Gibbs measures: definition, uses and abuses

Roberto Fernández
UtrechtUniversity

(A. van Enter, A. Sokal, Ch.-Ed. Pfister, R. Kotecký, R. Schonmann, S. Shlosman, A. Toom, F. den Hollander, F. Redig, A. Le Ny, R. Dobrushin, J, Lebowitz, C. Maes, C. Külske,...)

Stat mech à la Gibbs

Issue: to study systems with many components Examples:

- Particles in space: Each particle characterized by a position and a velocity
- Spins in a lattice (pixels, particles): Each spin has a finite number of possible values
- Look at finite "windows" (finite regions) Λ
- Replace detailed laws bv a probabilistic description

Stat mech à la Gibbs

Issue: to study systems with many components Examples:

- Particles in space: Each particle characterized by a position and a velocity
- Spins in a lattice (pixels, particles): Each spin has a finite number of possible values
Stat mech approach:
- Look at finite "windows" (finite regions) Λ

Stat mech à la Gibbs

Issue: to study systems with many components Examples:

- Particles in space: Each particle characterized by a position and a velocity
- Spins in a lattice (pixels, particles): Each spin has a finite number of possible values
Stat mech approach:
- Look at finite "windows" (finite regions) Λ
- Replace detailed laws by a probabilistic description

Stat mech à la Gibbs

Issue: to study systems with many components Examples:

- Particles in space: Each particle characterized by a position and a velocity
- Spins in a lattice (pixels, particles): Each spin has a finite number of possible values
Stat mech approach:
- Look at finite "windows" (finite regions) Λ
- Replace detailed laws by a probabilistic description
- Find the asymptotic behavior for Λ huge

Rough probabilistic prescription

Probability weights or densities

$$
\frac{\mathrm{e}^{-\beta H_{\lambda}}}{Z_{\Lambda}}
$$

where

Rough probabilistic prescription

Probability weights or densities

$$
\frac{\mathrm{e}^{-\beta H_{\lambda}}}{Z_{\Lambda}}
$$

where

- $H_{\Lambda}=$ Hamiltonian; must be sum of local terms so that $H_{\widetilde{\Lambda}}-H_{\Lambda} \sim|\widetilde{\Lambda} \backslash \Lambda|$ for $\widetilde{\Lambda} \subset \Lambda$
- Z_{Λ}
$=$ partition function (normailzation)

Rough probabilistic prescription

Probability weights or densities

$$
\frac{\mathrm{e}^{-\beta H_{\lambda}}}{Z_{\Lambda}}
$$

where

- $H_{\Lambda}=$ Hamiltonian; must be sum of local terms so that $H_{\widetilde{\Lambda}}-H_{\Lambda} \sim|\widetilde{\Lambda} \backslash \Lambda|$ for $\widetilde{\Lambda} \subset \Lambda$
- $\beta=$ inverse temperature ("coolness")

Rough probabilistic prescription

Probability weights or densities

$$
\frac{\mathrm{e}^{-\beta H_{\lambda}}}{Z_{\Lambda}}
$$

where

- $H_{\Lambda}=$ Hamiltonian; must be sum of local terms so that $H_{\widetilde{\Lambda}}-H_{\Lambda} \sim|\widetilde{\Lambda} \backslash \Lambda|$ for $\widetilde{\Lambda} \subset \Lambda$
- $\beta=$ inverse temperature ("coolness")
- $Z_{\Lambda}=$ partition function (normailzation). Physics info:

$$
\lim _{\Lambda} \frac{1}{|\Lambda|} \log Z_{\Lambda}=\text { pressure or free enegy }
$$

Set up: Finite-spin lattice systems

- Lattice $=$ Countable set $\mathbb{L}\left(\right.$ e.g. $\left.\mathbb{L}=\mathbb{Z}^{d}\right)$
- sites $x \in \mathbb{L}$
- finite regions $\Lambda, \Gamma \Subset \mathbb{L}$
- Single-spin space S, here finite (e.g. Ising spins: $S=\{-1,1\})$
- Configurations: $\Omega \ni \omega=\left(\omega_{x}\right)_{x \in \mathbb{L}}$

Notation:

Set up: Finite-spin lattice systems

- Lattice $=$ Countable set \mathbb{L} (e.g. $\left.\mathbb{L}=\mathbb{Z}^{d}\right)$
- sites $x \in \mathbb{L}$
- finite regions $\Lambda, \Gamma \Subset \mathbb{L}$
- Single-spin space S, here finite (e.g. Ising spins: $S=\{-1,1\})$
- Configuration space $\Omega=S^{\mathbb{L}}$ (A copy of S at each site)
- Notation: $\Omega_{\Lambda}:=S^{\Lambda}$

Set up: Finite-spin lattice systems

- Lattice $=$ Countable set \mathbb{L} (e.g. $\left.\mathbb{L}=\mathbb{Z}^{d}\right)$
- sites $x \in \mathbb{L}$
- finite regions $\Lambda, \Gamma \Subset \mathbb{L}$
- Single-spin space S, here finite (e.g. Ising spins: $S=\{-1,1\})$
- Configuration space $\Omega=S^{\mathbb{L}}$ (A copy of S at each site)
- Notation: $\Omega_{\Lambda}:=S^{\Lambda}$
- Configurations: $\Omega \ni \omega=\left(\omega_{x}\right)_{x \in \mathbb{L}}$ Notation:
- $\Omega_{\Lambda} \ni \omega_{\Lambda}=\left(\omega_{x}\right)_{x \in \Lambda}$
${ }^{-} \omega_{\Lambda} \eta_{\Lambda^{c}}=\omega_{\Lambda} \eta$

Basic kernels

Formally, finite window $=$ finite region of an infinite system:

- Inside Λ : probability measure

Basic kernels

Formally, finite window $=$ finite region of an infinite system:

- Inside Λ : probability measure
- Outside Λ : fixed configuration (external condition)

Basic kernels

Formally, finite window $=$ finite region of an infinite system:

- Inside Λ : probability measure
- Outside Λ : fixed configuration (external condition)

That is, a family of probability measures

$$
\pi\left(\cdot \mid \omega_{\Lambda^{\mathrm{c}}}\right)
$$

Basic kernels

Formally, finite window $=$ finite region of an infinite system:

- Inside Λ : probability measure
- Outside Λ : fixed configuration (external condition)

