Gibbs measures: definition, uses and abuses

Roberto Fernández
Utrecht University

Motivation: stat mech

Stat mech à la Gibbs

Issue: to study systems with many components

Examples:

▶ *Particles in space*: Each particle characterized by a position and a velocity
▶ *Spins in a lattice* (pixels, particles): Each spin has a finite number of possible values

Stat mech approach:

▶ Look at finite “windows” (finite regions) Λ
▶ Replace detailed laws by a probabilistic description
▶ Find the asymptotic behavior for Λ huge
Motivation: stat mech

Stat mech ã la Gibbs

Issue: to study systems with many components

Examples:

- *Particles in space*: Each particle characterized by a position and a velocity
- *Spins in a lattice* (pixels, particles): Each spin has a finite number of possible values

Stat mech approach:

- Look at finite “windows” (finite regions) Λ
 - Replace detailed laws by a probabilistic description
 - Find the asymptotic behavior for Λ huge
Motivation: stat mech

Stat mech à la Gibbs

Issue: to study systems with many components
Examples:

- *Particles in space*: Each particle characterized by a position and a velocity
- *Spins in a lattice* (pixels, particles): Each spin has a finite number of possible values

Stat mech approach:

- Look at finite “windows” (finite regions) \(\Lambda \)
- Replace detailed laws by a probabilistic description
- Find the asymptotic behavior for \(\Lambda \) huge
Motivation: stat mech

Stat mech à la Gibbs

Issue: to study systems with many components

Examples:

- *Particles in space*: Each particle characterized by a position and a velocity

- *Spins in a lattice* (pixels, particles): Each spin has a finite number of possible values

Stat mech approach:

- Look at finite “windows” (finite regions) Λ

- Replace detailed laws by a probabilistic description

- Find the asymptotic behavior for Λ huge
Rough probabilistic prescription

Probability weights or densities

\[\frac{e^{-\beta H_{\Lambda}}}{Z_{\Lambda}} \]

where

- \(H_{\Lambda} \) = Hamiltonian; must be sum of local terms so that
 \(H_{\tilde{\Lambda}} - H_{\Lambda} \sim |\tilde{\Lambda} \setminus \Lambda| \) for \(\tilde{\Lambda} \subset \Lambda \)
- \(\beta \) = inverse temperature ("coolness")
- \(Z_{\Lambda} \) = partition function (normalization). Physics info:

\[\lim_{\Lambda} \frac{1}{|\Lambda|} \log Z_{\Lambda} = \text{pressure or free energy} \]
Rough probabilistic prescription

Probability weights or densities

$$\frac{e^{-\beta H_\lambda}}{Z_\Lambda}$$

where

- $H_\Lambda =$ Hamiltonian; must be sum of local terms so that $H_{\tilde{\Lambda}} - H_\Lambda \sim |\tilde{\Lambda} \setminus \Lambda|$ for $\tilde{\Lambda} \subset \Lambda$
- $\beta =$ inverse temperature (“coolness”)
- $Z_\Lambda =$ partition function (normalization). Physics info:

$$\lim_{\Lambda} \frac{1}{|\Lambda|} \log Z_\Lambda = \text{pressure or free energy}$$
Rough probabilistic prescription

Probability weights or densities

\[
e^{-\beta H_\Lambda} \frac{1}{Z_\Lambda}
\]

where

- \(H_\Lambda = \text{Hamiltonian}; \text{ must be sum of local terms so that } H_{\tilde{\Lambda}} - H_\Lambda \sim |\tilde{\Lambda} \setminus \Lambda| \text{ for } \tilde{\Lambda} \subset \Lambda \)
- \(\beta = \text{inverse temperature ("coolness")} \)
- \(Z_\Lambda = \text{partition function (normalization). Physics info:} \)

\[
\lim_{\Lambda} \frac{1}{|\Lambda|} \log Z_\Lambda = \text{pressure or free energy}
\]
Rough probabilistic prescription

Probability weights or densities

\[e^{-\beta H_\Lambda} \frac{1}{Z_\Lambda} \]

where

- \(H_\Lambda = \) Hamiltonian; must be sum of local terms so that \(H_{\tilde{\Lambda}} - H_\Lambda \sim |\tilde{\Lambda} \setminus \Lambda| \) for \(\tilde{\Lambda} \subset \Lambda \)
- \(\beta = \) inverse temperature ("coolness")
- \(Z_\Lambda = \) partition function (normalization). Physics info:

\[\lim_{\Lambda} \frac{1}{|\Lambda|} \log Z_\Lambda = \text{pressure or free energy} \]
Set up: Finite-spin lattice systems

- **Lattice** = Countable set \(\mathbb{L} \) (e.g. \(\mathbb{L} = \mathbb{Z}^d \))
 - sites \(x \in \mathbb{L} \)
 - finite regions \(\Lambda, \Gamma \subseteq \mathbb{L} \)

- **Single-spin space** \(S \), here finite (e.g. Ising spins: \(S = \{-1, 1\} \))

- **Configuration space** \(\Omega = S^\mathbb{L} \) (A copy of \(S \) at each site)
 - Notation: \(\Omega_\Lambda := S^\Lambda \)

- **Configurations**: \(\Omega \ni \omega = (\omega_x)_{x \in \mathbb{L}} \)
 - Notation:
 - \(\Omega_\Lambda \ni \omega_\Lambda = (\omega_x)_{x \in \Lambda} \)
 - \(\omega_\Lambda \eta_\Lambda^c = \omega_\Lambda \eta \)
Set up: Finite-spin lattice systems

- **Lattice** = Countable set \(\mathbb{L} \) (e.g. \(\mathbb{L} = \mathbb{Z}^d \))
 - sites \(x \in \mathbb{L} \)
 - finite regions \(\Lambda, \Gamma \subseteq \mathbb{L} \)
- **Single-spin space** \(S \), here finite (e.g. Ising spins: \(S = \{-1, 1\} \))
- **Configuration space** \(\Omega = S^\mathbb{L} \) (A copy of \(S \) at each site)
 - Notation: \(\Omega_\Lambda := S^\Lambda \)
- **Configurations**: \(\Omega \ni \omega = (\omega_x)_{x \in \mathbb{L}} \)
 - Notation:
 - \(\Omega_\Lambda \ni \omega_\Lambda = (\omega_x)_{x \in \Lambda} \)
 - \(\omega_\Lambda \eta_\Lambda^c = \omega_\Lambda \eta \)
Set up: Finite-spin lattice systems

- **Lattice** = Countable set \(\mathbb{L} \) (e.g. \(\mathbb{L} = \mathbb{Z}^d \))
 - sites \(x \in \mathbb{L} \)
 - finite regions \(\Lambda, \Gamma \subset \mathbb{L} \)

- **Single-spin space** \(S \), here finite (e.g. Ising spins: \(S = \{-1, 1\} \))

- **Configuration space** \(\Omega = S^\mathbb{L} \) (A copy of \(S \) at each site)
 - Notation: \(\Omega_\Lambda := S^\Lambda \)

