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The work of mathematicians may not always
be very transparant.......

“| think you should be more explicit here in step two.”

TU/e == :
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But it is present everywhere in our business

A
PSR ____..____I'__.T_..__‘
Collecting Partition 1 Collecting | Partition 2|
|
|
Transient Multirate JTransient Multirate |
B S 4

Invisible contribution,

Vvisible success
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Moore’s law also holds for numerical methods!

Rate of Increase in Processing Performance

Improvements in Algorithms Relative to Moore’s Law

o
10 : : .
Type of algorithm:
CG Conjugate Gradient Full MG
GE Gaussian Elimination
GS Gauss-Seidel
gl MG  Multigrid
12°F sor Successive Over Relaxation
Optimal SOR
"
-
L e
10 )

Gauss-Seidel

s 20 25

Number of Years

10

20 a5
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Very advanced simulations

(a) (B)

Subgridding mechanisms reduce the number of mesh points in a
simulation. In this example (a) the full grid is 20 times larger (35e6 mesh
nodes) than (b) the subgridded version (1.75e6 mesh nodes).
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The impossible made possible.....

-

A complete package layout
used for full wave signal
integrity analysis

» 8 metallization layers and
40,000 devices

» The FD solver used 27
million mesh nodes and 5.3
million tetrahedrons

» The transient solver model
of the full package had 640
million mesh cells and 3.7
billion of unknowns

B technische
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Avoiding brute force

» The behaviour of this MOS transistor
can be simulated by solving a system
of 3 partial differential equations -
discrete system for at least 30000
unknowns

» Insight?

» Even worse: an electronic circuit
consists of 104-105 MOS devices

» Solution: compact device model
(made by physicists/engineers based
on many device simulations, ~50 unk)

a & L a L] a b g [ ] . - - o A & & - - a a
Silicon
m p- h-doped Insulators -:nductnr

Can we construct such compact models in an automated way? |

TU/e s
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Another example

-

Integrated circuits need 3-D structure
for wiring

b

10 years ago
— 1-2 layers of metal, no influence on
circuit performance

|lenpeis

-

Present situation:
— 8-10 layers of metal
— Delay of signals, parasitic effects due
to high frequencies

b

3-D solution of Maxwell equations
leads to millions of extra unknowns

Can we construct a compact circuit
model for the interconnect in

an automated way? (Courtesy emiconductors)
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Model Order Reduction is about
capturing dominant features

| Strong link to numerical linear algebral
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And, talking about motivation.....

Mathematical
Challenges!
W  TU/e
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Overall picture

/ \
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Dynamical systems

with state x(-) of dimension n > m, p.

TU / e 14
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Problem statement

Given: dynamical system
Y = (f,h) with: u(t) € R™, x(t) € R”, y(1) € RP.
Problem: Approximate ¥ with:

¥ = (f,h) with : u(t) e R™, K(t) e R¥, 9(t) eRP, k < n:

(1) Approximation error small - global error bound
(2) Preservation of stability/passivity

(3) Procedure must be computationally efficient

TU/e .
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Approximation by projection

Unifying feature of approximation methods: projections.

Let V, W € R™*K, such that W*V = I, = 1 = VW* is a projection.
Define X = W*X. Then

- GX() = WH(V(), u(1))
t) = h(Vx(1), u(t))

Thus ¥ is "good” approximation of &, if x — Mx is "small’.

W TU/e - y
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Special case: linear dynamical systems

Y Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

([ E,A \ B K
=~ 1o)
n W+
Problem: Approximate ¥ by projection: 1 = VW*= v
. EA|B W+EV,W-AV | W*B
¥ = 4 — | = ,K<n
C |D CVv | D
L Norms:
K e H..-norm:
n E.A B worst output error
B, ~ KkIEA||B]| -5 | Iy(@®)—y(@) o u(t)]=1.
S e Ho-norm: ||h(t) — h(2)|
C D c|[B

Utrecht Staff Colloquium, November 26, 2009




Singular value decomposition

A=ULV* e R™M

|/
N/
3
=
\/
o

@ Singular values: ¥ = diag (o1, -- ,0on), o1

@ left singular vectors: U = (uy u> --- uy,), UU* =1,

@ right singular vectors: V = (vqy v -+ vp), VW* =y
@ Dyadic decomposition:

A = oqUVy + oalUsVy + -+ - + opUpV,

@ o: 2-induced norm of A
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Optimal approximation in 2-norm

