SetupKernelsGibbsianNonGibbsRenormEvolutionsBalance0000000000000000000000000000000000

Gibbs measures: definition, uses and abuses

Roberto Fernández

UtrechtUniversity

(A. van Enter, A. Sokal, Ch.-Ed. Pfister, R. Kotecký,
R. Schonmann, S. Shlosman, A. Toom, F. den Hollander,
F. Redig, A. Le Ny, R. Dobrushin, J, Lebowitz, C. Maes,
C. Külske,...)

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance	
• 0 00	00000	000000000	0000	00000000	00000	000	
Motivation: stat mech							

Issue: to study systems with many components Examples:

- ► *Particles in space*: Each particle characterized by a position and a velocity
- ▶ Spins in a lattice (pixels, particles): Each spin has a finite number of possible values

うして ふゆう ふほう ふほう ふしつ

Stat mech approach:

- ▶ Look at finite "windows" (finite regions) Λ
- Replace detailed laws by a probabilistic description
- Find the asymptotic behavior for Λ huge

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance	
• 0 00	00000	000000000	0000	00000000	00000	000	
Motivation: stat mech							

Issue: to study systems with many components Examples:

- ► *Particles in space*: Each particle characterized by a position and a velocity
- ▶ Spins in a lattice (pixels, particles): Each spin has a finite number of possible values

うして ふゆう ふほう ふほう ふしつ

Stat mech approach:

- ► Look at finite "windows" (finite regions) Λ
- Replace detailed laws by a probabilistic description
- Find the asymptotic behavior for Λ huge

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance	
0 000	00000	000000000	0000	00000000	00000	000	
Motivation: stat mech							

Issue: to study systems with many components Examples:

- ► *Particles in space*: Each particle characterized by a position and a velocity
- ▶ Spins in a lattice (pixels, particles): Each spin has a finite number of possible values

うして ふゆう ふほう ふほう ふしつ

Stat mech approach:

- ▶ Look at finite "windows" (finite regions) Λ
- ▶ Replace detailed laws by a probabilistic description

Find the asymptotic behavior for Λ huge

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
● ○ ○○	00000	000000000	0000	00000000	00000	000
Motivation: stat mech						

Issue: to study systems with many components Examples:

- ► *Particles in space*: Each particle characterized by a position and a velocity
- ▶ Spins in a lattice (pixels, particles): Each spin has a finite number of possible values

ション ふゆ マ キャット キャット しょう

Stat mech approach:

- ▶ Look at finite "windows" (finite regions) Λ
- ▶ Replace detailed laws by a probabilistic description
- Find the asymptotic behavior for Λ huge

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance		
0000	00000	000000000	0000	00000000	00000	000		
Motivation: stat mech								

Probability weights or densities

 $\frac{\mathrm{e}^{-\beta H_{\lambda}}}{Z_{\Lambda}}$

where

▶ H_{Λ} =Hamiltonian; must be sum of local terms so that $H_{\widetilde{\Lambda}} - H_{\Lambda} \sim |\widetilde{\Lambda} \setminus \Lambda|$ for $\widetilde{\Lambda} \subset \Lambda$

 $\blacktriangleright \beta = \text{inverse temperature ("coolness")}$

• Z_{Λ} = partition function (normalization). Physics info:

 $\lim_{\Lambda} \frac{1}{|\Lambda|} \log Z_{\Lambda} = \text{ pressure or free energy}$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance			
0000	00000	000000000	0000	00000000	00000	000			
Motivation: stat mech									

Probability weights or densities

 $\frac{\mathrm{e}^{-\beta H_{\lambda}}}{Z_{\Lambda}}$

where

• H_{Λ} =Hamiltonian; must be sum of local terms so that $H_{\widetilde{\Lambda}} - H_{\Lambda} \sim |\widetilde{\Lambda} \setminus \Lambda|$ for $\widetilde{\Lambda} \subset \Lambda$

 $\blacktriangleright \beta = \text{inverse temperature ("coolness")}$

► Z_{Λ} = partition function (normalization). Physics info:

 $\lim_{\Lambda} \frac{1}{|\Lambda|} \log Z_{\Lambda} = \text{ pressure or free energy}$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance			
0000	00000	000000000	0000	00000000	00000	000			
Motivation: stat mech									

Probability weights or densities

$$\frac{\mathrm{e}^{-\beta H_{\lambda}}}{Z_{\Lambda}}$$

where

• H_{Λ} =Hamiltonian; must be sum of local terms so that $H_{\widetilde{\Lambda}} - H_{\Lambda} \sim |\widetilde{\Lambda} \setminus \Lambda|$ for $\widetilde{\Lambda} \subset \Lambda$

 $\blacktriangleright \beta = \text{inverse temperature ("coolness")}$

▶ Z_{Λ} = partition function (normalization). Physics info:

 $\lim_{\Lambda} \frac{1}{|\Lambda|} \log Z_{\Lambda} = \text{ pressure or free energy}$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance			
0000	00000	000000000	0000	00000000	00000	000			
Motivation: stat mech									

Probability weights or densities

$$\frac{\mathrm{e}^{-\beta H_{\lambda}}}{Z_{\Lambda}}$$

where

► H_{Λ} =Hamiltonian; must be sum of local terms so that $H_{\widetilde{\Lambda}} - H_{\Lambda} \sim |\widetilde{\Lambda} \setminus \Lambda|$ for $\widetilde{\Lambda} \subset \Lambda$

▶ β = inverse temperature ("coolness")

► Z_{Λ} = partition function (normalization). Physics info:

$$\lim_{\Lambda} \frac{1}{|\Lambda|} \log Z_{\Lambda} = \text{ pressure or free energy}$$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance			
0000	00000	000000000	0000	00000000	00000	000			
Configuration space									

Set up: Finite-spin lattice systems

- Lattice = Countable set \mathbb{L} (e.g. $\mathbb{L} = \mathbb{Z}^d$)
 - sites $x \in \mathbb{L}$
 - finite regions $\Lambda, \Gamma \Subset \mathbb{L}$
- ► Single-spin space S, here finite (e.g. Ising spins: S = {−1, 1})
- Configuration space $\Omega = S^{\mathbb{L}}$ (A copy of S at each site)

うして ふゆう ふほう ふほう ふしつ

• Notation: $\Omega_{\Lambda} := S^{I}$

- Configurations: $\Omega \ni \omega = (\omega_x)_{x \in \mathbb{L}}$ Notation:
 - $\bullet \ \Omega_{\Lambda} \ni \omega_{\Lambda} = (\omega_x)_{x \in \Lambda}$
 - $\blacktriangleright \ \omega_{\Lambda}\eta_{\Lambda^{c}}=\omega_{\Lambda}\eta$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance			
0000	00000	000000000	0000	00000000	00000	000			
Configuration space									

Set up: Finite-spin lattice systems

- Lattice = Countable set \mathbb{L} (e.g. $\mathbb{L} = \mathbb{Z}^d$)
 - sites $x \in \mathbb{L}$
 - finite regions $\Lambda, \Gamma \Subset \mathbb{L}$
- ► Single-spin space S, here finite (e.g. Ising spins: $S = \{-1, 1\}$)
- Configuration space $\Omega = S^{\mathbb{L}}$ (A copy of S at each site)

- Notation: $\Omega_{\Lambda} := S^{\Lambda}$
- Configurations: $\Omega \ni \omega = (\omega_x)_{x \in \mathbb{L}}$ Notation:
 - $\blacktriangleright \ \Omega_{\Lambda} \ni \omega_{\Lambda} = (\omega_x)_{x \in \Lambda}$
 - $\blacktriangleright \ \omega_{\Lambda}\eta_{\Lambda^{c}}=\omega_{\Lambda}\eta$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance		
0000	00000	000000000	0000	00000000	00000	000		
Configuration space								

Set up: Finite-spin lattice systems

- Lattice = Countable set \mathbb{L} (e.g. $\mathbb{L} = \mathbb{Z}^d$)
 - sites $x \in \mathbb{L}$
 - finite regions $\Lambda, \Gamma \Subset \mathbb{L}$
- ► Single-spin space S, here finite (e.g. Ising spins: S = {−1,1})
- Configuration space $\Omega = S^{\mathbb{L}}$ (A copy of S at each site)

- Notation: $\Omega_{\Lambda} := S^{\Lambda}$
- Configurations: $\Omega \ni \omega = (\omega_x)_{x \in \mathbb{L}}$ Notation:
 - $\Omega_{\Lambda} \ni \omega_{\Lambda} = (\omega_x)_{x \in \Lambda}$
 - $\blacktriangleright \ \omega_{\Lambda}\eta_{\Lambda^{c}} = \omega_{\Lambda}\eta$

Formally, finite window = finite region of an infinite system:
▶ Inside Λ: probability measure

