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1. Manifolds and homology

Manifolds are the main object of interest in (differential) geometry.
A manifold is obtained by pasting together open subsets of Rn (charts).

They are the abstraction of the idea of a geometrical space.
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The main goals of geometry can be summarised as†:

• Classify (smooth) manifolds.

• Understand geometric (underlying) structures on a manifold:
riemannian metrics, complex structures, . . .

• Understand subojects (submanifolds).

• Understand global (topological) properties of manifolds.

† Disclaimer: this is a personal vision.
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Suppose that S ↪→ M is a k-dimensional submanifold. Then we
can move S inside M (isotopy, homotopy, cobordism), and consider
the equivalence classes of these objects.

 Cobordism theory (difficult to work out).
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Suppose that S ↪→ M is a k-dimensional submanifold. Then we
can move S inside M (isotopy, homotopy, cobordism), and consider
the equivalence classes of these objects.

 Cobordism theory (difficult to work out).

In 1896, Poincaré introduced the concept of homology. This is a
more tractable and computable invariant.

Triangulate S =
∑
Ti, Ti : [0, 1]k →M .
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Chains: Ck(M) = {
∑
niTi ; Ti : [0, 1]k →M,ni ∈ Z}

There is a well-defined boundary map ∂ for chains.

Cycles: Zk(M) = {a =
∑
niTi ; ∂(a) = 0}.

Boundaries: Bk(M) = {∂(
∑
mjT

′
j) ;

∑
mjT

′
j ∈ Ck+1(M)}.

The homology is defined as

Hk(M,Z) =
Zk(M)

Bk(M)
.

If S is an oriented compact submanifold, then there is a well-defined
element

[S] ∈ Hk(M,Z).
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Chains: Ck(M) = {
∑
niTi ; Ti : [0, 1]k →M,ni ∈ Z}

There is a well-defined boundary map ∂ for chains.

Cycles: Zk(M) = {a =
∑
niTi ; ∂(a) = 0}.

Boundaries: Bk(M) = {∂(
∑
mjT

′
j) ;

∑
mjT

′
j ∈ Ck+1(M)}.

The homology is defined as

Hk(M,Z) =
Zk(M)

Bk(M)
.

If S is an oriented compact submanifold, then there is a well-defined
element

[S] ∈ Hk(M,Z).

If we take coefficients ni ∈ R, we obtain Hk(M,R).
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De Rham (1931) observed a duality given by integration. If S is an
oriented submanifold, then there is a map

S : Ωk(M) → R, (∗)
α 7→ 〈S, α〉 ,

which sends any k-form α =
∑
fi dyi1 ∧ . . . ∧ dyik to

〈S, α〉 =

∫
S

α =
∑

ni

∫
Ti

α .

The spaces of k-forms, with the exterior differential, (⊕kΩk(M), d),
form a differential algebra.

Zk(M) = ker(d : Ωk(M)→ Ωk+1(M)),

Bk(M) = img(d : Ωk−1(M)→ Ωk(M)).

The De Rham cohomology is defined as:

Hk(M,R) =
Zk(M)

Bk(M)
.
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Stokes theorem says that ∫
S

dβ = 0,

so (∗) gives a map

[S] : Hk(M,R) → R,
[α] 7→ 〈[S], [α]〉 = 〈S, α〉 .

This produces a duality Hk(M,R)⊗Hk(M,R)→ R. So

[S] = “

∫
S

” ∈ Hom(Hk(M,R),R) ∼= Hk(M,R).

(∗) is called the integration current along S.
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2. Realization of homology classes

Question: Let M be a smooth compact manifold of dimension n.
Let a ∈ Hk(M,Z), 0 < k < n.
Does there exist a submanifold S ⊂M such that [S] = a ?

Thom (1953, Fields medal) gave the answer. He transformed the
problem to a dual problem: the existence of a map,

f : M −→ U ,

where U is a universal space, U0 ⊂ U , and S = f−1(U0) is the sought
submanifold. Then he applied transversality to the map f .

• It is not always possible to get such submanifold S.
Required the existence of f : M → U such that f ∗[U0] = a. This
is a topological obstruction.

• There are positive answers. E.g., there exists m� 0 such that for
ma ∈ Hk(M) there exists S ⊂M , [S] = ma.

• If n − k is odd, then U ∼ Sn−k, U0 = pt, so we get S = f−1(pt),
with trivial normal bundle (and [S] = ma, m� 0).
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3. Digression: The complex case

Let M be a compact complex manifold.
M ⊂ PNC , M = Z(f1, . . . , ft), fi polynomials.

There is a Hodge decomposition Hk(M) =
⊕

p+q=k
Hp,q(M),

Dually, Hk(M) =
⊕

p+q=k
Hp,q(M),

If S ⊂M is a complex submanifold, then [S] ∈ Hk,k(M).

Hodge Conjecture (1950):

Given a ∈ Hk,k(M) ∩H2k(M,Z).
Does there exist m � 0 and S ⊂ M a complex submanifold, s.t.

[S] = ma ?

