β -expansions and multiple tilings

Charlene Kalle, joint work with Wolfgang Steiner (PhD supervisor Karma Dajani)

29 October 2009

Introduction

Let $\beta > 1$ and $A = \{a_0, \ldots, a_m\}$ a set of real numbers with $a_0 < a_1 < \ldots < a_m$. Expressions of the form

$$x=\sum_{n=1}^{\infty}\frac{b_n}{\beta^n},$$

with $b_n \in A$ for all $n \ge 1$, are called β -expansions with arbitrary digits. This gives numbers in the interval $\left[\frac{a_0}{\beta-1}, \frac{a_m}{\beta-1}\right]$.

 β is called the base, A is the digit set and elements of A are called digits.

Allowable digit sets

If, for a given $\beta > 1$, a set of real numbers $A = \{a_0, \dots, a_m\}$ satisfies (i) $a_0 < \dots < a_m$, (ii) $\max_{1 \le j \le m} (a_j - a_{j-1}) \le \frac{a_m - a_0}{\beta - 1}$, it is called an allowable digit set. Then • every $x \in \left[\frac{a_0}{\beta - 1}, \frac{a_m}{\beta - 1}\right]$ has a β -expansion with digits in A. (Pedicini, 2005)

• the minimal amount of digits in A is $\lceil \beta \rceil$.

Allowable digit sets

If, for a given $\beta > 1$, a set of real numbers $A = \{a_0, \dots, a_m\}$ satisfies (i) $a_0 < \dots < a_m$, (ii) $\max_{1 \le j \le m} (a_j - a_{j-1}) \le \frac{a_m - a_0}{\beta - 1}$, it is called an allowable digit set. Then • every $x \in \left[\frac{a_0}{\beta - 1}, \frac{a_m}{\beta - 1}\right]$ has a β -expansion with digits in A. (Pedicini, 2005)

• the minimal amount of digits in A is $\lceil \beta \rceil$.

Allowable digit sets

If, for a given $\beta > 1$, a set of real numbers $A = \{a_0, \dots, a_m\}$ satisfies (i) $a_0 < \dots < a_m$, (ii) $\max_{1 \le j \le m} (a_j - a_{j-1}) \le \frac{a_m - a_0}{\beta - 1}$, it is called an allowable digit set. Then • every $x \in \left[\frac{a_0}{\beta - 1}, \frac{a_m}{\beta - 1}\right]$ has a β -expansion with digits in A. (Pedicini, 2005)

• the minimal amount of digits in A is $\lceil \beta \rceil$.

• Introduce a class of transformations that generate β -expansions.

- Characterize the set of digit sequences given by such a transformation.
- For specific β 's (Pisot units) give a construction of a natural extension for the transformation.
- From the natural extension, get an absolutely continuous invariant measure.
- Under a further assumption, construct a multiple tiling of a Euclidean space and give an example that shows that the Pisot conjecture does not hold in this more general setting.

- Introduce a class of transformations that generate β -expansions.
- Characterize the set of digit sequences given by such a transformation.
- For specific β 's (Pisot units) give a construction of a natural extension for the transformation.
- From the natural extension, get an absolutely continuous invariant measure.
- Under a further assumption, construct a multiple tiling of a Euclidean space and give an example that shows that the Pisot conjecture does not hold in this more general setting.

- Introduce a class of transformations that generate β -expansions.
- Characterize the set of digit sequences given by such a transformation.
- For specific β 's (Pisot units) give a construction of a natural extension for the transformation.
- From the natural extension, get an absolutely continuous invariant measure.
- Under a further assumption, construct a multiple tiling of a Euclidean space and give an example that shows that the Pisot conjecture does not hold in this more general setting.

- Introduce a class of transformations that generate β -expansions.
- Characterize the set of digit sequences given by such a transformation.
- For specific β 's (Pisot units) give a construction of a natural extension for the transformation.
- From the natural extension, get an absolutely continuous invariant measure.
- Under a further assumption, construct a multiple tiling of a Euclidean space and give an example that shows that the Pisot conjecture does not hold in this more general setting.

- Introduce a class of transformations that generate β -expansions.
- Characterize the set of digit sequences given by such a transformation.
- For specific β 's (Pisot units) give a construction of a natural extension for the transformation.
- From the natural extension, get an absolutely continuous invariant measure.
- Under a further assumption, construct a multiple tiling of a Euclidean space and give an example that shows that the Pisot conjecture does not hold in this more general setting.

Transformations

For each $\beta > 1$ and allowable digit set $A = \{a_0, \ldots, a_m\}$ there exist transformations that generate β -expansions with digits in A by iteration.

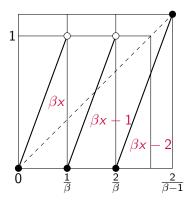
Example: Classic β -expansions

Consider a non-integer $\beta > 1$ and digit set $A = \{0, 1, \dots, \lfloor \beta \rfloor\}$. This gives 'classic' β -expansions for all $x \in \left[0, \frac{\lfloor \beta \rfloor}{\beta - 1}\right]$. A transformation that generates these is

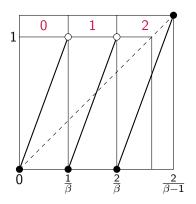
$$Tx = \begin{cases} \beta x \pmod{1}, & \text{if } x \in [0, 1), \\ \beta x - \lfloor \beta \rfloor, & \text{if } x \in \left[1, \frac{\lfloor \beta \rfloor}{\beta - 1}\right]. \end{cases}$$

 β -expansions and multiple tilings > Transformations and admissible sequences

The classic β -expansions



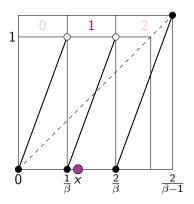
This is the classic greedy β -transformation.



Assign a digit to each interval. Make a digit sequence by setting

$$b_{1}(x) = \begin{cases} j, & \text{if } x \in \left[\frac{j}{\beta}, \frac{j+1}{\beta-1}\right], \\ & \text{for } 0 \leq j \leq \lfloor\beta\rfloor, \\ \lfloor\beta\rfloor, & \text{if } x \in \left[\frac{\lfloor\beta\rfloor}{\beta}, \frac{\lfloor\beta\rfloor}{\beta-1}\right]. \end{cases}$$

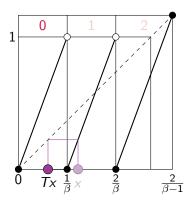
and $b_n(x) = b_1(T^{n-1}x)$ for $n \ge 1$. Then we have $Tx = \beta x - b_1$ and $T^2x = \beta Tx - b_2$, etc.



Assign a digit to each interval. Make a digit sequence by setting

$$b_1(x) = \begin{cases} j, & \text{if } x \in \left[\frac{j}{\beta}, \frac{j+1}{\beta-1}\right], \\ & \text{for } 0 \le j \le \lfloor\beta\rfloor, \\ \lfloor\beta\rfloor, & \text{if } x \in \left[\frac{\lfloor\beta\rfloor}{\beta}, \frac{\lfloor\beta\rfloor}{\beta-1}\right]. \end{cases}$$

and $b_n(x) = b_1(T^{n-1}x)$ for $n \ge 1$. Then we have $Tx = \beta x - b_1$ and $T^2x = \beta Tx - b_2$, etc.



Assign a digit to each interval. Make a digit sequence by setting

$$b_1(x) = \begin{cases} j, & \text{if } x \in \left[\frac{j}{\beta}, \frac{j+1}{\beta-1}\right], \\ & \text{for } 0 \le j \le \lfloor\beta\rfloor, \\ \lfloor\beta\rfloor, & \text{if } x \in \left[\frac{\lfloor\beta\rfloor}{\beta}, \frac{\lfloor\beta\rfloor}{\beta-1}\right]. \end{cases}$$

and $b_n(x) = b_1(T^{n-1}x)$ for $n \ge 1$. Then we have $Tx = \beta x - b_1$ and $T^2x = \beta Tx - b_2$, etc.