Outside Λ: fixed configuration (external condition)
 That is, a family of probability measures

 $\pi(\cdot \mid \omega_{\Lambda^c})$

うして ふゆう ふほう ふほう ふしつ

Setup ○○○●	Kernels 00000	Gibbsian 000000000	NonGibbs	Renorm 00000000	Evolutions 00000	Balance 000			
Basic objects									
Basic kernels									

Formally, finite window = finite region of an infinite system:

- ▶ Inside Λ : probability measure
- Outside Λ : fixed configuration (external condition)

That is, a family of probability measures

 $\pi(\cdot \mid \omega_{\Lambda^c})$

うして ふゆう ふほう ふほう ふしつ

Setup ○○○●	Kernels 00000	$\mathbf{Gibbsian}$	NonGibbs	Renorm 00000000	$\mathbf{Evolutions}$	Balance 000	
Basic ob	jects						
Basic kornola							

Formally, finite window = finite region of an infinite system:

- ▶ Inside Λ : probability measure
- Outside Λ : fixed configuration (external condition)

That is, a family of probability measures

 $\pi(\cdot \mid \omega_{\Lambda^{c}})$

うして ふゆう ふほう ふほう ふしつ

Setup ○○○●	Kernels 00000	$\mathbf{Gibbsian}$	NonGibbs	Renorm 00000000	$\mathbf{Evolutions}$	Balance 000	
Basic ob	jects						
Basic kornols							

Formally, finite window = finite region of an infinite system:

- ▶ Inside Λ : probability measure
- Outside A: fixed configuration (external condition)

That is, a family of probability measures

 $\pi(\cdot \mid \omega_{\Lambda^{c}})$

うして ふゆう ふほう ふほう ふしつ

Setup ○○○●	Kernels 00000	$\mathbf{Gibbsian}$	NonGibbs	Renorm 00000000	$\mathbf{Evolutions}$	Balance 000	
Basic ob	jects						
Degie kornela							

Formally, finite window = finite region of an infinite system:

- ▶ Inside Λ : probability measure
- Outside Λ : fixed configuration (external condition) That is, a family of probability measures

 $\pi(\cdot \mid \omega_{\Lambda^{c}})$

うして ふゆう ふほう ふほう ふしつ

or, more precisely, a kernel with two slots $\pi(|)$ This is a *probability kernel*

Need some formalization

Setup ○○○●	Kernels 00000	$\mathbf{Gibbsian}$	NonGibbs	Renorm 00000000	$\mathbf{Evolutions}$	Balance 000	
Basic obj	jects						
Degie komela							

Formally, finite window = finite region of an infinite system:

- ▶ Inside Λ : probability measure
- Outside Λ : fixed configuration (external condition)

That is, a family of probability measures

 $\pi(\cdot \mid \omega_{\Lambda^{c}})$

うして ふゆう ふほう ふほう ふしつ

NonGibbs Kernels Gibbsian **eo**ooo

Renorm

Evolutions

うして ふゆう ふほう ふほう ふしつ

Balance

Topology and measure structure

Setup

Measure-theoretical and topological set-up

Gibbsianness: interplay between topology and measure-theory

- \triangleright S endowed with discrete topology and σ -algebra
- $\triangleright \Omega$ endowed with the *product* topology and σ -algebra

$$C_{\sigma_{\Lambda}} = \left\{ \omega \in \Omega : \omega_{\Lambda} = \sigma_{\Lambda} \right\}$$

$$C_{\sigma_{\Lambda}}$$
, $\Lambda \subset \Gamma$

Kernels Gibbsian **eo**ooo

NonGibbs

Renorm

Evolutions

ション ふゆ マ キャット マックタン

Balance

Topology and measure structure

Setup

Measure-theoretical and topological set-up

Gibbsianness: interplay between topology and measure-theory

 \triangleright S endowed with discrete topology and σ -algebra

 $\triangleright \Omega$ endowed with the *product* topology and σ -algebra In more detail:

• $\mathcal{F} = \sigma$ -algebra generated by the cylinders

$$C_{\sigma_{\Lambda}} = \left\{ \omega \in \Omega : \omega_{\Lambda} = \sigma_{\Lambda} \right\}$$

• $\mathcal{F}_{\Gamma} = \sigma$ -algebra generated by cylinders with basis in $\Gamma \subset \mathbb{L}$

$$C_{\sigma_{\Lambda}}$$
, $\Lambda \subset \Gamma$

Kernels Gibbsian **eo**ooo

NonGibbs

Renorm

Evolutions

Balance

Topology and measure structure

Setup

Measure-theoretical and topological set-up

Gibbsianness: interplay between topology and measure-theory

 \triangleright S endowed with discrete topology and σ -algebra

 $\triangleright \Omega$ endowed with the *product* topology and σ -algebra In more detail:

• $\mathcal{F} = \sigma$ -algebra generated by the cylinders

$$C_{\sigma_{\Lambda}} = \left\{ \omega \in \Omega : \omega_{\Lambda} = \sigma_{\Lambda} \right\}$$

• $\mathcal{F}_{\Gamma} = \sigma$ -algebra generated by cylinders with basis in $\Gamma \subset \mathbb{L}$

$$C_{\sigma_{\Lambda}}$$
, $\Lambda \subset \Gamma$

- Topology also generated by the cylinders
 - cylinders are open
 - continuous functions are measurable

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance		
0000	00000	00000000	0000	0000000	00000	000		
Topology and measure structure								

Locality and continuity

f is a local function if

- ▶ It depends only on the spins on a *finite* region
- ► $\exists \Gamma \Subset \mathbb{L}$ such that $f(\omega) = f(\sigma)$ whenever $\omega_{\Gamma} = \sigma_{\Gamma}$
- ► $\exists \Gamma \Subset \mathbb{L}$ such that $(f \in \mathcal{F}_{\Gamma})$

Properties:

- Local functions are continuous
- More generally: f is continuous iff, it is *quasilocal*

$$\sup_{\omega \in \Omega} \sup_{\sigma \in \Omega} \left| f(\omega_{\Lambda_n} \sigma) - f(\omega) \right| \xrightarrow[n \to \infty]{} 0$$

●●● 画 →画▼ →画▼ → ■ ●●●

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	00000000	0000	0000000	00000	000
Topology a	nd measure s	tructure				

Locality and continuity

f is a local function if

- ▶ It depends only on the spins on a *finite* region
- ▶ $\exists \Gamma \Subset \mathbb{L}$ such that $f(\omega) = f(\sigma)$ whenever $\omega_{\Gamma} = \sigma_{\Gamma}$

►
$$\exists \Gamma \Subset \mathbb{L}$$
 such that $(f \in \mathcal{F}_{\Gamma})$

Properties:

- ▶ Local functions are continuous
- More generally: f is continuous iff, it is quasilocal

$$\sup_{\omega \in \Omega} \sup_{\sigma \in \Omega} \left| f(\omega_{\Lambda_n} \sigma) - f(\omega) \right| \xrightarrow[n \to \infty]{} 0$$

ション ふゆ マ キャット マックタン

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000 Basic defin	00000	000000000	0000	0000000	00000	000
Dabie deim						

Probability kernels

Definition

A **probability kernel** Ψ from a probability space (\mathcal{A}, Σ) to another probability space (\mathcal{A}', Σ') is a function

$$\Psi(\,\cdot\mid\cdot\,):\Sigma'\times\mathcal{A}\longrightarrow[0,1]$$

such that

(i) Ψ(·|ω) is a probability measure on (A', Σ') for each ω ∈ A;
(ii) Ψ(A'|·) is Σ-measurable for each A' ∈ Σ'.

