Random geometric graphs

Mathew D. Penrose University of Bath, UK

Universiteit Utrecht 12 November 2008

RANDOM GRAPH MODELS

- The classical Erdös–Rényi model G(n, p)(Bollobás 1984/2001. Janson, Łuczak and Rucinski 2000)
- Random geometric graph G(B_n, r)
 (Penrose 2003)

 $\mathcal{B}_n = \{X_1, \ldots, X_n\}, X_i \text{ independent uniform random in } [0, 1]^d.$

Motivation: sensor networks; spatial/multivariate statistics; analysis of algorithms; alternative to G(n, p)

DEGREE DISTRIBUTIONS

Let D_i be the degree of vertex X_i in G. Then for $r_n \to 0$, $\mathbf{E}[D_1] \sim n\pi_d r_n^d$ in $G(n, r_n)$ If $r_n \sim an^{-1/d}$ then $D_1 \sim$ Poisson. [G(n, a/n) similar]

Let Δ_i denote the number of triangles including X_i .

If $r_n \sim a n^{-1/d}$, then $\mathbf{E}\Delta_1 \sim c$

whereas for G(n, a/n), $\mathbf{E}\Delta_1 \sim c'/n$.

THE GIANT COMPONENT for G(n, p)

Let $L_i(G)$ be the *i*th largest component size in G. Given $\lambda > 0$,

$$n^{-1}L_1(G(n,\lambda/n)) \to_p \phi(\lambda) \text{ as } n \to \infty$$

 $n^{-1}L_2(G(n,\lambda/n)) \to_p 0$

where ϕ is continuous and

$$\phi(\lambda) = 0 \qquad \lambda \le 1$$

 $\phi(\lambda) > 0 \qquad \lambda > 1$

 $\phi(\lambda)$ is the survival probability for a Poisson(λ) branching process.

THE GIANT COMPONENT for $G(\mathcal{B}_n, r)$.

Given $\lambda > 0$, as $n \to \infty$,

$$n^{-1}L_1(G(n,\lambda n^{-1/d})) \to \theta(\lambda)$$
$$n^{-1}L_2(G(n,\lambda n^{-1/d})) \to 0$$

where for some $\lambda_c \in (0, \infty)$, and

 $\begin{aligned} \theta(\lambda) &= 0 & \lambda < \lambda_c \\ \theta(\lambda) &> 0 & \lambda > \lambda_c \end{aligned}$

 $\theta(\lambda)$ is the continuum percolation probability for a Poisson point process \mathcal{H}_{λ} of intensity λ in \mathbf{R}^{d} , and is continuous on $\lambda \neq \lambda_{c}$

MORE PERCOLATION: \mathcal{H}_{λ} : Homogeneous Poisson process in \mathbb{R}^d $\theta(\lambda) = P[\mathbf{0} \text{ lies in an infinite component of } G(\mathcal{H}_{\lambda} \cup \{\mathbf{0}\}, 1)]$

 $\lambda_c = \sup\{\lambda : \theta(\lambda) = 0\} \in (0, \infty), \text{ for } d \ge 2.$

 $\theta(\lambda)$ is right continuous at 0, but $\theta(\lambda_c)$ is known to be zero only for d = 2 or d large.

For both G(n, p) and $G(\mathcal{B}_n, r)$, the giant component result can be guessed but needs work to prove. Uniqueness of the infinite component for percolation (i.e. for $G(\mathcal{H}_{\lambda}, 1)$) is a key result.

CONNECTIVITY

Let K(G) be the event that G is connected. If $n\pi_d r_n^d = c \ln n$,

$$P[K(G(\mathcal{B}_n, r_n))] \to 1 \quad \text{if} \quad c > 1$$
$$P[K(G(\mathcal{B}_n, r_n))] \to 0 \quad \text{if} \quad c < 1$$

Idea of proof:

$$P[D_1 = 0] \sim \exp(-n\pi_d r_n^d) \sim n^{-c}$$

so if $N_0 := \sum_{i=1}^n \mathbf{1}\{D_i = 0\}$, the number of vertices of degree 0,

 $\mathbf{E}[N_0] = nP[D_1 = 0] = n^{1-c}$

so $P[N_0 > 0] \rightarrow 0$ if c > 1, and suggests $P[N_0 > 0] \rightarrow 1$ if c < 1.

 $\{N_0 = 0\}$ is clearly necessary for K(G), and turns out to be asymptotically sufficient.

In fact, if $R_n(A) := \min\{r : G(\mathcal{B}_n, r) \in A\}$ for a given increasing graph property A, then

 $P[R_n(\{N_0=0\}) = R_n(K)] \to 1.$

Combined with [Dette and Henze (1989, 1990)] this gives

 $P[n\pi R_n(K) - \log n < t] \to \exp(-e^{-t}), \quad t \in \mathbf{R}$

[MP 1997; Gupta and Kumar 1998, MP 1998, Hsing and Rootzen 2005, Gupta and Iyer 200?]

