Manifolds and homology

Realization of homology . . .

Digression: The complex case

Geometric representatives . . .

Solenoids

Ergodicity

Realization of real

Digression: Solenoidal ...

••	••	
Full Screen		
Close		
0	uit	

Ergodic Solenoids

Vicente Muñoz

Universidad Complutense de Madrid

email: vicente.munoz@mat.ucm.es

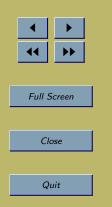
Utrecht University

18 November 2009

Manifolds and homology Realization of homology... Digression: The complex case Geometric representatives... Solenoids Ergodicity

Realization of real . . .

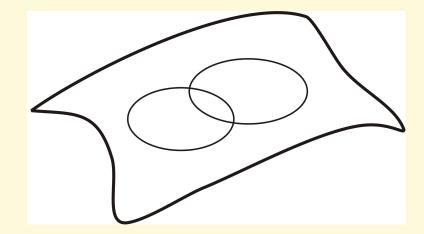
Digression: Solenoidal ...



1. Manifolds and homology

Manifolds are the main object of interest in (differential) geometry. A manifold is obtained by pasting together open subsets of \mathbb{R}^n (charts).

They are the abstraction of the idea of a geometrical space.



Manifolds and homology

- Realization of homology . . .
- Digression: The complex case
- Geometric representatives . . .
- Solenoids
- Ergodicity
- Realization of real . . .
- Digression: Solenoidal . . .

		•
	••	••
Full Screen		
Close		

Quit

The main goals of geometry can be summarised as^{\dagger} :

- Classify (smooth) manifolds.
- Understand geometric (underlying) structures on a manifold: riemannian metrics, complex structures, ...
- Understand subojects (submanifolds).
- Understand global (topological) properties of manifolds.

Manifolds and homology

Realization of homology . . .

Digression: The complex case

Geometric representatives . . .

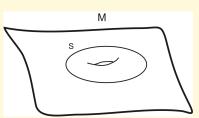
Solenoids

Ergodicity

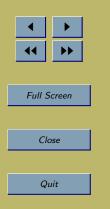
Realization of real . . .

Digression: Solenoidal . . .

Suppose that $S \hookrightarrow M$ is a k-dimensional submanifold. Then we can move S inside M (isotopy, homotopy, cobordism), and consider the equivalence classes of these objects.



 \rightsquigarrow Cobordism theory (difficult to work out).

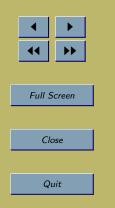


Manifolds and homology Realization of homology... Digression: The complex case Geometric representatives... Solenoids

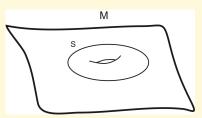
Ergodicity

Realization of real . . .

Digression: Solenoidal . . .



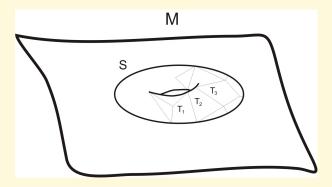
Suppose that $S \hookrightarrow M$ is a k-dimensional submanifold. Then we can move S inside M (isotopy, homotopy, cobordism), and consider the equivalence classes of these objects.



 \rightsquigarrow Cobordism theory (difficult to work out).

In 1896, Poincaré introduced the concept of homology. This is a more tractable and computable invariant.

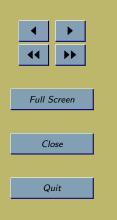
Triangulate $S = \sum T_i$, $T_i : [0, 1]^k \to M$.



Manifolds and homology Realization of homology... Digression: The complex case Geometric representatives... Solenoids Ergodicity

Realization of real . . .

Digression: Solenoidal ...



Chains: $C_k(M) = \{\sum n_i T_i ; T_i : [0,1]^k \to M, n_i \in \mathbb{Z}\}$

There is a well-defined boundary map ∂ for chains.