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance	
0000	00000	000000000	0000	00000000	00000	000	
Stat mech kernels							

Equilibrium systems in stat mech

System in $\Lambda \Subset \mathbb{L}$ described by a probability kernel

 $\pi_{\Lambda}(\cdot \mid \cdot)$ from (Ω, \mathcal{F}) to itself

where

 $\pi_{\Lambda}(f \mid \omega) =$ equilibrium value of f when the configuration outside Λ is ω

Operations with kernels

Composition of kernels

 Ψ from (\mathcal{A}, Σ) to (\mathcal{A}', Σ') and Ψ' from $(\mathcal{A}'\Sigma')$ to $(\mathcal{A}'', \Sigma'')$,

$$(\Psi\Psi')(A''|\omega) = \int_{\mathcal{A}'} \Psi(d\omega'|\omega) \Psi'(A''|\omega')$$

Linear transformations of measures

$$\mathcal{P}(\mathcal{A}, \Sigma) \longrightarrow \mathcal{P}(\mathcal{A}', \Sigma')$$

$$\mu \longmapsto \mu' = \mu \Psi$$

$$\mu'(A') = \int_{\mathcal{A}} \mu(d\omega) \Psi(A'|\omega)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Operations with kernels

Composition of kernels

 Ψ from (\mathcal{A}, Σ) to (\mathcal{A}', Σ') and Ψ' from $(\mathcal{A}'\Sigma')$ to $(\mathcal{A}'', \Sigma'')$,

$$(\Psi\Psi')(A''|\omega) = \int_{\mathcal{A}'} \Psi(d\omega'|\omega) \Psi'(A''|\omega')$$

Linear transformations of measures

$$\begin{array}{ccc} \mathcal{P}(\mathcal{A},\Sigma) & \longrightarrow & \mathcal{P}(\mathcal{A}',\Sigma') \\ \mu & \longmapsto & \mu' = \mu \Psi \\ \\ \mu'(A') & = & \int_{\mathcal{A}} \mu(d\omega) \, \Psi(A'|\omega) \end{array}$$

Setup 0000	Kernels 00000	Gibbsian ●○○○○○○○○	NonGibbs	Renorm 00000000	Evolutions	Balance 000
Equilibrium	n					

Equilibrium condition

System in $\Lambda \Subset \mathbb{L}$ described by a probability kernel $\pi_{\Lambda}(\cdot | \cdot)$ Equilibrium in Λ iff equilibrium in every box $\Lambda' \subset \Lambda$: $\pi_{\Lambda}(f | \omega) = \pi_{\Lambda} \left(\pi_{\Lambda'}(f | \cdot) | \omega \right) \qquad (\Lambda' \subset \Lambda \Subset \mathbb{L})$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	00000000	0000	00000000	00000	000
Equilibrium						

Equilibrium condition

System in $\Lambda \Subset \mathbb{L}$ described by a probability kernel $\pi_{\Lambda}(\cdot | \cdot)$ Equilibrium in Λ iff equilibrium in every box $\Lambda' \subset \Lambda$:

 $\pi_{\Lambda}(f \mid \omega) = \pi_{\Lambda} \Big(\pi_{\Lambda'}(f \mid \cdot) \mid \omega \Big) \qquad (\Lambda' \subset \Lambda \Subset \mathbb{L})$

Setup 0000	Kernels 00000	Gibbsian ●○○○○○○○○	$\mathbf{NonGibbs}$	Renorm 00000000	Evolutions	Balance 000
Equilibrium						

Equilibrium condition

System in $\Lambda \Subset \mathbb{L}$ described by a probability kernel $\pi_{\Lambda}(\cdot | \cdot)$ Equilibrium in Λ iff equilibrium in every box $\Lambda' \subset \Lambda$:

$$\pi_{\Lambda}(f \mid \omega) = \pi_{\Lambda} \Big(\pi_{\Lambda'}(f \mid \cdot) \mid \omega \Big) \qquad (\Lambda' \subset \Lambda \Subset \mathbb{L})$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	00000000	0000	00000000	00000	000
Specificatio	ons					

Specification: Family $\Pi = \{\pi_{\Lambda} : \Lambda \Subset \mathbb{L}\}$ of prob. kern. from (Ω, \mathcal{F}) to itself s.t.

(i) $\pi_{\Lambda}(f \mid \cdot) \in \mathcal{F}_{\Lambda^{c}}$ for each $\Lambda \in \mathbb{L}$ and bounded measurable f(ii) Each π_{Λ} is *proper*. If $g \in \mathcal{F}_{\Lambda^{c}}$,

$$\pi_{\Lambda}(g f \mid \omega) = g(\omega) \pi_{\Lambda}(f \mid \omega)$$

for all $\omega \in \Omega$ and bounded measurable f(iii) The family Π is *consistent*:

$$\pi_{\Lambda} \, \pi_{\Lambda'} \ = \ \pi_{\Lambda} \qquad ext{if } \Lambda' \subset \Lambda \Subset \mathbb{L}$$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	00000000	0000	00000000	00000	000
Specificatio	ons					

Specification: Family $\Pi = \{\pi_{\Lambda} : \Lambda \Subset \mathbb{L}\}$ of prob. kern. from (Ω, \mathcal{F}) to itself s.t.

(i) $\pi_{\Lambda}(f \mid \cdot) \in \mathcal{F}_{\Lambda^{c}}$ for each $\Lambda \in \mathbb{L}$ and bounded measurable f(ii) Each π_{Λ} is proper. If $g \in \mathcal{F}_{\Lambda^{c}}$,

$$\pi_{\Lambda}(g f \mid \omega) = g(\omega) \pi_{\Lambda}(f \mid \omega)$$

for all $\omega \in \Omega$ and bounded measurable f(iii) The family Π is *consistent*:

$$\pi_{\Lambda} \pi_{\Lambda'} = \pi_{\Lambda} \qquad \text{if } \Lambda' \subset \Lambda \Subset \mathbb{L}$$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	00000000	0000	00000000	00000	000
Specifications						

Specification: Family $\Pi = \{\pi_{\Lambda} : \Lambda \Subset \mathbb{L}\}$ of prob. kern. from (Ω, \mathcal{F}) to itself s.t.

(i) π_Λ(f | ·) ∈ F_{Λ^c} for each Λ ∈ L and bounded measurable f
(ii) Each π_Λ is proper: If g ∈ F_{Λ^c},

$$\pi_{\Lambda}(g f \mid \omega) \; = \; g(\omega) \, \pi_{\Lambda}(f \mid \omega)$$

for all $\omega \in \Omega$ and bounded measurable f(iii) The family Π is *consistent*:

$$\pi_{\Lambda} \pi_{\Lambda'} = \pi_{\Lambda} \qquad \text{if } \Lambda' \subset \Lambda \in \mathbb{L}$$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	00000000	0000	00000000	00000	000
Specifications						

Specification: Family $\Pi = \{\pi_{\Lambda} : \Lambda \Subset \mathbb{L}\}$ of prob. kern. from (Ω, \mathcal{F}) to itself s.t.

(i) π_Λ(f | ·) ∈ F_{Λ^c} for each Λ ∈ L and bounded measurable f
(ii) Each π_Λ is proper: If g ∈ F_{Λ^c},

$$\pi_{\Lambda}(g f \mid \omega) \; = \; g(\omega) \, \pi_{\Lambda}(f \mid \omega)$$

for all $\omega \in \Omega$ and bounded measurable f(iii) The family Π is *consistent*:

$$\pi_{\Lambda} \pi_{\Lambda'} = \pi_{\Lambda} \qquad \text{if } \Lambda' \subset \Lambda \Subset \mathbb{L}$$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
Consistency						

Consistent measures

Definition

 μ on \mathcal{F} is **consistent** with a specification $\Pi = \{\pi_{\Lambda} : \Lambda \in \mathbb{L}\}$ if

 $\mu \pi_{\Lambda} = \mu$ for each $\Lambda \Subset \mathbb{L}$

(DLR equations)

Remarks

- Several consistent measures = first-order phase transition
- specification \sim system of regular conditional probabilities
 - \blacktriangleright No a priori measure: conditions for $all\,\omega$ rather than a.s.
- ▶ Stat. mech.: conditional probabilities in search of measures

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
Consistency						

Consistent measures

Definition

 μ on \mathcal{F} is **consistent** with a specification $\Pi = \{\pi_{\Lambda} : \Lambda \in \mathbb{L}\}$ if

 $\mu \pi_{\Lambda} = \mu$ for each $\Lambda \Subset \mathbb{L}$

(DLR equations)

Remarks

- Several consistent measures = first-order phase transition
- specification \sim system of regular conditional probabilities
 - ▶ No apriori measure: conditions for $all \omega$ rather than a.s.
- ▶ Stat. mech.: conditional probabilities in search of measures
| Setup | Kernels | Gibbsian | NonGibbs | Renorm | Evolutions | Balance |
|------------|---------|----------|----------|----------|------------|---------|
| 0000 | 00000 | 00000000 | 0000 | 00000000 | 00000 | 000 |
| Consistenc | у | | | | | |

Consistent measures

Definition

 μ on \mathcal{F} is **consistent** with a specification $\Pi = \{\pi_{\Lambda} : \Lambda \in \mathbb{L}\}$ if

 $\mu \pi_{\Lambda} = \mu$ for each $\Lambda \Subset \mathbb{L}$

(DLR equations)

Remarks

- ▶ Several consistent measures = first-order phase transition
- ▶ specification \sim system of regular conditional probabilities
 - \blacktriangleright No a priori measure: conditions for $all\;\omega$ rather than a.s.