- **Configurations**: \(\Omega \ni \omega = (\omega_x)_{x \in \mathbb{L}} \)
 - Notation:
 - \(\Omega_\Lambda \ni \omega_\Lambda = (\omega_x)_{x \in \Lambda} \)
 - \(\omega_\Lambda \eta_\Lambda^c = \omega_\Lambda \eta \)
Basic kernels

Formally, finite window = finite region of an infinite system:

- Inside Λ: probability measure
- Outside Λ: fixed configuration (external condition)

That is, a family of probability measures

$$\pi(\cdot \mid \omega_{\Lambda^c})$$

or, more precisely, a kernel with two slots $\pi(\cdot\mid\cdot)$

This is a probability kernel

Need some formalization
Basic kernels

Formally, finite window = finite region of an infinite system:

- Inside Λ: probability measure
- Outside Λ: fixed configuration (external condition)

That is, a family of probability measures

$$\pi(\cdot \mid \omega_{\Lambda^c})$$

or, more precisely, a kernel with two slots $\pi(\mid \cdot)$

This is a probability kernel

Need some formalization
Basic kernels

Formally, finite window = finite region of an infinite system:
 ▶ Inside Λ: probability measure
 ▶ Outside Λ: fixed configuration (external condition)
That is, a family of probability measures

$$\pi(\cdot | \omega_{\Lambda^c})$$

or, more precisely, a kernel with two slots $\pi(\cdot | \cdot)$

This is a probability kernel

Need some formalization
Basic kernels

Formally, finite window = finite region of an infinite system:

- Inside Λ: probability measure
- Outside Λ: fixed configuration (external condition)

That is, a family of probability measures

$$\pi(\cdot | \omega_{\Lambda^c})$$

or, more precisely, a kernel with two slots $\pi(\cdot | \cdot)$

This is a probability kernel

Need some formalization
Basic kernels

Formally, finite window = finite region of an infinite system:
 ▶ Inside Λ: probability measure
 ▶ Outside Λ: fixed configuration (external condition)

That is, a family of probability measures

$$\pi(\cdot | \omega_{\Lambda^c})$$

or, more precisely, a kernel with two slots $\pi(\cdot |)$

This is a probability kernel

Need some formalization
Basic kernels

Formally, finite window = finite region of an infinite system:

- Inside Λ: probability measure
- Outside Λ: fixed configuration (external condition)

That is, a family of probability measures

$$\pi(\cdot \mid \omega_{\Lambda^c})$$

or, more precisely, a kernel with two slots $\pi(\cdot)$

This is a *probability kernel*

Need some formalization
Measure-theoretical and topological set-up

Gibbsianness: interplay between topology and measure-theory

- S endowed with discrete topology and σ-algebra
- Ω endowed with the *product* topology and σ-algebra

In more detail:

- $\mathcal{F} = \sigma$-algebra generated by the cylinders
 \[
 C_{\sigma_\Lambda} = \{ \omega \in \Omega : \omega_\Lambda = \sigma_\Lambda \}
 \]
- $\mathcal{F}_\Gamma = \sigma$-algebra generated by cylinders with basis in $\Gamma \subset \mathcal{L}$
 \[
 C_{\sigma_\Lambda}, \Lambda \subset \Gamma
 \]
- Topology also generated by the cylinders
 - cylinders are open
 - continuous functions are measurable
Topology and measure structure

Measure-theoretical and topological set-up

Gibbsianness: interplay between topology and measure-theory

- S endowed with discrete topology and σ-algebra
- Ω endowed with the product topology and σ-algebra

In more detail:

- $\mathcal{F} = \sigma$-algebra generated by the cylinders

 \[
 C_{\sigma_\Lambda} = \{ \omega \in \Omega : \omega_\Lambda = \sigma_\Lambda \}
 \]

- $\mathcal{F}_\Gamma = \sigma$-algebra generated by cylinders with basis in $\Gamma \subset \mathbb{L}$

 \[
 C_{\sigma_\Lambda}, \ \Lambda \subset \Gamma
 \]

- Topology also generated by the cylinders
 - cylinders are open
 - continuous functions are measurable
Topology and measure structure

Measure-theoretical and topological set-up

Gibbsianness: interplay between topology and measure-theory

- S endowed with discrete topology and σ-algebra
- Ω endowed with the *product* topology and σ-algebra

In more detail:

- $\mathcal{F} = \sigma$-algebra generated by the cylinders

 \[C_{\sigma_\Lambda} = \{ \omega \in \Omega : \omega_\Lambda = \sigma_\Lambda \} \]

- $\mathcal{F}_\Gamma = \sigma$-algebra generated by cylinders with basis in $\Gamma \subset \mathbb{L}$

 \[C_{\sigma_\Lambda}, \, \Lambda \subset \Gamma \]

- Topology also generated by the cylinders
 - cylinders are open
 - continuous functions are measurable
Locality and continuity

\(f \) is a local function if

- It depends only on the spins on a finite region
- \(\exists \Gamma \subseteq \mathbb{L} \) such that \(f(\omega) = f(\sigma) \) whenever \(\omega_{\Gamma} = \sigma_{\Gamma} \)
- \(\exists \Gamma \subseteq \mathbb{L} \) such that \((f \in \mathcal{F}_\Gamma) \)

Properties:

- Local functions are continuous
- More generally: \(f \) is continuous iff, it is quasilocal

\[
\sup_{\omega \in \Omega} \sup_{\sigma \in \Omega} \left| f(\omega_{\Lambda_n} \sigma) - f(\omega) \right| \xrightarrow{n \to \infty} 0
\]
Local functions are continuous

More generally: \(f \) is continuous iff, it is *quasilocal*

\[
\sup_{\omega \in \Omega} \sup_{\sigma \in \Omega} |f(\omega \wedge n \sigma) - f(\omega)| \xrightarrow{n \to \infty} 0
\]
Basic definition

Probability kernels

Definition
A *probability kernel* Ψ from a probability space (\mathcal{A}, Σ) to another probability space (\mathcal{A}', Σ') is a function

$$\Psi(\cdot | \cdot) : \Sigma' \times \mathcal{A} \longrightarrow [0, 1]$$

such that

(i) $\Psi(\cdot | \omega)$ is a probability measure on (\mathcal{A}', Σ') for each $\omega \in \mathcal{A}$;

(ii) $\Psi(\mathcal{A}'| \cdot)$ is Σ-measurable for each $\mathcal{A}' \in \Sigma'$.
System in $\Lambda \subseteq \mathbb{L}$ described by a probability kernel

$$\pi_\Lambda(\cdot | \cdot) \text{ from } (\Omega, \mathcal{F}) \text{ to itself}$$

where

$$\pi_\Lambda(f | \omega) = \text{equilibrium value of } f \text{ when the configuration outside } \Lambda \text{ is } \omega$$
Operations with kernels