(Note: Atiyah–Hirzebruch gave a counterexample if we ask for m = 1
above).
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4. Geometric representatives of non-integer homology classes

Let M be a compact manifold.

Let a ∈ Hk(M,R) be a real homology class.

We look for geometric representatives of a.

We aim for a (smooth) sub-object S ↪→ M defining an integration
current s.t. [S] = a.

Note: by definition, we can take a chain with real coefficients

a =
∑

λiCi .

But this may be non-smoothable (with corners). Moreover, the λi’s
are weights for each of the faces Ci, and this is non-geometric data.
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Look at the case of the torus T2 = R2/Z2.

H1(T2,Z) = Z · e1 ⊕ Z · e2.

For a homology class α = p1e1+p2e2, we can consider α′ = e1+ p2

p1
e2.

This is represented by (the image of) the line y = p2

p1
x.

This winds p1-times around the e1-direction, and p2-times around
the e2-direction.
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If we consider λ ∈ R−Q, then the line y = λx is dense in the torus,
because it never closes.

Consider long portions of this curve: Take N � 0, and let lN =
{(x, λx);x ∈ [0, N ]}.

This is approximately [lN ] ∼ Ne1 +pNe2, where pN

N ∼ λ. Therefore

1

N
[lN ] = [e1 +

pN
N
e2] −→ [e1 + λe2] ∈ H1(T2,R).
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Let M be a compact manifold. A parametrized curve

c : R→M

defines (in good cases) a real homology class as follows.

For each pair of points p, q ∈ M , choose a short arc γp,q from p to
q (say, with bounded length).

The loop
cs,t := c([s, t]) ∗ γc(t),c(s)

defines a homology class [cs,t] ∈ H1(M,Z).

If the limit

[c] = lim
t→+∞
s→−∞

[cs,t]

t− s
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exists, we have that c defines a real 1-cycle

[c] ∈ H1(M,R) = R⊗H1(M,Z).

Actually c defines an integration current

c : Ω1(M) −→ R.
For any 1-form α ∈ Ω1(M),

〈[cs,t], α〉 =

∫
cs,t

α =

∫
c([s,t])

α +O(1) =

=

∫ t

s

α(c′(u)) du+O(1) .

So there is a well-defined limit

〈[c], α〉 = lim
t→+∞
s→−∞

1

t− s

∫ t

s

α(c′(u))du .

This corresponds to integrating along c([s, t]), normalizing, and then
taking the limit.

This generalizes Schwartzman (1957) definition of real 1-cycles.
These real cycles can be called Schwartzman cycles.
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Schwartzman k-dimensional cycles

We can extend the definition to higher dimensions k > 1.

Let M be a smooth compact manifold.

S smooth (Riemannian) complete non-compact manifold, x0 ∈ S.

A smooth map f : S →M defines a Schwartzman k-cycle

[f ] ∈ Hk(M,R)

if for any k-form ω ∈ Ωk(M), the limit

〈[f ], ω〉 = lim
R→+∞

1

VolS(BR(x0))

∫
BR(x0)

f ∗ω

exists, where BR(x0) is the ball of radius R around x0 in S.

Alternatively, if we can cap off the submanifolds with boundary
f(BR(x0)) with a small cap CR, SR = f(BR(x0)) ∪ CR, then we can
define

[f ] = lim
R→+∞

[SR]

VolS(BR(x0))
∈ Hk(M,R) .

This happens, for instance, when there is a trapping region, that is, a
ball B ⊂M , and a sequence Rn → +∞, s.t. f(∂BRn

(x0)) ⊂ B.
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5. Solenoids

(Pérez-Marco, Muñoz, math.DG/0702501).

A k-dimensional solenoid S is a compact Hausdorff topological space
with an atlas of flow-boxes (Ui) such that

Ui ∼= Dk × Ti .

The (local) leaves are Ly = Dk × {y}.
The (local) transversals are Ti.

The following is an embedded solenoid f : S ↪→M .
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An immersed solenoid f : S →M can define an integration current
as follows:

S : Ωk(M) −→ R.

Let α ∈ Ωk(M). Fix a covering (Ui) of S, with Ui ∩ S = Dk × Ti,
(ρi) a partition of unity subordinated to (Ui). Then first set∫

S

α =
∑
i

∫
Ui∩S

(ρi α).

Let αi = ρi α, which is supported in one flow-box. We integrate αi
along the local leaves

y 7→
∫
Dk×{y}

αi(x, y) dx,

and then we integrate in the y-direction. For this we need a measure
µTi

(y) on Ti.
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An immersed solenoid f : S →M can define an integration current
as follows:

S : Ωk(M) −→ R.

Let α ∈ Ωk(M). Fix a covering (Ui) of S, with Ui ∩ S = Dk × Ti,
(ρi) a partition of unity subordinated to (Ui). Then first set∫

S

α =
∑
i

∫
Ui∩S

(ρi α).

Let αi = ρi α, which is supported in one flow-box. We integrate αi
along the local leaves

y 7→
∫
Dk×{y}

αi(x, y) dx,

and then we integrate in the y-direction. For this we need a measure
µTi

(y) on Ti.