▶ Stat. mech.: conditional probabilities in search of measures

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	00000000	0000	00000000	00000	000
Consistenc	у					

Consistent measures

Definition

 μ on \mathcal{F} is **consistent** with a specification $\Pi = \{\pi_{\Lambda} : \Lambda \in \mathbb{L}\}$ if

 $\mu \pi_{\Lambda} = \mu$ for each $\Lambda \Subset \mathbb{L}$

(DLR equations)

Remarks

- ▶ Several consistent measures = first-order phase transition
- ▶ specification ~ system of regular conditional probabilities
 - ▶ No apriori measure: conditions for $all \omega$ rather than a.s.
- ▶ Stat. mech.: conditional probabilities in search of measures

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance	
0000	00000	000000000	0000	00000000	00000	000	
Cibbsian specifications							

Boltzmann prescription

Heuristically: $\pi_{\Lambda} \propto e^{-\beta H_{\Lambda}}$

- β inverse temperature (to be absorbed)
- H_{Λ} Hamiltonian = sum of local terms

Formally:

Interaction: family $\Phi = \{\phi_A \in \mathcal{F}_A : A \in \mathbb{L}\}$ Example: Ising interaction

$$\phi_A(\omega) = \begin{cases} -J_{\{x,y\}} \,\omega_x \omega_y & \text{if } A = \{x,y\} \text{ with } |x-y| = 1\\ -h_x \,\omega_x & \text{if } A = \{x\}\\ 0 & \text{otherwise} \end{cases}$$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000	0000	0000000	00000	000
Cibbsian specifications						

Boltzmann prescription

Heuristically: $\pi_{\Lambda} \propto e^{-\beta H_{\Lambda}}$

- β inverse temperature (to be absorbed)
- H_{Λ} Hamiltonian = sum of local terms

Formally:

Interaction: family $\Phi = \{\phi_A \in \mathcal{F}_A : A \Subset \mathbb{L}\}$

Example: Ising interaction

$$\phi_A(\omega) = \begin{cases} -J_{\{x,y\}} \, \omega_x \omega_y & \text{if } A = \{x,y\} \text{ with } |x-y| = 1\\ -h_x \, \omega_x & \text{if } A = \{x\}\\ 0 & \text{otherwise} \end{cases}$$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
Gibbsian	specifications					

Hamiltonian for $\Lambda \in \mathbb{L}$ with frozen external condition ω

$$H^{\Phi}_{\Lambda}(\sigma_{\Lambda} \mid \omega_{\Lambda^{c}}) \ = \ \sum_{A \Subset \mathbb{L}: A \cap \Lambda \neq \emptyset} \phi_{A}(\sigma_{\Lambda}\omega)$$

Existence: Φ uniformly absolutely summable ($\Phi \in \mathcal{B}_1$) if

$$\sum_{A \ni x} \|\Phi_A\|_{\infty} < \infty \quad \text{for each } x \in \mathbb{L}$$

Definition The **Gibbsian specification** for $\Phi \in \mathcal{B}_1$ has kernels

$$\pi^{\Phi}_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega) = \frac{\mathrm{e}^{-H^{\Phi}_{\Lambda}(\sigma_{\Lambda} \mid \omega_{\Lambda^{\mathrm{c}}})}}{\mathrm{Norm.}}$$

(=) (

A Gibbs measures for Φ is a measure consistent with Π^{Φ}

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	00000000	0000	00000000	00000	000
Gibbsian	specifications					

Hamiltonian for $\Lambda \in \mathbb{L}$ with frozen external condition ω

$$H^{\Phi}_{\Lambda}(\sigma_{\Lambda} \mid \omega_{\Lambda^{c}}) = \sum_{A \Subset \mathbb{L}: A \cap \Lambda \neq \emptyset} \phi_{A}(\sigma_{\Lambda}\omega)$$

Existence: Φ uniformly absolutely summable ($\Phi \in \mathcal{B}_1$) if

$$\sum_{A \ni x} \|\Phi_A\|_{\infty} < \infty \quad \text{for each } x \in \mathbb{L}$$

.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ のへで

Definition

The **Gibbsian specification** for $\Phi \in \mathcal{B}_1$ has kernels

$$\pi_{\Lambda}^{\Phi}(C_{\sigma_{\Lambda}} \mid \omega) = \frac{\mathrm{e}^{-H_{\Lambda}^{\Phi}(\sigma_{\Lambda} \mid \omega_{\Lambda^{\mathrm{c}}})}}{\mathrm{Norm.}}$$

A Gibbs measures for Φ is a measure consistent with Π^4

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	00000000	0000	00000000	00000	000
Gibbsian	specifications					

Hamiltonian for $\Lambda \in \mathbb{L}$ with frozen external condition ω

$$H^{\Phi}_{\Lambda}(\sigma_{\Lambda} \mid \omega_{\Lambda^{c}}) \ = \ \sum_{A \Subset \mathbb{L}: A \cap \Lambda \neq \emptyset} \phi_{A}(\sigma_{\Lambda}\omega)$$

Existence: Φ uniformly absolutely summable ($\Phi \in \mathcal{B}_1$) if

$$\sum_{A \ni x} \|\Phi_A\|_{\infty} < \infty \quad \text{for each } x \in \mathbb{L} .$$

Definition

The **Gibbsian specification** for $\Phi \in \mathcal{B}_1$ has kernels

$$\pi_{\Lambda}^{\Phi}(C_{\sigma_{\Lambda}} \mid \omega) = \frac{\mathrm{e}^{-H_{\Lambda}^{\Phi}(\sigma_{\Lambda} \mid \omega_{\Lambda^{\mathrm{c}}})}}{\mathrm{Norm.}}$$

うして ふゆう ふほう ふほう ふしつ

A Gibbs measures for Φ is a measure consistent with Π^{Φ}

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
Gibbsian	ness					

Gibbsianness and its properties

Definition

- Π is a **Gibbsian specification** if $\exists \Phi \in \mathcal{B}_1$ s.t. $\Pi = \Pi^{\Phi}$
- μ is a **Gibbs measure** if it is consistent with some Π^{Φ}

ション ふゆ マ キャット キャット しょう

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
Gibbsian	ness					

Gibbsian description (1968): $equilibrium {\rm\ statistical\ mechanics}$

- ▶ Renormalized measures
- ► Spin-flip evolutions
- Particle systems
- ▶ Dynamical systems
- Quenched disordered systems.

Setup	Kernels 00000	Gibbsian ○○○○○●○○	NonGibbs	Renorm 00000000	Evolutions 00000	Balance 000
Gibbsiar	nness					

Gibbsian description (1968): $equilibrium {\rm\ statistical\ mechanics}$

ション ふゆ マ キャット キャット しょう

- Renormalized measures
- ► Spin-flip evolutions
- ▶ Particle systems
- ► Dynamical systems
- Quenched disordered systems.

ls Gibbsian	NonGibbs	Renorm 00000000	$\mathbf{Evolutions}$	Balance 000
	ls Gibbsian	ls Gibbsian NonGibbs ○○○○○ ○●○○ ○○○○	ls Gibbsian NonGibbs Renorm 000000 000 0000 0000000000000000000000	ls Gibbsian NonGibbs Renorm Evolutions ○○○○○○●○○ ○○○○ ○○○○○ ○○○○○

Gibbsian description (1968): equilibrium statistical mechanics

ション ふゆ マ キャット キャット しょう

- Renormalized measures
- Spin-flip evolutions
- Particle systems
- Dynamical systems
- ▶ Quenched disordered systems.

Setup	Kernels 00000	Gibbsian ○○○○○0●○○	NonGibbs	Renorm 00000000	$\mathbf{Evolutions}$	Balance 000
Gibbsian	ness					

Gibbsian description (1968): equilibrium statistical mechanics

ション ふゆ マ キャット キャット しょう

- Renormalized measures
- Spin-flip evolutions
- Particle systems
- Dynamical systems
- ▶ Quenched disordered systems.

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	0000000000	0000	00000000	00000	000
Gibbsian	ness					

10^{6} \$ question: How to tell whether a measure is Gibbsian?

Theorem (Kozlov)

A specification is Gibbsian if, and only if, it is both (i) Uniformly non-null: for each $\Lambda \in \mathbb{L}$

 $\inf_{\sigma_{\Lambda}\in\Omega_{\Lambda},\omega_{\Lambda^{c}}\in\Omega_{\Lambda^{c}}}\pi_{\Lambda}(C_{\sigma_{\Lambda}}\mid\omega_{\Lambda^{c}})=:c_{\Lambda}>0$

(ii) Quasilocal (almost Markovian): for each $\Lambda \in \Lambda$, $\sigma_{\Lambda} \in \Omega_{\Lambda}$

$$\sup_{\omega,\eta,\widetilde{\eta}\in\Omega} \left| \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda_{n}}\eta) - \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda_{n}}\widetilde{\eta}) \right| \xrightarrow[n\to\infty]{} 0$$

C.f. Markovian:

$$\pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\partial_{r}\Lambda}\eta) - \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\partial_{r}\Lambda}\widetilde{\eta}) = 0$$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	0000000000	0000	00000000	00000	000
Gibbsiann	less					

 10^6 \$ question: How to tell whether a measure is Gibbsian?