@ Given: A € R™M
@ find: X e R™™M rank X = k <rank A
@ Criterion: norm(error) is minimized, where

error: E = A — X, norm: 2-norm
Theorem (Schmidt-Mirsky, Eckart- Young)

- | A—X 2= oks1(A)

Minimizer (non-unique): truncation of dyadic decomposition of A:

Xy = oqUVy +ogUsVs + - - o Uk Vi

technische
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Operators and norms /lmpulse response

s_ (A|BY [ X(t)=Ax(t)+Bu(r) _ [ h(t)= CAB +Di(t),t >0
-\ C 1 y(t) = Cx(t) + Du(1t) H(s)=D+C(sl—-A)"'B
Convolution operator S: Transfer function

S:u—y,y(t)=["_h(t—71)u(r)dr, tc R

Singular values: let o = inf, omin(H(jw)) and & := sup,, omax(H(jw)).

o singular value of § < o € [g, 5]

Hankel operator ‘H:
Hou_—y,, yo ()= ["_h(t—7r)u_(r)dr, t e R_

Singular values: solve for continuous-time Lyapunov equations

, o — AP + PA* + BB* =0
o2(H) = N(H*H) = \(PQ) | where { Aot OA OG-0

W TU / e no 2
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Important observation

» Model Order Reduction methods approximate the transfer function

» In other words: not the entire internal characteristics of the problem, but
only the relation between input and output (so-called external variables)

» No need to approximate the internal variables (“states”), but some of these
may need to be kept to obtain good representation of input-output
characteristics

matching some

part of the freque%_
response

Original

log H (w)

- - + log w
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Overview of MOR methods

A 4
"

]5&, ‘Q-‘{
I o

Krylov

o Realization
e Interpolation
e Lanczos

e Arnoldi

SVD

Linear systems

e Balanced truncation
e Hankel approximation

Krylov/SVD Methods

TU/e =
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Balanced truncation

Trade-off between accuracy and complexity for linear dynamical systems is
provided by the Hankel Singular Values. Define the gramians as solutions
of the Lyapunov equations

AP +PA*+BB*=0. P>0 ———
A*Q—I-QA+C*C=G= Q-0 } = |0 =/ ;\;{PQ}

o;: Hankel singular values of the system. There exists balanced basis
where P =Q =S = diag (o1, --- ,op). In this basis partition:

A \Am) (51) (L | D)
A: 3 B: % c: C C ‘S: .
(Am \Azz | Bo )’ (€11 C2) 0 |EE

The reduced system is obtained by balanced truncation

( %1 I L ),where ¥ o contains the small Hankel singular values.
1

P d TU/e - .
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Interpretation of balanced truncation

Given state x:

E: min. input energy steering 0 —Xx = & =Xx"P'x
Eo. output observationenergy X —0 = &, =X"QX

TU/e == -
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Properties of balanced truncation

@ Stability is preserved
@ Gilobal error bound:

Ok+1 <|| X — 3 o< 2(0k41 + - -+ on)

TU/e )
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Simple example

Termination
(R =10K)

Mesh: 50 x 100 x 50 cells @ 1u x 1u x 1u cell dimensions

1u x 1u

Voltage step
(R =50 ohm)
over 1u gap

Voltage step:

2.0 4 10.05 ps delay +
0.25 ps risetime
SINSQ Pstar
1.0
0,0 .
* [ 3I5ps
0.0 1.0p P

27
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— Gnuplot | | |J|

% = target output, —— = estimated output
01015 L] L] L] L] L] L] L] L] L]
0,01 F
0,005
0
— Gnuplot | -0.005 !
Semi-logarithmic plot of
10 : T T T —| 001} 10-th order linear
i}, -0,015 | dynamic system
Mapping PDE’s fit to FDTD results
0.1 F . (Maxwell Eqgs.) .02 1
i to equivalent o |
0,01 F o high order (200) ' ;
- ODE system -0,03 |
o001 F %
| -0,035 _
00001 i Be-13 1e-12 1.5=-12 2e-12 2.5e-12 3e-12 3.5e-12 4e-12 4,5e-12 Be-12
le-05 |
le-0B
ol Singular value plot=
1e-08 |
Q 20 40 G0y an 100 120 140 160 180 200
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Moment matching (AWE, 1991)

Given ¥ = ( g g ) expand the transfer function around sp:

H(SJ:’-’FD‘|—?‘?1(S—5{}}+??2(5—5{])2+n3(5—5ﬂ)3_|_.,.