If $Tx = \beta x - b_1(x)$, then $x = \frac{b_1}{\beta} + \frac{Tx}{\beta}$. Iterating this, we get after *n* steps,

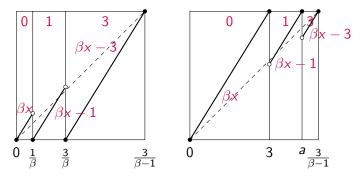
$$x=\frac{b_1}{\beta}+\frac{b_2}{\beta^2}+\frac{T^2x}{\beta^2}=\cdots=\frac{b_1}{\beta}+\frac{b_2}{\beta^2}+\cdots+\frac{b_n}{\beta^n}+\frac{T^nx}{\beta^n}.$$

Since $T^n x \in [0, \frac{\lfloor \beta \rfloor}{\beta - 1})$ for all *n*, this converges and gives

$$x = \sum_{n=1}^{\infty} \frac{b_n}{\beta^n}$$

Other transformations: greedy and lazy

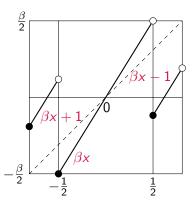
Take β to be the golden mean and $A = \{0, 1, 3\}$. These are the greedy and lazy β -transformations with digits in A. [Dajani & K., 2007]



 β -expansions and multiple tilings > Transformations and admissible sequences

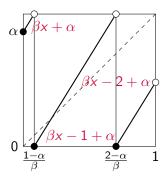
Other transformations: the minimal weight transformation

Take β to be the golden mean and $A = \{-1, 0, 1\}$. This is a minimal weight transformation, i.e. if an x has a finite β -expansion, then the expansion generated by this transformation has the highest number of 0's. [Frougny & Steiner, 2009]



Other transformations: the linear mod 1 transformation

Take $\beta > 1$ and $0 \le \alpha < 1$. Suppose $n < \beta + \alpha \le n + 1$. The linear mod 1 transformation below ($Tx = \beta x + \alpha \pmod{1}$) gives β -expansions with digits in $\{j - \alpha : 0 \le j \le n\}$.



The class of transformations

Given a real number $\beta > 1$ and a digit set $A = \{a_0, \ldots, a_m\}$, we consider the class of transformations that have the following properties.

 For each digit in the digit set a_i, there is a bounded interval X_i and if i ≠ j, then X_i ∩ X_j = Ø.

On the interval X_i the transformation is given by Tx = βx − a_i.
If X = ⋃_{i:a_i∈A} X_i, then TX = X.

The class of transformations

Given a real number $\beta > 1$ and a digit set $A = \{a_0, \ldots, a_m\}$, we consider the class of transformations that have the following properties.

- For each digit in the digit set a_i, there is a bounded interval X_i and if i ≠ j, then X_i ∩ X_j = Ø.
- On the interval X_i the transformation is given by $Tx = \beta x a_i$.

• If $X = \bigcup_{i:a_i \in A} X_i$, then TX = X

The class of transformations

Given a real number $\beta > 1$ and a digit set $A = \{a_0, \ldots, a_m\}$, we consider the class of transformations that have the following properties.

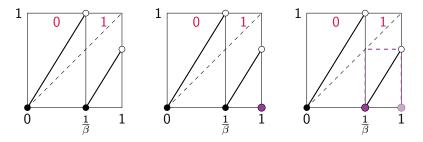
- For each digit in the digit set a_i, there is a bounded interval X_i and if i ≠ j, then X_i ∩ X_j = Ø.
- On the interval X_i the transformation is given by $Tx = \beta x a_i$.

• If
$$X = \bigcup_{i:a_i \in A} X_i$$
, then $TX = X$.

WARWICK

Admissible sequences: The golden mean

We can characterise the digit sequences generated by a transformation. For the classic greedy β -transformation with β the golden mean, we have the following.



0 can be followed by 0 or 1, but 1 is always followed by 0. This is given by the orbit of 1. Hence, T produces precisely the sequences from the set $\{u_1u_2\cdots \mid u_nu_{n+1}\neq 11, n\geq 1\}$.

The set of admissible sequences

Given a transformation T for a $\beta > 1$ and digit set A, we call a sequence $u_1u_2\cdots \in A^{\mathbb{N}}$ admissible for T if there is an $x \in X$ such that $u_1u_2\cdots = b(x)$.

A two-sided sequence $\cdots u_{-1}u_0u_1\cdots$ is called admissible if for each $n \in \mathbb{Z}$ there is an $x \in X$, such that $u_nu_{n+1}\cdots = b(x)$.

Notation: S is the set of two sided admissible sequences.

Relation between expansions and sequences

To a β -transformation on an interval, there corresponds a shift-transformation on a set of digit sequences.

$$T$$

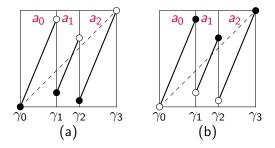
$$x = \sum_{n=1}^{\infty} \frac{b_n}{\beta^n} \Rightarrow b(x) = b_1 b_2 \cdots$$

$$Tx = \sum_{n=1}^{\infty} \frac{b_{n+1}}{\beta^n} \Rightarrow b(Tx) = b_2 b_3 \cdots$$

T is not invertible: after applying T to x we 'lose' the first digit b_1 .

Admissible sequences

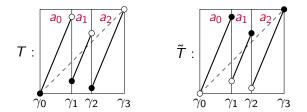
We can characterise the digit sequences generated by a transformation.



Let b(x) be a digit sequence given by (a) and $\tilde{b}(x)$ the one given by (b). Then we have the following characterization in terms of the sequences $b(\gamma_j)$ and $\tilde{b}(\gamma_j)$.

 β -expansions and multiple tilings > Transformations and admissible sequences

Admissible sequences



Admissible sequences

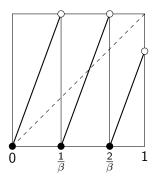
WARWICK

A sequence $u_1u_2\cdots \in \{a_0,\ldots,a_m\}^{\mathbb{N}}$ is generated by T iff for each $n\geq 1$, if $u_n=a_j$, then

$$b(\gamma_j) \preceq u_n u_{n+1} \cdots \prec \tilde{b}(\gamma_{j+1}),$$

where \leq denotes the lexicographical ordering.

The classic admissible sequences



In the case of the classic greedy β -transformation, only the orbit of 1 is important. This gives the Parry condition.

Theorem (Parry, 1960)

Let $\tilde{b}(1)$ be the expansion of 1 generated by T. Then a sequence $u_1u_2\cdots \in \{0, 1, \ldots, \lfloor\beta\rfloor\}^{\mathbb{N}}$ is generated by T iff for each $n \geq 1$,

$$u_n u_{n+1} \cdots \prec \tilde{b}(1).$$

Invariant measures

The classic greedy β -transformation T_{β} has the following properties.

• It has an invariant measure that is equivalent to the Lebesgue measure on the unit interval [0, 1). (Rényi, 1957)

• The density function is given by

$$h_c: [0,1) \to [0,1): x \mapsto rac{1}{F(eta)} \sum_{n=0}^{\infty} rac{1}{eta^n} \mathbb{1}_{[0,T^n]}(x),$$

where $F(\beta)$ is a normalizing constant. (Gel'fond, 1959, and Parry, 1960)

In general, one knows that an invariant measure equivalent to the Lebesgue measure exists for these transformations (Lasota and Yorke, 1974).

Invariant measures

The classic greedy β -transformation T_{β} has the following properties.

- It has an invariant measure that is equivalent to the Lebesgue measure on the unit interval [0, 1). (Rényi, 1957)
- The density function is given by

$$h_c: [0,1) \to [0,1): x \mapsto \frac{1}{F(\beta)} \sum_{n=0}^{\infty} \frac{1}{\beta^n} \mathbb{1}_{[0,T^n]}(x),$$

where $F(\beta)$ is a normalizing constant. (Gel'fond, 1959, and Parry, 1960)

In general, one knows that an invariant measure equivalent to the Lebesgue measure exists for these transformations (Lasota and Yorke, 1974).