Composition of kernels

\(\Psi \) from \((A, \Sigma)\) to \((A', \Sigma')\) and \(\Psi'\) from \((A'\Sigma')\) to \((A'', \Sigma'')\),

\[
\left(\Psi\Psi'\right)(A''|\omega) = \int_{A'} \Psi(d\omega'|\omega) \Psi'(A''|\omega')
\]

Linear transformations of measures

\[
\mathcal{P}(A, \Sigma) \quad \rightarrow \quad \mathcal{P}(A', \Sigma') \\
\mu \quad \quad \quad \rightarrow \quad \mu' = \mu \Psi \\
\mu'(A') = \int_A \mu(d\omega) \Psi(A'|\omega)
\]
Operations with kernels

Composition of kernels

\(\Psi \) from \((\mathcal{A}, \Sigma)\) to \((\mathcal{A}', \Sigma')\) and \(\Psi'\) from \((\mathcal{A}'\Sigma')\) to \((\mathcal{A}'', \Sigma'')\),

\[
(\Psi \Psi')(A''|\omega) = \int_{\mathcal{A}'} \Psi(d\omega'|\omega) \Psi'(A''|\omega')
\]

Linear transformations of measures

\[
\mathcal{P}(\mathcal{A}, \Sigma) \rightarrow \mathcal{P}(\mathcal{A}', \Sigma') \\
\mu \rightarrow \mu' = \mu \Psi \\
\mu'(A') = \int_{\mathcal{A}} \mu(d\omega) \Psi(A'|\omega)
\]
System in $\Lambda \subseteq \mathbb{L}$ described by a probability kernel $\pi_\Lambda(\cdot | \cdot)$

Equilibrium in Λ iff equilibrium in every box $\Lambda' \subset \Lambda$:

$$\pi_\Lambda(f | \omega) = \pi_\Lambda(\pi_{\Lambda'}(f | \cdot) | \omega) \quad (\Lambda' \subset \Lambda \in \mathbb{L})$$
Equilibrium condition

System in $\Lambda \subseteq \mathbb{L}$ described by a probability kernel $\pi_{\Lambda}(\cdot \mid \cdot)$

Equilibrium in Λ iff equilibrium in every box $\Lambda' \subset \Lambda$:

$$\pi_{\Lambda}(f \mid \omega) = \pi_{\Lambda}\left(\pi_{\Lambda'}(f \mid \cdot) \mid \omega\right) \quad (\Lambda' \subset \Lambda \in \mathbb{L})$$
Equilibrium condition

System in $\Lambda \in \mathbb{L}$ described by a probability kernel $\pi_\Lambda(\cdot \mid \cdot)$

Equilibrium in Λ iff equilibrium in every box $\Lambda' \subset \Lambda$:

$$\pi_\Lambda(f \mid \omega) = \pi_\Lambda\left(\pi_{\Lambda'}(f \mid \cdot) \mid \omega\right) \quad (\Lambda' \subset \Lambda \in \mathbb{L})$$
The notion of specification

Specification:
Family $\Pi = \{\pi_\Lambda : \Lambda \subseteq \mathbb{L}\}$ of prob. kern. from (Ω, \mathcal{F}) to itself s.t.

(i) $\pi_\Lambda(f \mid \cdot) \in \mathcal{F}_{\Lambda^c}$ for each $\Lambda \subseteq \mathbb{L}$ and bounded measurable f

(ii) Each π_Λ is *proper*: If $g \in \mathcal{F}_{\Lambda^c}$,

$$\pi_\Lambda(g f \mid \omega) = g(\omega) \pi_\Lambda(f \mid \omega)$$

for all $\omega \in \Omega$ and bounded measurable f

(iii) The family Π is *consistent*:

$$\pi_\Lambda \pi_{\Lambda'} = \pi_\Lambda \quad \text{if } \Lambda' \subseteq \Lambda \subseteq \mathbb{L}$$
The notion of specification

Specification:
Family $\Pi = \{\pi_\Lambda : \Lambda \subseteq \mathbb{L}\}$ of prob. kern. from (Ω, \mathcal{F}) to itself s.t.

1. $\pi_\Lambda(f | \cdot) \in \mathcal{F}_{\Lambda^c}$ for each $\Lambda \subseteq \mathbb{L}$ and bounded measurable f
2. Each π_Λ is *proper*: If $g \in \mathcal{F}_{\Lambda^c}$,

 $$\pi_\Lambda(gf | \omega) = g(\omega) \pi_\Lambda(f | \omega)$$
 for all $\omega \in \Omega$ and bounded measurable f
3. The family Π is *consistent*:

 $$\pi_\Lambda \pi_{\Lambda'} = \pi_\Lambda \quad \text{if } \Lambda' \subset \Lambda \subseteq \mathbb{L}$$
The notion of specification

Specification:
Family $\Pi = \{\pi_\Lambda : \Lambda \subseteq \mathbb{L}\}$ of prob. kern. from (Ω, \mathcal{F}) to itself s.t.

(i) $\pi_\Lambda(f \mid \cdot) \in \mathcal{F}_{\Lambda^c}$ for each $\Lambda \subseteq \mathbb{L}$ and bounded measurable f

(ii) Each π_Λ is proper: If $g \in \mathcal{F}_{\Lambda^c}$,

$$\pi_\Lambda(g f \mid \omega) = g(\omega) \pi_\Lambda(f \mid \omega)$$

for all $\omega \in \Omega$ and bounded measurable f

(iii) The family Π is consistent:

$$\pi_\Lambda \pi_{\Lambda'} = \pi_\Lambda \quad \text{if } \Lambda' \subset \Lambda \in \mathbb{L}$$
Specifications

The notion of specification

Specification:
Family Π = \{π_Λ : Λ ⊆ ℒ\} of prob. kern. from (Ω, ℱ) to itself s.t.

1. \(\pi_Λ(f \mid \cdot) \in ℱ_{Λc}\) for each \(Λ \subseteq ℒ\) and bounded measurable \(f\)
2. Each \(\pi_Λ\) is proper: If \(g \in ℱ_{Λc}\),
 \[
 \pi_Λ(g f \mid ω) = g(ω) \pi_Λ(f \mid ω)
 \]
 for all \(ω \in Ω\) and bounded measurable \(f\)
3. The family Π is consistent:
 \[
 \pi_Λ \pi_Λ' = \pi_Λ \quad \text{if } Λ' \subseteq Λ \subseteq ℒ
 \]
Consistent measures

Definition

\(\mu \) on \(\mathcal{F} \) is **consistent** with a specification \(\Pi = \{ \pi_\Lambda : \Lambda \subseteq \mathbb{L} \} \) if

\[
\mu \pi_\Lambda = \mu \quad \text{for each } \Lambda \subseteq \mathbb{L}
\]

(DLR equations)

Remarks

- Several consistent measures = first-order phase transition
- specification ~ system of regular conditional probabilities
 - No apriori measure: conditions for all \(\omega \) rather than a.s.
- Stat. mech.: conditional probabilities in search of measures
Consistent measures