Cycles:
$$Z_k(M) = \{a = \sum n_i T_i ; \ \partial(a) = 0\}.$$

Boundaries: $B_k(M) = \{\partial(\sum m_j T'_j); \sum m_j T'_j \in C_{k+1}(M)\}.$

The homology is defined as

(

$$H_k(M,\mathbb{Z}) = \frac{Z_k(M)}{B_k(M)}$$

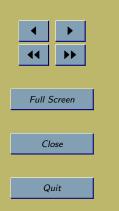
If S is an oriented compact submanifold, then there is a well-defined element

 $[S] \in H_k(M, \mathbb{Z}).$

Manifolds and homology Realization of homology... Digression: The complex case Geometric representatives... Solenoids Ergodicity

Realization of real . . .

Digression: Solenoidal ...



Chains:
$$C_k(M) = \{\sum n_i T_i ; T_i : [0,1]^k \to M, n_i \in \mathbb{Z}\}$$

There is a well-defined boundary map ∂ for chains.

Cycles:
$$Z_k(M) = \{a = \sum n_i T_i ; \ \partial(a) = 0\}.$$

Boundaries: $B_k(M) = \{\partial(\sum m_j T'_j); \sum m_j T'_j \in C_{k+1}(M)\}.$

The homology is defined as

(

$$H_k(M,\mathbb{Z}) = \frac{Z_k(M)}{B_k(M)}$$

If S is an oriented compact submanifold, then there is a well-defined element

 $[S] \in H_k(M, \mathbb{Z}).$

If we take coefficients $n_i \in \mathbb{R}$, we obtain $H_k(M, \mathbb{R})$.

Manifolds and homology

Realization of homology...

Digression: The complex case

Geometric representatives...

Solenoids

Ergodicity

Realization of real . . .

Digression: Solenoidal ...

•• ••	
Full Screen	
Close	
Quit	

De Rham (1931) observed a *duality* given by integration. If S is an oriented submanifold, then there is a map

$$S: \Omega^{k}(M) \to \mathbb{R}, \qquad (*)$$

$$\alpha \mapsto \langle S, \alpha \rangle,$$

which sends any k-form $\alpha = \sum f_{\mathbf{i}} dy_{i_1} \wedge \ldots \wedge dy_{i_k}$ to

$$\langle S, \alpha \rangle = \int_{S} \alpha = \sum n_i \int_{T_i} \alpha \,.$$

The spaces of k-forms, with the exterior differential, $(\bigoplus_k \Omega^k(M), d)$, form a differential algebra.

$$Z^{k}(M) = \ker(d: \Omega^{k}(M) \to \Omega^{k+1}(M)),$$

 $B^{k}(M) = \operatorname{img}(d: \Omega^{k-1}(M) \to \Omega^{k}(M)).$
The De Bham cohomology is defined as:

$$H^k(M,\mathbb{R}) = \frac{Z^k(M)}{B^k(M)}.$$

```
Manifolds and homology
```

Realization of homology . . .

Digression: The complex case

```
Geometric representatives . . .
```

Solenoids

Ergodicity

Realization of real . . .

Digression: Solenoidal ...

Stokes theorem says that

$$\int_{S} d\beta = 0,$$

so (*) gives a map

$$[S] : H^{k}(M, \mathbb{R}) \to \mathbb{R},$$
$$[\alpha] \mapsto \langle [S], [\alpha] \rangle = \langle S, \alpha \rangle$$

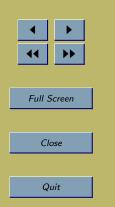
This produces a duality $H_k(M, \mathbb{R}) \otimes H^k(M, \mathbb{R}) \to \mathbb{R}$. So $[S] = " \int_S " \in \operatorname{Hom}(H^k(M, \mathbb{R}), \mathbb{R}) \cong H_k(M, \mathbb{R}).$

(*) is called the *integration current* along S.

Manifolds and homology
Realization of homology
Digression: The complex case
Geometric representatives
Solenoids
Francicity

Realization of real . . .

Digression: Solenoidal . . .



2. Realization of homology classes

Question: Let M be a smooth compact manifold of dimension n. Let $a \in H_k(M, \mathbb{Z}), 0 < k < n$. Does there exist a submanifold $S \subset M$ such that [S] = a?