Invariant measures

The classic greedy β -transformation T_{β} has the following properties.

- The greedy β-transformation has an invariant measure that is equivalent to the Lebesgue measure on the unit interval [0, 1). (Rényi, 1957)
- The density function is given by

$$h_c: [0,1) \to [0,1): x \mapsto \frac{1}{F(\beta)} \sum_{n=0}^{\infty} \frac{1}{\beta^n} \mathbb{1}_{[0,T^n]}(x),$$

where $F(\beta)$ is a normalizing constant. (Gel'fond, 1959, and Parry, 1960)

In general, one knows that an invariant measure equivalent to the Lebesgue measure exists for these transformations (Lasota and Yorke, 1974).

A way to find an invariant measure is by studying the natural extension of the dynamical system.

Consider the non-invertible system (X, \mathcal{B}, T) , where \mathcal{B} is the Lebesgue σ -algebra on X. Then a version of the natural extension of (X, \mathcal{B}, T) is an invertible system $(\hat{X}, \hat{\mathcal{B}}, \hat{T})$, such that

• There is a map $\pi : \hat{X} \to X$ that is surjective, measurable and such that $\pi \circ \hat{T} = T \circ \pi$.

• This system is the smallest in the sense of σ -algebras: $\bigvee_{n\geq 0} \hat{T}^n(\pi^{-1}(\mathcal{B})) = \hat{\mathcal{B}}.$

A way to find an invariant measure is by studying the natural extension of the dynamical system.

Consider the non-invertible system (X, \mathcal{B}, T) , where \mathcal{B} is the Lebesgue σ -algebra on X. Then a version of the natural extension of (X, \mathcal{B}, T) is an invertible system $(\hat{X}, \hat{\mathcal{B}}, \hat{T})$, such that

- There is a map $\pi : \hat{X} \to X$ that is surjective, measurable and such that $\pi \circ \hat{T} = T \circ \pi$.
- This system is the smallest in the sense of σ -algebras: $\bigvee_{n\geq 0} \hat{T}^n(\pi^{-1}(\mathcal{B})) = \hat{\mathcal{B}}.$

To be able to say more, we assume that the real number $\beta > 1$ has some additional properties. Numbers with all these properties are called Pisot units.

- β is an algebraic unit: it is a root of a minimal polynomial of the form $x^d c_1 x^{d-1} \cdots c_d$, with $c_i \in \mathbb{Z}$ for all *i* and $c_d \in \{-1, 1\}$.
- Denote all the other roots of the polynomial $x^d c_1 x^{d-1} \ldots c_d$ by β_j , then $|\beta_j| < 1$ for all j.

To be able to say more, we assume that the real number $\beta > 1$ has some additional properties. Numbers with all these properties are called Pisot units.

- β is an algebraic unit: it is a root of a minimal polynomial of the form $x^d c_1 x^{d-1} \cdots c_d$, with $c_i \in \mathbb{Z}$ for all *i* and $c_d \in \{-1, 1\}$.
- Denote all the other roots of the polynomial $x^d c_1 x^{d-1} \ldots c_d$ by β_j , then $|\beta_j| < 1$ for all j.

Contracting and expanding eigenspaces

Let $\beta > 1$ be a Pisot unit with minimal polynomial $x^d - c_1 x^{d-1} - \cdots - c_d$. Let β_2, \ldots, β_d be the Galois conjugates of β . Consider the matrix M:

$$M = \begin{pmatrix} c_1 & c_2 & \cdots & c_{d-1} & c_d \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}$$

Let $\beta > 1$ be a Pisot unit with minimal polynomial $x^d - c_1 x^{d-1} - \cdots - c_d$. Let β_2, \ldots, β_d be the Galois conjugates of β .

$$\begin{pmatrix} c_{1} & c_{2} & \cdots & c_{d-1} & c_{d} \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix} \begin{pmatrix} \beta_{j}^{d-1} \\ \beta_{j}^{d-2} \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} c_{1}\beta_{j}^{d-1} + \cdots + c_{d} \\ \beta_{j}^{d-1} \\ \vdots \\ \beta_{j} \end{pmatrix} = \\ \beta_{j}\mathbf{v}_{j}.$$

Charlene Kalle, joint work with Wolfgang Steiner

Let $\beta > 1$ be a Pisot unit with minimal polynomial $x^d - c_1 x^{d-1} - \cdots - c_d$. Let β_2, \ldots, β_d be the Galois conjugates of β .

$$\mathcal{M}=\left(egin{array}{ccccccc} c_1 & c_2 & \cdots & c_{d-1} & c_d \ 1 & 0 & \cdots & 0 & 0 \ 0 & 1 & \cdots & 0 & 0 \ dots & dots & \ddots & dots & dots \ dots & dots & \ddots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots & dots \ dots & dots & dots \ dots \$$

Eigenvalues: $\beta_1 = \beta, \beta_2, \dots, \beta_d$. Eigenvectors: $\mathbf{v}_1, \dots, \mathbf{v}_d$. $|\det M| = 1$. Let *H* be the hyperplane of \mathbb{R}^d which is spanned by the real and imaginary parts of $\mathbf{v}_2, \ldots, \mathbf{v}_d$.

Consider the space $H + \mathbb{R}\mathbf{v}_1$. *M* is expanding by a factor β in the direction of \mathbf{v}_1 and contracting by a factor $1/\beta$ on *H*.

(Rauzy (1982), Thurston (1989), Berthé and Siegel (2005))

Let $\beta > 1$ be a Pisot unit with minimal polynomial $x^d - c_1 x^{d-1} - \cdots - c_d$. Let β_2, \ldots, β_d be the Galois conjugates of β .

$$M = \begin{pmatrix} c_1 & c_2 & \cdots & c_{d-1} & c_d \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}$$

Eigenvalues: $\beta_1 = \beta, \beta_2, \dots, \beta_d$. Eigenvectors: $\mathbf{v}_1, \dots, \mathbf{v}_d$. $|\det M| = 1$. Let *H* be the hyperplane of \mathbb{R}^d which is spanned by the real and imaginary parts of $\mathbf{v}_2, \ldots, \mathbf{v}_d$.

Consider the space $H + \mathbb{R}\mathbf{v}_1$. *M* is expanding by a factor β in the direction of \mathbf{v}_1 and contracting by a factor $1/\beta$ on *H*.

(Rauzy (1982), Thurston (1989), Berthé and Siegel (2005))

Let $\beta > 1$ be a Pisot unit with minimal polynomial $x^d - c_1 x^{d-1} - \cdots - c_d$. Let β_2, \ldots, β_d be the Galois conjugates of β .

$$M = \left(egin{array}{ccccccc} c_1 & c_2 & \cdots & c_{d-1} & c_d \ 1 & 0 & \cdots & 0 & 0 \ 0 & 1 & \cdots & 0 & 0 \ dots & dots & \ddots & dots & dots \ dots & dots & \ddots & dots & dots \ 0 & 0 & \cdots & 1 & 0 \end{array}
ight).$$

Eigenvalues: $\beta_1 = \beta, \beta_2, \dots, \beta_d$. Eigenvectors: $\mathbf{v}_1, \dots, \mathbf{v}_d$. $|\det M| = 1$. Let *H* be the hyperplane of \mathbb{R}^d which is spanned by the real and imaginary parts of $\mathbf{v}_2, \ldots, \mathbf{v}_d$.

Consider the space $H + \mathbb{R}\mathbf{v}_1$. *M* is expanding by a factor β in the direction of \mathbf{v}_1 and contracting by a factor $1/\beta$ on *H*.