That is, a family of probability measures

$$
\pi\left(\cdot \mid \omega_{\Lambda^{c}}\right)
$$

or, more precisely, a kernel with two slots $\pi(\mid)$

Basic kernels

Formally, finite window $=$ finite region of an infinite system:

- Inside Λ : probability measure
- Outside Λ : fixed configuration (external condition)

That is, a family of probability measures

$$
\pi\left(\cdot \mid \omega_{\Lambda^{c}}\right)
$$

or, more precisely, a kernel with two slots $\pi(\mid)$
This is a probability kernel

Basic kernels

Formally, finite window $=$ finite region of an infinite system:

- Inside Λ : probability measure
- Outside Λ : fixed configuration (external condition)

That is, a family of probability measures

$$
\pi\left(\cdot \mid \omega_{\Lambda^{c}}\right)
$$

or, more precisely, a kernel with two slots $\pi(\mid)$
This is a probability kernel
Need some formalization

Measure-theoretical and topological set-up

Gibbsianness: interplay between topology and measure-theory

- S endowed with discrete topology and σ-algebra
- Ω endowed with the product topology and σ-algebra

Measure-theoretical and topological set-up

Gibbsianness: interplay between topology and measure-theory

- S endowed with discrete topology and σ-algebra
- Ω endowed with the product topology and σ-algebra

In more detail:

- $\mathcal{F}=\sigma$-algebra generated by the cylinders

$$
C_{\sigma_{\Lambda}}=\left\{\omega \in \Omega: \omega_{\Lambda}=\sigma_{\Lambda}\right\}
$$

- $\mathcal{F}_{\Gamma}=\sigma$-algebra generated by cylinders with basis in $\Gamma \subset \mathbb{L}$

$$
C_{\sigma_{\Lambda}}, \Lambda \subset \Gamma
$$

Measure-theoretical and topological set-up

Gibbsianness: interplay between topology and measure-theory

- S endowed with discrete topology and σ-algebra
- Ω endowed with the product topology and σ-algebra

In more detail:

- $\mathcal{F}=\sigma$-algebra generated by the cylinders

$$
C_{\sigma_{\Lambda}}=\left\{\omega \in \Omega: \omega_{\Lambda}=\sigma_{\Lambda}\right\}
$$

- $\mathcal{F}_{\Gamma}=\sigma$-algebra generated by cylinders with basis in $\Gamma \subset \mathbb{L}$

$$
C_{\sigma_{\Lambda}}, \Lambda \subset \Gamma
$$

- Topology also generated by the cylinders
- cylinders are open
- continuous functions are measurable

Locality and continuity

f is a local function if

- It depends only on the spins on a finite region
- $\exists \Gamma \Subset \mathbb{L}$ such that $f(\omega)=f(\sigma)$ whenever $\omega_{\Gamma}=\sigma_{\Gamma}$
- $\exists \Gamma \Subset \mathbb{L}$ such that $\left(f \in \mathcal{F}_{\Gamma}\right)$
- Local functions are continuous
\rightarrow More generally: f is continuous iff it is quasilocal

Locality and continuity

f is a local function if

- It depends only on the spins on a finite region
- $\exists \Gamma \Subset \mathbb{L}$ such that $f(\omega)=f(\sigma)$ whenever $\omega_{\Gamma}=\sigma_{\Gamma}$
- $\exists \Gamma \Subset \mathbb{L}$ such that $\left(f \in \mathcal{F}_{\Gamma}\right)$

Properties:

- Local functions are continuous
- More generally: f is continuous iff, it is quasilocal

$$
\sup _{\omega \in \Omega} \sup _{\sigma \in \Omega}\left|f\left(\omega_{\Lambda_{n}} \sigma\right)-f(\omega)\right| \xrightarrow[n \rightarrow \infty]{ } 0
$$

Probability kernels

Definition

A probability kernel Ψ from a probability space (\mathcal{A}, Σ) to another probability space $\left(\mathcal{A}^{\prime}, \Sigma^{\prime}\right)$ is a function

$$
\Psi(\cdot \mid \cdot): \Sigma^{\prime} \times \mathcal{A} \longrightarrow[0,1]
$$

such that
(i) $\Psi(\cdot \mid \omega)$ is a probability measure on $\left(\mathcal{A}^{\prime}, \Sigma^{\prime}\right)$ for each $\omega \in \mathcal{A}$;
(ii) $\Psi\left(A^{\prime} \mid \cdot\right)$ is Σ-measurable for each $A^{\prime} \in \Sigma^{\prime}$.

Equilibrium systems in stat mech

System in $\Lambda \Subset \mathbb{L}$ described by a probability kernel

$$
\pi_{\Lambda}(\cdot \mid \cdot) \text { from }(\Omega, \mathcal{F}) \text { to itself }
$$

where

$$
\begin{aligned}
\pi_{\Lambda}(f \mid \omega)= & \text { equilibrium value of } f \text { when the } \\
& \text { configuration outside } \Lambda \text { is } \omega
\end{aligned}
$$

Operations with kernels

Composition of kernels
Ψ from (\mathcal{A}, Σ) to $\left(\mathcal{A}^{\prime}, \Sigma^{\prime}\right)$ and Ψ^{\prime} from $\left(\mathcal{A}^{\prime} \Sigma^{\prime}\right)$ to $\left(\mathcal{A}^{\prime \prime}, \Sigma^{\prime \prime}\right)$,

$$
\left(\Psi \Psi^{\prime}\right)\left(A^{\prime \prime} \mid \omega\right)=\int_{\mathcal{A}^{\prime}} \Psi\left(d \omega^{\prime} \mid \omega\right) \Psi^{\prime}\left(A^{\prime \prime} \mid \omega^{\prime}\right)
$$

Operations with kernels

Composition of kernels
Ψ from (\mathcal{A}, Σ) to $\left(\mathcal{A}^{\prime}, \Sigma^{\prime}\right)$ and Ψ^{\prime} from $\left(\mathcal{A}^{\prime} \Sigma^{\prime}\right)$ to $\left(\mathcal{A}^{\prime \prime}, \Sigma^{\prime \prime}\right)$,

$$
\left(\Psi \Psi^{\prime}\right)\left(A^{\prime \prime} \mid \omega\right)=\int_{\mathcal{A}^{\prime}} \Psi\left(d \omega^{\prime} \mid \omega\right) \Psi^{\prime}\left(A^{\prime \prime} \mid \omega^{\prime}\right)
$$