Definition

\(\mu \) on \(\mathcal{F} \) is **consistent** with a specification \(\Pi = \{ \pi_\Lambda : \Lambda \in \mathcal{L} \} \) if

\[
\mu \pi_\Lambda = \mu \quad \text{for each } \Lambda \in \mathcal{L}
\]

(DLR equations)

Remarks

- Several consistent measures = first-order phase transition
- Specification ~ system of regular conditional probabilities
 - No apriori measure: conditions for all \(\omega \) rather than a.s.
- Stat. mech.: conditional probabilities in search of measures
Consistent measures

Definition

μ on \mathcal{F} is **consistent** with a specification $\Pi = \{\pi_\Lambda : \Lambda \subseteq \mathbb{L}\}$ if

$$\mu \pi_\Lambda = \mu \quad \text{for each } \Lambda \subseteq \mathbb{L}$$

(DLR equations)

Remarks

- Several consistent measures = first-order phase transition
- specification \sim system of regular conditional probabilities
 - No apriori measure: conditions for all ω rather than a.s.
- Stat. mech.: conditional probabilities in search of measures
Consistent measures

Definition

μ on \mathcal{F} is **consistent** with a specification $\Pi = \{\pi_{\Lambda} : \Lambda \in \mathbb{L}\}$ if

$$\mu \pi_{\Lambda} = \mu \quad \text{for each } \Lambda \in \mathbb{L}$$

(DLR equations)

Remarks

- Several consistent measures = first-order phase transition
- specification \sim system of regular conditional probabilities
 - No apriori measure: conditions for *all* ω rather than a.s.
- Stat. mech.: conditional probabilities in search of measures
Boltzmann prescription

Heuristically: $\pi_\Lambda \propto e^{-\beta H_\Lambda}$

- β inverse temperature (to be absorbed)
- H_Λ Hamiltonian = sum of local terms

Formally:

Interaction: family $\Phi = \{\phi_A \in F_A : A \in \mathbb{L}\}$

Example: Ising interaction

$$\phi_A(\omega) = \begin{cases} -J_{\{x,y\}} \omega_x \omega_y & \text{if } A = \{x,y\} \text{ with } |x-y| = 1 \\ -h_x \omega_x & \text{if } A = \{x\} \\ 0 & \text{otherwise} \end{cases}$$
Gibbsian specifications

Boltzmann prescription

Heuristically: \(\pi_\Lambda \propto e^{-\beta H_\Lambda} \)

- \(\beta \) inverse temperature (to be absorbed)
- \(H_\Lambda \) Hamiltonian = sum of local terms

Formally:

Interaction: family \(\Phi = \{ \phi_A \in \mathcal{F}_A : A \in \mathbb{L} \} \)

Example: Ising interaction

\[
\phi_A(\omega) = \begin{cases}
-J_{\{x,y\}} \omega_x \omega_y & \text{if } A = \{x, y\} \text{ with } |x - y| = 1 \\
-h_x \omega_x & \text{if } A = \{x\} \\
0 & \text{otherwise}
\end{cases}
\]
Hamiltonian for $\Lambda \in \mathbb{L}$ with frozen external condition ω

$$H_{\Lambda}^{\Phi}(\sigma_{\Lambda} \mid \omega_{\Lambda^c}) = \sum_{A \in \mathbb{L} : A \cap \Lambda \neq \emptyset} \phi_A(\sigma_{\Lambda} \omega)$$

Existence: Φ uniformly absolutely summable ($\Phi \in B_1$) if

$$\sum_{A \ni x} \| \Phi_A \|_{\infty} < \infty \quad \text{for each } x \in \mathbb{L}.$$

Definition

The **Gibbsian specification** for $\Phi \in B_1$ has kernels

$$\pi_{\Lambda}^{\Phi}(C_{\sigma_{\Lambda}} \mid \omega) = \frac{e^{-H_{\Lambda}^{\Phi}(\sigma_{\Lambda} \mid \omega_{\Lambda^c})}}{\text{Norm.}}$$

A **Gibbs measures** for Φ is a measure consistent with Π^{Φ}
Hamiltonian for $\Lambda \in \mathbb{L}$ with frozen external condition ω

$$H_{\Lambda}^\Phi(\sigma_\Lambda \mid \omega_{\Lambda^c}) = \sum_{A \in \mathbb{L}: A \cap \Lambda \neq \emptyset} \phi_A(\sigma_\Lambda \omega)$$

Existence: Φ uniformly absolutely summable ($\Phi \in \mathcal{B}_1$) if

$$\sum_{A \ni x} \| \Phi_A \|_\infty < \infty \quad \text{for each } x \in \mathbb{L}.$$

Definition

The Gibbsian specification for $\Phi \in \mathcal{B}_1$ has kernels

$$\pi_{\Lambda}^\Phi(C_{\sigma_\Lambda} \mid \omega) = \frac{\exp(-H_{\Lambda}^\Phi(\sigma_\Lambda \mid \omega_{\Lambda^c}))}{\text{Norm.}}$$

A Gibbs measures for Φ is a measure consistent with Π^Φ.

Gibbsian specifications
Hamiltonian for \(\Lambda \in \mathbb{L} \) with frozen external condition \(\omega \)

\[
H^\Phi_\Lambda(\sigma_\Lambda | \omega_{\Lambda^c}) = \sum_{A \in \mathbb{L}: A \cap \Lambda \neq \emptyset} \phi_A(\sigma_\Lambda \omega)
\]

Existence: \(\Phi \) uniformly absolutely summable (\(\Phi \in \mathcal{B}_1 \)) if

\[
\sum_{A \ni x} \| \Phi_A \|_\infty < \infty \quad \text{for each } x \in \mathbb{L}.
\]

Definition

The **Gibbsian specification** for \(\Phi \in \mathcal{B}_1 \) has kernels

\[
\pi^\Phi_\Lambda(C_{\sigma_\Lambda} | \omega) = \frac{e^{-H^\Phi_\Lambda(\sigma_\Lambda | \omega_{\Lambda^c})}}{\text{Norm}}
\]

A **Gibbs measures** for \(\Phi \) is a measure consistent with \(\Pi^\Phi \)
Gibbsianness and its properties

Definition

- Π is a **Gibbsian specification** if $\exists \Phi \in \mathcal{B}_1$ s.t. $\Pi = \Pi^\Phi$
- μ is a **Gibbs measure** if it is consistent with some Π^Φ
Gibbsian description (1968): *equilibrium* statistical mechanics

Exploited in other settings:

- Renormalized measures
- Spin-flip evolutions
- Particle systems
- Dynamical systems
- Quenched disordered systems.
Gibbsian description (1968): *equilibrium* statistical mechanics

Exploited in other settings:

- Renormalized measures
- Spin-flip evolutions
- Particle systems
- Dynamical systems
- Quenched disordered systems.
Gibbsian description (1968): *equilibrium* statistical mechanics

Exploited in other settings:

- Renormalized measures
- Spin-flip evolutions
- Particle systems
- Dynamical systems
- Quenched disordered systems.
Gibbsian description (1968): *equilibrium* statistical mechanics

Exploited in other settings:
- Renormalized measures
- Spin-flip evolutions
- Particle systems
- Dynamical systems
- Quenched disordered systems.
10^6$ question: How to tell whether a measure is Gibbsian?