Moments at sq: 75, / = 0. Find Y = ( g ﬁ ),with

H(s) = fio + H1(s — s0) + fi2(s — s0)® +fia(s — s0)° + - - -

such that for appropriate k:

"’Irjr:ﬁ;~,":1,2,~k

TU/e .
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Asymptotic Waveform Evaluation (AWE)

» Direct calculation of moments
suffers from severe problems:

— As #moments increases, the
matrix in linear system
becomes extremely ill-
conditioned - at most 6-8
poles accurately

— Approximate system often
has instable poles (real part >
0) -200

— AWE does not guarantee
passivity e

Frequency (Hz)

. Voliage !;ajn (dB)
I

-

B u t . Fig. 1. Results for simulation of vollage gain with AWE,

basis for
many new
developments in MOR!

W TU/e - .
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Moment matching (AWE, 1991)

Given ¥ = ( g g ) expand the transfer function around sp:

H(SJ =10 + M1 (5 — 5{]} -I-?}E[S — S.D)E —|—-r;r3(5 — sﬂ)a + ...

Moments at sq: 75, / = 0. Find Y = ( g ﬁ ),with

H(s) = flo + fi1(s — S0) + fl2(s — S0)? + 7ia(s — s0)° + - --

such that for appropriate k:

nj:ﬁﬁ J':-I,z,ﬂk

Moment matching methods can be implemented in a numerically stable
and efficient way.

mm——- |Arno|di and Lanczos methods

- TU / e 31
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[EEE TRAMSACTIONS ON COMPUTER-AIDED DESIGM OF INTEGRATED CIRCUTTS AND SYSTEMS, VOL. 14, MO, 3, MAY 1995

639

Efficient Linear Circuit Analysis by Padé
Approximation via the Lanczos Process

Peter Feldmann, Member, IEEE, and Roland W. Freund

Abstract—In this paper, we introduce PVL, an algorithm for
computing the Padé approximation of Laplace-domain transfer
functions of large linear networks via a Lanczos process. The PYL
algorithm has significantly superior numerical stability, while
retaining the same efficiency as algorithms that compute the
Padé approximation directly through moment matching, such as
AWE [1], [2] and its derivatives. As a consequence, it produces
more accurate and higher-order approximations, and it renders
nnnecessary many of the heuristics that AWE and its derivatives
had to employ. The algorithm also computes an error bound
that permits to identify the true poles and zeros of the original
network. We present results of numerical experiments with the
PYL algorithm for several large examples.

I. INTRODUCTION

IRCUIT simulation tasks, such as the accurate prediction
Cnf interconnect effects at the board and chip level, or
analog circuit analysis with full accounting of parasitic ele-
ments, may require the solution of large linear networks. These
networks can become extremely large, especially when circuits

an 4 o W =

) ¥ 4
4\

Despite its spectacular success, AWE suffers from a number
of fundamental numerical limitations. [n particular, each run
of AWE produces only a fairly small number of accurate
poles and zeros. The proposed remedial techniques, such as
scaling, frequency shifting, and complex frequency hopping,
are sometimes heuristic, hard to apply automatically, and may
be computationally expensive. Another shortcoming of AWE
is the absence of a theoretically solid procedure to predict the
accuracy of the approximating reduced-order model [3], [6].

[7].

circuit via the Lanczos process [B]. This algorithm, called
PVL (Padé Via Lanczos), can be used to generate an arbitrary
number of poles and zeros (even all of them) with little
numerical degradation. Moreover, PVL computes a quality
measure for the poles and zeros it produces. The computational
cost per order of approximation is practically the same as for
AWE.

TU/e

In this paper, we introduce a ne'(, numerically stable )
algorithm that computes the Padé approx i ]

32
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The Arnoldi method

Givenis A € R™" and b € R". Let Rx(A,b) € R"*¥ be the reachability or
Krylov matrix. It is assumed that Ry has full column rank equal to k.

Devise a process which is iterative and at the k' step we have

AV, =V H; +Ri. Vi, R, e R Hy e RFf k=1.2,---.n

_ il

These quantities have to satisfy the following conditions at each step.

@ The columns of Vi are orthonormal: V;Vx = Iy, k=1.2.--- . n.
@ span col Vi = span col R¢(A.b), k=1,2,--- .n

@ The residual Ry satisfies the Galerkin condition: V,Rx = 0,
k=1,2.---.n.

This problem can be solved by the Arnoldi procedure.

technische
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The Arnoldi method (2)

Given: A= R"" b e R"
Find: V ¢ R"%, f c R”, and H € R**X, such that

AV =VH +fe, where H=V'AV, V'V =1, V'f=0,
with H in upper Hessenberg form.