Linear transformations of measures

$$
\begin{array}{ccc}
\mathcal{P}(\mathcal{A}, \Sigma) & \longrightarrow \mathcal{P}\left(\mathcal{A}^{\prime}, \Sigma^{\prime}\right) \\
\mu & \longmapsto \mu^{\prime}=\mu \Psi \\
\mu^{\prime}\left(A^{\prime}\right)=\int_{\mathcal{A}} \mu(d \omega) \Psi\left(A^{\prime} \mid \omega\right)
\end{array}
$$

Equilibrium condition

System in $\Lambda \Subset \mathbb{L}$ described by a probability kernel $\pi_{\Lambda}(\cdot \mid \cdot)$ Equilibrium in Λ iff equilibrium in every box $\Lambda^{\prime} \subset \Lambda$:

Equilibrium condition

System in $\Lambda \Subset \mathbb{L}$ described by a probability kernel $\pi_{\Lambda}(\cdot \mid \cdot)$
Equilibrium in Λ iff equilibrium in every box $\Lambda^{\prime} \subset \Lambda$:

Equilibrium condition

System in $\Lambda \Subset \mathbb{L}$ described by a probability kernel $\pi_{\Lambda}(\cdot \mid \cdot)$
Equilibrium in Λ iff equilibrium in every box $\Lambda^{\prime} \subset \Lambda$:

$$
\pi_{\Lambda}(f \mid \omega)=\pi_{\Lambda}\left(\pi_{\Lambda^{\prime}}(f \mid \cdot) \mid \omega\right) \quad\left(\Lambda^{\prime} \subset \Lambda \Subset \mathbb{L}\right)
$$

The notion of specification

Specification:

Family $\Pi=\left\{\pi_{\Lambda}: \Lambda \Subset \mathbb{L}\right\}$ of prob. kern. from (Ω, \mathcal{F}) to itself s.t.

The notion of specification

Specification:

Family $\Pi=\left\{\pi_{\Lambda}: \Lambda \Subset \mathbb{L}\right\}$ of prob. kern. from (Ω, \mathcal{F}) to itself s.t.
(i) $\pi_{\Lambda}(f \mid \cdot) \in \mathcal{F}_{\Lambda^{c}}$ for each $\Lambda \Subset \mathbb{L}$ and bounded measurable f
\square
iii) The family Π is consistent:

The notion of specification

Specification:

Family $\Pi=\left\{\pi_{\Lambda}: \Lambda \Subset \mathbb{L}\right\}$ of prob. kern. from (Ω, \mathcal{F}) to itself s.t.
(i) $\pi_{\Lambda}(f \mid \cdot) \in \mathcal{F}_{\Lambda^{c}}$ for each $\Lambda \Subset \mathbb{L}$ and bounded measurable f
(ii) Each π_{Λ} is proper: If $g \in \mathcal{F}_{\Lambda^{c}}$,

$$
\pi_{\Lambda}(g f \mid \omega)=g(\omega) \pi_{\Lambda}(f \mid \omega)
$$

for all $\omega \in \Omega$ and bounded measurable f

The notion of specification

Specification:

Family $\Pi=\left\{\pi_{\Lambda}: \Lambda \Subset \mathbb{L}\right\}$ of prob. kern. from (Ω, \mathcal{F}) to itself s.t.
(i) $\pi_{\Lambda}(f \mid \cdot) \in \mathcal{F}_{\Lambda^{c}}$ for each $\Lambda \Subset \mathbb{L}$ and bounded measurable f
(ii) Each π_{Λ} is proper: If $g \in \mathcal{F}_{\Lambda^{c}}$,

$$
\pi_{\Lambda}(g f \mid \omega)=g(\omega) \pi_{\Lambda}(f \mid \omega)
$$

for all $\omega \in \Omega$ and bounded measurable f
(iii) The family Π is consistent:

$$
\pi_{\Lambda} \pi_{\Lambda^{\prime}}=\pi_{\Lambda} \quad \text { if } \Lambda^{\prime} \subset \Lambda \Subset \mathbb{L}
$$

Consistent measures

Definition
μ on \mathcal{F} is consistent with a specification $\Pi=\left\{\pi_{\Lambda}: \Lambda \Subset \mathbb{L}\right\}$ if

$$
\mu \pi_{\Lambda}=\mu \quad \text { for each } \Lambda \Subset \mathbb{L}
$$

(DLR equations)

Consistent measures

Definition
μ on \mathcal{F} is consistent with a specification $\Pi=\left\{\pi_{\Lambda}: \Lambda \Subset \mathbb{L}\right\}$ if

$$
\mu \pi_{\Lambda}=\mu \quad \text { for each } \Lambda \Subset \mathbb{L}
$$

(DLR equations)
Remarks

- Several consistent measures $=$ first-order phase transition

Consistent measures

Definition
μ on \mathcal{F} is consistent with a specification $\Pi=\left\{\pi_{\Lambda}: \Lambda \Subset \mathbb{L}\right\}$ if

$$
\mu \pi_{\Lambda}=\mu \quad \text { for each } \Lambda \Subset \mathbb{L}
$$

(DLR equations)
Remarks

- Several consistent measures $=$ first-order phase transition
- specification \sim system of regular conditional probabilities
- No apriori measure: conditions for all ω rather than a.s.

Consistent measures

Definition
μ on \mathcal{F} is consistent with a specification $\Pi=\left\{\pi_{\Lambda}: \Lambda \Subset \mathbb{L}\right\}$ if

$$
\mu \pi_{\Lambda}=\mu \quad \text { for each } \Lambda \Subset \mathbb{L}
$$

(DLR equations)

Remarks

- Several consistent measures $=$ first-order phase transition
- specification \sim system of regular conditional probabilities
- No apriori measure: conditions for all ω rather than a.s.
- Stat. mech.: conditional probabilities in search of measures

Boltzmann prescription

Heuristically: $\pi_{\Lambda} \propto \mathrm{e}^{-\beta H_{\Lambda}}$

- β inverse temperature (to be absorbed)
- H_{Λ} Hamiltonian $=$ sum of local terms

Formally:
Interaction: family $\Phi=\left\{\phi_{A} \in \mathcal{F}_{A}: A \Subset \mathbb{L}\right\}$ Example: Ising interaction