Theorem (Kozlov)

A specification is Gibbsian if, and only if, it is both

(i) Uniformly non-null: for each $\Lambda \Subset \mathbb{L}$

$$\inf_{\sigma_{\Lambda}\in\Omega_{\Lambda},\omega_{\Lambda^{c}}\in\Omega_{\Lambda^{c}}}\pi_{\Lambda}(C_{\sigma_{\Lambda}}\mid\omega_{\Lambda^{c}}) =: c_{\Lambda} > 0$$

(ii) Quasilocal (almost Markovian): for each $\Lambda \Subset \Lambda$, $\sigma_{\Lambda} \in \Omega_{\Lambda}$

$$\sup_{\omega,\eta,\widetilde{\eta}\in\Omega} \left| \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda_{n}}\eta) - \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda_{n}}\widetilde{\eta}) \right| \xrightarrow[n \to \infty]{} 0$$

うして ふゆう ふほう ふほう ふしつ

C.f. Markovian:

$$\pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\partial_{r}\Lambda}\eta) - \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\partial_{r}\Lambda}\tilde{\eta}) = 0$$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	0000000000	0000	00000000	00000	000
Gibbsiann	less					

 $10^6\$$ question: How to tell whether a measure is Gibbsian?

Theorem (Kozlov)

A specification is Gibbsian if, and only if, it is both

(i) Uniformly non-null: for each $\Lambda \Subset \mathbb{L}$

$$\inf_{\sigma_{\Lambda}\in\Omega_{\Lambda},\omega_{\Lambda^{\rm c}}\in\Omega_{\Lambda^{\rm c}}}\pi_{\Lambda}(C_{\sigma_{\Lambda}}\mid\omega_{\Lambda^{\rm c}})=:c_{\Lambda}>0$$

(ii) Quasilocal (almost Markovian): for each $\Lambda \Subset \Lambda$, $\sigma_{\Lambda} \in \Omega_{\Lambda}$

$$\sup_{\omega,\eta,\widetilde{\eta}\in\Omega} \left| \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda_{n}}\eta) - \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda_{n}}\widetilde{\eta}) \right| \xrightarrow[n \to \infty]{} 0$$

C.f. Markovian:

۷

$$\pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\partial_{r}\Lambda}\eta) - \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\partial_{r}\Lambda}\widetilde{\eta}) = 0$$

Setup 0000 Gibbsian	Kernels 00000 ness	Gibbsian 00000000	NonGibbs 0000	Renorm 00000000	$\mathbf{Evolutions}$	Balance 000			
	Comments								

\blacktriangleright Non-nullness = no forbidden configuration

\blacktriangleright Quasilocal =

- ▶ Info from infinity only through intermediate fluctuations
- Experiment independent on state of Andromeda galaxy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Setup 0000 Gibbsian	Kernels 00000 ness	Gibbsian ○○○○○○○●	NonGibbs 0000	Renorm 00000000	$\mathbf{Evolutions}$	Balance 000
		(Commer	nts		

- \blacktriangleright Non-nullness = no forbidden configuration
- \blacktriangleright Quasilocal =
 - ▶ Info from infinity only through intermediate fluctuations
 - ▶ Experiment independent on state of Andromeda galaxy

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	● ○ ○○	00000000	00000	000
Non-quas	silocality					

- \blacktriangleright μ is quasilocal if consistent with no quasilocal specification
- ▶ Need violation at a single $\widehat{\omega}$ for a single μ_{Λ} for a single f
- Discontinuity must be *essential* (eg. for open neighbhds)
 Recipe: Find
 - Sequence of frozen regions Λ_{N_i}
 - "Tilting" configurations η^{\pm}
 - Larger annulus Λ_{R_i} to define open sets

Show that

$$\mu_{\Lambda}(f \mid \widehat{\omega}_{\Lambda_{N_i}} \eta^+_{\Lambda_{R_i} \setminus \Lambda_{N_i}}) \text{ and } \mu_{\Lambda}(f \mid \widehat{\omega}_{\Lambda_{N_i}} \eta^+_{\Lambda_{R_i} \setminus \Lambda_{N_i}})$$

うして ふゆう ふほう ふほう ふしつ

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
Non-quas	silocality					

- \blacktriangleright μ is quasilocal if consistent with no quasilocal specification
- ▶ Need violation at a single $\hat{\omega}$ for a single μ_{Λ} for a single f

Discontinuity must be *essential* (eg. for open neighbhds)
 Recipe: Find

- Sequence of frozen regions Λ_{N_i}
- "Tilting" configurations η^{\pm}
- Larger annulus Λ_{R_i} to define open sets

Show that

$$\mu_{\Lambda}(f \mid \widehat{\omega}_{\Lambda_{N_i}} \eta^+_{\Lambda_{R_i} \setminus \Lambda_{N_i}}) \text{ and } \mu_{\Lambda}(f \mid \widehat{\omega}_{\Lambda_{N_i}} \eta^+_{\Lambda_{R_i} \setminus \Lambda_{N_i}})$$

うして ふゆう ふほう ふほう ふしつ

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
Non-quas	silocality					

- \blacktriangleright μ is quasilocal if consistent with no quasilocal specification
- ▶ Need violation at a single $\hat{\omega}$ for a single μ_{Λ} for a single f
- ▶ Discontinuity must be *essential* (eg. for open neighbhds) Recipe: Find
 - Sequence of frozen regions Λ_{N_i}
 - "Tilting" configurations η^{\pm}
 - Larger annulus Λ_{R_i} to define open sets

Show that

$$\mu_{\Lambda}(f \mid \widehat{\omega}_{\Lambda_{N_i}} \eta^+_{\Lambda_{R_i} \setminus \Lambda_{N_i}}) \text{ and } \mu_{\Lambda}(f \mid \widehat{\omega}_{\Lambda_{N_i}} \eta^+_{\Lambda_{R_i} \setminus \Lambda_{N_i}})$$

うして ふゆう ふほう ふほう ふしつ

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	• 0 00	00000000	00000	000
Non-quas	silocality					

- \blacktriangleright μ is quasilocal if consistent with no quasilocal specification
- ▶ Need violation at a single $\hat{\omega}$ for a single μ_{Λ} for a single f
- ▶ Discontinuity must be *essential* (eg. for open neighbhds) Recipe: Find
 - ► Sequence of frozen regions Λ_{N_i}
 - "Tilting" configurations η^{\pm}
 - ► Larger annulus Λ_{R_i} to define open sets

Show that

 $\mu_{\Lambda}(f \mid \widehat{\omega}_{\Lambda_{N_i}} \eta^+_{\Lambda_{R_i} \setminus \Lambda_{N_i}}) \text{ and } \mu_{\Lambda}(f \mid \widehat{\omega}_{\Lambda_{N_i}} \eta^+_{\Lambda_{R_i} \setminus \Lambda_{N_i}})$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
Non-quas	silocality					

- \blacktriangleright μ is quasilocal if consistent with no quasilocal specification
- ► Need violation at a single $\hat{\omega}$ for a single μ_{Λ} for a single f
- Discontinuity must be *essential* (eg. for open neighbhds)
 Recipe: Find
 - ► Sequence of frozen regions Λ_{N_i}
 - "Tilting" configurations η^{\pm}
- ► Larger annulus Λ_{R_i} to define open sets Show that

$$\mu_{\Lambda}(f \mid \widehat{\omega}_{\Lambda_{N_i}}\eta^+_{\Lambda_{R_i} \setminus \Lambda_{N_i}}) \text{ and } \mu_{\Lambda}(f \mid \widehat{\omega}_{\Lambda_{N_i}}\eta^+_{\Lambda_{R_i} \setminus \Lambda_{N_i}})$$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
Non-quasil	ocality					

Non-Gibbsianness criterion:

 μ not quasilocal if there exist

- ► a finite region Λ (often $|\Lambda| = 1$)
- ▶ a "special" configuration $\widehat{\omega}$
- a (quasi)local function f
- ► a diverging sequence of regions $(\Lambda_{N_i})_{i>1}$
- some $\delta > 0$ (independent of *i*)

such that for each $i \ge 1$ there exist

(i) larger regions Λ_{R_i} , $R_i > N_i$

(ii) two configurations η^+, η^- (possibly *i*-dependent), with

 $\overline{\lim_{i \to \infty}} \left| \mu_{\Lambda} \left(f \mid \widehat{\omega}_{\Lambda_{N_{i}}} \eta^{+}_{\Lambda_{R_{i}} \setminus \Lambda_{N_{i}}} \sigma^{+} \right) - \mu_{\Lambda} \left(f \mid \widehat{\omega}_{\Lambda_{N_{i}}} \eta^{-}_{\Lambda_{R_{i}} \setminus \Lambda_{N_{i}}} \sigma^{-} \right) \right| \geq \delta$

for every $\sigma^{\pm} \in \Omega$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
Non-quasil	ocality					