Q@ vi= . w=Avi;a =vjw
f1 :W—V1(11;V1 = (\H); H1 == (Ct1)

Q Forj=1.2, .- k-1
-'.
Q 5=l v =3
A H
@ Vi.i=(V, v ,H-:( h)
J+1 ( / j+1) ,.53]9}'
©@ w=Av, ., h=V.  ,wif.,=w-V.h
Q Hiy = (ﬂf h)

), 4 TU/e o
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The Lanczos method

If A = A* then the Arnoldi procedure is the same as the symmetric Lanczos
procedure. In this case Hy is tridiagonal:

a2
B2 ap B3
Bz ag

This matrix shows that the vectors in the Lanczos procedure satisfy a three
term recurrence relationship

Av, = G Vi +aiVi + 8Vi_q, Ii=1.2,---  k—1

Remark. If the remainder r, = 0, the procedure has terminated, in which
case if (A, X) is an eigenpair of Hy, (A, ViXx) is an eigenpair of A (since Hyx =
AX implies AV x = V Hix = \ViX).

), 4 TU/e 5
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Two-sided Lanczos

The two-sided Lanczos procedure. Given A = R"*" which is not
symmetric, and two vectors b, ¢* € R”, devise a process which is iterative
and the k'" step there holds:

AVi =V, Hi 4+RBe. AW, = WeH; 4+9;. K=1,2,-+ 1.
@ Biorthogonality: W,V = I,

@ span col Vi = span col Rx(A.b), span col Wy = span col Rx(A*. c*),
@ Galerkin conditions: V; Sy =0, W;R,=0. k=1,2,--- ,n.

W TU/e - -
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Moment matching using Arnoldi (1)

The Arnoldi factorization can be used for model reduction as follows. Recall
the QR factorization of the reachability matrix R, € R"*¥; a projection VV*
can then be attached to this factorization:

Ry =VU = V:RRU_1

where V € R™ V*V = |, and U is upper triangular. The reduced order
system is:

i_(%£> where | A=V*AV| | B=V*B| | C=CV

Theorem. ¥ as defined above satisfies the equality of the Markov parameters
i =mnj, I =1,---, k. Furthermore, A is in Hessenberg form, and B is a
multiple of the unit vector e.

TU / e 37
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Moment matching using Arnoldi (2)

Proof. First notice that since U is upper triangular, vi = H%:H’ and since

VR, = U it follows that B = u; =|| B || e4; therefore B = V*B.

VV*B = VB = B, hence AB = V*AVV*B = V*AB; in general, since VV* is a
projection along the columns of Ry, we have VV* R, = Ry; moreover:

Re = V¥R, hence

(1 - k) = CRi = CVV*Ry = CRy = (m -+ k)

Finally, the upper triangularity of U implies that A is in Hessenberg form. =

Remark.

Similarly, one can show that reduction by means the two-sided Lanczos
procedure preserves 2k Markov parameters.

[ TU / e *
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Example: MOR for transmission line (RC)

Original | Reduced
Netlist size 0.53 0.003
(Mb)
# ports 22 22
# internal 3231 12
e ey nodes
e 7 # resistors| 5892 28
e i 3065 97
“ capacitors
\ ¥ 4 /
)7 ¢ TU/e =
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Start of a new eral!

» The Pade-via-Lanczos algorithm was published in 1994-1995 by Freund and
Feldmann, and was a very important invention

» Not only did the method (PVL) solve the problems associated with AWE

» It also sparked a multitude of new developments, and a true explosion
regarding the field of Model Order Reduction

e Lanczos methods
« Arnoldi methods

AWE PVL L hod
1990 1995 aguerre metnods
* Vector fitting
1995-2009
W TU/e - :
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Topic 1: passivity

-

A linear state space system is passive if its transfer function H(s) is
positive real

— H has no poles in C*

— Hisreal forreal s

— Real part of z’'H(s)z non-negative for all s, z

-

Passivity is important in practice (no energy generated)

-

Lanczos-based methods such as PVL turned out not to be passive!
—>problem!!!