Boltzmann prescription

Heuristically: $\pi_{\Lambda} \propto \mathrm{e}^{-\beta H_{\Lambda}}$

- β inverse temperature (to be absorbed)
- H_{Λ} Hamiltonian $=$ sum of local terms

Formally:

Interaction: family $\Phi=\left\{\phi_{A} \in \mathcal{F}_{A}: A \Subset \mathbb{L}\right\}$
Example: Ising interaction

$$
\phi_{A}(\omega)=\left\{\begin{array}{cl}
-J_{\{x, y\}} \omega_{x} \omega_{y} & \text { if } A=\{x, y\} \text { with }|x-y|=1 \\
-h_{x} \omega_{x} & \text { if } A=\{x\} \\
0 & \text { otherwise }
\end{array}\right.
$$

Gibbsian specifications

Hamiltonian for $\Lambda \Subset \mathbb{L}$ with frozen external condition ω

$$
H_{\Lambda}^{\Phi}\left(\sigma_{\Lambda} \mid \omega_{\Lambda^{c}}\right)=\sum_{A \Subset \mathbb{L}: A \cap \Lambda \neq \emptyset} \phi_{A}\left(\sigma_{\Lambda} \omega\right)
$$

Existence: Φ uniformly absolutely summable $\left(\Phi \in \mathcal{B}_{1}\right)$ if

A Gibbs measures for Φ is a measure consistent with Π^{Φ}

Hamiltonian for $\Lambda \Subset \mathbb{L}$ with frozen external condition ω

$$
H_{\Lambda}^{\Phi}\left(\sigma_{\Lambda} \mid \omega_{\Lambda^{c}}\right)=\sum_{A \Subset \mathbb{L}: A \cap \Lambda \neq \emptyset} \phi_{A}\left(\sigma_{\Lambda} \omega\right)
$$

Existence: Φ uniformly absolutely summable $\left(\Phi \in \mathcal{B}_{1}\right)$ if

$$
\sum_{A \ni x}\left\|\Phi_{A}\right\|_{\infty}<\infty \quad \text { for each } x \in \mathbb{L}
$$

Hamiltonian for $\Lambda \Subset \mathbb{L}$ with frozen external condition ω

$$
H_{\Lambda}^{\Phi}\left(\sigma_{\Lambda} \mid \omega_{\Lambda^{c}}\right)=\sum_{A \Subset \mathbb{L}: A \cap \Lambda \neq \emptyset} \phi_{A}\left(\sigma_{\Lambda} \omega\right)
$$

Existence: Φ uniformly absolutely summable $\left(\Phi \in \mathcal{B}_{1}\right)$ if

$$
\sum_{A \ni x}\left\|\Phi_{A}\right\|_{\infty}<\infty \quad \text { for each } x \in \mathbb{L}
$$

Definition
The Gibbsian specification for $\Phi \in \mathcal{B}_{1}$ has kernels

$$
\pi_{\Lambda}^{\Phi}\left(C_{\sigma_{\Lambda}} \mid \omega\right)=\frac{\mathrm{e}^{-H_{\Lambda}^{\Phi}\left(\sigma_{\Lambda} \mid \omega_{\Lambda} \mathrm{c}\right)}}{\text { Norm. }}
$$

A Gibbs measures for Φ is a measure consistent with Π^{Φ}

Gibbsianness and its properties

Definition

- Π is a Gibbsian specification if $\exists \Phi \in \mathcal{B}_{1}$ s.t. $\Pi=\Pi^{\Phi}$
- μ is a Gibbs measure if it is consistent with some Π^{Φ}

Gibbsianness

Gibbsian description (1968): equilibrium statistical mechanics Exploited in other settings: - Renormalized measures - Spin-flin evolutions - Particle systems - Dynamical systems

Gibbsian description (1968): equilibrium statistical mechanics
Exploited in other settings:

- Renormalized measures
- Spin-flip evolutions
- Particle systems
- Dvnamical svstems
- Quenched disordered systems

Gibbsian description (1968): equilibrium statistical mechanics
Exploited in other settings:

- Renormalized measures
- Spin-flip evolutions
- Particle systems
- Dynamical systems
- Quenched disordered systems.

Gibbsian description (1968): equilibrium statistical mechanics
Exploited in other settings:

- Renormalized measures
- Spin-flip evolutions
- Particle systems
- Dynamical systems
- Quenched disordered systems.

Gibbsianness

$10^{6} \$$ question: How to tell whether a measure is Gibbsian?

Gibbsianness

$10^{6} \$$ question: How to tell whether a measure is Gibbsian?

Theorem (Kozlov)

A specification is Gibbsian if, and only if, it is both
(i) Uniformly non-null: for each $\Lambda \Subset \mathbb{L}$

$$
\inf _{\sigma_{\Lambda} \in \Omega_{\Lambda}, \omega_{\Lambda}^{\mathrm{c}} \in \Omega_{\Lambda^{c}}} \pi_{\Lambda}\left(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda^{\mathrm{c}}}\right)=: c_{\Lambda}>0
$$

(ii) Quasilocal (almost Markovian): for each $\Lambda \Subset \Lambda, \sigma_{\Lambda} \in \Omega_{\Lambda}$

$$
\sup _{\omega, \eta, \tilde{\eta} \in \Omega}\left|\pi_{\Lambda}\left(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda_{n}} \eta\right)-\pi_{\Lambda}\left(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda_{n}} \widetilde{\eta}\right)\right| \underset{n \rightarrow \infty}{ } 0
$$

Gibbsianness

$10^{6} \$$ question: How to tell whether a measure is Gibbsian?