Thom (1953, Fields medal) gave the answer. He transformed the problem to a dual problem: the existence of a map,

 $f: M \longrightarrow U$,

where U is a universal space, $U_0 \subset U$, and $S = f^{-1}(U_0)$ is the sought submanifold. Then he applied transversality to the map f.

- It is not always possible to get such submanifold S. Required the existence of $f: M \to U$ such that $f^*[U_0] = a$. This is a topological obstruction.
- There are positive answers. E.g., there exists $m \gg 0$ such that for $m a \in H_k(M)$ there exists $S \subset M$, [S] = m a.
- If n k is odd, then $U \sim S^{n-k}$, $U_0 = pt$, so we get $S = f^{-1}(pt)$, with trivial normal bundle (and $[S] = ma, m \gg 0$).

Manifolds and homology Realization of homology... Digression: The complex case Geometric representatives... Solenoids

Ergodicity

Realization of real . . .

Digression: Solenoidal . . .



3. Digression: The complex case

Let M be a compact complex manifold. $M \subset \mathbb{P}^N_{\mathbb{C}}, M = Z(f_1, \ldots, f_t), f_i$ polynomials.

There is a Hodge decomposition $H^k(M) = \bigoplus_{p+q=k} H^{p,q}(M)$, Dually, $H_k(M) = \bigoplus_{p+q=k} H_{p,q}(M)$,

If $S \subset M$ is a complex submanifold, then $[S] \in H_{k,k}(M)$.

Hodge Conjecture (1950):

Given $a \in H_{k,k}(M) \cap H_{2k}(M, \mathbb{Z})$. Does there exist $m \gg 0$ and $S \subset M$ a complex submanifold, s.t. [S] = m a?

(Note: Atiyah–Hirzebruch gave a counterexample if we ask for m = 1 above).

Manifolds and homology Realization of homology... Digression: The complex case Geometric representatives... Solenoids

Ergodicity

Realization of real . . .

Digression: Solenoidal . . .

•	•
••	>>
Full S	Screen
Clo	ose
Q	uit

4. Geometric representatives of non-integer homology classes

Let M be a compact manifold.

Let $a \in H_k(M, \mathbb{R})$ be a *real* homology class.

We look for geometric representatives of a.

We aim for a (smooth) sub-object $S \hookrightarrow M$ defining an integration current s.t. [S] = a.

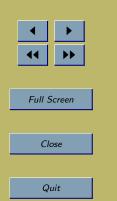
Note: by definition, we can take a chain with real coefficients

 $a = \sum \lambda_i C_i \,.$

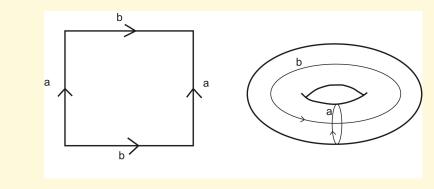
But this may be non-smoothable (with corners). Moreover, the λ_i 's are weights for each of the faces C_i , and this is non-geometric data.

Manifolds and homology Realization of homology... Digression: The complex case Geometric representatives... Solenoids Ergodicity Realization of real...

Digression: Solenoidal ...

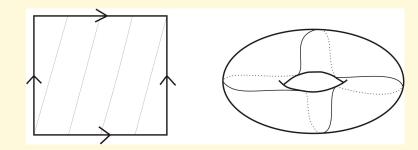


Look at the case of the **torus** $\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$.



 $H_1(\mathbb{T}^2,\mathbb{Z}) = \mathbb{Z} \cdot e_1 \oplus \mathbb{Z} \cdot e_2.$

For a homology class $\alpha = p_1 e_1 + p_2 e_2$, we can consider $\alpha' = e_1 + \frac{p_2}{p_1} e_2$. This is represented by (the image of) the line $y = \frac{p_2}{p_1} x$.



This winds p_1 -times around the e_1 -direction, and p_2 -times around the e_2 -direction.

Manifolds and homology Realization of homology...

Digression: The complex case

Geometric representatives . . .

Solenoids

Ergodicity

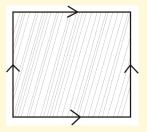
Realization of real . . .

Digression: Solenoidal . . .

