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Manifolds and homology ]. . Mal’lifOIdS al’ld hOl’nOlOgy

Manifolds are the main object of interest in (differential) geometry.
A manifold is obtained by pasting together open subsets of R" (charts).

They are the abstraction of the idea of a geometrical space.




Manifolds and homology

The main goals of geometry can be summarised as':

e Classify (smooth) manifolds.

e Understand geometric (underlying) structures on a manifold:
riemannian metrics, complex structures, ...

e Understand subojects (submanifolds).

e Understand global (topological) properties of manifolds.

1 Disclaimer: this is a personal vision.



Manifolds and homology Suppose that S — M iS a k—dlmenSiOIlal SmeaIllfOId Then we
can move S inside M (isotopy, homotopy, cobordism), and consider
the equivalence classes of these objects.

=)

~~» Cobordism theory (difficult to work out).




Manifolds and homology Suppose that S — M iS a k—dlmenSiOnal SmeanlfOId Then we
can move S inside M (isotopy, homotopy, cobordism), and consider
the equivalence classes of these objects.

=)

~» Cobordism theory (difficult to work out).

In 1896, Poincaré introduced the concept of homology. This is a
more tractable and computable invariant.

Triangulate S = >_T;, T;:[0,1]" — M.




Manifolds and homology Chains: Cy(M) ={>nT; ; T;:[0,1]* — M,n; € Z}

There is a well-defined boundary map O for chains.

Cycles: Z;(M) = {a =>_n;T; ; d(a) = 0}.

Boundaries: By(M) = {9(>_m;T}) ; > m;T; € Cra(M)}.
The homology is defined as

Hk(M’ Z) -

&
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If S'is an oriented compact submanifold, then there is a well-defined

element
[S] c Hk-(M, Z).
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If S'is an oriented compact submanifold, then there is a well-defined

element
[S] c Hk-(M, Z).

If we take coefficients n; € R, we obtain Hy(M,R).




Manifolds and homology De Rham (1931) observed a duality given by integration. If S is an
oriented submanifold, then there is a map

S:QF M) — R, (%)

a — (S a),

which sends any k-form « = > fidy;, A ... Ady;, to

(S,oz>:/8a:Zni/Tia.

The spaces of k-forms, with the exterior differential, (©,.QF(M), d),
form a differential algebra.

ZH(M) = ker(d : Q¥(M) — QF1(M)),
BF(M) = img(d : Q5 1(M) — QF(M)).

The De Rham cohomology is defined as:

ZMM)

H*(M,R) = B 1)




Manifolds and homology StOkeS thGOI'em Says tha:t
[as=o
S
so (%) gives a map

[S]: H*(M,R) — R,
la] — ([S];la]) = (S, a).

This produces a duality Hy(M,R) @ H*(M,R) — R. So

5] = « /S " € Hom(H*(M,R),R) & H,(M,R).

(%) is called the integration current along S.




2. Realization of homology classes

Realization of homology . ..

Question: Let M be a smooth compact manifold of dimension n.
Let a € H,(M,Z), 0 < k < n.
Does there exist a submanifold S C M such that [S] =a ?

Thom (1953, Fields medal) gave the answer. He transformed the
problem to a dual problem: the existence of a map,
f:M—U,

where U is a universal space, Uy C U, and S = f~(Up) is the sought
submanifold. Then he applied transversality to the map f.

e [t is not always possible to get such submanifold S.
Required the existence of f: M — U such that f*[Up] = a. This
is a topological obstruction.

e There are positive answers. E.g., there exists m > 0 such that for
ma € Hp(M) there exists S C M, [S] = ma.

o If n — kis odd, then U ~ S" % U, = pt, so we get S = f~(pt),
with trivial normal bundle (and [S] = ma, m > 0).




Digression: The complex case

3. Digression: The complex case

Let M be a compact complex manifold.
M cCPY¥, M=Z(fi,...,[t), fi polynomials.

There is a Hodge decomposition H*(M) = @ HP4(M),
pta=k
Dually, Hy(M) = @ Hy (M),
p+qg=Fk

If S C M is a complex submanifold, then [S] € Hy,(M).

Hodge Conjecture (1950):

Given a € Hng(M) N Hgk(M, Z)
Does there exist m > 0 and S C M a complex submanifold, s.t.
[S]=ma?

(Note: Atiyah—Hirzebruch gave a counterexample if we ask for m = 1
above).



4. Geometric representatives of non-integer homology classes

Let M be a compact manifold.

Geometric representatives. . .

Let a € Hy(M,R) be a real homology class.
We look for geometric representatives of a.

We aim for a (smooth) sub-object S < M defining an integration
current s.t. [S] = a.