Non-Gibbsianness criterion:

 μ not quasilocal if there exist

- ▶ a finite region Λ (often $|\Lambda| = 1$)
- ▶ a "special" configuration $\widehat{\omega}$
- ▶ a (quasi)local function f
- ▶ a diverging sequence of regions $(\Lambda_{N_i})_{i>1}$
- ▶ some $\delta > 0$ (independent of *i*)

such that for each $i \ge 1$ there exist

(i) larger regions Λ_{R_i} , $R_i > N_i$

(ii) two configurations η^+, η^- (possibly *i*-dependent), with

 $\overline{\lim_{i \to \infty}} \left| \mu_{\Lambda} (f \mid \widehat{\omega}_{\Lambda_{N_{i}}} \eta^{+}_{\Lambda_{R_{i}} \setminus \Lambda_{N_{i}}} \sigma^{+}) - \mu_{\Lambda} (f \mid \widehat{\omega}_{\Lambda_{N_{i}}} \eta^{-}_{\Lambda_{R_{i}} \setminus \Lambda_{N_{i}}} \sigma^{-}) \right| \geq \delta$ for every $\sigma^{\pm} \in \Omega$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
Non-quasilocality						

Non-Gibbsianness criterion:

 μ not quasilocal if there exist

- ▶ a finite region Λ (often $|\Lambda| = 1$)
- ▶ a "special" configuration $\widehat{\omega}$
- ▶ a (quasi)local function f
- ► a diverging sequence of regions $(\Lambda_{N_i})_{i>1}$
- ▶ some $\delta > 0$ (independent of *i*)

such that for each $i \ge 1$ there exist

$$\frac{\lim_{i \to \infty} \left| \mu_{\Lambda} (f \mid \widehat{\omega}_{\Lambda_{N_{i}}} \eta^{+}_{\Lambda_{R_{i}} \setminus \Lambda_{N_{i}}} \sigma^{+}) - \mu_{\Lambda} (f \mid \widehat{\omega}_{\Lambda_{N_{i}}} \eta^{-}_{\Lambda_{R_{i}} \setminus \Lambda_{N_{i}}} \sigma^{-}) \right| \geq \delta$$

for every $\sigma^{\pm} \in \Omega$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance	
0000	00000	000000000	0000	00000000	00000	000	
Causes of non-quasilocality							

Quasilocality: frozen spins shield influence of distant regions Non-quasilocality: info from afar even without fluctuations **Mechanism?**

For transformed measures,

original variables act as "hidden-variables"

▶ Freezing transformed vbles = conditioning of original vbles

▶ These conditioned variables keep some freedom to fluctuate

- ▶ For particular ω the conditioned "hidden" system
 - exhibit a *phase transition*
 - ▶ hence, there is long-range order

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance	
0000	00000	00000000	0000	00000000	00000	000	
Causes of non-quasilocality							

Quasilocality: frozen spins shield influence of distant regions Non-quasilocality: info from afar even without fluctuations **Mechanism?**

For transformed measures,

original variables act as "hidden-variables"

- ▶ Freezing transformed vbles = conditioning of original vbles
- ▶ These conditioned variables keep some freedom to fluctuate

- ▶ For particular ω the conditioned "hidden" system
 - exhibit a *phase transition*
 - ▶ hence, there is long-range order

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance	
0000	00000	00000000	0000	0000000	00000	000	
Causes of non-quasilocality							

Quasilocality: frozen spins shield influence of distant regions Non-quasilocality: info from afar even without fluctuations **Mechanism?**

For transformed measures,

original variables act as "hidden-variables"

- ► Freezing transformed vbles = conditioning of original vbles
- ▶ These conditioned variables keep some freedom to fluctuate

- For particular ω the conditioned "hidden" system
 - exhibit a *phase transition*
 - ▶ hence, there is long-range order

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance	
0000	00000	00000000	0000	0000000	00000	000	
Causes of non-quasilocality							

Quasilocality: frozen spins shield influence of distant regions Non-quasilocality: info from afar even without fluctuations **Mechanism?**

For transformed measures,

original variables act as "hidden-variables"

- ► Freezing transformed vbles = conditioning of original vbles
- ▶ These conditioned variables keep some freedom to fluctuate

- ▶ For particular ω the conditioned "hidden" system
 - exhibit a *phase transition*
 - ▶ hence, there is long-range order

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	00000000	0000	0000000	00000	000
Main example: Transformations of measures						

Linear stochastic transformations

A linear stochastic transformation is defined by

- An initial or *object* space $S^{\mathbb{L}}$
- A transformed or *image* space $S'^{\mathbb{L}'}$
- A kernel τ from $S^{\mathbb{L}}$ to $S'^{\mathbb{L}'}$ where

 $\tau(d\omega' \mid \omega) = \text{distribution of image spins when the}$ initial spin configuration is ω

うして ふゆう ふほう ふほう ふしつ

Particular cases:

- **Stochastic evolutions:** Image = evolved
- **Renormalization transf.:** Image = renormalized

Setup
0000Kernels
00000Gibbsian
00000NonGibbs
0000Renorm
00000000Evolutions
00000000Balance
0000Main example:Transformations of measures

Linear stochastic transformations

A linear stochastic transformation is defined by

- An initial or *object* space $S^{\mathbb{L}}$
- A transformed or *image* space $S'^{\mathbb{L}'}$
- A kernel τ from $S^{\mathbb{L}}$ to $S'^{\mathbb{L}'}$ where

 $\tau(d\omega' \mid \omega) \ = \ {\rm distribution \ of \ image \ spins \ when \ the} \\ {\rm initial \ spin \ configuration \ is \ } \omega$

うして ふゆう ふほう ふほう ふしつ

Particular cases:

- **Stochastic evolutions:** Image = evolved
- **Renormalization transf.:** Image = renormalized

Setup
0000Kernels
00000Gibbsian
00000NonGibbs
0000Renorm
00000000Evolutions
00000000Balance
0000Main example:Transformations of measures

Linear stochastic transformations

A linear stochastic transformation is defined by

- An initial or *object* space $S^{\mathbb{L}}$
- A transformed or *image* space $S'^{\mathbb{L}'}$
- A kernel τ from $S^{\mathbb{L}}$ to $S'^{\mathbb{L}'}$ where

 $\tau(d\omega' \mid \omega) \ = \ {\rm distribution \ of \ image \ spins \ when \ the} \\ {\rm initial \ spin \ configuration \ is \ } \omega$

うして ふゆう ふほう ふほう ふしつ

Particular cases:

- ► Stochastic evolutions: Image = evolved
- ▶ **Renormalization transf.:** Image = renormalized

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	0000 0000	00000	000
-						

Renormalization transformations

Block renormalization transformations

Definition: Kernel from $S^{\mathbb{L}}$ to $(S')^{\mathbb{L}'}$ of the form

$$\tau(d\omega' \mid \omega) = \prod_{x' \in \mathbb{L}'} \tau_{x'}(d\omega'_{x'} \mid \omega_{B_{x'}})$$

Main examples: $\mathbb{L}' = \mathbb{L}, B_{x'} = \Lambda_{b-1} + bx'$

Particular case: **Deterministic transformations**

$$\tau_{x'}(\,\cdot\mid\omega_{B_{x'}})=\delta_{T_{x'}(\omega_{B_{x'}})}(\,\cdot\,)$$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	0000 0000	00000	000

Renormalization transformations

Block renormalization transformations

Definition: Kernel from $S^{\mathbb{L}}$ to $(S')^{\mathbb{L}'}$ of the form

$$\tau(d\omega' \mid \omega) = \prod_{x' \in \mathbb{L}'} \tau_{x'}(d\omega'_{x'} \mid \omega_{B_{x'}})$$

Main examples: $\mathbb{L}' = \mathbb{L}, B_{x'} = \Lambda_{b-1} + bx'$

Particular case: Deterministic transformations

$$\tau_{x'}(\,\cdot\mid\omega_{B_{x'}})=\delta_{T_{x'}(\omega_{B_{x'}})}(\,\cdot\,)$$

Setup	Kernels	Gibbsian	NonGibbs	Renor
0000	00000	000000000	0000	000000

m

Evolutions

Balance

Renormalization transformations

Deterministic block RT

 \blacktriangleright Decimation: S = S'

$$\tau_{x'}(\,\cdot\mid\omega_{B_{x'}})=\delta_{\omega_{bx'}}$$

$$T_{x'}(\omega_{x'}) = \operatorname{sign}(\omega_{x'})$$

$$T_{x'}(\,\cdot\mid\omega_{x'}) = \sum_{i\in I} i\,\mathbb{1}_{\{\omega_{x'}\in S_i\}}$$