Theorem (Kozlov)

A specification is Gibbsian if, and only if, it is both

(i) **Uniformly non-null**: for each $\Lambda \in \mathbb{L}$

$$
\inf_{\sigma_{\Lambda} \in \Omega_{\Lambda}, \omega_{\Lambda^c} \in \Omega_{\Lambda^c}} \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda^c}) =: c_{\Lambda} > 0
$$

(ii) **Quasilocal** (almost Markovian): for each $\Lambda \in \Lambda$, $\sigma_{\Lambda} \in \Omega_{\Lambda}$

$$
\sup_{\omega, \eta, \tilde{\eta} \in \Omega} \left| \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda_n} \eta) - \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda_n} \tilde{\eta}) \right| \xrightarrow{n \to \infty} 0
$$

[C.f. Markovian:

$$
\pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\partial_{r}\Lambda} \eta) - \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\partial_{r}\Lambda} \tilde{\eta}) = 0
$$]
10^6$ question: How to tell whether a measure is Gibbsian?

Theorem (Kozlov)

A specification is Gibbsian if, and only if, it is both

(i) **Uniformly non-null**: for each $\Lambda \subseteq \mathbb{L}$

$$\inf_{\sigma_{\Lambda} \in \Omega_{\Lambda}, \omega_{\Lambda^c} \in \Omega_{\Lambda^c}} \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda^c}) =: c_{\Lambda} > 0$$

(ii) **Quasilocal** (almost Markovian): for each $\Lambda \subseteq \Lambda$, $\sigma_{\Lambda} \in \Omega_{\Lambda}$

$$\sup_{\omega, \eta, \tilde{\eta} \in \Omega} \left| \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda_n} \eta) - \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda_n} \tilde{\eta}) \right| \xrightarrow{n \to \infty} 0$$

[C.f. Markovian:

$$\pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\partial r \Lambda} \eta) - \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\partial r \Lambda} \tilde{\eta}) = 0$$]
10^6$ question: How to tell whether a measure is Gibbsian?

Theorem (Kozlov)

A specification is Gibbsian if, and only if, it is both

** (i) Uniformly non-null:** for each $\Lambda \in \mathbb{L}$

$$\inf_{\sigma_{\Lambda} \in \Omega_{\Lambda}, \omega_{\Lambda c} \in \Omega_{\Lambda c}} \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda c}) =: c_{\Lambda} > 0$$

** (ii) Quasilocal (almost Markovian):** for each $\Lambda \subseteq \Lambda$, $\sigma_{\Lambda} \in \Omega_{\Lambda}$

$$\sup_{\omega, \eta, \tilde{\eta} \in \Omega} \left| \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda n} \eta) - \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\Lambda n} \tilde{\eta}) \right| \xrightarrow[n \to \infty]{} 0$$

[C.f. Markovian:

$$\pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\partial r \Lambda} \eta) - \pi_{\Lambda}(C_{\sigma_{\Lambda}} \mid \omega_{\partial r \Lambda} \tilde{\eta}) = 0$$]
Non-nullness = no forbidden configuration
Quasilocal =
 Info from infinity only through intermediate fluctuations
 Experiment independent on state of Andromeda galaxy
Comments

- Non-nullness = no forbidden configuration
- Quasilocal =
 - Info from infinity only through intermediate fluctuations
 - Experiment independent on state of Andromeda galaxy
When is a measure non-quasilocal

Notation: \(\mu_\Lambda(f \mid \omega) = E_\mu(f \mid \mathcal{F}_\Lambda^c)(\omega) \)

Key observations:

- \(\mu \) is quasilocal if consistent with *no* quasilocal specification
- Need violation at a single \(\hat{\omega} \) for a single \(\mu_\Lambda \) for a single \(f \)
- Discontinuity must be *essential* (e.g., for open neighborhoods)

Recipe: Find

- Sequence of frozen regions \(\Lambda_{N_i} \)
- “Tilting” configurations \(\eta^\pm \)
- Larger annulus \(\Lambda_{R_i} \) to define open sets

Show that

\[
\mu_\Lambda(f \mid \hat{\omega}_{N_i} \eta^+_R \setminus \Lambda_{N_i}) \text{ and } \mu_\Lambda(f \mid \hat{\omega}_{N_i} \eta^+_R \setminus \Lambda_{N_i})
\]

are different
When is a measure non-quasilocal

Notation: \(\mu_\Lambda(f \mid \omega) = E_\mu(f \mid \mathcal{F}_\Lambda^c)(\omega) \)

Key observations:

- \(\mu \) is quasilocal if consistent with no quasilocal specification
- Need violation at a single \(\hat{\omega} \) for a single \(\mu_\Lambda \) for a single \(f \)
- Discontinuity must be essential (eg. for open neighbhds)

Recipe: Find

- Sequence of frozen regions \(\Lambda_{N_i} \)
- “Tilting” configurations \(\eta^\pm \)
- Larger annulus \(\Lambda_{R_i} \) to define open sets

Show that

\[
\mu_\Lambda(f \mid \hat{\omega}_{\Lambda_{N_i}} \eta^+_{\Lambda_{R_i} \setminus \Lambda_{N_i}}) \text{ and } \mu_\Lambda(f \mid \hat{\omega}_{\Lambda_{N_i}} \eta^+_{\Lambda_{R_i} \setminus \Lambda_{N_i}})
\]

are different
When is a measure non-quasilocal

Notation: \(\mu_\Lambda(f | \omega) = E_\mu(f | \mathcal{F}_\Lambda^c)(\omega) \)

Key observations:

- \(\mu \) is quasilocal if consistent with no quasilocal specification
- Need violation at a single \(\hat{\omega} \) for a single \(\mu_\Lambda \) for a single \(f \)
- Discontinuity must be essential (eg. for open neighbhd)

Recipe: Find

- Sequence of frozen regions \(\Lambda_{N_i} \)
- “Tilting” configurations \(\eta^\pm \)
- Larger annulus \(\Lambda_{R_i} \) to define open sets

Show that

\[
\mu_\Lambda(f | \hat{\omega}_{\Lambda_{N_i}} \eta^+_{\Lambda_{R_i} \setminus \Lambda_{N_i}}) \text{ and } \mu_\Lambda(f | \hat{\omega}_{\Lambda_{N_i}} \eta^+_{\Lambda_{R_i} \setminus \Lambda_{N_i}})
\]

are different
When is a measure non-quasilocal

Notation: $\mu_\Lambda(f \mid \omega) = E_\mu(f \mid \mathcal{F}_\Lambda^c)(\omega)$