Note: by definition, we can take a chain with real coefficients

CLZZ)\ZCZ

But this may be non-smoothable (with corners). Moreover, the \;’s
are weights for each of the faces C;, and this is non-geometric data.




Look at the case of the torus T? = R?/Z2.

b
N

Geometric representatives. . .

N
b’

Hl(T2,Z) =7 - €1 @Z'ez.

For a homology class o = pie+paes, we can consider o/ = e —|—£—i€2.
This is represented by (the image of) the line y = Z—jx.

This winds p;-times around the e;-direction, and ps-times around
the es-direction.




If we consider A € R—Q, then the line y = Az is dense in the torus,
because it never closes.

N
~

Geometric representatives. . .

N\

Consider long portions of this curve: Take N > 0, and let Iy =
{(z, Az);z € [0, N}

L

This is approximately [Ix] ~ Nej +pyes, where & ~ X. Therefore
1

~lin] = lex + %Neg] — [e1 + Aes] € Hi(T2, R).




Let M be a compact manifold. A parametrized curve
c:R— M

I ——— defines (in good cases) a real homology class as follows.

For each pair of points p,q € M, choose a short arc v, , from p to
q (say, with bounded length).

The loop
csp = c([s,1]) Ve(t),c(s)
defines a homology class [cs;| € Hi1(M,Z).

9 _—

7

If the limit




Geometric representatives. . .

exists, we have that ¢ defines a real 1-cycle
[c] € Hi(M,R) =R ® H(M,Z).

Actually ¢ defines an integration current
c: QYM) — R.
For any 1-form o € QY(M),

(fesdlsa) = /c”a= /cqs,ﬂ)“O(”:
= /stoz(c'(u))du—i—()(l).

So there is a well-defined limit

1
= i
(e, @) = lim ——

S§—>—00

/: a(d(u))du .

This corresponds to integrating along ¢([s, t]), normalizing, and then
taking the limit.

This generalizes Schwartzman (1957) definition of real 1-cycles.
These real cycles can be called Schwartzman cycles.



Geometric representatives. . .

Schwartzman k-dimensional cycles

We can extend the definition to higher dimensions k& > 1.
Let M be a smooth compact manifold.
S smooth (Riemannian) complete non-compact manifold, zy € S.

A smooth map f : S — M defines a Schwartzman k-cycle
[f] S Hk(M7 R)
if for any k-form w € QF(M), the limit

([f],w) = R1—1>I}-100 Volg(Bg(zo)) /BR(xO) he

exists, where Bp(xg) is the ball of radius R around z( in S.

Alternatively, if we can cap off the submanifolds with boundary
f(Bgr(zg)) with a small cap Cg, Sk = f(Bg(xy)) U Cg, then we can
define

= lim [S]
[f] N R1—>+oo VO]S(BR(IIZ())) < Hk(M, R) '

This happens, for instance, when there is a trapping region, that is, a
ball B C M, and a sequence R,, — +00, s.t. f(0Bg, (%)) C B.




Solenoids

5. Solenoids

(Pérez-Marco, Munoz, math.DG/0702501).

A k-dimensional solenoid S is a compact Hausdorff topological space
with an atlas of flow-boxes (U;) such that

U =D xT,.

The (local) leaves are L, = D* x {y}.
The (local) transversals are T;.

The following is an embedded solenoid f : S — M.




Solenoids

An immersed solenoid f : S — M can define an integration current

as follows:
S : Qk(M) — R.

Let a € Q¥(M). Fix a covering (U;) of S, with U; NS = D* x Tj,
(pi) a partition of unity subordinated to (U;). Then first set

fio =2 ] e

Let a; = p; a, which is supported in one flow-box. We integrate «;
along the local leaves

y = a;(z,y) dz,
DFx{y}
and then we integrate in the y-direction. For this we need a measure
pur, (y) on T



Solenoids

An immersed solenoid f : S — M can define an integration current
as follows:
S : Qk(M ) — R.

Let a € Q¥(M). Fix a covering (U;) of S, with U; NS = D* x Tj,
(pi) a partition of unity subordinated to (U;). Then first set

fio =2 ] e

Let a; = p; a, which is supported in one flow-box. We integrate «;
along the local leaves

Y= ai(z,y) dz,
Dk x{y}

and then we integrate in the y-direction. For this we need a measure
pur, (y) on T

A transversal measure is a collection of measures p = (ug) for
each transversal T;. They should be invariant by holonomies. The
holonomies are the maps from one transversal to another, by travelling
along the leaves.



