ,X

′
κ the corresponding subsets of X . Then

µ([s, t)) = c

∫
[s,t)

κ∑
k=1

λd−1(Dk)1X ′
k
dλ.
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β-expansions and multiple tilings > Multiple tilings

An example: the classic greedy tribonacci-transformation

V =
m+1⋃
i=0

{γi} ∪
⋃

1≤k<ni ,γi∈X ,i 6=0

{T kγi , T̃
kγi}

0 1/β 1

γ2γ1γ0 ⋃2
i=0{γi} = {0, 1

β , 1}.
{γi ∈ X | i 6= 0} = {1/β}.
T k
(

1
β

)
= 0 for all k ≥ 1.

T̃
(

1
β

)
= 1, T̃ 2

(
1
β

)
= β− 1, T̃ 3

(
1
β

)
= 1

β .

So, n1 =∞, but γ1 is periodic for T̃ .

V = {0, 1
β , β − 1, 1} is a finite set.

This gives 3 different prototiles Dx .

Charlene Kalle, joint work with Wolfgang Steiner (PhD supervisor Karma Dajani)T
H

E
•

U
N

I V E R S
I

T

Y
•

O
F

M
A

E
G
NS

I
T A T

MOLEM

U
N IVERSITAS  WARWICENSIS



β-expansions and multiple tilings > Multiple tilings

An example: the classic greedy tribonacci-transformation

V =
m+1⋃
i=0

{γi} ∪
⋃

1≤k<ni ,γi∈X ,i 6=0

{T kγi , T̃
kγi}

0 1/β 1

γ2γ1γ0 ⋃2
i=0{γi} = {0, 1

β , 1}.
{γi ∈ X | i 6= 0} = {1/β}.
T k
(

1
β

)
= 0 for all k ≥ 1.

T̃
(

1
β

)
= 1, T̃ 2

(
1
β

)
= β− 1, T̃ 3

(
1
β

)
= 1

β .

So, n1 =∞, but γ1 is periodic for T̃ .

V = {0, 1
β , β − 1, 1} is a finite set.

This gives 3 different prototiles Dx .

Charlene Kalle, joint work with Wolfgang Steiner (PhD supervisor Karma Dajani)T
H

E
•

U
N

I V E R S
I

T

Y
•

O
F

M
A

E
G
NS

I
T A T

MOLEM

U
N IVERSITAS  WARWICENSIS



β-expansions and multiple tilings > Multiple tilings

An example: the classic greedy tribonacci-transformation

V =
m+1⋃
i=0

{γi} ∪
⋃

1≤k<ni ,γi∈X ,i 6=0

{T kγi , T̃
kγi}

0 1/β 1

γ2γ1γ0 ⋃2
i=0{γi} = {0, 1

β , 1}.
{γi ∈ X | i 6= 0} = {1/β}.
T k
(

1
β

)
= 0 for all k ≥ 1.

T̃
(

1
β

)
= 1, T̃ 2

(
1
β

)
= β− 1, T̃ 3

(
1
β

)
= 1

β .

So, n1 =∞, but γ1 is periodic for T̃ .

V = {0, 1
β , β − 1, 1} is a finite set.

This gives 3 different prototiles Dx .

Charlene Kalle, joint work with Wolfgang Steiner (PhD supervisor Karma Dajani)T
H

E
•

U
N

I V E R S
I

T

Y
•

O
F

M
A

E
G
NS

I
T A T

MOLEM

U
N IVERSITAS  WARWICENSIS



β-expansions and multiple tilings > Multiple tilings
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β-expansions and multiple tilings > Multiple tilings

An example: the classic greedy tribonacci-transformation
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β-expansions and multiple tilings > Multiple tilings

The translation vectors

Suppose that V is a finite set. The set {Dx | x ∈ X} is finite and is the
set of prototiles. We now want a set of translation vectors, so that

all the translates of Dx together cover the whole space H, and

there is an m ≥ 1 such that a.e. point in H is in exactly m
translates of prototiles.

So the set of translation vectors must be big enough, but not too big.
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The translation vectors

Suppose that V is a finite set. The set {Dx | x ∈ X} is finite and is the
set of prototiles. We now want a set of translation vectors, so that

all the translates of Dx together cover the whole space H, and

there is an m ≥ 1 such that a.e. point in H is in exactly m
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β-expansions and multiple tilings > Multiple tilings

The multiple tiling

Define the function Φ : Q(β)→ H by Φ(x) =
∑d

j=2 Γj(x)vj .