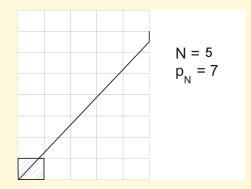
Image: Close

Quit

If we consider $\lambda \in \mathbb{R} - \mathbb{Q}$, then the line $y = \lambda x$ is dense in the torus, because it never closes.



Consider long portions of this curve: Take $N \gg 0$, and let $l_N = \{(x, \lambda x); x \in [0, N]\}.$



This is approximately $[l_N] \sim Ne_1 + p_N e_2$, where $\frac{p_N}{N} \sim \lambda$. Therefore

$$\frac{1}{N}[l_N] = [e_1 + \frac{p_N}{N}e_2] \longrightarrow [e_1 + \lambda e_2] \in H_1(\mathbb{T}^2, \mathbb{R}).$$

Manifolds and homology Realization of homology... Digression: The complex case Geometric representatives... Solenoids

Ergodicity

Realization of real . . .

Digression: Solenoidal ...

•		
••	>>	
Full S	Screen	
Cl	ose	
0	uit	

Let M be a compact manifold. A parametrized curve

 $c:\mathbb{R}\to M$

defines (in good cases) a real homology class as follows.

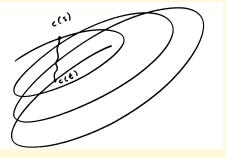
For each pair of points $p, q \in M$, choose a *short* arc $\gamma_{p,q}$ from p to q (say, with bounded length).

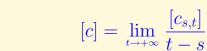
The loop

If the limit

 $c_{s,t} := c([s,t]) * \gamma_{c(t),c(s)}$

defines a homology class $[c_{s,t}] \in H_1(M, \mathbb{Z}).$





Manifolds and homology Realization of homology... Digression: The complex case Geometric representatives...

Solenoids

Ergodicity

Realization of real . . .

Digression: Solenoidal . . .

••	••
Full Se	creen
Clo	se
Qu	it

exists, we have that c defines a real 1-cycle $[c] \in H_1(M, \mathbb{R}) = \mathbb{R} \otimes H_1(M, \mathbb{Z}).$

Actually c defines an integration current

$$c: \Omega^1(M) \longrightarrow \mathbb{R}.$$

For any 1-form $\alpha \in \Omega^1(M)$,

$$\langle [c_{s,t}], \alpha \rangle = \int_{c_{s,t}} \alpha = \int_{c([s,t])} \alpha + O(1) =$$
$$= \int_{s}^{t} \alpha(c'(u)) \, du + O(1) \, .$$

So there is a well-defined limit

$$\langle [c], \alpha \rangle = \lim_{\substack{t \to +\infty \\ s \to -\infty}} \frac{1}{t-s} \int_{s}^{t} \alpha(c'(u)) du$$

This corresponds to integrating along c([s, t]), normalizing, and then taking the limit.

This generalizes Schwartzman (1957) definition of real 1-cycles. These real cycles can be called *Schwartzman cycles*. Manifolds and homology Realization of homology... Digression: The complex case

Geometric representatives . .

Solenoids

Ergodicity

Realization of real . . .

Digression: Solenoidal ...

•	•
••	••
Full S	creen
Clo	se
Qu	it

Schwartzman k-dimensional cycles

We can extend the definition to higher dimensions k > 1. Let M be a smooth compact manifold.

S smooth (Riemannian) complete non-compact manifold, $x_0 \in S$.

A smooth map $f: S \to M$ defines a Schwartzman k-cycle $[f] \in H_k(M, \mathbb{R})$

if for any k-form $\omega \in \Omega^k(M)$, the limit

$$\langle [f],\omega
angle = \lim_{R \to +\infty} \frac{1}{\operatorname{Vol}_S(B_R(x_0))} \int_{B_R(x_0)} f^* \omega$$

exists, where $B_R(x_0)$ is the ball of radius R around x_0 in S.