(Rauzy (1982), Thurston (1989), Berthé and Siegel (2005))

Example: the golden mean

Take $\beta > 1$ such that $\beta^2 - \beta - 1 = 0$. Then $\frac{1}{\beta} = \beta - 1$. So, β is an algebraic unit. Then

$$\left(-\frac{1}{\beta}\right)^2 - \left(-\frac{1}{\beta}\right) - 1 = (1-\beta)^2 + (\beta-1) - 1 = \beta^2 - \beta - 1 = 0.$$

Hence, $\beta_2 = -\frac{1}{\beta}$ and β is a Pisot unit. We have

$$M = \left(egin{array}{cc} 1 & 1 \ 1 & 0 \end{array}
ight), \, \mathbf{v}_1 = \left(egin{array}{cc} eta \ 1 \end{array}
ight), \, \mathbf{v}_2 = \left(egin{array}{cc} -rac{1}{eta} \ 1 \end{array}
ight)$$

Then $H = \mathbb{R}\mathbf{v}_2$ and \mathbb{R}^2 is spanned by \mathbf{v}_1 and \mathbf{v}_2 .

Example: the tribonacci number

Take $\beta > 1$ such that $\beta^3 - \beta^2 - \beta - 1 = 0$. Since $\frac{1}{\beta} = \beta^2 - \beta - 1$, β is an algebraic unit. We have $\beta_2 \in \mathbb{C}$ and $\beta_3 = \overline{\beta}_2$. Also,

$$M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \mathbf{v}_1 = \begin{pmatrix} \beta^2 \\ \beta \\ 1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} \beta^2_2 \\ \beta_2 \\ 1 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} \beta^2_3 \\ \beta_3 \\ 1 \end{pmatrix}.$$

Since $\mathbf{v}_3 = \overline{\mathbf{v}}_2$, *H* is spanned by $\Re(\mathbf{v}_2)$ and $\Im(\mathbf{v}_2)$.

- $\beta > 1$ is a Pisot unit.
- This gives a matrix M with eigenvalues $\beta = \beta_1, \beta_2, \dots, \beta_d$ and eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_d$.
- The space *H* is the hyperplane of ℝ^d spanned by the real and imaginary parts of v₂,..., v_d. Every point in x ∈ ℝ^d can be written as xv₁ ∑^d_{j=2} y_jv_j with x ∈ ℝ and y_j ∈ ℂ, 2 ≤ j ≤ d.
- The transformation T : X → X is given by β, an allowable digit set A ⊂ Q(β) and a finite union of bounded intervals X. For each digit a_i ∈ A, let X_i ⊆ X be the interval on which T is given by Tx = βx − a_i.
- For x ∈ X, b(x) denotes de digit sequence of x generated by T. The transformation T specifies a set of two-sided admissible sequences

$$\mathcal{G} = \{ \cdots u_{-1}u_0u_1u_2\cdots \mid \forall n \in \mathbb{Z} \exists x \in X : u_nu_{n+1}\cdots = b(x) \}.$$

- $\beta > 1$ is a Pisot unit.
- This gives a matrix M with eigenvalues $\beta = \beta_1, \beta_2, \dots, \beta_d$ and eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_d$.
- The space *H* is the hyperplane of ℝ^d spanned by the real and imaginary parts of v₂,..., v_d. Every point in x ∈ ℝ^d can be written as xv₁ − ∑^d_{j=2} y_jv_j with x ∈ ℝ and y_j ∈ ℂ, 2 ≤ j ≤ d.
- The transformation T : X → X is given by β, an allowable digit set A ⊂ Q(β) and a finite union of bounded intervals X. For each digit a_i ∈ A, let X_i ⊆ X be the interval on which T is given by Tx = βx − a_i.
- For x ∈ X, b(x) denotes de digit sequence of x generated by T. The transformation T specifies a set of two-sided admissible sequences

$$\mathcal{G} = \{ \cdots u_{-1}u_0u_1u_2\cdots \mid \forall n \in \mathbb{Z} \exists x \in X : u_nu_{n+1}\cdots = b(x) \}.$$

- $\beta > 1$ is a Pisot unit.
- This gives a matrix M with eigenvalues $\beta = \beta_1, \beta_2, \dots, \beta_d$ and eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_d$.
- The space H is the hyperplane of ℝ^d spanned by the real and imaginary parts of v₂,..., v_d. Every point in x ∈ ℝ^d can be written as xv₁ − ∑^d_{j=2} y_jv_j with x ∈ ℝ and y_j ∈ ℂ, 2 ≤ j ≤ d.
- The transformation T : X → X is given by β, an allowable digit set A ⊂ Q(β) and a finite union of bounded intervals X. For each digit a_i ∈ A, let X_i ⊆ X be the interval on which T is given by Tx = βx − a_i.
- For x ∈ X, b(x) denotes de digit sequence of x generated by T. The transformation T specifies a set of two-sided admissible sequences

$$\mathcal{G} = \{ \cdots u_{-1}u_0u_1u_2\cdots \mid \forall n \in \mathbb{Z} \exists x \in X : u_nu_{n+1}\cdots = b(x) \}.$$

- $\beta > 1$ is a Pisot unit.
- This gives a matrix M with eigenvalues $\beta = \beta_1, \beta_2, \ldots, \beta_d$ and eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_d$.
- The space H is the hyperplane of \mathbb{R}^d spanned by the real and imaginary parts of $\mathbf{v}_2, \ldots, \mathbf{v}_d$. Every point in $\mathbf{x} \in \mathbb{R}^d$ can be written as $x\mathbf{v}_1 \sum_{j=2}^d y_j \mathbf{v}_j$ with $x \in \mathbb{R}$ and $y_j \in \mathbb{C}$, $2 \le j \le d$.
- The transformation T : X → X is given by β, an allowable digit set A ⊂ Q(β) and a finite union of bounded intervals X. For each digit a_i ∈ A, let X_i ⊆ X be the interval on which T is given by Tx = βx − a_i.
- For x ∈ X, b(x) denotes de digit sequence of x generated by T. The transformation T specifies a set of two-sided admissible sequences

$$\mathcal{G} = \{ \cdots u_{-1}u_0u_1u_2\cdots \mid \forall n \in \mathbb{Z} \exists x \in X : u_nu_{n+1}\cdots = b(x) \}.$$

- $\beta > 1$ is a Pisot unit.
- This gives a matrix M with eigenvalues $\beta = \beta_1, \beta_2, \dots, \beta_d$ and eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_d$.
- The space H is the hyperplane of \mathbb{R}^d spanned by the real and imaginary parts of $\mathbf{v}_2, \ldots, \mathbf{v}_d$. Every point in $\mathbf{x} \in \mathbb{R}^d$ can be written as $x\mathbf{v}_1 \sum_{j=2}^d y_j \mathbf{v}_j$ with $x \in \mathbb{R}$ and $y_j \in \mathbb{C}$, $2 \le j \le d$.
- The transformation T : X → X is given by β, an allowable digit set A ⊂ Q(β) and a finite union of bounded intervals X. For each digit a_i ∈ A, let X_i ⊆ X be the interval on which T is given by Tx = βx − a_i.
- For x ∈ X, b(x) denotes de digit sequence of x generated by T. The transformation T specifies a set of two-sided admissible sequences

$$S = \{ \cdots u_{-1}u_0u_1u_2 \cdots | \forall n \in \mathbb{Z} \exists x \in X : u_nu_{n+1} \cdots = b(x) \}.$$

The natural extension space

We define the natural extension space by mapping the admissible sequences into \mathbb{R}^d .

For $1 \leq j \leq d$, let $\Gamma_j : \mathbb{Q}(\beta) \to \mathbb{Q}(\beta_j)$ be given by $\Gamma_j(\beta) = \beta_j$ and $\Gamma_j(q) = q$ for $q \in \mathbb{Q}$.

Let $w \cdot u = \cdots w_{-1}w_0u_1u_2 \cdots \in S$. The map ϕ maps the sequence w into H:

$$\phi(w) = \phi(\cdots w_{-1}w_0) = \sum_{j=2}^d \sum_{n=0}^\infty w_{-n}\beta_j^n \mathbf{v}_j.$$

Then ψ maps $w \cdot u$ into \mathbb{R}^d :

WARWICK

$$\psi(w \cdot u) = \psi(\cdots w_{-1}w_0u_1u_2\cdots) = \sum_{n=1}^{\infty} \frac{u_n}{\beta^n} \mathbf{v}_1 - \phi(w).$$

Set $\hat{X} = \psi(S)$. This is the natural extension space.