For x ∈ Z[β] ∩ X , define the tiles Tx = Φ(x) +Dx .

Theorem

There is an m ≥ 1, such that the set {Tx}x∈Z[β]∩X is a multiple tiling
of degree m of H.

Pisot conjecture (Akiyama, 2002 and Sidorov, 2003)

If β is a Pisot number and T is the classic greedy β-transformation,
then this construction gives a tiling of the space H.
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β-expansions and multiple tilings > Multiple tilings

An example: the Rauzy tiling (Rauzy, 1982)

Let β be the tribonacci number and T the classic greedy
β-transformation.

0 1
β

1

10
1
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β-expansions and multiple tilings > Multiple tilings

An example: the Rauzy tiling (Rauzy, 1982)
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β-expansions and multiple tilings > Multiple tilings

A tiling: the tribonacci number

Let β be the tribonacci number. Take A = {−1, 0, 1},
X−1 =

[
− β

β+1 ,−
1

β+1

)
, X0 =

[
− 1

β+1 ,
1

β+1

)
and X1 =

[
1

β+1 ,
β
β+1

)
.

Then T is a minimal weight transformation.

−1 0 1
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β-expansions and multiple tilings > Multiple tilings

A tiling: the tribonacci number
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β-expansions and multiple tilings > Multiple tilings

A tiling: the smallest Pisot number

Let β be the real solution of x3 − x − 1 = 0. This is the smallest Pisot

number. Take A = {−1, 0, 1}, X−1 =
[
− β7

β8−1
,− β6

β8−1

)
,

X0 =
[
− β6

β8−1
, β6
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)
and X1 =
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)
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weight transformation.
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β-expansions and multiple tilings > Multiple tilings

A tiling: the smallest Pisot number
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β-expansions and multiple tilings > Multiple tilings

A double tiling: the tribonacci number

Let β be the tribonacci number. Take A = {−1, 0, 1},
X−1 =

[
− 1

2 ,−
1
2β

)
, X0 =

[
− 1

2β ,
1
2β

)
and X1 =

[
1
2β ,

1
2

)
.

−1 0 1
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β-expansions and multiple tilings > Multiple tilings

A double tiling: the tribonacci number

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6
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β-expansions and multiple tilings > Multiple tilings

A double tiling: the tribonacci number

Consider 2 tiles T1− 1
β

and T 1
β3

.

Take a point y from the yellow
ball in T1− 1

β
.

Then y = Φ(1 − 1
β ) + φ(w) for

some w such that w ·b(1− 1
β ) ∈

S.
Show that there is a sequence
w ′, such that w ′ ·b( 1

β3 ) and y =

Φ( 1
β3 ) + φ(w ′).
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β-expansions and multiple tilings > Multiple tilings

A double tiling: the smallest Pisot number

Let β be the smallest Pisot number. Take A = {−1, 0, 1},
X−1 =

[
− 1

2 ,−
1
2β

)
, X0 =

[
− 1

2β ,
1
2β

)
and X1 =

[
1
2β ,

1
2

)
.

−1 0 1

Charlene Kalle, joint work with Wolfgang Steiner (PhD supervisor Karma Dajani)T
H

E
•

U
N

I V E R S
I

T

Y
•

O
F

M
A

E
G
NS

I
T A T

MOLEM

U
N IVERSITAS  WARWICENSIS



β-expansions and multiple tilings > Multiple tilings

A double tiling: the smallest Pisot number

Charlene Kalle, joint work with Wolfgang Steiner (PhD supervisor Karma Dajani)T
H

E
•

U
N

I V E R S
I

T

Y
•

O
F

M
A

E
G
NS

I
T A T

MOLEM

U
N IVERSITAS  WARWICENSIS



β-expansions and multiple tilings > Multiple tilings

Properties of the multiple tiling

The tiles that contain the origin are precisely the tiles Tx for
which x has a purely periodic digit sequence b(x).

The multiple tiling is self-replicating.

The multiple tiling is quasi-periodic: ∀r > 0 ∃R such that for all
y, y′ ∈ H, the local configuration that we see in the ball B(y, r)
also occurs in the ball B(y′,R).

If the multiple tiling is a tiling, then the closure of the natural
extension domain gives a tiling of the torus.

If we have a tiling and every set Dx contains the origin, then there
is a direct way to determine the n-th digit of the expansions.
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