Alternatively, if we can cap off the submanifolds with boundary $f(B_R(x_0))$ with a small cap C_R , $S_R = f(B_R(x_0)) \cup C_R$, then we can define

$$[f] = \lim_{R \to +\infty} \frac{[S_R]}{\operatorname{Vol}_S(B_R(x_0))} \in H_k(M, \mathbb{R}) \,.$$

This happens, for instance, when there is a trapping region, that is, a ball $B \subset M$, and a sequence $R_n \to +\infty$, s.t. $f(\partial B_{R_n}(x_0)) \subset B$.

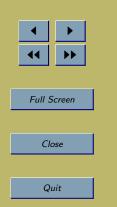
Manifolds and homology Realization of homology... Digression: The complex case Geometric representatives...

Solenoids

Ergodicity

Realization of real . . .

Digression: Solenoidal ...



5. Solenoids

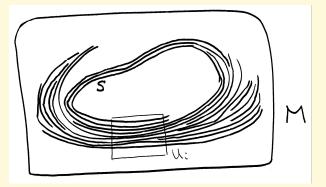
(Pérez-Marco, Muñoz, math.DG/0702501).

A k-dimensional solenoid S is a compact Hausdorff topological space with an atlas of flow-boxes (U_i) such that

 $U_i \cong D^k \times T_i$.

The (local) leaves are $L_y = D^k \times \{y\}$. The (local) transversals are T_i .

The following is an embedded solenoid $f: S \hookrightarrow M$.



Manifolds and homology Realization of homology...

Digression: The complex case

Geometric representatives

Solenoids

Ergodicity

Realization of real . . .

Digression: Solenoidal . . .

•	•
Full Sc	reen
Clos	se
Qui	it

An immersed solenoid $f:S\to M$ can define an integration current as follows:

$$S: \Omega^k(M) \longrightarrow \mathbb{R}.$$

Let $\alpha \in \Omega^k(M)$. Fix a covering (U_i) of S, with $U_i \cap S = D^k \times T_i$, (ρ_i) a partition of unity subordinated to (U_i) . Then first set

$$\int_{S} \alpha = \sum_{i} \int_{U_{i} \cap S} (\rho_{i} \alpha).$$

Let $\alpha_i = \rho_i \alpha$, which is supported in one flow-box. We integrate α_i along the local leaves

$$y \mapsto \int_{D^k \times \{y\}} \alpha_i(x, y) \, dx,$$

and then we integrate in the y-direction. For this we need a measure $\mu_{T_i}(y)$ on T_i .

Manifolds and homology Realization of homology...

Digression: The complex case

Geometric representatives . . .

Solenoids

Ergodicity

Realization of real . . .

Digression: Solenoidal . . .

	◀		
	••	••	
	Full	Screen	
	CI	ose	
Quit			

An immersed solenoid $f:S\to M$ can define an integration current as follows:

$$S: \Omega^k(M) \longrightarrow \mathbb{R}.$$

Let $\alpha \in \Omega^k(M)$. Fix a covering (U_i) of S, with $U_i \cap S = D^k \times T_i$, (ρ_i) a partition of unity subordinated to (U_i) . Then first set

$$\int_{S} \alpha = \sum_{i} \int_{U_{i} \cap S} (\rho_{i} \alpha).$$

Let $\alpha_i = \rho_i \alpha$, which is supported in one flow-box. We integrate α_i along the local leaves

$$y \mapsto \int_{D^k \times \{y\}} \alpha_i(x, y) \, dx,$$

and then we integrate in the y-direction. For this we need a measure $\mu_{T_i}(y)$ on T_i .

A transversal measure is a collection of measures $\mu = (\mu_{T_i})$ for each transversal T_i . They should be invariant by *holonomies*. The holonomies are the maps from one transversal to another, by travelling along the leaves. Manifolds and homology Realization of homology... Digression: The complex case

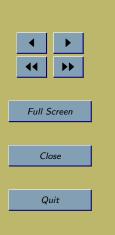
Geometric representatives...

Solenoids

Ergodicity

Realization of real . . .

Digression: Solenoidal . . .



Let $f: S \hookrightarrow M$ be an oriented solenoid in M, with a transversal measure μ . Then there is an integration current

$$(S,\mu): \Omega^k(M) \longrightarrow \mathbb{R}$$

 $\alpha \mapsto \sum_i \int_{T_i} \left(\int_{D^k \times \{y\}} \rho_i \alpha \right) d\mu_{T_i}(y).$

This defines a *real* homology class $[S,\mu] \in \operatorname{Hom}(H^k(M,\mathbb{R}),\mathbb{R}) = H_k(M,\mathbb{R})$

by duality.