The natural extension space

We define the natural extension space by mapping the admissible sequences into \mathbb{R}^d .

For $1 \leq j \leq d$, let $\Gamma_j : \mathbb{Q}(\beta) \to \mathbb{Q}(\beta_j)$ be given by $\Gamma_j(\beta) = \beta_j$ and $\Gamma_j(q) = q$ for $q \in \mathbb{Q}$.

Let $w \cdot u = \cdots w_{-1}w_0u_1u_2 \cdots \in S$. The map ϕ maps the sequence w into H:

$$\phi(w) = \phi(\cdots w_{-1}w_0) = \sum_{j=2}^d \sum_{n=0}^\infty w_{-n}\beta_j^n \mathbf{v}_j.$$

Then ψ maps $w \cdot u$ into \mathbb{R}^d :

WARWICK

$$\psi(w \cdot u) = \psi(\cdots w_{-1}w_0u_1u_2\cdots) = \sum_{n=1}^{\infty} \frac{u_n}{\beta^n} \mathbf{v}_1 - \phi(w).$$

Set $\hat{X} = \psi(S)$. This is the natural extension space.

The natural extension space

We define the natural extension space by mapping the admissible sequences into \mathbb{R}^d .

For $1 \leq j \leq d$, let $\Gamma_j : \mathbb{Q}(\beta) \to \mathbb{Q}(\beta_j)$ be given by $\Gamma_j(\beta) = \beta_j$ and $\Gamma_j(q) = q$ for $q \in \mathbb{Q}$.

Let $w \cdot u = \cdots w_{-1}w_0u_1u_2 \cdots \in S$. The map ϕ maps the sequence w into H:

$$\phi(w) = \phi(\cdots w_{-1}w_0) = \sum_{j=2}^d \sum_{n=0}^\infty w_{-n}\beta_j^n \mathbf{v}_j.$$

Then ψ maps $w \cdot u$ into \mathbb{R}^d :

WARWICK

$$\psi(\mathbf{w}\cdot \mathbf{u}) = \psi(\cdots \mathbf{w}_{-1}\mathbf{w}_0\mathbf{u}_1\mathbf{u}_2\cdots) = \sum_{n=1}^{\infty} \frac{u_n}{\beta^n}\mathbf{v}_1 - \phi(\mathbf{w}).$$

Set $\hat{X} = \psi(S)$. This is the natural extension space.

The natural extension space

We define the natural extension space by mapping the admissible sequences into \mathbb{R}^d .

For $1 \leq j \leq d$, let $\Gamma_j : \mathbb{Q}(\beta) \to \mathbb{Q}(\beta_j)$ be given by $\Gamma_j(\beta) = \beta_j$ and $\Gamma_j(q) = q$ for $q \in \mathbb{Q}$.

Let $w \cdot u = \cdots w_{-1}w_0u_1u_2 \cdots \in S$. The map ϕ maps the sequence w into H:

$$\phi(w) = \phi(\cdots w_{-1}w_0) = \sum_{j=2}^d \sum_{n=0}^\infty w_{-n}\beta_j^n \mathbf{v}_j.$$

Then ψ maps $w \cdot u$ into \mathbb{R}^d :

$$\psi(\mathbf{w}\cdot\mathbf{u})=\psi(\cdots\mathbf{w}_{-1}\mathbf{w}_{0}\mathbf{u}_{1}\mathbf{u}_{2}\cdots)=\sum_{n=1}^{\infty}\frac{u_{n}}{\beta^{n}}\mathbf{v}_{1}-\phi(\mathbf{w}).$$

Set $\hat{X} = \psi(S)$. This is the natural extension space. Charlene Kalle, joint w WARWICK

The natural extension transformation

For the natural extension transformation $\hat{T} : \hat{X} \to \hat{X}$ we want the following.

• \hat{T} is a.e. invertible.

• \hat{T} preserves the dynamics of T.

• \hat{T} is invariant wrt the Lebesgue measure.

$$\begin{aligned} \mathbf{\hat{x}} &= \quad \overbrace{(\beta x - a_i)}^{T_x} \mathbf{v}_1 - \sum_{j=2}^d (\beta_j y_j + \Gamma_j(a_i)) \mathbf{v}_j \\ &= \quad M \mathbf{x} - \sum_{j=1}^d \Gamma_j(a_i) \mathbf{v}_j. \end{aligned}$$

The natural extension transformation

For the natural extension transformation $\hat{T} : \hat{X} \to \hat{X}$ we want the following.

- \hat{T} is a.e. invertible.
- \hat{T} preserves the dynamics of T.
- \hat{T} is invariant wrt the Lebesgue measure.

$$\begin{aligned} \mathbf{\hat{T}}\mathbf{x} &= \quad \overbrace{(\beta x - a_i)}^{T_x} \mathbf{v}_1 - \sum_{j=2}^d (\beta_j y_j + \Gamma_j(a_i)) \mathbf{v}_j \\ &= \quad M \mathbf{x} - \sum_{j=1}^d \Gamma_j(a_i) \mathbf{v}_j. \end{aligned}$$

The natural extension transformation

For the natural extension transformation $\hat{T} : \hat{X} \to \hat{X}$ we want the following.

- \hat{T} is a.e. invertible.
- \hat{T} preserves the dynamics of T.
- \hat{T} is invariant wrt the Lebesgue measure.

$$\begin{aligned} \hat{\Gamma} \mathbf{x} &= \widetilde{(\beta x - a_i)} \mathbf{v}_1 - \sum_{j=2}^d (\beta_j y_j + \Gamma_j(a_i)) \mathbf{v}_j \\ &= M \mathbf{x} - \sum_{j=1}^d \Gamma_j(a_i) \mathbf{v}_j. \end{aligned}$$

The natural extension transformation

For the natural extension transformation $\hat{T}: \hat{X} \to \hat{X}$ we want the following.

- \hat{T} is a.e. invertible.
- \hat{T} preserves the dynamics of T.
- \hat{T} is invariant wrt the Lebesgue measure.

$$\widetilde{T} \mathbf{x} = \widetilde{(\beta x - a_i)} \mathbf{v}_1 - \sum_{j=2}^d (\beta_j y_j + \Gamma_j(a_i)) \mathbf{v}_j$$

$$= M \mathbf{x} - \sum_{j=1}^d \Gamma_j(a_i) \mathbf{v}_j.$$

The natural extension transformation

For the natural extension transformation $\hat{T}: \hat{X} \to \hat{X}$ we want the following.

- \hat{T} is a.e. invertible.
- \hat{T} preserves the dynamics of T.
- \hat{T} is invariant wrt the Lebesgue measure.

$$\begin{aligned} \widetilde{\mathbf{T}}\mathbf{x} &= \widetilde{(\beta x - a_i)} \mathbf{v}_1 - \sum_{j=2}^d (\beta_j y_j + \Gamma_j(a_i)) \mathbf{v}_j \\ &= M \mathbf{x} - \sum_{j=1}^d \Gamma_j(a_i) \mathbf{v}_j. \end{aligned}$$

An invariant measure for T

The Lebesgue measure on λ^d is invariant for \hat{T} . Let $\pi : \hat{X} \to X$ be given by $\pi(x\mathbf{v}_1 - \sum_{j=2}^d y_j\mathbf{v}_j) = x$.

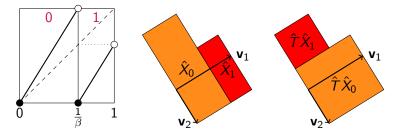
Define the measure μ on (X, \mathcal{L}) by $\mu(E) = (\lambda^d \circ \pi^{-1})(E)$ for each $E \in \mathcal{L}$. Then μ is invariant for T.