CENTRAL AND LOCAL LIMIT THEOREMS

Fix λ and suppose $nr_n^d = \lambda$. Let M_n be the number of components of $G(\mathcal{B}_n, r_n)$. Let $\phi(t)$ be the standard normal pdf, and $\Phi(t) = \int_{-\infty}^t \phi(t) dt$. Then there is a constant $\sigma > 0$ such that for $t \in \mathbf{R}$,

$$P\left[\frac{M_n - \mathbf{E}M_n}{\sigma\sqrt{n}} \le t\right] \to \Phi(t)$$

and also (work in progress, with Y. Peres)

$$\sup_{j \in \mathbf{N}} \left\{ n^{1/2} P[M_n = j] - \sigma^{-1} \phi\left(\frac{j - \mathbf{E}M_n}{\sigma \sqrt{n}}\right) \right\} \to 0.$$

CENTRAL LIMIT THEOREM FOR LARGEST COMPONENT

Fix $\lambda > \lambda_c$ and suppose $nr_n^d = \lambda$. Let $L_1(G_n)$ be the size of the largest component of $G_n = G(\mathcal{B}_n, r_n)$. Then there is a constant $\sigma > 0$ such that for $t \in \mathbf{R}$,

$$P\left[\frac{L_1(G_n) - \mathbf{E}L_1(G_n)}{\sigma\sqrt{n}} \le t\right] \to \Phi(t)$$

(Local limit theorem should also hold).

CLTs also hold for the number of edges, number of triangles etc, number of isolated points, isolated edges, etc. both when nr_n^d is constant or decays like a small negative power of n.

IDEA OF PROOF OF CLTS: STABILIZATION

Poissonization: let $\mathcal{P}_n = \mathcal{B}_{N_n}$ where $N_n \sim \text{Poisson}(n)$. Then

$$G'_n := G(\mathcal{P}_n; (\lambda/n)^{1/d}) \sim G(\mathcal{H} \cap Q_n; \lambda^{1/d})$$

where $\mathcal{H} = \mathcal{H}_1$ is a homogeneous Poisson point process of unit intensity on \mathbf{R}^d and Q_n is a cube of volume n.

So both $K(G'_n)$ and $L_1(G'_n)$ are of the form $F(\mathcal{H} \cap Q_n)$ with F defined on finite point sets, and translation invariant.

In both cases, can show F is *stabilising*, i.e. local changes have only local effects F

STABILIZATION

Let B_r be the ball of radius r around the origin. Say F is *stabilizing* if there are almost surely finite random variables R, Δ such that

 $F((\mathcal{H} \cap Q) \cup \{\mathbf{0}\}) - F(\mathcal{H} \cap Q) = \Delta$

for all cubes Q with $B_R \subset Q$.

General result: if F stabilises and satisfies a 4th moments condition, then $F(\mathcal{H} \cap Q_n)$ satisfies a CLT.

 Δ is sometimes called the (limiting) add one cost.

WHY DOES K STABILIZE?

Let $\rho > 0$, and suppose F(S) the number of components of $G(S, \rho)$. Then $F(S \cup \mathbf{0}) - F(S)$ is the number of distinct components near $\mathbf{0}$, minus 1.

This is bounded by a constant (kissing number).

If $B_{r-\rho}$ contains all finite components of $G(\mathcal{H}, \rho)$ then $F(\mathcal{H} \cap Q) - F(Q)$ is the same for all Q with $B_r \subset Q$.

Moments condition harder here than for K.

WHY DOES L_1 STABILIZE?

Let $\rho > 0$, and suppose $F(\mathcal{S}) = L_1(G(\mathcal{S}, \rho))$ (supercritical).

Adding **0** may cause some extra finite components to be joined to the infinite component of $G(\mathcal{H}, \rho)$.

Let Δ be the total size of these added components, plus 1.

Claim: if r is big enough, and $B_r \subset Q$, then

 $F((\mathcal{H} \cap Q) \cup \{\mathbf{0}\}) - F(\mathcal{H} \cap Q) = \Delta.$

WHY STABILIZATION IMPLY A CLT?

Let $Y_n = F(\mathcal{H} \cap Q_n)$. Divide Q_n into unit cubes, list lexicographically as $C_{n,1}, \ldots, C_{n,n}$. Let \mathcal{F}_i be σ -field generated by $\mathcal{H} \cap \bigcup_{j=1}^i C_{n,j}$. Let

 $D_i = \mathbf{E}[Y_n | \mathcal{F}_i] - \mathbf{E}[Y_n | \mathcal{F}_{i-1}] = \mathbf{E}[Y_n - Y_{n,i} | \mathcal{F}_i]$

where $Y_{n,i}$ is obtained by replacing $\mathcal{H} \cap C_{n,i}$ by an independent copy. CLT for martingale differences (McLeish 1974) requires

$$n^{-1} \sum_{i=1}^{n} D_i \to \sigma^2$$

for some constant σ^2 . This follows from the Ergodic Theorem, and the stabilization and moments conditions.

References

 Penrose, M. D. (1997). The longest edge of the random minimal spanning tree. The Annals of Applied Probability 7, 340–361.

[2] Penrose, M. (2003) Random Geometric Graphs. OUP, Oxford.

- [3] Penrose, M.D. (2001) A central limit theorem with applications to percolation, epidemics and Boolean models', Annals of Probability 29, 1515-1546 (2001)
- [4] Penrose, M.D. and Yukich, J.E. (2001) Central limit theorems for some graphs in computational geometry. Ann. Appl. Probab. 11, 1005-1041.