ション ふゆ マ キャット キャット しょう

Setup	Kernels	Gibbsian	NonGibbs	Renorm
0000	00000	000000000	0000	0000000

Evolutions

ション ふゆ マ キャット キャット しょう

Balance

Renormalization transformations

Deterministic block RT

 \blacktriangleright Decimation: S = S'

$$\tau_{x'}(\,\cdot\mid\omega_{B_{x'}})=\delta_{\omega_{bx'}}$$

► Spin contractions: $S' \subseteq S, B_{x'} = \{x'\}$

• Sign fields: $S \subset \mathbb{R}$ symmetric,

$$T_{x'}(\omega_{x'}) = \operatorname{sign}(\omega_{x'})$$

• "Fuzzy" spins: $S = \bigcup_{i \in I} S_i$ (partition), S' = I

$$T_{x'}(\,\cdot\mid\omega_{x'}) = \sum_{i\in I} i\,\mathbb{1}_{\{\omega_{x'}\in S_i\}}$$
Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
Renormali	zation transfo	rmations				

$$\blacktriangleright Block average: S' \supseteq_{\neq} S$$

$$T_{x'}(\omega_{B_{x'}}) = \frac{1}{|B_{x'}|} \sum_{y \in B_{x'}} \omega_y$$

• Majority rule: $S' = S = \{-1, 1\}$

$$T_{x'}(\omega_{B_{x'}}) = \operatorname{sign} \left[\sum_{y \in B_{x'}} \omega_y \right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance	
0000	00000	000000000	0000	00000000	00000	000	
Renormalization transformations							

Stochastic block RT

▶ Majority with even block: stochastic decision if

$$\sum_{y\in B_{x'}}\omega_y = 0$$

▶ p-Kadanoff transformation: S = S'

$$\tau_{x'}(d\omega'_{x'} \mid \omega_{B_{x'}}) = \frac{\exp\left[p\,\omega'_{x'}\,\sum_{y\in B_{x'}}\omega_y\right]}{\text{Norm.}}\,d\omega_{B_{x'}}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
The report	nalization issu	000000000	0000	000000000	00000	000
The renor						

The question

Physicists: RT at Hamiltonian level

$$\begin{array}{cccc} \mu & \stackrel{\tau}{\longrightarrow} & \mu' \\ \uparrow & & \downarrow \\ \Phi & \stackrel{\mathcal{R}}{\longrightarrow} & \Phi' \end{array}$$

Success led to applications to 1st-order phase transitions. Then,

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance	
0000	00000	000000000	0000	0000000	00000	000	
The renormalization issue							

The question

Physicists: RT at Hamiltonian level

$$\begin{array}{cccc} \mu & \stackrel{\mathcal{T}}{\longrightarrow} & \mu' \\ \uparrow & & \downarrow \\ \Phi & \stackrel{\mathcal{R}}{\longrightarrow} & \Phi' \end{array}$$

Success led to applications to 1st-order phase transitions. Then,

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance	
0000	00000	000000000	0000	00000000	00000	000	
The renormalization issue							

The answer

In fact,

and even

$$\begin{array}{cccc} \mu & \stackrel{\tau}{\longrightarrow} & \mu' \\ \uparrow & & \swarrow \\ \Phi & \stackrel{\checkmark}{\longrightarrow} & ?? \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ のへで

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance	
0000	00000	000000000	0000	00000000	00000	000	
Decimation example							

Israel: 2×2 -decimation of the Ising model

- $\widehat{\omega}'_{x'} = (-1)^{|x'|} = \text{decorated Ising model on internal spins}$
- Model equivalent to an Ising model at a higher temperature
 η^{'±}_{x'} = ±1 in an annulus chooses the "±"-phase

Thus,

$$\mu' \Big(\sigma'_0 \ \Big| \ \widehat{\omega}'_{\Lambda'_R}(+1)_{\Lambda'_{R+1} \backslash \Lambda'_R} \ \sigma'^+ \Big) - \mu' \Big(\sigma'_0 \ \Big| \ \widehat{\omega}'_{\Lambda'_R}(-1)'^-_{\Lambda'_{R+1} \backslash \Lambda'_R} \ \sigma'^- \Big)$$

 $\xrightarrow[R \to \infty \to]{} 2 \, m(\beta')$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance		
0000	00000	000000000	0000	000000000	00000	000		
Decimation example								

Israel: 2×2 -decimation of the Ising model

- $\widehat{\omega}'_{x'} = (-1)^{|x'|} = \text{decorated Ising model on internal spins}$
- Model equivalent to an Ising model at a higher temperature
 η'[±]_{x'} = ±1 in an annulus chooses the "±"-phase

Thus,

 $\xrightarrow[R \to \infty \to]{} 2 \, m(\beta')$

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	000000000	00000	000
Decimatio	n example					

Israel: 2×2 -decimation of the Ising model

- ► $\widehat{\omega}'_{x'} = (-1)^{|x'|}$ = decorated Ising model on *internal* spins

Thus,

$$\mu' \left(\sigma'_0 \mid \widehat{\omega}'_{\Lambda'_R}(+1)_{\Lambda'_{R+1} \setminus \Lambda'_R} \sigma'^+ \right) - \mu' \left(\sigma'_0 \mid \widehat{\omega}'_{\Lambda'_R}(-1)'^-_{\Lambda'_{R+1} \setminus \Lambda'_R} \sigma'^- \right) \xrightarrow{} 2 m(\beta')$$

$$\xrightarrow{R \to \infty \to} 2m(p)$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Setup 0000	Kernels 00000	Gibbsian 000000000	NonGibbs	Renorm ○○○○○○●	Evolutions 00000	Balance 000	
Decimatio	on example						
Contraction							

General case

Specification with densities proportional to

$$e^{-H^{\Phi}_{\Lambda}(\sigma_{\Lambda}|\omega_{\Lambda^{c}})} \prod_{x'\in B'_{\Lambda}} T_{x'} \left(\omega'_{x'} \mid (\sigma_{\Lambda}\,\omega)_{B_{x'}}\right)$$
$$= \exp\left\{-H^{\Phi}_{\Lambda}(\sigma_{\Lambda}\mid\omega_{\Lambda^{c}}) + \sum_{x'\in B'_{\Lambda}}\log T_{x'} \left(\omega'_{x'}\mid (\sigma_{\Lambda}\,\omega)_{B_{x'}}\right)\right\}$$

The image ω' acts as "fields" on the original $\sigma_{\Lambda}\omega$ $\widehat{\omega}'$ so that conditioned original spins have a phase transition. In this way, all usual transformations lead to non-Gibbsianness (even outside the coexistence region)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ のへで

Setup 0000	Kernels 00000	Gibbsian 000000000	NonGibbs	Renorm ○○○○○○●	Evolutions 00000	Balance 000	
Decimatio	on example						
Contraction							

General case

Specification with densities proportional to

$$e^{-H^{\Phi}_{\Lambda}(\sigma_{\Lambda}|\omega_{\Lambda^{c}})} \prod_{x'\in B'_{\Lambda}} T_{x'} \left(\omega'_{x'} \mid (\sigma_{\Lambda}\,\omega)_{B_{x'}}\right)$$
$$= \exp\left\{-H^{\Phi}_{\Lambda}(\sigma_{\Lambda}\mid\omega_{\Lambda^{c}}) + \sum_{x'\in B'_{\Lambda}}\log T_{x'} \left(\omega'_{x'}\mid (\sigma_{\Lambda}\,\omega)_{B_{x'}}\right)\right\}$$

The image ω' acts as "fields" on the original $\sigma_{\Lambda}\omega$ $\hat{\omega}'$ so that conditioned original spins have a phase transition. In this way, all usual transformations lead to non-Gibbsianness (even outside the coexistence region)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ のへで

Setup 0000	Kernels 00000	Gibbsian 000000000	NonGibbs	Renorm ○○○○○○●	Evolutions 00000	Balance 000
Decimation	on example					

General case

Specification with densities proportional to

$$e^{-H^{\Phi}_{\Lambda}(\sigma_{\Lambda}|\omega_{\Lambda^{c}})} \prod_{x'\in B'_{\Lambda}} T_{x'} \left(\omega'_{x'} \mid (\sigma_{\Lambda}\,\omega)_{B_{x'}}\right)$$
$$= \exp\left\{-H^{\Phi}_{\Lambda}(\sigma_{\Lambda}\mid\omega_{\Lambda^{c}}) + \sum_{x'\in B'_{\Lambda}}\log T_{x'} \left(\omega'_{x'}\mid (\sigma_{\Lambda}\,\omega)_{B_{x'}}\right)\right\}$$

The image ω' acts as "fields" on the original $\sigma_{\Lambda}\omega$ $\hat{\omega}'$ so that conditioned original spins have a phase transition. In this way, all usual transformations lead to non-Gibbsianness (even outside the coexistence region)

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	●0000	000
Unquench	ing					

Non-Gibbsianness in spin-flip evolutions

Simulations: spin-flip dynamics converging to a target measure (Metropolis, heath-bath, Glauber)

Often: ordered initial configuration

"Unquenching": high-T dynamics applied a low-T Gibbs state Non-Gibbsianness enters into the picture

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	0000	000
Unquench	ning					

Non-Gibbsianness in spin-flip evolutions

Simulations: spin-flip dynamics converging to a target measure (Metropolis, heath-bath, Glauber)

Often: ordered initial configuration

"Unquenching": high-T dynamics applied a low-T Gibbs state

ション ふゆ マ キャット キャット しょう

Non-Gibbsianness enters into the picture

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	0000	000

Out and in from Gibbsianness

Results for parallel independent updating

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
Heuristics						

Interpretation: The key questions

Which is the most probable history of an improbable configuration?