Note: Since \hat{T} is only invertible a.e. we need to remove the right sets of measure zero everywhere.

An example: the golden mean

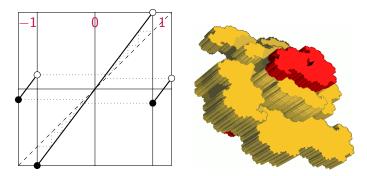
Take β to be the golden mean and T the classic greedy β -transformation, then $A = \{0, 1\}$. Recall that

$$M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \mathbf{v}_1 = \begin{pmatrix} \beta \\ 1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} -\frac{1}{\beta} \\ 1 \end{pmatrix}$$



An example: the smallest Pisot number

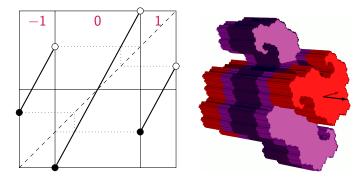
Let β be the real solution of $x^3 - x - 1 = 0$. This is the smallest Pisot number. Take $A = \{-1, 0, 1\}$, $X_{-1} = \left[-\frac{\beta^7}{\beta^8 - 1}, -\frac{\beta^6}{\beta^8 - 1}\right)$, $X_0 = \left[-\frac{\beta^6}{\beta^8 - 1}, \frac{\beta^6}{\beta^8 - 1}\right)$ and $X_1 = \left[\frac{\beta^6}{\beta^8 - 1}, \frac{\beta^7}{\beta^8 - 1}\right)$. Then T is a minimal weight transformation.



Charlene Kalle, joint work with Wolfgang Steiner

An example: the tribonacci number

Let
$$\beta$$
 be the tribonacci number. Take $A = \{-1, 0, 1\}$,
 $X_{-1} = \left[-\frac{\beta}{\beta+1}, -\frac{1}{\beta+1}\right)$, $X_0 = \left[-\frac{1}{\beta+1}, \frac{1}{\beta+1}\right)$ and $X_1 = \left[\frac{1}{\beta+1}, \frac{\beta}{\beta+1}\right)$.
Then T is a minimal weight transformation.



Charlene Kalle, joint work with Wolfgang Steiner

Multiple tilings

Under a certain condition we can say more about the invariant measure for T given by its natural extension. Moreover, this condition allows us to construct a tiling of the space H. A tiling is the following.

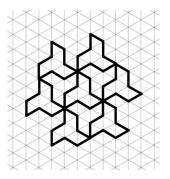
Start with a finite set of prototiles in H, compact sets that are the closure of their interior. $\mathcal{D} = \{\mathcal{D}_1, \dots, \mathcal{D}_k\}.$

A tile is a translation of a prototile. $T_x = D_i + \mathbf{v}_x$ for some vector $\mathbf{v}_x \in H$.

Let $M \ge 1$. A multiple tiling of degree M of H is a covering of H such that almost all elements are in exactly M different tiles.

A tiling of H is a multiple tiling of degree 1.

 $\beta\text{-expansions}$ and multiple tilings > $% \beta$ Multiple tilings



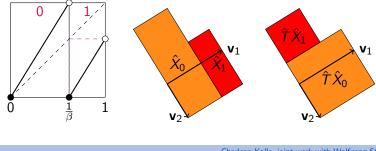
Charlene Kalle, joint work with Wolfgang Steiner

A finite set of prototiles

For each $x \in X$, let $\mathcal{D}_x = \{\phi(w) \mid w \cdot b(x) \in S\}$. Then each set \mathcal{D}_x is compact and

$$\hat{X} = \bigcup_{x \in X} x \mathbf{v}_1 + \mathcal{D}_x.$$

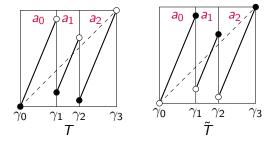
We will construct a multiple tiling of H with $\{\mathcal{D}_x | x \in \mathbb{Z}[\beta] \cap X\}$ as the set of prototiles. Therefore, we would like to have only finitely many different sets \mathcal{D}_x .



 $\beta\text{-expansions}$ and multiple tilings > $% \beta$ Multiple tilings

A finite set of prototiles

Recall the transformation \tilde{T} :



For γ_i , let n_i be the minimal k such that $T^k \gamma_i = \tilde{T}^k \gamma_i$ with $n_i = \infty$ if this doesn't happen.

A finite set of prototiles

Suppose that
$$A = \{a_0, \ldots, a_m\}$$
.

Theorem

If the set

$$\mathcal{V} = \bigcup_{i=0}^{m+1} \{\gamma_i\} \cup \bigcup_{1 \le k < n_i, \gamma_i \in X, i \ne 0} \{T^k \gamma_i, \tilde{T}^k \gamma_i\}$$

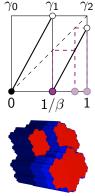
is finite, then there are only finitely many different sets \mathcal{D}_x , $x \in X$.

Under this condition the density of the invariant measure for T, $\mu = \lambda^d \circ \pi^{-1}$ is a finite sum of indicator functions. Let $\mathcal{D}_1, \ldots, \mathcal{D}_{\kappa}$ be these sets and $X'_1, \ldots, X'_{\kappa}$ the corresponding subsets of X. Then

$$\mu([s,t)) = c \int_{[s,t)} \sum_{k=1}^{\kappa} \lambda^{d-1}(\mathcal{D}_k) \mathbb{1}_{X'_k} d\lambda.$$

An example: the classic greedy tribonacci-transformation

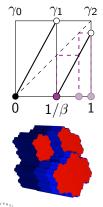
$$\mathcal{V} = \bigcup_{i=0}^{m+1} \{\gamma_i\} \cup \bigcup_{1 \le k < n_i, \gamma_i \in X, i \ne 0} \{T^k \gamma_i, \tilde{T}^k \gamma_i\}$$



- U²_{i=0}{γ_i} = {0, ¹/_β, 1}.
 {γ_i ∈ X | i ≠ 0} = {1/β}.
 T^k(¹/_β) = 0 for all k ≥ 1. T̃(¹/_β) = 1, T̃²(¹/_β) = β − 1, T̃³(¹/_β) = ¹/_β. So, n₁ = ∞, but γ₁ is periodic for T̃.
 V = {0, ¹/₂, β − 1, 1} is a finite set.
- This gives 3 different prototiles \mathcal{D}_{x} .

An example: the classic greedy tribonacci-transformation

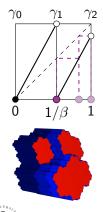
$$\mathcal{V} = \bigcup_{i=0}^{m+1} \{\gamma_i\} \cup \bigcup_{1 \le k < n_i, \gamma_i \in X, i \ne 0} \{T^k \gamma_i, \tilde{T}^k \gamma_i\}$$



- $\bigcup_{i=0}^{2} \{\gamma_i\} = \{0, \frac{1}{\beta}, 1\}.$ • $\{\gamma_i \in X \mid i \neq 0\} = \{1/\beta\}.$ • $\mathcal{T}^k \left(\frac{1}{\beta}\right) = 0 \text{ for all } k \ge 1.$ $\tilde{\mathcal{T}} \left(\frac{1}{\beta}\right) = 1, \quad \tilde{\mathcal{T}}^2 \left(\frac{1}{\beta}\right) = \beta - 1, \quad \tilde{\mathcal{T}}^3 \left(\frac{1}{\beta}\right) = \frac{1}{\beta}.$ So, $n_1 = \infty$, but γ_1 is periodic for $\tilde{\mathcal{T}}$.
 - This gives 3 different prototiles \mathcal{D}_{x} .