Key observations:

▶ μ is quasilocal if consistent with no quasilocal specification
▶ Need violation at a single $\hat{\omega}$ for a single μ_Λ for a single f
▶ Discontinuity must be essential (eg. for open neighbhdns)

Recipe: Find

▶ Sequence of frozen regions Λ_{N_i}
▶ “Tilting” configurations η^\pm
▶ Larger annulus Λ_{R_i} to define open sets

Show that

$\mu_\Lambda(f \mid \hat{\omega}_{N_i} \eta_{\Lambda_{R_i}}^+ \setminus \Lambda_{N_i})$ and $\mu_\Lambda(f \mid \hat{\omega}_{N_i} \eta_{\Lambda_{R_i}}^+ \setminus \Lambda_{N_i})$

are different
When is a measure non-quasilocal

Notation: $\mu_{\Lambda}(f \mid \omega) = E_{\mu}(f \mid \mathcal{F}_{\Lambda^c})(\omega)$

Key observations:

- μ is quasilocal if consistent with no quasilocal specification
- Need violation at a single $\hat{\omega}$ for a single μ_{Λ} for a single f
- Discontinuity must be essential (e.g. for open neighborhoods)

Recipe: Find

- Sequence of frozen regions Λ_{N_i}
- “Tilting” configurations η^\pm
- Larger annulus Λ_{R_i} to define open sets

Show that

$$\mu_{\Lambda}(f \mid \hat{\omega}_{\Lambda_{N_i}} \eta^+_{\Lambda_{R_i} \setminus \Lambda_{N_i}}) \text{ and } \mu_{\Lambda}(f \mid \hat{\omega}_{\Lambda_{N_i}} \eta^+_{\Lambda_{R_i} \setminus \Lambda_{N_i}})$$

are different
Non-Gibbsianness criterion:

µ not quasilocal if there exist

- a finite region Λ (often |Λ| = 1)
- a “special” configuration ˆω
- a (quasi)local function f
- a diverging sequence of regions \((Λ_N_i)_{i≥1}\)
- some δ > 0 (independent of i)

such that for each \(i ≥ 1\) there exist

(i) larger regions \(Λ_{R_i}, R_i > N_i\)

(ii) two configurations \(η^+, η^-\) (possibly i-dependent), with

\[
\lim_{i→∞} \left| \mu_Λ(f \mid ˆω_{Λ_{N_i}} η^+_{Λ_{R_i} \setminus Λ_{N_i}} σ^+) - \mu_Λ(f \mid ˆω_{Λ_{N_i}} η^-_{Λ_{R_i} \setminus Λ_{N_i}} σ^-) \right| ≥ δ
\]

for every \(σ^± ∈ Ω\)
Non-Gibbsieness criterion:

\(\mu\) not quasilocal if there exist

- a finite region \(\Lambda\) (often \(|\Lambda| = 1\))
- a “special” configuration \(\hat{\omega}\)
- a (quasi)local function \(f\)
- a diverging sequence of regions \((\Lambda_{N_i})_{i \geq 1}\)
- some \(\delta > 0\) (independent of \(i\))

such that for each \(i \geq 1\) there exist

(i) larger regions \(\Lambda_{R_i}, R_i > N_i\)

(ii) two configurations \(\eta^+, \eta^-\) (possibly \(i\)-dependent), with

\[
\lim_{i \to \infty} \left| \mu_\Lambda(f \mid \hat{\omega}_{\Lambda_{N_i}} \eta^+_{\Lambda_{R_i} \setminus \Lambda_{N_i}} \sigma^+) - \mu_\Lambda(f \mid \hat{\omega}_{\Lambda_{N_i}} \eta^-_{\Lambda_{R_i} \setminus \Lambda_{N_i}} \sigma^-) \right| \geq \delta
\]

for every \(\sigma^\pm \in \Omega\)
Non-Gibbsianness criterion:

\(\mu \) not quasilocal if there exist

- a finite region \(\Lambda \) (often \(|\Lambda| = 1\))
- a “special” configuration \(\hat{\omega} \)
- a (quasi)local function \(f \)
- a diverging sequence of regions \((\Lambda_{N_i})_{i \geq 1} \)
- some \(\delta > 0 \) (independent of \(i \))

such that for each \(i \geq 1 \) there exist

(i) larger regions \(\Lambda_{R_i}, R_i > N_i \)

(ii) two configurations \(\eta^+, \eta^- \) (possibly \(i \)-dependent), with

\[
\lim_{i \to \infty} \left| \mu_\Lambda(f \mid \hat{\omega}_{\Lambda_{N_i}} \eta^+_{\Lambda_{R_i} \setminus \Lambda_{N_i}} \sigma^+) - \mu_\Lambda(f \mid \hat{\omega}_{\Lambda_{N_i}} \eta^-_{\Lambda_{R_i} \setminus \Lambda_{N_i}} \sigma^-) \right| \geq \delta
\]

for every \(\sigma^\pm \in \Omega \)
Causes of non-quasilocality

Mechanism: Hidden variables

Quasilocality: frozen spins shield influence of distant regions

Non-quasilocality: info from afar even without fluctuations

Mechanism?

For transformed measures, original variables act as “hidden-variables”

- Freezing transformed vbles = conditioning of original vbles
- These conditioned variables keep some freedom to fluctuate
- For particular \(\omega \) the conditioned “hidden” system
 - exhibit a *phase transition*
 - hence, there is long-range order
Causes of non-quasilocality

Mechanism: Hidden variables

Quasilocality: frozen spins shield influence of distant regions
Non-quasilocality: info from afar even without fluctuations

Mechanism?

For transformed measures,

original variables act as “hidden-variables”

- Freezing transformed vbles = conditioning of original vbles
- These conditioned variables keep some freedom to fluctuate
- For particular ω the conditioned “hidden” system
 - exhibit a phase transition
 - hence, there is long-range order
Mechanism: Hidden variables

Quasilocality: frozen spins shield influence of distant regions
Non-quasilocality: info from afar even without fluctuations

Mechanism?
For transformed measures,

original variables act as “hidden-variables”

- Freezing transformed vbles = conditioning of original vbles
- These conditioned variables keep some freedom to fluctuate
- For particular ω the conditioned “hidden” system
 - exhibit a *phase transition*
 - hence, there is long-range order
Mechanism: Hidden variables

Quasilocality: frozen spins shield influence of distant regions
Non-quasilocality: info from afar even without fluctuations

Mechanism?
For transformed measures,

original variables act as “hidden-variables”

- Freezing transformed vbles = conditioning of original vbles
- These conditioned variables keep some freedom to fluctuate
- For particular ω the conditioned “hidden” system
 - exhibit a phase transition
 - hence, there is long-range order
Main example: Transformations of measures