Theorem (Kozlov)

A specification is Gibbsian if, and only if, it is both
(i) Uniformly non-null: for each $\Lambda \Subset \mathbb{L}$

$$
\inf _{\sigma_{\Lambda} \in \Omega_{\Lambda}, \omega_{\Lambda}^{\mathrm{c}} \in \Omega_{\Lambda^{c}}} \pi_{\Lambda}\left(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda^{\mathrm{c}}}\right)=: c_{\Lambda}>0
$$

(ii) Quasilocal (almost Markovian): for each $\Lambda \Subset \Lambda, \sigma_{\Lambda} \in \Omega_{\Lambda}$

$$
\sup _{\omega, \eta, \tilde{\eta} \in \Omega}\left|\pi_{\Lambda}\left(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda_{n}} \eta\right)-\pi_{\Lambda}\left(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda_{n}} \widetilde{\eta}\right)\right| \underset{n \rightarrow \infty}{ } 0
$$

[C.f. Markovian:

$$
\left.\pi_{\Lambda}\left(C_{\sigma_{\Lambda}} \mid \omega_{\partial_{r} \Lambda} \eta\right)-\pi_{\Lambda}\left(C_{\sigma_{\Lambda}} \mid \omega_{\partial_{r} \Lambda} \widetilde{\eta}\right)=0\right]
$$

Gibbsianness

Comments

- Non-nullness $=$ no forbidden configuration
- Info from infinity only through intermediate fluctuations - Experiment independent on state of Andromeda galaxy

Comments

- Non-nullness $=$ no forbidden configuration
- Quasilocal =
- Info from infinity only through intermediate fluctuations
- Experiment independent on state of Andromeda galaxy

When is a measure non-quasilocal

Notation: $\mu_{\Lambda}(f \mid \omega)=E_{\mu}\left(f \mid \mathcal{F}_{\Lambda^{c}}\right)(\omega)$
Key observations:

- μ is quasilocal if consistent with no quasilocal specification

When is a measure non-quasilocal

Notation: $\mu_{\Lambda}(f \mid \omega)=E_{\mu}\left(f \mid \mathcal{F}_{\Lambda^{c}}\right)(\omega)$
Key observations:

- μ is quasilocal if consistent with no quasilocal specification
- Need violation at a single $\widehat{\omega}$ for a single μ_{Λ} for a single f

When is a measure non-quasilocal

Notation: $\mu_{\Lambda}(f \mid \omega)=E_{\mu}\left(f \mid \mathcal{F}_{\Lambda^{c}}\right)(\omega)$
Key observations:

- μ is quasilocal if consistent with no quasilocal specification
- Need violation at a single $\widehat{\omega}$ for a single μ_{Λ} for a single f
- Discontinuity must be essential (eg. for open neighbhds)

When is a measure non-quasilocal

Notation: $\mu_{\Lambda}(f \mid \omega)=E_{\mu}\left(f \mid \mathcal{F}_{\Lambda^{c}}\right)(\omega)$
Key observations:

- μ is quasilocal if consistent with no quasilocal specification
- Need violation at a single $\widehat{\omega}$ for a single μ_{Λ} for a single f
- Discontinuity must be essential (eg. for open neighbhds)

Recipe: Find

- Sequence of frozen regions $\Lambda_{N_{i}}$
- "Tilting" configurations $\eta^{ \pm}$
- Larger annulus $\Lambda_{R_{i}}$ to define open sets

When is a measure non-quasilocal

Notation: $\mu_{\Lambda}(f \mid \omega)=E_{\mu}\left(f \mid \mathcal{F}_{\Lambda^{c}}\right)(\omega)$
Key observations:

- μ is quasilocal if consistent with no quasilocal specification
- Need violation at a single $\widehat{\omega}$ for a single μ_{Λ} for a single f
- Discontinuity must be essential (eg. for open neighbhds)

Recipe: Find

- Sequence of frozen regions $\Lambda_{N_{i}}$
- "Tilting" configurations $\eta^{ \pm}$
- Larger annulus $\Lambda_{R_{i}}$ to define open sets

Show that

$$
\mu_{\Lambda}\left(f \mid \widehat{\omega}_{\Lambda_{N_{i}}} \eta_{\Lambda_{R_{i}} \backslash \Lambda_{N_{i}}}^{+}\right) \text {and } \mu_{\Lambda}\left(f \mid \widehat{\omega}_{\Lambda_{N_{i}}} \eta_{\Lambda_{R_{i}} \backslash \Lambda_{N_{i}}}^{+}\right)
$$

are different

Non-Gibbsianness criterion:

μ not quasilocal if there exist

- a finite region Λ (often $|\Lambda|=1)$
- a "special" configuration $\widehat{\omega}$
- a (quasi)local function f
- a diverging sequence of regions $\left(\Lambda_{N_{i}}\right)_{i \geq 1}$
- some $\delta>0$ (independent of i)

Non-Gibbsianness criterion:

μ not quasilocal if there exist

- a finite region Λ (often $|\Lambda|=1)$
- a "special" configuration $\widehat{\omega}$
- a (quasi)local function f
- a diverging sequence of regions $\left(\Lambda_{N_{i}}\right)_{i \geq 1}$
- some $\delta>0$ (independent of i)
such that for each $i \geq 1$ there exist
(i) larger regions $\Lambda_{R_{i}}, R_{i}>N_{i}$
(ii) two configurations η^{+}, η^{-}(possibly i-dependent), with

Non-Gibbsianness criterion:

μ not quasilocal if there exist

- a finite region Λ (often $|\Lambda|=1)$
- a "special" configuration $\widehat{\omega}$
- a (quasi)local function f
- a diverging sequence of regions $\left(\Lambda_{N_{i}}\right)_{i \geq 1}$
- some $\delta>0$ (independent of i)
such that for each $i \geq 1$ there exist
(i) larger regions $\Lambda_{R_{i}}, R_{i}>N_{i}$
(ii) two configurations η^{+}, η^{-}(possibly i-dependent), with
$\varlimsup_{i \rightarrow \infty}\left|\mu_{\Lambda}\left(f \mid \widehat{\omega}_{\Lambda_{N_{i}}} \eta_{\Lambda_{R_{i}} \backslash \Lambda_{N_{i}}}^{+} \sigma^{+}\right)-\mu_{\Lambda}\left(f \mid \widehat{\omega}_{\Lambda_{N_{i}}} \eta_{\Lambda_{R_{i}} \backslash \Lambda_{N_{i}}}^{-} \sigma^{-}\right)\right| \geq \delta$
for every $\sigma^{ \pm} \in \Omega$

Mechanism: Hidden variables

Quasilocality: frozen spins shield influence of distant regions Non-quasilocality: info from afar even without fluctuations Mechanism?

Mechanism: Hidden variables

Quasilocality: frozen spins shield influence of distant regions Non-quasilocality: info from afar even without fluctuations Mechanism?
For transformed measures, original variables act as "hidden-variables"

Mechanism: Hidden variables

Quasilocality: frozen spins shield influence of distant regions Non-quasilocality: info from afar even without fluctuations Mechanism?