-

Search started for methods that guarantee (provable) passivity

Passive MOR:
— PRIMA (Passive Reduced-order Interconnect Macromodeling Algorithm)
— SVD-Laguerre (Knockaert & Dezutter)
— Laguerre with intermediate orthogonalisation (Heres & Schilders)

-

TU/e - e

Utrecht Staff Colloquium, November 26, 2009

h -
P



Recent developments w.r.t. passivity

» Several passivity-preserving methods have
been developed

(LI

» However: if the original discretized system is o
not passive, or if the data originate from L0+
experiments, passivity of the reduced order P00
model cannot be guaranteed

GO0, On -

» This happens frequently in practical situations: ... |
EM software generating an equivalent circuit
model that is not passive

200,0m

0.0 -

» In the frequency domain, this may not be too r

=200, O

. . . l I I
problematic, just an accuracy issue (S- M e 1.5 = 250 o
parameters may exceed 1)

» However, it may become really problematic in
time domain simulations » Passivity enforcement methods

» Often: trading accuracy for passivity

TU/e .
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Topic 2: Large resistor networks

» Obtained from extraction programs to

model substrate and interconnect I\I _ l 10l l/l W

» Networks are typically extremely \
large, up to millions of resistors and e
thousands of inputs/outputs

» Network typically contains:
— Resistors
— Internal nodes (“state variables”)
— External nodes (connection to
outside world, often to diodes)

» Model Order Reduction needed to
drastically reduce number of internal

nodes and resistors l/l . I I I l .

ll\llllll

TU/e - ”

Utrecht Staff Colloquium, November 26, 2009
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Reduction of resistor networks

System Reduced system
#R = 1M #R = 1k
fidiodes = 1k #diodes = 1k :
#cmos = 1M #emos = 1M simulate

SAIOY aumda}

é:n:u!:)q ns 10BI3%g

Reduce subcircuits
using MOR

TU/e .
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Reduction of resistor networks

Eliminating all internal nodes not an option:

-
P

» satisfies conditions (a)—(c),

» but violates (d) and (e): # = (m? — m)/2 resistors in ROM!
» example with 12738 nodes, 340 terminals, 21209 resistors

0

2000

4000

BOOO

aooo

10000

12000

p—

T
Pl -

a

i i
Z000 44000

G000 &0Q0 jDopQ 12000
i = 55956

|
o]
J
:

a

a0

10

140

200

230

300

1] 50 100 130 00 250 3o
nE = 113600

ROM has 0 internal nodes, same terminals, but 57630 resistors!

TU/e
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General idea: exploit structure

» Resistor networks in ESD are extracted networks with
structure related to underlying layout

» Unfortunately, structure may be hard to recover

» Use tools from graph theory to recover part of the structure

Note:
» With structure we refer to topology of network

» In our applications, reduced network should have fewer
elements than and same topology as original

Y
<

TU / e 7
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“*Simple” network

» 274 external nodes (pads, in red)
» 5384 internal nodes

» 8007 resistors/branches

Can we reduce this network by
deleting internal nodes and
resistors, still guaranteeing

accurate approximations to the

path resistances between pads?

NOTE: there are strongly connected -
sets of nodes (independent subsets), =~
so the problem is to reduce each of
these strongly connected
components individually

{ TU / e .
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Two-Connected Components

S N N e NG 2
AR A - L1
mo e (S
\/\~\~\—\”\”\ \\/\7 \\/1’\ _
<ULy ot =
- y P = i
y e
can delete all internal | /\gs\i\—@
nodes here ey — (=] = =]

_A

/N N
e
TU/e == 49
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How to reduce the strongly connected
components

» Graph theoretical techniques, such as
graph dissection algorithms (but:
rather time consuming)

" Z6external nodes
" 667 resistances - -

» Numerical methods such as re-ordering
via AMD (approximate minimum
degree)

31 external nodes
3014 resistances

» “Commercially” available tools like
METIS and SCOTCH (not satisfactory)

Multllevel partitlening algerithms compute a partition 2 external nodes
at the coarsest graph and then refine the solutlon! 2 resistances

Initlal Partitloning Phase

TU/e :
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Border Block Diagonal Form

B11 B14
BZZ BZ4 . .’ (D
[ ] \ 4 .
B,, B., [
B,,| B, | Bss By, \ Q
}{ TU/ e -:'.! I Utrecht Staff Colloquium, November 26, 2050i



Block bordered diagonal form

» Algorithm was developed to put each
of the strongly connected
components into BBD form (see
figure)

» Internal nodes can be deleted in the
diagonal blocks, keeping only the
external nodes and crucial internal
nodes

» The reduced BBD matrix allows
extremely fast calculation of path
resistances (work of Duff et al)

TU/e = sz
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Reduction results

» Results for four resistor networks
» ESD analysis of realistic layouts (I-l11)