Linear stochastic transformations

A linear stochastic transformation is defined by

- An initial or *object* space S^L
- A transformed or *image* space $S^{L'}$
- A kernel τ from S^L to $S^{L'}$ where

$$\tau(d\omega' \mid \omega) = \text{distribution of image spins when the initial spin configuration is } \omega$$

Particular cases:

- Stochastic evolutions: Image = evolved
- Renormalization transf.: Image = renormalized
Main example: Transformations of measures

Linear stochastic transformations

A linear stochastic transformation is defined by

- An initial or *object* space $S^\mathbb{L}$
- A transformed or *image* space $S'^\mathbb{L}'$
- A kernel τ from $S^\mathbb{L}$ to $S'^\mathbb{L}'$ where

$$\tau(d\omega' | \omega) = \text{distribution of image spins when the initial spin configuration is } \omega$$

Particular cases:

- Stochastic evolutions: Image = evolved
- Renormalization transf.: Image = renormalized
Linear stochastic transformations

A linear stochastic transformation is defined by

- An initial or *object* space $S^\mathbb{L}$
- A transformed or *image* space $S'^\mathbb{L}'$
- A kernel τ from $S^\mathbb{L}$ to $S'^\mathbb{L}'$ where

$$\tau(d\omega' | \omega) = \text{distribution of image spins when the initial spin configuration is } \omega$$

Particular cases:

- **Stochastic evolutions:** Image $=$ evolved
- **Renormalization transf.:** Image $=$ renormalized
Block renormalization transformations

Definition: Kernel from \(S^L \) to \((S')^{L'}\) of the form

\[
\tau(d\omega' \mid \omega) = \prod_{x' \in L'} \tau_{x'}(d\omega'_{x'} \mid \omega_{B_{x'}})
\]

Main examples: \(L' = L \), \(B_{x'} = \Lambda_{b-1} + bx' \)

Particular case: **Deterministic transformations**

\[
\tau_{x'}(\cdot \mid \omega_{B_{x'}}) = \delta_{T_{x'}}(\omega_{B_{x'}})(\cdot)
\]
Renormalization transformations

Definition: Kernel from $S^\mathbb{L}$ to $(S')^{\mathbb{L}'}$ of the form

$$
\tau(d\omega' \mid \omega) = \prod_{x' \in \mathbb{L}'} \tau_{x'}(d\omega'_{x'} \mid \omega_{B_x'})
$$

Main examples: $\mathbb{L}' = \mathbb{L}$, $B_{x'} = \Lambda b_{-1} + bx'$

Particular case: **Deterministic transformations**

$$
\tau_{x'}(\cdot \mid \omega_{B_{x'}}) = \delta_{T_{x'}}(\omega_{B_{x'}})(\cdot)
$$
Deterministic block RT

- **Decimation:** $S = S'$

 $$\tau_{x'}(\cdot | \omega_{B_{x'}}) = \delta_{\omega_{b_{x'}}}$$

- **Spin contractions:** $S' \subset S$, $B_{x'} = \{x'\}$
 - **Sign fields:** $S \subset \mathbb{R}$ symmetric,
 $$T_{x'}(\omega_{x'}) = \text{sign}(\omega_{x'})$$
 - **“Fuzzy” spins:** $S = \cup_{i \in I} S_i$ (partition), $S' = I$
 $$T_{x'}(\cdot | \omega_{x'}) = \sum_{i \in I} i \mathbb{1}_{\{\omega_{x'} \in S_i\}}$$
Renormalization transformations

Deterministic block RT

- Decimation: \(S = S' \)

\[
\tau_{x'}(\cdot | \omega_{B_{x'}}) = \delta_{\omega_{Bx'}}
\]

- Spin contractions: \(S' \subset S, B_{x'} = \{x'\} \neq \)
 - Sign fields: \(S \subset \mathbb{R} \) symmetric,

\[
T_{x'}(\omega_{x'}) = \text{sign}(\omega_{x'})
\]

- “Fuzzy” spins: \(S = \bigcup_{i \in I} S_i \) (partition), \(S' = I \)

\[
T_{x'}(\cdot | \omega_{x'}) = \sum_{i \in I} i \mathbb{1}_{\{\omega_{x'} \in S_i\}}
\]
Renormalization transformations

- **Block average:** $S' \supset S$

 $$T_{x'}(\omega_{B_{x'}}) = \frac{1}{|B_{x'}|} \sum_{y \in B_{x'}} \omega_y$$

- **Majority rule:** $S' = S = \{-1, 1\}$

 $$T_{x'}(\omega_{B_{x'}}) = \text{sign} \left[\sum_{y \in B_{x'}} \omega_y \right]$$
Renormalization transformations

Stochastic block RT

- ** Majority with even block**: stochastic decision if
 \[
 \sum_{y \in B_{x'}} \omega_y = 0
 \]

- **p-Kadanoff transformation**: \(S = S' \)
 \[
 \tau_{x'}(d\omega'_{x'} \mid \omega_{B_{x'}}) = \frac{\exp[p \omega'_{x'} \sum_{y \in B_{x'}} \omega_y]}{\text{Norm.}} d\omega_{B_{x'}}
 \]
The renormalization issue

The question

Physicists: RT at Hamiltonian level

\[\mu \overset{\tau}{\longrightarrow} \mu' \]
\[\Phi \overset{\mathcal{R}}{\longrightarrow} \Phi' \]

Success led to applications to 1st-order phase transitions. Then,

\[\{\mu_1, \cdots\} \quad \overset{\text{or}}{\longrightarrow} \quad \{\mu'_1, \cdots\} \]
\[\Phi \quad \overset{\text{or}}{\longrightarrow} \quad \Phi' \]

or

\[\{\mu_1, \cdots\} \quad \overset{\text{or}}{\longrightarrow} \quad \{\Phi'_1, \cdots\} \]
The renormalization issue

The question

Physicists: RT at Hamiltonian level

\[
\begin{align*}
\mu & \xrightarrow{\tau} \mu' \\
\uparrow & \quad \downarrow \\
\Phi & \xrightarrow{\mathcal{R}} \Phi'
\end{align*}
\]

Success led to applications to 1st-order phase transitions. Then,

\[
\begin{align*}
\{\mu_1, \cdots\} & \implies \{\mu'_1, \cdots\} \quad \text{or} \quad \{\mu_1, \cdots\} \implies \{\mu'_1, \cdots\} \\
\uparrow\uparrow\uparrow & \quad \downarrow\downarrow\downarrow \\
\Phi & \quad \Phi'
\end{align*}
\]
The renormalization issue

The answer

In fact,

\[
\{\mu_1, \cdots\} \xrightarrow{\Phi} \{\mu'_1, \cdots\}
\]

\[
\{\mu_1, \cdots\} \xrightarrow{\Phi'} \{\mu'_1, \cdots\}
\]

or

\[
\{\mu_1, \cdots\} \xrightarrow{\Phi} \{\mu'_1, \cdots\}
\]

and even

\[
\mu \xrightarrow{\tau} \mu'
\]

\[
\Phi \xrightarrow{??}
\]
Israel: 2 × 2-decimation of the Ising model

- \(\hat{\omega}_{x'} = (-1)^{|x'|} \) = decorated Ising model on internal spins
- Model equivalent to an Ising model at a higher temperature
- \(\eta_{x'}^{\pm} = \pm 1 \) in an annulus chooses the “\(\pm \)”-phase