For transformed measures, original variables act as "hidden-variables"

- Freezing transformed vbles $=$ conditioning of original vbles
- These conditioned variables keep some freedom to fluctuate

Mechanism: Hidden variables

Quasilocality: frozen spins shield influence of distant regions Non-quasilocality: info from afar even without fluctuations Mechanism?

For transformed measures, original variables act as "hidden-variables"

- Freezing transformed vbles $=$ conditioning of original vbles
- These conditioned variables keep some freedom to fluctuate
- For particular ω the conditioned "hidden" system
- exhibit a phase transition
- hence, there is long-range order

Linear stochastic transformations

A linear stochastic transformation is defined by

- An initial or object space $S^{\mathbb{L}}$
- A transformed or image space $S^{\mathbb{L}^{\prime}}$
- A kernel τ from $S^{\mathbb{L}}$ to $S^{\mathbb{L}^{\prime}}$ where
- Stochastic evolutions: Image = evolved
- Renormalization transf.: Image $=$ renormalized

Linear stochastic transformations

A linear stochastic transformation is defined by

- An initial or object space $S^{\mathbb{L}}$
- A transformed or image space $S^{\mathbb{L}^{\prime}}$
- A kernel τ from $S^{\mathbb{L}}$ to ${S^{\prime \mathbb{L}^{\prime}}}^{\text {where }}$
$\tau\left(d \omega^{\prime} \mid \omega\right)=$ distribution of image spins when the initial spin configuration is ω

Linear stochastic transformations

A linear stochastic transformation is defined by

- An initial or object space $S^{\mathbb{L}}$
- A transformed or image space $S^{\prime \mathbb{L}^{\prime}}$
- A kernel τ from $S^{\mathbb{L}}$ to ${S^{\prime \mathbb{L}^{\prime}}}^{\text {where }}$
$\tau\left(d \omega^{\prime} \mid \omega\right)=$ distribution of image spins when the initial spin configuration is ω

Particular cases:

- Stochastic evolutions: Image $=$ evolved
- Renormalization transf.: Image $=$ renormalized

Block renormalization transformations

Definition: Kernel from $S^{\mathbb{L}}$ to $\left(S^{\prime}\right)^{\mathbb{L}^{\prime}}$ of the form

$$
\tau\left(d \omega^{\prime} \mid \omega\right)=\prod_{x^{\prime} \in \mathbb{L}^{\prime}} \tau_{x^{\prime}}\left(d \omega_{x^{\prime}}^{\prime} \mid \omega_{B_{x^{\prime}}}\right)
$$

Main examples: $\mathbb{L}^{\prime}=\mathbb{L}, B_{x^{\prime}}=\Lambda_{b-1}+b x^{\prime}$

Block renormalization transformations

Definition: Kernel from $S^{\mathbb{L}}$ to $\left(S^{\prime}\right)^{\mathbb{L}^{\prime}}$ of the form

$$
\tau\left(d \omega^{\prime} \mid \omega\right)=\prod_{x^{\prime} \in \mathbb{L}^{\prime}} \tau_{x^{\prime}}\left(d \omega_{x^{\prime}}^{\prime} \mid \omega_{B_{x^{\prime}}}\right)
$$

Main examples: $\mathbb{L}^{\prime}=\mathbb{L}, B_{x^{\prime}}=\Lambda_{b-1}+b x^{\prime}$
Particular case: Deterministic transformations

$$
\tau_{x^{\prime}}\left(\cdot \mid \omega_{B_{x^{\prime}}}\right)=\delta_{T_{x^{\prime}}\left(\omega_{B_{x^{\prime}}}\right.}(\cdot)
$$

Deterministic block RT

- Decimation: $S=S^{\prime}$

$$
\tau_{x^{\prime}}\left(\cdot \mid \omega_{B_{x^{\prime}}}\right)=\delta_{\omega_{b x^{\prime}}}
$$

Deterministic block RT

- Decimation: $S=S^{\prime}$

$$
\tau_{x^{\prime}}\left(\cdot \mid \omega_{B_{x^{\prime}}}\right)=\delta_{\omega_{b x^{\prime}}}
$$

- Spin contractions: $\quad S^{\prime} \underset{\neq}{\subsetneq} S, B_{x^{\prime}}=\left\{x^{\prime}\right\}$
- Sign fields: $S \subset \mathbb{R}$ symmetric,

$$
T_{x^{\prime}}\left(\omega_{x^{\prime}}\right)=\operatorname{sign}\left(\omega_{x^{\prime}}\right)
$$

- "Fuzzy" spins: $S=\cup_{i \in I} S_{i}$ (partition), $S^{\prime}=I$

$$
T_{x^{\prime}}\left(\cdot \mid \omega_{x^{\prime}}\right)=\sum_{i \in I} i \mathbb{1}_{\left\{\omega_{x^{\prime}} \in S_{i}\right\}}
$$

- Block average: $S^{\prime} \underset{\neq}{\supset} S$

$$
T_{x^{\prime}}\left(\omega_{B_{x^{\prime}}}\right)=\frac{1}{\left|B_{x^{\prime}}\right|} \sum_{y \in B_{x^{\prime}}} \omega_{y}
$$

- Majority rule: $S^{\prime}=S=\{-1,1\}$

$$
T_{x^{\prime}}\left(\omega_{B_{x^{\prime}}}\right)=\operatorname{sign}\left[\sum_{y \in B_{x^{\prime}}} \omega_{y}\right]
$$

Stochastic block RT

- Majority with even block: stochastic decision if

$$
\sum_{y \in B_{x^{\prime}}} \omega_{y}=0
$$

- p-Kadanoff transformation: $S=S^{\prime}$

$$
\tau_{x^{\prime}}\left(d \omega_{x^{\prime}}^{\prime} \mid \omega_{B_{x^{\prime}}}\right)=\frac{\exp \left[p \omega_{x^{\prime}}^{\prime} \sum_{y \in B_{x^{\prime}}} \omega_{y}\right]}{\text { Norm }} d \omega_{B_{x^{\prime}}}
$$

The question

Physicists: RT at Hamiltonian level

Success led to applications to 1st-order phase transitions. Th
$\left\{\mu_{1}, \cdots\right\} \longrightarrow\left\{\mu_{1}^{\prime}, \cdots\right\} \quad\left\{\mu_{1}, \cdots\right\} \quad \longrightarrow\left\{\mu_{1}^{\prime}, \cdots\right\}$

