
Random geometric graphs

Mathew D. Penrose

University of Bath, UK

Universiteit Utrecht

12 November 2008

1



RANDOM GRAPH MODELS

• The classical Erdös–Rényi model G(n, p)

(Bollobás 1984/2001. Janson,  Luczak and Rucinski 2000)

• Random geometric graph G(Bn, r)

(Penrose 2003)

Bn = {X1, . . . , Xn}, Xi independent uniform random in [0, 1]d.

Motivation: sensor networks; spatial/multivariate statistics;

analysis of algorithms; alternative to G(n, p)
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DEGREE DISTRIBUTIONS

Let Di be the degree of vertex Xi in G. Then for rn → 0,

E[D1] ∼ nπdr
d
n in G(n, rn)

If rn ∼ an−1/d then D1 ∼ Poisson. [G(n, a/n) similar]

Let ∆i denote the number of triangles including Xi.

If rn ∼ an−1/d, then E∆1 ∼ c

whereas for G(n, a/n), E∆1 ∼ c′/n.
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THE GIANT COMPONENT for G(n, p)

Let Li(G) be the ith largest component size in G. Given λ > 0,

n−1L1(G(n, λ/n)) →p φ(λ) as n → ∞
n−1L2(G(n, λ/n)) →p 0

where φ is continuous and

φ(λ) = 0 λ ≤ 1

φ(λ) > 0 λ > 1

φ(λ) is the survival probability for a Poisson(λ) branching process.
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THE GIANT COMPONENT for G(Bn, r).

Given λ > 0, as n → ∞,

n−1L1(G(n, λn−1/d)) → θ(λ)

n−1L2(G(n, λn−1/d)) → 0

where for some λc ∈ (0,∞), and

θ(λ) = 0 λ < λc

θ(λ) > 0 λ > λc

θ(λ) is the continuum percolation probability for a Poisson point

process Hλ of intensity λ in R
d, and is continuous on λ 6= λc
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MORE PERCOLATION: Hλ: Homogeneous Poisson process in R
d

θ(λ) = P [0 lies in an infinite component of G(Hλ ∪ {0}, 1) ]

λc = sup{λ : θ(λ) = 0} ∈ (0,∞), for d ≥ 2.

θ(λ) is right continuous at 0, but θ(λc) is known to be zero only for

d = 2 or d large.

For both G(n, p) and G(Bn, r), the giant component result can be

guessed but needs work to prove. Uniqueness of the infinite

component for percolation (i.e. for G(Hλ, 1)) is a key result.
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CONNECTIVITY

Let K(G) be the event that G is connected. If nπdr
d
n = c ln n,

P [K(G(Bn, rn))] → 1 if c > 1

P [K(G(Bn, rn))] → 0 if c < 1

Idea of proof:

P [D1 = 0] ∼ exp(−nπdr
d
n) ∼ n−c

so if N0 :=
∑n

i=1
1{Di = 0}, the number of vertices of degree 0,

E[N0] = nP [D1 = 0] = n1−c

so P [N0 > 0] → 0 if c > 1, and suggests P [N0 > 0] → 1 if c < 1.
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{N0 = 0} is clearly necessary for K(G), and turns out to be

asymptotically sufficient.

In fact, if Rn(A) := min{r : G(Bn, r) ∈ A} for a given increasing

graph property A, then

P [Rn({N0 = 0}) = Rn(K)] → 1.

Combined with [Dette and Henze (1989, 1990)] this gives

P [nπRn(K) − log n < t] → exp(−e−t), t ∈ R

[MP 1997; Gupta and Kumar 1998, MP 1998, Hsing and Rootzen

2005, Gupta and Iyer 200?]
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CENTRAL AND LOCAL LIMIT THEOREMS

Fix λ and suppose nrd
n = λ. Let Mn be the number of components of

G(Bn, rn). Let φ(t) be the standard normal pdf, and

Φ(t) =
∫ t

−∞
φ(t)dt. Then there is a constant σ > 0 such that for

t ∈ R,

P

[

Mn − EMn

σ
√

n
≤ t

]

→ Φ(t)

and also (work in progress, with Y. Peres)

sup
j∈N

{

n1/2P [Mn = j] − σ−1φ

(

j − EMn

σ
√

n

)}

→ 0.
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CENTRAL LIMIT THEOREM FOR LARGEST COMPONENT

Fix λ > λc and suppose nrd
n = λ. Let L1(Gn) be the size of the

largest component of Gn = G(Bn, rn). Then there is a constant σ > 0

such that for t ∈ R,

P

[

L1(Gn) − EL1(Gn)

σ
√

n
≤ t

]

→ Φ(t)

(Local limit theorem should also hold).

CLTs also hold for the number of edges, number of triangles etc,

number of isolated points, isolated edges, etc. both when nrd
n is

constant or decays like a small negative power of n.
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IDEA OF PROOF OF CLTS: STABILIZATION

Poissonization: let Pn = BNn
where Nn ∼ Poisson(n). Then

G′

n := G(Pn; (λ/n)1/d) ∼ G(H ∩ Qn; λ1/d)

where H = H1 is a homogeneous Poisson point process of unit

intensity on R
d and Qn is a cube of volume n.

So both K(G′

n) and L1(G′

n) are of the form F (H ∩ Qn) with F

defined on finite point sets, and translation invariant.

In both cases, can show F is stabilising, i.e. local changes have only

local effects F

11



STABILIZATION

Let Br be the ball of radius r around the origin. Say F is stabilizing

if there are almost surely finite random variables R, ∆ such that

F ((H ∩ Q) ∪ {0}) − F (H ∩ Q) = ∆

for all cubes Q with BR ⊂ Q.

General result: if F stabilises and satisfies a 4th moments condition,

then F (H ∩ Qn) satisfies a CLT.

∆ is sometimes called the (limiting) add one cost.
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WHY DOES K STABILIZE?

Let ρ > 0, and suppose F (S) the number of components of G(S, ρ).

Then F (S ∪ 0) − F (S) is the number of distinct components near 0,

minus 1.

This is bounded by a constant (kissing number).

If Br−ρ contains all finite components of G(H, ρ) then

F (H ∩ Q) − F (Q) is the same for all Q with Br ⊂ Q.

Moments condition harder here than for K.
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WHY DOES L1 STABILIZE?

Let ρ > 0, and suppose F (S) = L1(G(S, ρ)) (supercritical).

Adding 0 may cause some extra finite components to be joined to the

infinite component of G(H, ρ).

Let ∆ be the the total size of these added components, plus 1.

Claim: if r is big enough, and Br ⊂ Q, then

F ((H ∩ Q) ∪ {0}) − F (H ∩ Q) = ∆.
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WHY STABILIZATION IMPLY A CLT?

Let Yn = F (H∩Qn). Divide Qn into unit cubes, list lexicographically

as Cn,1, . . . , Cn,n. Let Fi be σ-field generated by H ∩ ∪i
j=1

Cn,j . Let

Di = E[Yn|Fi] − E[Yn|Fi−1] = E[Yn − Yn,i|Fi]

where Yn,i is obtained by replacing H∩Cn,i by an independent copy.

CLT for martingale differences (McLeish 1974) requires

n−1

n
∑

i=1

Di → σ2

for some constant σ2. This follows from the Ergodic Theorem, and

the stabilization and moments conditions.
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