Is the (atypical) droplet $\widehat{\omega}'_{\Lambda}$

- ▶ *Nurture*: created by the dynamics?
- ▶ *Nature*: created initially and survived?

The history of $\widehat{\omega}'_{\Lambda}$

▶ is it uniquely defined by the final configuration?

うして ふゆう ふほう ふほう ふしつ

▶ admits competing possibilities?

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	0000	000
Heuristics						

Interpretation: The key questions

Which is the most probable history of an improbable configuration?

Is the (atypical) droplet $\widehat{\omega}'_{\Lambda}$

- ▶ *Nurture*: created by the dynamics?
- ▶ *Nature*: created initially and survived?

The history of $\widehat{\omega}'_{\Lambda}$

▶ is it uniquely defined by the final configuration?

うして ふゆう ふほう ふほう ふしつ

▶ admits competing possibilities?

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
Heuristics						

Interpretation: The key questions

Which is the most probable history of an improbable configuration?

Is the (atypical) droplet $\widehat{\omega}'_{\Lambda}$

- ▶ *Nurture*: created by the dynamics?
- ▶ *Nature*: created initially and survived?

The history of $\widehat{\omega}'_{\Lambda}$

▶ is it uniquely defined by the final configuration?

うして ふゆう ふほう ふほう ふしつ

▶ admits competing possibilities?

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
Heuristics						

Interpretation: Tentative answers:

Short times:

- ▶ Only a few changes possible
- Everybody nature
- Only one possible history

Not-too-short times:

- ▶ System relaxes first and forms $\hat{\omega}'_{\Lambda}$ at the last moment
- Everybody nurture
- Possibility of multiple histories:
 - ▶ Histories start from typical configurations of different phases

- ▶ Same volume cost, different boundary cost
- The configuration around $\widehat{\omega}'_{\Lambda}$ may tilt overall cost

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
Heuristics						

Interpretation: Tentative answers:

Short times:

- ▶ Only a few changes possible
- Everybody nature
- Only one possible history

Not-too-short times:

- ▶ System relaxes first and forms $\hat{\omega}'_{\Lambda}$ at the last moment
- Everybody nurture
- Possibility of multiple histories:
 - ▶ Histories start from typical configurations of different phases

- ▶ Same volume cost, different boundary cost
- The configuration around $\widehat{\omega}_{\Lambda}'$ may tilt overall cost

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
Heuristics						

Interpretation: Tentative answers:

Short times:

- ▶ Only a few changes possible
- Everybody nature
- Only one possible history

Not-too-short times:

- ▶ System relaxes first and forms $\hat{\omega}'_{\Lambda}$ at the last moment
- Everybody nurture
- Possibility of multiple histories:
 - ▶ Histories start from typical configurations of different phases

- ▶ Same volume cost, different boundary cost
- The configuration around $\widehat{\omega}'_{\Lambda}$ may tilt overall cost

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
Heuristics						

Non-Gibbsianness as discontinuity

Conclusion:

Non-Gibbsianness = history with discontinuous dependence on the surrounding configuration

Scenario:

- Single history = Gibbsianness
- ▶ Multiple histories can lead to non-Gibbsianness:

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
Heuristics						

Non-Gibbsianness as discontinuity

Conclusion:

Non-Gibbsianness = history with discontinuous dependence on the surrounding configuration

Scenario:

Single history = Gibbsianness

• Multiple histories can lead to non-Gibbsianness:

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
Heuristics						

Non-Gibbsianness as discontinuity

Conclusion:

Non-Gibbsianness = history with discontinuous dependence on the surrounding configuration

Scenario:

- ► Single history = Gibbsianness
- ▶ Multiple histories can lead to non-Gibbsianness:

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	•00
Prehistory	y					

Wake-up calls for non-Gibbsianness

Griffiths and Pearce (1978): peculiarities in Renormalized measures

Israel (1979): peculiarity=absence of quasilocality

Other examples (1987–9):

- Spin contractions (Lebowitz-Maes, Dorlas-van Enter)
- ► Lattice projections (Schonmann)
- Stationary measures of stochastic evolutions (Lebowitz-Schonmann)

Systematization and overview: van Enter, F. and Sokal (1993)

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	•00
Prehistory	/					

Wake-up calls for non-Gibbsianness

Griffiths and Pearce (1978): peculiarities in Renormalized measures

Israel (1979): peculiarity=absence of quasilocality

Other examples (1987–9):

- ▶ Spin contractions (Lebowitz-Maes, Dorlas-van Enter)
- ► Lattice projections (Schonmann)
- Stationary measures of stochastic evolutions (Lebowitz-Schonmann)

Systematization and overview: van Enter, F. and Sokal (1993)

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	•00
Prehistory	/					

Wake-up calls for non-Gibbsianness

Griffiths and Pearce (1978): peculiarities in Renormalized measures

Israel (1979): peculiarity=absence of quasilocality

Other examples (1987–9):

- ▶ Spin contractions (Lebowitz-Maes, Dorlas-van Enter)
- ► Lattice projections (Schonmann)
- Stationary measures of stochastic evolutions (Lebowitz-Schonmann)

Systematization and overview: van Enter, F. and Sokal (1993)

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
State of a	ffairs					

State of affairs: Positive side

Extensive catalog of instances

- Renormalization transformations
- ► Spin-flip evolutions (simulations)
- ▶ Joint measures of disordered systems
- ▶ Intermittency in dynamical systems

Good knowledge of non-Gibbsianness mechanisms

- Physical: hidden variables, ph. transitions of restricted systems
- ▶ Mathematical: lack of quasilocality, lack of non-nullness

Clarification of conceptual issues

▶ Renormalization transformations are not discontinuous

ション ふゆ マ キャット キャット しょう

▶ Morita approach for disordered systems redeemed

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
State of a	affairs					

State of affairs: Positive side

Extensive catalog of instances

- ▶ Renormalization transformations
- ► Spin-flip evolutions (simulations)
- ▶ Joint measures of disordered systems
- ▶ Intermittency in dynamical systems

Good knowledge of non-Gibbsianness mechanisms

- Physical: hidden variables, ph. transitions of restricted systems
- ▶ Mathematical: lack of quasilocality, lack of non-nullness

Clarification of conceptual issues

▶ Renormalization transformations are not discontinuous

ション ふゆ マ キャット キャット しょう

▶ Morita approach for disordered systems redeemed

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
State of a	ffairs					

State of affairs: Positive side

Extensive catalog of instances

- Renormalization transformations
- ► Spin-flip evolutions (simulations)
- ▶ Joint measures of disordered systems
- ▶ Intermittency in dynamical systems

Good knowledge of non-Gibbsianness mechanisms

- Physical: hidden variables, ph. transitions of restricted systems
- ▶ Mathematical: lack of quasilocality, lack of non-nullness

Clarification of conceptual issues

- ▶ Renormalization transformations are not discontinuous
- ▶ Morita approach for disordered systems redeemed

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
State of af	fairs					

State of affairs: Negative side - Homework

Lack of answers to practitioners

- ▶ Calculations of critical exponents?
- ▶ Consequences for simulations or sampling schemes?
- Observable (numerical) consequence of non-Gibbsianness? (van Enter and Verbitskiy!)

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
State of af	fairs					

State of affairs: Negative side - Homework

Lack of answers to practitioners

- ► Calculations of critical exponents?
- ► Consequences for simulations or sampling schemes?
- Observable (numerical) consequence of non-Gibbsianness? (van Enter and Verbitskiy!)

Setup	Kernels	Gibbsian	NonGibbs	Renorm	Evolutions	Balance
0000	00000	000000000	0000	00000000	00000	000
State of af	fairs					

State of affairs: Negative side - Homework

Lack of answers to practitioners

- ▶ Calculations of critical exponents?
- ▶ Consequences for simulations or sampling schemes?
- Observable (numerical) consequence of non-Gibbsianness? (van Enter and Verbitskiy!)