Solenoids

Let f : S < M be an oriented solenoid in M, with a transversal
measure ;. Then there is an integration current

a Z/Ti(/mx{y}pia) dyr,(y) -

This defines a real homology class
[S, ] € Hom(H"*(M,R),R) = H,(M,R)
by duality.
This generalizes a construction of Ruelle-Sullivan (1975).
If S is embedded without compact leaves, then [S, u]*> = 0. So to
represent a homology class a € Hy(M,R) with a*> # 0, we need an

immersed solenoid with self-intersections.

So we may call [S, u| a generalized Ruelle-Sullivan cycle.



6. Ergodicity

Let M be a smooth manifold. Suppose that ey, ey € Hyi(M,Z) are
represented by submanifolds 5,50 C M. We want to represent

a=MAeL+ \eg € Hk(M,R)

Considering parallel copies of S; and Sy, we have two solenoids

(51 = 51 x Ty, p1), (So = Sy x Ts, ps). ~VVe have~chosen the total
measures j1;(T;) = A;. Consider (S, pu) = (S1, 1) U (Sa, p2).

Then a leaf of S represents either e; or ey, but does not represent a.

We want a to be represented by any leaf of S.



Manifolds and homology
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Realization of real . ..

Digression: Solenoidal . . .
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For this, we need mixing in the holonomy. Let T be a global
transversal (in the example above, arrange T'= T} = T5). Let

h:T—T

be the holonomy map (assume there is only one holonomy). The
transversal measure pp is invariant by h.

e S is minimal if all leaves are dense (the sets {h"(z();n € Z} are
dense in T').

e S is ergodic if almost all leaves represent the same homology class
(for any h-invariant A C T, either up(A) is zero or total measure).

e S is uniquely ergodic if there exists a unique (up to positive scalar
multiples) transversal measure pup (with full support).

Note that a uniquely ergodic solenoid S is a purely geometric entity,
as it “contains” as much information as the measured solenoid (S, u).
In general a measured solenoid (S, i) has a geometric datum, S, and
a non-geometric datum (weight), u.



Theorem (PM-M):

Let S be a uniquely ergodic oriented k-solenoid, and let f : S — M
be an immersion. (If £ > 1 we assume that there is a trapping region. )

Then for each leaf | C S we have that f|; : | — M is a Schwartzman
k-cycle, and

Ergodicity

[f|l] - [S7 ,LL] € Hk(Ma R)

(The proof is an application of Birkhoft’s ergodic theorem.)




Realization of real . ..

7. Realization of real homology classes

Theorem (PM-M):

Let M be a compact smooth manifold, a € Hi(M,R). Then there
exists a uniquely ergodic oriented immersed solenoid (S, f) represent-
ing a. (If £ > 1 then S has a trapping region.)

Proof: Assume k = 1 for simplicity (for the pictures).

Take loops C1,...,Cy, C M which form a basis of Hy(M,Z) (and
share a base point).




There are real numbers A, ..., A, > 0 such that
a=MNCy+- -+ \C,
(switching orientations and reordering the cycles if necessary). By

dividing by > A;, we can assume that Y \; = 1.

Thicken the loops to bands [0,1] x T;, where each [0,1] x {y} is
homotopic to ;. Now we need to introduce a mizing inside a ball B

around the base point.

Realization of real . ..

For this, we arrange the bands 7} in circular order forming a S*.
We want to get a solenoid with a transversal 7' = S!. The holonomy

will be
h:T—=T.




Fact: the rotation ry : S — S! of irrational angle 6 is uniquely
ergodic.

To get the smoothness of the solenoid, we need to use a transversal
T C S with “holes”.

We substitute the map ry by a Denjoy example. This is a map
h: S — S! with the following properties:

Realization of real . ..

e h is of class C?¢.

e h leaves invariant a Cantor set K C S!.

e h has rotation angle 0, i.e.
rg(x) =x+nb
h'(z) = x4+ nb+o(n).

e h is uniquely ergodic, with a unique invariant measure px sup-
ported exactly on the Cantor set K.




The suspension Y, of the map hlg : K — K is:

Realization of real . ..

Then we plug the middle part of > inside B, in such a way that
the holes where the bands coalesce or split are outside K.

The resulting solenoid S is uniquely ergodic and [S, u] = a.




8. Digression: Solenoidal Hodge Conjecture

Solenoidal Hodge Conjecture:

Let M be a compact complex manifold.
Let a € Hk,k(M) N Hgk(M, R)
Then a is represented by a complex immersed solenoid.

Digression: Solenoidal. . .

This is weaker that the usual Hodge Conjecture.

This removes the arithmetic issues, which are due to how the lat-
tice Hop(M,Z) C Hop(M,R) intersects the Hodge pieces Hy (M) C
Hop(M).
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