The question

Physicists: RT at Hamiltonian level

$$
\begin{array}{ccc}
\mu & \xrightarrow{\tau} & \mu^{\prime} \\
\uparrow & & \downarrow \\
\Phi & \xrightarrow{\mathcal{R}} & \Phi^{\prime}
\end{array}
$$

Success led to applications to 1st-order phase transitions. Then,

The answer

In fact,

$$
\begin{array}{rlcccc}
\left\{\mu_{1}, \cdots\right\} & \rightrightarrows & \left.\exists \mu_{1}^{\prime}, \cdots\right\} \\
\uparrow \uparrow \uparrow & & \searrow \downarrow \downarrow & \text { or } & \left\{\mu_{1}, \cdots\right\} & \\
\uparrow \uparrow \uparrow & & \left\{\mu_{1}^{\prime}, \cdots\right\} \\
\Phi & \longrightarrow & \Phi^{\prime} & & \Phi & \not \longrightarrow
\end{array}
$$

and even

Israel: 2×2-decimation of the Ising model

- $\widehat{\omega}_{x^{\prime}}^{\prime}=(-1)^{\left|x^{\prime}\right|}=$ decorated Ising model on internal spins
- Model equivalent to an Ising model at a higher temperature

Israel: 2×2-decimation of the Ising model

- $\widehat{\omega}_{x^{\prime}}^{\prime}=(-1)^{\left|x^{\prime}\right|}=$ decorated Ising model on internal spins
- Model equivalent to an Ising model at a higher temperature
- $\eta^{\prime}{ }_{x^{\prime}}^{\prime}= \pm 1$ in an annulus chooses the " \pm "-phase

Israel: 2×2-decimation of the Ising model

- $\widehat{\omega}_{x^{\prime}}^{\prime}=(-1)^{\left|x^{\prime}\right|}=$ decorated Ising model on internal spins
- Model equivalent to an Ising model at a higher temperature
- $\eta_{x^{\prime}}^{\prime \pm}= \pm 1$ in an annulus chooses the " \pm "-phase

Thus,

$$
\left.\begin{array}{rl}
\mu^{\prime}\left(\sigma_{0}^{\prime} \mid \widehat{\omega}_{\Lambda_{R}^{\prime}}^{\prime}(+1)_{\Lambda_{R+1}^{\prime} \backslash \Lambda_{R}^{\prime}} \sigma^{\prime+}\right)-\mu^{\prime}\left(\sigma_{0}^{\prime} \mid \widehat{\omega}_{\Lambda_{R}^{\prime}}^{\prime}(-1)_{\Lambda_{R+1}}^{\prime} \backslash \Lambda_{R}^{\prime}\right. \\
\sigma^{\prime-}
\end{array}\right)
$$

General case

Specification with densities proportional to

$$
\begin{aligned}
& \mathrm{e}^{-H_{\Lambda}^{\Phi}\left(\sigma_{\Lambda} \mid \omega_{\Lambda^{c}}\right)} \prod_{x^{\prime} \in B_{\Lambda}^{\prime}} T_{x^{\prime}}\left(\omega_{x^{\prime}}^{\prime} \mid\left(\sigma_{\Lambda} \omega\right)_{B_{x^{\prime}}}\right) \\
& \quad=\exp \left\{-H_{\Lambda}^{\Phi}\left(\sigma_{\Lambda} \mid \omega_{\Lambda^{c}}\right)+\sum_{x^{\prime} \in B_{\Lambda}^{\prime}} \log T_{x^{\prime}}\left(\omega_{x^{\prime}}^{\prime} \mid\left(\sigma_{\Lambda} \omega\right)_{B_{x^{\prime}}}\right)\right\}
\end{aligned}
$$

General case

Specification with densities proportional to

$$
\begin{aligned}
& \mathrm{e}^{-H_{\Lambda}^{\Phi}\left(\sigma_{\Lambda} \mid \omega_{\Lambda^{c}}\right)} \prod_{x^{\prime} \in B_{\Lambda}^{\prime}} T_{x^{\prime}}\left(\omega_{x^{\prime}}^{\prime} \mid\left(\sigma_{\Lambda} \omega\right)_{B_{x^{\prime}}}\right) \\
& \quad=\exp \left\{-H_{\Lambda}^{\Phi}\left(\sigma_{\Lambda} \mid \omega_{\Lambda^{c}}\right)+\sum_{x^{\prime} \in B_{\Lambda}^{\prime}} \log T_{x^{\prime}}\left(\omega_{x^{\prime}}^{\prime} \mid\left(\sigma_{\Lambda} \omega\right)_{B_{x^{\prime}}}\right)\right\}
\end{aligned}
$$

The image ω^{\prime} acts as "fields" on the original $\sigma_{\Lambda} \omega$

General case

Specification with densities proportional to

$$
\begin{aligned}
& \mathrm{e}^{-H_{\Lambda}^{\Phi}\left(\sigma_{\Lambda} \mid \omega_{\Lambda^{\mathrm{c}}}\right)} \prod_{x^{\prime} \in B_{\Lambda}^{\prime}} T_{x^{\prime}}\left(\omega_{x^{\prime}}^{\prime} \mid\left(\sigma_{\Lambda} \omega\right)_{B_{x^{\prime}}}\right) \\
& \quad=\exp \left\{-H_{\Lambda}^{\Phi}\left(\sigma_{\Lambda} \mid \omega_{\Lambda^{\mathrm{c}}}\right)+\sum_{x^{\prime} \in B_{\Lambda}^{\prime}} \log T_{x^{\prime}}\left(\omega_{x^{\prime}}^{\prime} \mid\left(\sigma_{\Lambda} \omega\right)_{B_{x^{\prime}}}\right)\right\}
\end{aligned}
$$

The image ω^{\prime} acts as "fields" on the original $\sigma_{\Lambda} \omega$
$\widehat{\omega}^{\prime}$ so that conditioned original spins have a phase transition.
In this way, all usual transformations lead to non-Gibbsianness (even outside the coexistence region)

Non-Gibbsianness in spin-flip evolutions

Simulations: spin-flip dynamics converging to a target measure (Metropolis, heath-bath, Glauber)

Often: ordered initial configuration
\qquad

Non-Gibbsianness in spin-flip evolutions

Simulations: spin-flip dynamics converging to a target measure (Metropolis, heath-bath, Glauber)

Often: ordered initial configuration
"Unquenching": high- T dynamics applied a low- T Gibbs state
Non-Gibbsianness enters into the picture

Results for parallel independent updating

$$
\begin{aligned}
& (h=0) \underset{0}{\stackrel{\text { Gibbs }}{\underset{n}{ }} \cdots \cdots \underset{n_{2}}{ } \cdots \quad \text { Non-G (NQL) }}
\end{aligned}
$$

Interpretation: The key questions

Which is the most probable history of an improbable configuration?