This generalizes a construction of Ruelle-Sullivan (1975).

If S is embedded without compact leaves, then $[S, \mu]^2 = 0$. So to represent a homology class $a \in H_k(M, \mathbb{R})$ with $a^2 \neq 0$, we need an immersed solenoid with self-intersections.

So we may call $[S, \mu]$ a generalized Ruelle-Sullivan cycle.

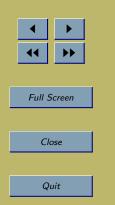
Manifolds and homology Realization of homology... Digression: The complex case Geometric representatives...

Solenoids

Ergodicity

Realization of real . . .

Digression: Solenoidal ...

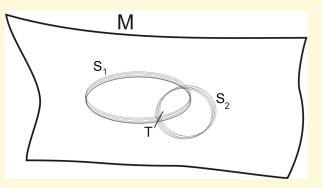


6. Ergodicity

Let M be a smooth manifold. Suppose that $e_1, e_2 \in H_k(M, \mathbb{Z})$ are represented by submanifolds $S_1, S_2 \subset M$. We want to represent

 $a = \lambda_1 e_1 + \lambda_2 e_2 \in H_k(M, \mathbb{R}).$

Considering parallel copies of S_1 and S_2 , we have two solenoids $(\tilde{S}_1 = S_1 \times T_1, \mu_1)$, $(\tilde{S}_2 = S_2 \times T_2, \mu_2)$. We have chosen the total measures $\mu_i(T_i) = \lambda_i$. Consider $(S, \mu) = (\tilde{S}_1, \mu_1) \sqcup (\tilde{S}_2, \mu_2)$.



Then a leaf of S represents either e_1 or e_2 , but does not represent a.

We want a to be represented by any leaf of S.

Manifolds and homology Realization of homology... Digression: The complex case

Digression. The complex case

Geometric representatives . . .

Solenoids

Ergodicity

Realization of real . . .

Digression: Solenoidal . . .

	•		
	44	••	
Full Screen			
Close			
	0	uit	

For this, we need mixing in the holonomy. Let T be a global transversal (in the example above, arrange $T = T_1 = T_2$). Let

 $h:T\to T$

be the holonomy map (assume there is only one holonomy). The transversal measure μ_T is invariant by h.

- S is minimal if all leaves are dense (the sets $\{h^n(x_0); n \in \mathbb{Z}\}$ are dense in T).
- S is ergodic if almost all leaves represent the same homology class (for any *h*-invariant $A \subset T$, either $\mu_T(A)$ is zero or total measure).
- S is uniquely ergodic if there exists a unique (up to positive scalar multiples) transversal measure μ_T (with full support).

Note that a *uniquely ergodic solenoid* S is a purely geometric entity, as it "contains" as much information as the measured solenoid (S, μ) . In general a measured solenoid (S, μ) has a geometric datum, S, and a non-geometric datum (weight), μ . Manifolds and homology Realization of homology... Digression: The complex case

Geometric representatives...

Solenoids

Ergodicity

Realization of real . . .

Digression: Solenoidal . . .

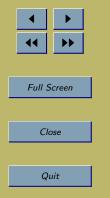
Theorem (PM-M):

Let S be a uniquely ergodic oriented k-solenoid, and let $f: S \to M$ be an immersion. (If k > 1 we assume that there is a trapping region.)

Then for each leaf $l \subset S$ we have that $f|_l: l \to M$ is a Schwartzman k-cycle, and

 $[f|_l] = [S, \mu] \in H_k(M, \mathbb{R}).$

(The proof is an application of Birkhoff's ergodic theorem.)



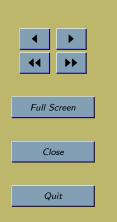
Manifolds and homology Realization of homology... Digression: The complex case Geometric representatives...

Solenoids

Ergodicity

Realization of real . . .

Digression: Solenoidal ...