An example: the classic greedy tribonacci-transformation

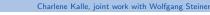
$$\mathcal{V} = \bigcup_{i=0}^{m+1} \{\gamma_i\} \cup \bigcup_{1 \le k < n_i, \gamma_i \in X, i \ne 0} \{T^k \gamma_i, \tilde{T}^k \gamma_i\}$$



WARWICK

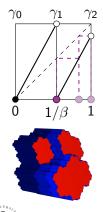
• $\bigcup_{i=0}^{2} \{\gamma_i\} = \{0, \frac{1}{\beta}, 1\}.$ • $\{\gamma_i \in X \mid i \neq 0\} = \{1/\beta\}.$ • $T^k(\frac{1}{\beta}) = 0$ for all $k \ge 1$. $\tilde{T}(\frac{1}{\beta}) = 1, \ \tilde{T}^2(\frac{1}{\beta}) = \beta - 1, \ \tilde{T}^3(\frac{1}{\beta}) = \frac{1}{\beta}.$ So, $n_1 = \infty$, but γ_1 is periodic for \tilde{T} . • $\mathcal{V} = \{0, \frac{1}{\beta}, \beta - 1, 1\}$ is a finite set.

• This gives 3 different prototiles \mathcal{D}_{x} .



An example: the classic greedy tribonacci-transformation

$$\mathcal{V} = \bigcup_{i=0}^{m+1} \{\gamma_i\} \cup \bigcup_{1 \le k < n_i, \gamma_i \in X, i \ne 0} \{T^k \gamma_i, \tilde{T}^k \gamma_i\}$$



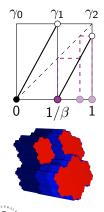
WARWICK

• $\bigcup_{i=0}^{2} \{\gamma_i\} = \{0, \frac{1}{\beta}, 1\}.$ • $\{\gamma_i \in X \mid i \neq 0\} = \{1/\beta\}.$ • $T^k(\frac{1}{\beta}) = 0 \text{ for all } k \ge 1.$ $\tilde{T}(\frac{1}{\beta}) = 1, \ \tilde{T}^2(\frac{1}{\beta}) = \beta - 1, \ \tilde{T}^3(\frac{1}{\beta}) = \frac{1}{\beta}.$ So, $n_1 = \infty$, but γ_1 is periodic for \tilde{T} . • $\mathcal{V} = \{0, \frac{1}{\beta}, \beta - 1, 1\}$ is a finite set.

• This gives 3 different prototiles \mathcal{D}_{x} .

An example: the classic greedy tribonacci-transformation

$$\mathcal{V} = \bigcup_{i=0}^{m+1} \{\gamma_i\} \cup \bigcup_{1 \le k < n_i, \gamma_i \in X, i \ne 0} \{T^k \gamma_i, \tilde{T}^k \gamma_i\}$$



WARWICK

- ∪_{i=0}²{γ_i} = {0, ¹/_β, 1}.
 {γ_i ∈ X | i ≠ 0} = {1/β}.
 T^k(¹/_β) = 0 for all k ≥ 1. T̃(¹/_β) = 1, T̃²(¹/_β) = β − 1, T̃³(¹/_β) = ¹/_β. So, n₁ = ∞, but γ₁ is periodic for T̃.
 V = {0, ¹/_β, β − 1, 1} is a finite set.
- This gives 3 different prototiles \mathcal{D}_{x} .

The translation vectors

Suppose that \mathcal{V} is a finite set. The set $\{\mathcal{D}_x | x \in X\}$ is finite and is the set of prototiles. We now want a set of translation vectors, so that

- all the translates of \mathcal{D}_x together cover the whole space H, and
- there is an $M \ge 1$ such that a.e. point in H is in exactly M translates of prototiles.

So the set of translation vectors must be big enough, but not too big.

The translation vectors

Suppose that \mathcal{V} is a finite set. The set $\{\mathcal{D}_x | x \in X\}$ is finite and is the set of prototiles. We now want a set of translation vectors, so that

- all the translates of \mathcal{D}_x together cover the whole space H, and
- there is an $M \ge 1$ such that a.e. point in H is in exactly M translates of prototiles.

So the set of translation vectors must be big enough, but not too big.

The translation vectors

Suppose that \mathcal{V} is a finite set. The set $\{\mathcal{D}_x | x \in X\}$ is finite and is the set of prototiles. We now want a set of translation vectors, so that

- all the translates of \mathcal{D}_x together cover the whole space H, and
- there is an $M \ge 1$ such that a.e. point in H is in exactly M translates of prototiles.

So the set of translation vectors must be big enough, but not too big.

The multiple tiling

Define the function $\Phi : \mathbb{Q}(\beta) \to H$ by $\Phi(x) = \sum_{j=2}^{d} \Gamma_j(x) \mathbf{v}_j$.

For $x \in \mathbb{Z}[\beta] \cap X$, define the tiles $\mathcal{T}_x = \Phi(x) + \mathcal{D}_x$.

Theorem

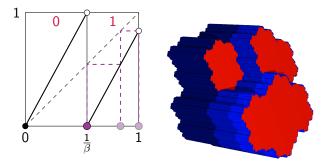
There is an $M \ge 1$, such that the set $\{\mathcal{T}_x\}_{x \in \mathbb{Z}[\beta] \cap X}$ is a multiple tiling of degree M of H.

Pisot conjecture (Akiyama, 2002 and Sidorov, 2003)

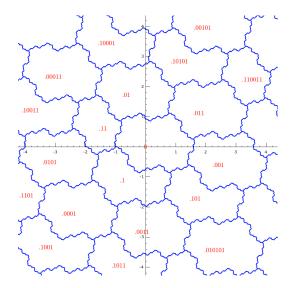
If β is a Pisot number and T is the classic greedy β -transformation, then this construction gives a tiling of the space H.

An example: the Rauzy tiling (Rauzy, 1982)

Let β be the tribonacci number and ${\cal T}$ the classic greedy $\beta\text{-transformation}.$

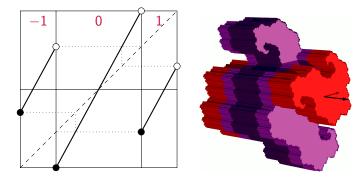


An example: the Rauzy tiling (Rauzy, 1982)

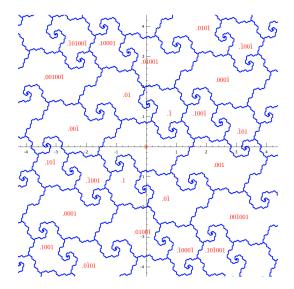


A tiling: the tribonacci number

Let
$$\beta$$
 be the tribonacci number. Take $A = \{-1, 0, 1\}$,
 $X_{-1} = \left[-\frac{\beta}{\beta+1}, -\frac{1}{\beta+1}\right)$, $X_0 = \left[-\frac{1}{\beta+1}, \frac{1}{\beta+1}\right)$ and $X_1 = \left[\frac{1}{\beta+1}, \frac{\beta}{\beta+1}\right)$.
Then T is a minimal weight transformation.

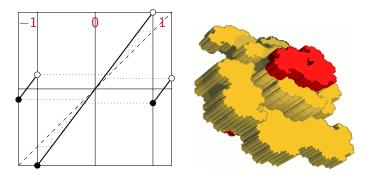


A tiling: the tribonacci number

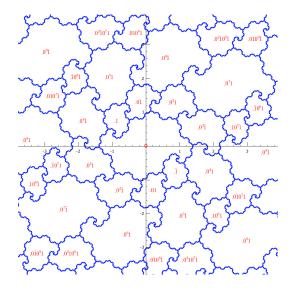


A tiling: the smallest Pisot number

Let β be the real solution of $x^3 - x - 1 = 0$. This is the smallest Pisot number. Take $A = \{-1, 0, 1\}$, $X_{-1} = \left[-\frac{\beta^7}{\beta^8 - 1}, -\frac{\beta^6}{\beta^8 - 1}\right)$, $X_0 = \left[-\frac{\beta^6}{\beta^8 - 1}, \frac{\beta^6}{\beta^8 - 1}\right)$ and $X_1 = \left[\frac{\beta^6}{\beta^8 - 1}, \frac{\beta^7}{\beta^8 - 1}\right)$. Then T is a minimal weight transformation.