Is the (atypical) droplet $\widehat{\omega}_{\wedge}^{\prime}$ - Nurture: created by the dynamics? - Nature: created initially and survived

- is it uniquely defined by the final configuration? - admits compoting nossibilitios?

Interpretation: The key questions

Which is the most probable history of an improbable configuration?

Is the (atypical) droplet $\widehat{\omega}_{\Lambda}^{\prime}$

- Nurture: created by the dynamics?
- Nature: created initially and survived?
- is it uniquely defined by the final configuration?
- admits comneting nossihilities?

Interpretation: The key questions

Which is the most probable history of an improbable configuration?

Is the (atypical) droplet $\widehat{\omega}_{\Lambda}^{\prime}$

- Nurture: created by the dynamics?
- Nature: created initially and survived?

The history of $\widehat{\omega}_{\Lambda}^{\prime}$

- is it uniquely defined by the final configuration?
- admits competing possibilities?

Interpretation: Tentative answers:

Short times:

- Only a few changes possible
- Everybody nature
- Only one possible history

System relaxes first and forms $\widehat{\omega}_{\Lambda}^{\prime}$ at the last moment

- Everybody nurture
- Possibility of multiple histories:
- Histories start from typical configurations of different phases
> Same volume cost, different boundary cost
- The configuration around $\widehat{\omega}_{\Lambda}^{\prime}$ may tilt overall cost

Interpretation: Tentative answers:

Short times:

- Only a few changes possible
- Everybody nature
- Only one possible history

Not-too-short times:

- System relaxes first and forms $\widehat{\omega}_{\Lambda}^{\prime}$ at the last moment
- Everybody nurture

Interpretation: Tentative answers:

Short times:

- Only a few changes possible
- Everybody nature
- Only one possible history

Not-too-short times:

- System relaxes first and forms $\widehat{\omega}_{\Lambda}^{\prime}$ at the last moment
- Everybody nurture
- Possibility of multiple histories:
- Histories start from typical configurations of different phases
- Same volume cost, different boundary cost
- The configuration around $\widehat{\omega}_{\Lambda}^{\prime}$ may tilt overall cost

Non-Gibbsianness as discontinuity

Conclusion:

Non-Gibbsianness $=$ history with discontinuous dependence on the surrounding configuration

Non-Gibbsianness as discontinuity

Conclusion:

Non-Gibbsianness $=$ history with discontinuous dependence on the surrounding configuration

Scenario:

- Single history $=$ Gibbsianness
- Multiple histories can lead to non-Gibbsianness:

Non-Gibbsianness as discontinuity

Conclusion:

Non-Gibbsianness $=$ history with discontinuous dependence on the surrounding configuration

Scenario:

- Single history $=$ Gibbsianness
- Multiple histories can lead to non-Gibbsianness:

Wake-up calls for non-Gibbsianness

Griffiths and Pearce (1978): peculiarities in Renormalized measures

Israel (1979): peculiarity=absence of quasilocality
Other examples (1987-9):

- Spin contractions (Lebowitz-Maes, Dorlas-van Enter) - Lattice projections (Schonmann)
- Stationary measures of stochastic evolutions (Lebowitz-Schonmann)

Wake-up calls for non-Gibbsianness

Griffiths and Pearce (1978): peculiarities in Renormalized measures

Israel (1979): peculiarity=absence of quasilocality
Other examples (1987-9):

- Spin contractions (Lebowitz-Maes, Dorlas-van Enter)
- Lattice projections (Schonmann)
- Stationary measures of stochastic evolutions (Lebowitz-Schonmann)

Wake-up calls for non-Gibbsianness

Griffiths and Pearce (1978): peculiarities in Renormalized measures

Israel (1979): peculiarity=absence of quasilocality
Other examples (1987-9):

- Spin contractions (Lebowitz-Maes, Dorlas-van Enter)
- Lattice projections (Schonmann)
- Stationary measures of stochastic evolutions (Lebowitz-Schonmann)

Systematization and overview: van Enter, F. and Sokal (1993)

State of affairs: Positive side

Extensive catalog of instances

- Renormalization transformations
- Spin-flip evolutions (simulations)
- Joint measures of disordered systems
- Intermittency in dynamical systems

State of affairs: Positive side

Extensive catalog of instances

- Renormalization transformations
- Spin-flip evolutions (simulations)
- Joint measures of disordered systems
- Intermittency in dynamical systems

Good knowledge of non-Gibbsianness mechanisms

- Physical: hidden variables, ph. transitions of restricted systems
- Mathematical: lack of quasilocality, lack of non-nullness

State of affairs: Positive side

Extensive catalog of instances

- Renormalization transformations
- Spin-flip evolutions (simulations)
- Joint measures of disordered systems
- Intermittency in dynamical systems

Good knowledge of non-Gibbsianness mechanisms

- Physical: hidden variables, ph. transitions of restricted systems
- Mathematical: lack of quasilocality, lack of non-nullness

Clarification of conceptual issues

- Renormalization transformations are not discontinuous
- Morita approach for disordered systems redeemed

State of affairs: Negative side - Homework

Lack of answers to practitioners

- Calculations of critical exponents?
- Consequences for simulations or sampling schemes? - Observable (numerical) consequence of non-Gibbsianness? (van Enter and Verbitskiy!)

State of affairs: Negative side - Homework

Lack of answers to practitioners

- Calculations of critical exponents?
- Consequences for simulations or sampling schemes?
(van Enter and Verbitskiy!)

State of affairs: Negative side - Homework

Lack of answers to practitioners

- Calculations of critical exponents?
- Consequences for simulations or sampling schemes?
- Observable (numerical) consequence of non-Gibbsianness? (van Enter and Verbitskiy!)