» Parasitic interconnect reduction (V)

Network | Network |l Network I Network [V
Orig | ROM || Orig | ROM || Orig | ROM || Orig | ROM
#terminals 3260 1978 15299 8000
#int nodes 99k 8k 101k | 1888 1M 180k || 46k 6k
#resistors 161k | 56k 164k | 39k || 1.5M | 376k || 67k | 26k
#other devs 1874 1188 8250 29k
#other nodes 0 0 0 11k
CPU red 130 s 140 s 1250 s 5 s
CPUsim | 67h | 6h | 20h | 2h - | 120h || - | 392s
Speed up 11x 10x C e's
o TU/e = e



Results are exact
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Remaining problem: how to drastically
reduce the number of resistors
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A NOTE ON DOWNDATING THE CHOLESKY FACTORIZATION*

A. W. BOJANCZYK 1Y, R. P. BRENTY, P. vAN DOORENi AnD F. R. DE HOOG$

Abstract. We analyse and compare three algorithms for “downdating” the Cholesky factorization of a
positive definite matrix. Although the algorithms are closely related, their numerical properties differ. Two
algorithms are stable in a certain “‘mixed” sense while the other is unstable. In addition to comparing the
numerical properties of the algorithms, we compare their computational complexity and their suitability for

implementation on parallel or vector computers.
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Topic 3: Nonlinear MOR

» One of the most popular methods is proper orthogonal decomposition
(POD)

» It generates a matrix of snapshots (in time), then calculates the
correlation matrix and its singular value decomposition (SVD)

» The vectors corresponding to the largest singular values are used to
form a basis for solutions

» Drawback of POD: there is no model, only a basis for the solution space

» Researchers are also developing nonlinear balancing methods, but so
far these can only be used for systems of a very limited size (<10)
— E. Verriest, “Time variant balancing and nonlinear balanced realizations”
— J. Scherpen, “SVD analysis and balanced realizations for nonlinear
systems”

TU/e .
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Classification of circuits
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Fast and accurate simulation of oscnlators

Digital Core

Modem and
control

Challenges:

» Linear modeling of oscillators does not provide accurate solutions and in
most cases is not able to capture subtle nonlinear dynamics of oscillators
(injection locking, jitter, etc)

* Nonlinear models are necessary which are fast, accurate and generic

W TU/e :
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Nonlinear modeling of perturbed oscillators

Process & Key Observations:

1. PSS of oscillator:
d/dt [q(Xpss)I+ J(Xpss)=0, T=Tsc

4. Perturbed oscillator: d/dt [g(x)]+ j(x)= b(t) has solution
X(t)=Xpgg(t+ou(t))+x,(t), [o(t) phase noise]

5. a(t) satisfies a non-linear scalar differential equation

=>»Involves: Time integration, Floquet Theory, Poincaré maps,

Nonlinear eigenvalue methods, Model Order Reduction!
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Example- three stage ring oscillator

T —

T T T
=
153kHz ring oscillator

Unlocked osc: i;,= 6 * 10 *sin(1.04w, *t)  Locked osc: i;,=6 * 10>* sin(1.03w, * t)

simulation — simulation
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W TU/e = .
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MOR: Fast and accurate modeling of VCO

pulling

» VCO pulling due to PA and other
blocks/oscillators needs to be
analyzed before production

» Full system simulation is CPU
intensive or infeasible

» Behavioural model order

reduction gives fast and accurate

insight in pulling/locking and
coupling

S o P

Original VCO " | {
location

Full mathematical theory of
locking/unlocking mechanisms
and conditions lacking!
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~
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Outline

Introduction and motivation

v

Preliminaries

v

Model order reduction basics
Challenges in MOR

Conclusions
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Conclusions regarding MOR

» Model Order Reduction is a flourishing field of research, both within
systems & control and in numerical mathematics

» Strong relation to numerical linear algebra

» Future developments need mathematical methods from a wide variety
of fields (graph theory, Floquet theory, combinatorial optimization,
differential-algebraic systems, stochastic system theory,.....)

TU/e -
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Some recent books on MOR

Approximation
of Large-5cale
Dynamical Systems

Sheldon K. -0 Tan and Lei =

Advanced Model Order Wilhelmus H. A.Schilders
. I I Reduction Tg;hniqugg Henk A.van der Vorst - Joost Rommes
in VLSI Design
Model Order
Reduction

Theory, Research Aspects and Applications

Athanasios C. Antoulas
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