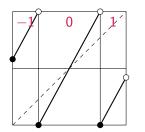


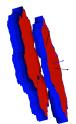
A tiling: the smallest Pisot number



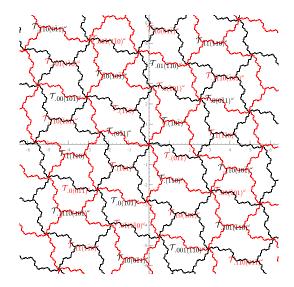
A double tiling: the tribonacci number

Let β be the tribonacci number. Take $A = \{-1, 0, 1\}$, $X_{-1} = \left[-\frac{1}{2}, -\frac{1}{2\beta}\right)$, $X_0 = \left[-\frac{1}{2\beta}, \frac{1}{2\beta}\right)$ and $X_1 = \left[\frac{1}{2\beta}, \frac{1}{2}\right)$.

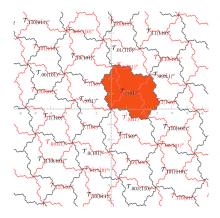




A double tiling: the tribonacci number

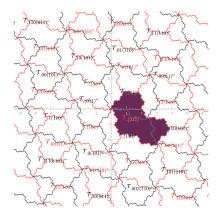


A double tiling: the tribonacci number



Consider 2 tiles $\mathcal{T}_{1-\frac{1}{\beta}}$ and $\mathcal{T}_{\frac{1}{\beta^3}}$. Take a point **y** from the yellow ball in $\mathcal{T}_{1-\frac{1}{\beta}}$. Then $\mathbf{y} = \Phi(1-\frac{1}{\beta}) + \phi(w)$ for some w such that $w \cdot b(1-\frac{1}{\beta}) \in S$. Show that there is a sequence w', such that $w' \cdot b(\frac{1}{\beta^3})$ and $\mathbf{y} = \Phi(\frac{1}{\beta^3}) + \phi(w')$.

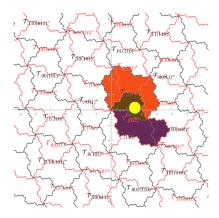
A double tiling: the tribonacci number



Consider 2 tiles $T_{1-\frac{1}{\beta}}$ and $T_{\frac{1}{\beta^3}}$. Take a point **y** from the yellow ball in $T_{1-\frac{1}{\beta}}$. Then $\mathbf{y} = \Phi(1-\frac{1}{\beta}) + \phi(w)$ for some w such that $w \cdot b(1-\frac{1}{\beta}) \in S$. Show that there is a sequence w', such that $w' \cdot b(\frac{1}{\beta^3})$ and $\mathbf{y} = \mathbf{y}$.

 $\Phi(\frac{1}{\beta^3}) + \phi(w').$

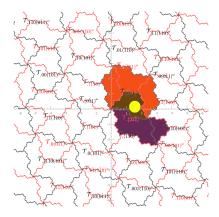
A double tiling: the tribonacci number



Consider 2 tiles $\mathcal{T}_{1-\frac{1}{\beta}}$ and $\mathcal{T}_{\frac{1}{\beta^3}}$. Take a point **y** from the yellow ball in $\mathcal{T}_{1-\frac{1}{\beta}}$. Then $\mathbf{y} = \Phi(1-\frac{1}{\beta}) + \phi(w)$ for some w such that $w \cdot b(1-\frac{1}{\beta}) \in \mathcal{S}$.

Show that there is a sequence w', such that $w' \cdot b(\frac{1}{\beta^3})$ and $\mathbf{y} = \Phi(\frac{1}{\beta^3}) + \phi(w')$.

A double tiling: the tribonacci number

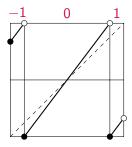


Consider 2 tiles $\mathcal{T}_{1-\frac{1}{\beta}}$ and $\mathcal{T}_{\frac{1}{\beta^3}}$. Take a point **y** from the yellow ball in $\mathcal{T}_{1-\frac{1}{\beta}}$. Then $\mathbf{y} = \Phi(1-\frac{1}{\beta}) + \phi(w)$ for some w such that $w \cdot b(1-\frac{1}{\beta}) \in S$. Show that there is a sequence

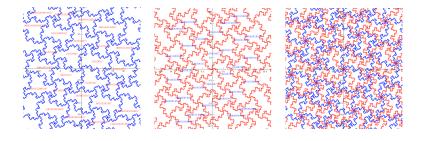
w', such that $w' \cdot b(\frac{1}{\beta^3})$ and $\mathbf{y} = \Phi(\frac{1}{\beta^3}) + \phi(w')$.

A double tiling: the smallest Pisot number

Let
$$\beta$$
 be the smallest Pisot number. Take $A = \{-1, 0, 1\}$, $X_{-1} = \left[-\frac{1}{2}, -\frac{1}{2\beta}\right)$, $X_0 = \left[-\frac{1}{2\beta}, \frac{1}{2\beta}\right)$ and $X_1 = \left[\frac{1}{2\beta}, \frac{1}{2}\right)$.



A double tiling: the smallest Pisot number



- The tiles that contain the origin are precisely the tiles T_x for which x has a purely periodic digit sequence b(x).
- The multiple tiling is self-replicating.
- The multiple tiling is quasi-periodic: ∀r > 0 ∃R such that for all y, y' ∈ H, the local configuration that we see in the ball B(y, r) also occurs in the ball B(y', R).
- If the multiple tiling is a tiling, then the closure of the natural extension domain gives a tiling of the torus.
- If we have a tiling and every set D_x contains the origin, then there is a direct way to determine the *n*-th digit of the expansions.

- The tiles that contain the origin are precisely the tiles T_x for which x has a purely periodic digit sequence b(x).
- The multiple tiling is self-replicating.
- The multiple tiling is quasi-periodic: ∀r > 0 ∃R such that for all y, y' ∈ H, the local configuration that we see in the ball B(y, r) also occurs in the ball B(y', R).
- If the multiple tiling is a tiling, then the closure of the natural extension domain gives a tiling of the torus.
- If we have a tiling and every set D_x contains the origin, then there is a direct way to determine the *n*-th digit of the expansions.

- The tiles that contain the origin are precisely the tiles T_x for which x has a purely periodic digit sequence b(x).
- The multiple tiling is self-replicating.
- The multiple tiling is quasi-periodic: $\forall r > 0 \exists R$ such that for all $\mathbf{y}, \mathbf{y}' \in H$, the local configuration that we see in the ball $B(\mathbf{y}, r)$ also occurs in the ball $B(\mathbf{y}', R)$.
- If the multiple tiling is a tiling, then the closure of the natural extension domain gives a tiling of the torus.
- If we have a tiling and every set D_x contains the origin, then there is a direct way to determine the *n*-th digit of the expansions.

- The tiles that contain the origin are precisely the tiles T_x for which x has a purely periodic digit sequence b(x).
- The multiple tiling is self-replicating.
- The multiple tiling is quasi-periodic: $\forall r > 0 \exists R$ such that for all $\mathbf{y}, \mathbf{y}' \in H$, the local configuration that we see in the ball $B(\mathbf{y}, r)$ also occurs in the ball $B(\mathbf{y}', R)$.
- If the multiple tiling is a tiling, then the closure of the natural extension domain gives a tiling of the torus.
- If we have a tiling and every set D_x contains the origin, then there is a direct way to determine the *n*-th digit of the expansions.

- The tiles that contain the origin are precisely the tiles T_x for which x has a purely periodic digit sequence b(x).
- The multiple tiling is self-replicating.
- The multiple tiling is quasi-periodic: $\forall r > 0 \exists R$ such that for all $\mathbf{y}, \mathbf{y}' \in H$, the local configuration that we see in the ball $B(\mathbf{y}, r)$ also occurs in the ball $B(\mathbf{y}', R)$.
- If the multiple tiling is a tiling, then the closure of the natural extension domain gives a tiling of the torus.
- If we have a tiling and every set D_x contains the origin, then there is a direct way to determine the n-th digit of the expansions.