A transversal measure is a collection of measures µ = (µTi
) for

each transversal Ti. They should be invariant by holonomies. The
holonomies are the maps from one transversal to another, by travelling
along the leaves.
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Let f : S ↪→ M be an oriented solenoid in M , with a transversal
measure µ. Then there is an integration current

(S, µ) : Ωk(M) −→ R

α 7→
∑
i

∫
Ti

(∫
Dk×{y}

ρiα

)
dµTi

(y) .

This defines a real homology class

[S, µ] ∈ Hom(Hk(M,R),R) = Hk(M,R)

by duality.

This generalizes a construction of Ruelle-Sullivan (1975).

If S is embedded without compact leaves, then [S, µ]2 = 0. So to
represent a homology class a ∈ Hk(M,R) with a2 6= 0, we need an
immersed solenoid with self-intersections.

So we may call [S, µ] a generalized Ruelle-Sullivan cycle.
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6. Ergodicity

Let M be a smooth manifold. Suppose that e1, e2 ∈ Hk(M,Z) are
represented by submanifolds S1, S2 ⊂M . We want to represent

a = λ1 e1 + λ2 e2 ∈ Hk(M,R).

Considering parallel copies of S1 and S2, we have two solenoids
(S̃1 = S1 × T1, µ1), (S̃2 = S2 × T2, µ2). We have chosen the total
measures µi(Ti) = λi. Consider (S, µ) = (S̃1, µ1) t (S̃2, µ2).

Then a leaf of S represents either e1 or e2, but does not represent a.

We want a to be represented by any leaf of S.
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For this, we need mixing in the holonomy. Let T be a global
transversal (in the example above, arrange T = T1 = T2). Let

h : T → T

be the holonomy map (assume there is only one holonomy). The
transversal measure µT is invariant by h.

• S is minimal if all leaves are dense (the sets {hn(x0);n ∈ Z} are
dense in T ).

• S is ergodic if almost all leaves represent the same homology class
(for any h-invariant A ⊂ T , either µT (A) is zero or total measure).

• S is uniquely ergodic if there exists a unique (up to positive scalar
multiples) transversal measure µT (with full support).

Note that a uniquely ergodic solenoid S is a purely geometric entity,
as it “contains” as much information as the measured solenoid (S, µ).
In general a measured solenoid (S, µ) has a geometric datum, S, and
a non-geometric datum (weight), µ.
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Theorem (PM-M):

Let S be a uniquely ergodic oriented k-solenoid, and let f : S →M
be an immersion. (If k > 1 we assume that there is a trapping region.)

Then for each leaf l ⊂ S we have that f |l : l→M is a Schwartzman
k-cycle, and

[f |l] = [S, µ] ∈ Hk(M,R) .

(The proof is an application of Birkhoff’s ergodic theorem.)
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7. Realization of real homology classes

Theorem (PM-M):

Let M be a compact smooth manifold, a ∈ Hk(M,R). Then there
exists a uniquely ergodic oriented immersed solenoid (S, f) represent-
ing a. (If k > 1 then S has a trapping region.)

Proof: Assume k = 1 for simplicity (for the pictures).

Take loops C1, . . . , Cb1 ⊂ M which form a basis of H1(M,Z) (and
share a base point).
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There are real numbers λ1, . . . , λr > 0 such that

a = λ1C1 + · · ·+ λrCr

(switching orientations and reordering the cycles if necessary). By
dividing by

∑
λi, we can assume that

∑
λi = 1.

Thicken the loops to bands [0, 1] × Ti, where each [0, 1] × {y} is
homotopic to Ci. Now we need to introduce a mixing inside a ball B
around the base point.

For this, we arrange the bands Ti in circular order forming a S1.
We want to get a solenoid with a transversal T = S1. The holonomy
will be

h : T → T .
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Fact: the rotation rθ : S1 → S1 of irrational angle θ is uniquely
ergodic.

To get the smoothness of the solenoid, we need to use a transversal
T ⊂ S1 with “holes”.

We substitute the map rθ by a Denjoy example. This is a map
h : S1 → S1 with the following properties:

• h is of class C2−ε.

• h leaves invariant a Cantor set K ⊂ S1.

• h has rotation angle θ, i.e.
rnθ (x) = x+ n θ

hn(x) = x+ n θ + o(n).

• h is uniquely ergodic, with a unique invariant measure µK sup-
ported exactly on the Cantor set K.
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The suspension Σh of the map h|K : K → K is:

Then we plug the middle part of Σh inside B, in such a way that
the holes where the bands coalesce or split are outside K.

The resulting solenoid S is uniquely ergodic and [S, µ] = a.
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8. Digression: Solenoidal Hodge Conjecture

Solenoidal Hodge Conjecture:

Let M be a compact complex manifold.
Let a ∈ Hk,k(M) ∩H2k(M,R).
Then a is represented by a complex immersed solenoid.

This is weaker that the usual Hodge Conjecture.

This removes the arithmetic issues, which are due to how the lat-
tice H2k(M,Z) ⊂ H2k(M,R) intersects the Hodge pieces Hp,q(M) ⊂
H2k(M).
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