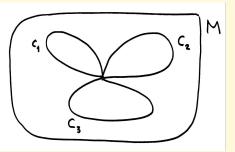
7. Realization of real homology classes

Theorem (PM-M):

Let M be a compact smooth manifold, $a \in H_k(M, \mathbb{R})$. Then there exists a uniquely ergodic oriented immersed solenoid (S, f) representing a. (If k > 1 then S has a trapping region.)

<u>Proof</u>: Assume k = 1 for simplicity (for the pictures).

Take loops $C_1, \ldots, C_{b_1} \subset M$ which form a basis of $H_1(M, \mathbb{Z})$ (and share a base point).



Manifolds and homology Realization of homology...

Digression: The complex case

Geometric representatives . . .

Solenoids

Ergodicity

Realization of real . . .

Digression: Solenoidal . . .

••	>>
Full S	Screen
CI	lose

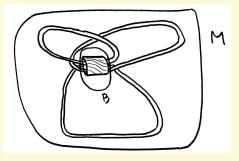
Quit

There are real numbers $\lambda_1, \ldots, \lambda_r > 0$ such that

 $a = \lambda_1 C_1 + \dots + \lambda_r C_r$

(switching orientations and reordering the cycles if necessary). By dividing by $\sum \lambda_i$, we can assume that $\sum \lambda_i = 1$.

Thicken the loops to bands $[0,1] \times T_i$, where each $[0,1] \times \{y\}$ is homotopic to C_i . Now we need to introduce a *mixing* inside a ball *B* around the base point.



For this, we arrange the bands T_i in circular order forming a S^1 . We want to get a solenoid with a transversal $T = S^1$. The holonomy will be

$$h:T\to T$$

Manifolds and homology Realization of homology...

Digression: The complex case

Geometric representatives..

Solenoids

Ergodicity

Realization of real . . .

Digression: Solenoidal . . .

	•	►	
	44	••	
Full Screen			
			_
Close			
Quit			

<u>Fact</u>: the rotation $r_{\theta} : S^1 \to S^1$ of irrational angle θ is uniquely ergodic.

To get the smoothness of the solenoid, we need to use a transversal $T\subset S^1$ with "holes".

We substitute the map r_{θ} by a Denjoy example. This is a map $h: S^1 \to S^1$ with the following properties:

- h is of class $C^{2-\epsilon}$.
- h leaves invariant a Cantor set $K \subset S^1$.
- *h* has rotation angle θ , i.e. $r_{\theta}^{n}(x) = x + n \theta$ $h^{n}(x) = x + n \theta + o(n).$
- h is uniquely ergodic, with a unique invariant measure μ_K supported exactly on the Cantor set K.

Manifolds and homology

Realization of homology...

Digression: The complex case

Geometric representatives . . .

Solenoids

Ergodicity

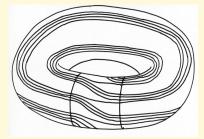
Realization of real . . .

Digression: Solenoidal ...

Full Screen

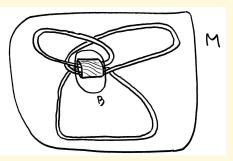
Close

Quit



The suspension Σ_h of the map $h|_K : K \to K$ is:

Then we plug the middle part of Σ_h inside B, in such a way that the holes where the bands coalesce or split are outside K.



The resulting solenoid S is uniquely ergodic and $[S, \mu] = a$.

Manifolds and homology Realization of homology... Digression: The complex case Geometric representatives...

Solenoids Ergodicity

Realization of real . . .

Digression: Solenoidal . . .

Image: Close

8. Digression: Solenoidal Hodge Conjecture

Solenoidal Hodge Conjecture:

Let M be a compact complex manifold. Let $a \in H_{k,k}(M) \cap H_{2k}(M, \mathbb{R})$. Then a is represented by a complex immersed solenoid.

This is weaker that the usual Hodge Conjecture.

This removes the arithmetic issues, which are due to how the lattice $H_{2k}(M,\mathbb{Z}) \subset H_{2k}(M,\mathbb{R})$ intersects the Hodge pieces $H_{p,q}(M) \subset H_{2k}(M)$.