Thus,

\[
\mu' \left(\sigma'_0 \mid \hat{\omega}'_{\Lambda'_R} (+1)_{\Lambda'_{R+1}\setminus\Lambda'_R} \sigma'^+ \right) - \mu' \left(\sigma'_0 \mid \hat{\omega}'_{\Lambda'_R} (-1)'_{\Lambda'_{R+1}\setminus\Lambda'_R} \sigma'^- \right) \xrightarrow{R \to \infty} 2m(\beta')
\]
Israel: 2 × 2-decimation of the Ising model

- $\hat{\omega}_{x'} = (-1)^{|x'|} = $ decorated Ising model on internal spins
- Model equivalent to an Ising model at a higher temperature
- $\eta'_{x'} = \pm 1$ in an annulus chooses the “±”-phase

Thus,

$$
\mu' \left(\sigma'_0 \mid \hat{\omega}'_{\Lambda'_R} (+1)_{\Lambda'_{R+1}\setminus \Lambda'_R} \sigma'_{\Lambda'_R} \right) - \mu' \left(\sigma'_0 \mid \hat{\omega}'_{\Lambda'_R} (-1)'_{\Lambda'_{R+1}\setminus \Lambda'_R} \sigma'_{\Lambda'_R} \right)
\xrightarrow{R \rightarrow \infty} 2 m(\beta')
$$
Israel: 2 × 2-decimation of the Ising model

- \(\hat{\omega}'_{x'} = (-1)^{|x'|} \) = decorated Ising model on internal spins
- Model equivalent to an Ising model at a higher temperature
- \(\eta'_{x'} = \pm 1 \) in an annulus chooses the “±”-phase

Thus,

\[
\mu'(\sigma'_0 \mid \hat{\omega}'_{\Lambda_R'} (+1)_{\Lambda_{R+1}' \setminus \Lambda'_R} \sigma'_{+}) - \mu'(\sigma'_0 \mid \hat{\omega}'_{\Lambda_R'} (-1)'_{\Lambda_{R+1}' \setminus \Lambda'_R} \sigma'_{-}) \xrightarrow{R \to \infty} 2m(\beta')
\]
General case

Specification with densities proportional to

\[e^{-H_{\Lambda}^\Phi(\sigma_\Lambda | \omega_{\Lambda^c})} \prod_{x' \in B'_\Lambda} T_{x'}\left(\omega'_{x'} \mid (\sigma_\Lambda \omega)_{B_{x'}}\right) \]

\[= \exp\left\{ -H_{\Lambda}^\Phi(\sigma_\Lambda | \omega_{\Lambda^c}) + \sum_{x' \in B'_\Lambda} \log T_{x'}\left(\omega'_{x'} \mid (\sigma_\Lambda \omega)_{B_{x'}}\right) \right\} \]

The image \(\omega' \) acts as “fields” on the original \(\sigma_\Lambda \omega \)
\(\hat{\omega}' \) so that conditioned original spins have a phase transition.
In this way, all usual transformations lead to non-Gibbsianness (even outside the coexistence region)
General case

Specification with densities proportional to

\[
e^{-H^\Phi_A(\sigma_\Lambda | \omega_\Lambda^c)} \prod_{x' \in B'_\Lambda} T_{x'}\left(\omega'_{x'} \mid (\sigma_\Lambda \omega)_{B_{x'}}\right)
\]

\[
= \exp\left\{-H^\Phi_A(\sigma_\Lambda \mid \omega_\Lambda^c) + \sum_{x' \in B'_\Lambda} \log T_{x'}\left(\omega'_{x'} \mid (\sigma_\Lambda \omega)_{B_{x'}}\right)\right\}
\]

The image \(\omega'\) acts as “fields” on the original \(\sigma_\Lambda \omega\)

\(\hat{\omega}'\) so that conditioned original spins have a phase transition.

In this way, all usual transformations lead to non-Gibbsianness (even outside the coexistence region)
General case

Specification with densities proportional to

$$e^{-H^\Phi_\Lambda(\sigma_\Lambda | \omega_{\Lambda^c})} \prod_{x' \in B'_\Lambda} T_{x'}(\omega'_{x'} | (\sigma_\Lambda \omega)_{B_{x'}})$$

$$= \exp \left\{ -H^\Phi_\Lambda(\sigma_\Lambda | \omega_{\Lambda^c}) + \sum_{x' \in B'_\Lambda} \log T_{x'}(\omega'_{x'} | (\sigma_\Lambda \omega)_{B_{x'}}) \right\}$$

The image ω' acts as “fields” on the original $\sigma_\Lambda \omega$

$\hat{\omega}'$ so that conditioned original spins have a phase transition.

In this way, all usual transformations lead to non-Gibbsianness (even outside the coexistence region)
Non-Gibbsianess in spin-flip evolutions

Simulations: spin-flip dynamics converging to a target measure (Metropolis, heat-bath, Glauber)

Often: ordered initial configuration

“Unquenching”: high-T dynamics applied a low-T Gibbs state

Non-Gibbsianess enters into the picture
Non-Gibbsianness in spin-flip evolutions

Simulations: spin-flip dynamics converging to a target measure (Metropolis, heat-bath, Glauber)

Often: ordered initial configuration

“Unquenching”: high-T dynamics applied a low-T Gibbs state

Non-Gibbsianness enters into the picture
Out and in from Gibbsianness

Results for parallel independent updating

\[
\begin{align*}
(h = 0) & \quad \text{Gibbs} \quad \cdots \quad \text{Non-G (NQL)} \\
0 & \quad n_1 \quad n_2 \\
(h > 0) & \quad \text{Gibbs} \quad \cdots \quad \text{Non-G (NQL)} \quad \cdots \quad \text{Gibbs} \\
0 & \quad n_1 \quad n_2 \quad n_3 \quad n_4
\end{align*}
\]
Interpretation: The key questions

Which is the most probable history of an improbable configuration?

Is the (atypical) droplet $\hat{\omega}'_\Lambda$

- *Nurture*: created by the dynamics?
- *Nature*: created initially and survived?

The history of $\hat{\omega}'_\Lambda$

- is it uniquely defined by the final configuration?
- admits competing possibilities?
Interpretation: The key questions

Which is the most probable history of an improbable configuration?

Is the (atypical) droplet $\hat{\omega}'$

- *Nurture*: created by the dynamics?
- *Nature*: created initially and survived?

The history of $\hat{\omega}'$

- is it uniquely defined by the final configuration?
- admits competing possibilities?
Interpretation: The key questions

Which is the most probable history of an improbable configuration?

Is the (atypical) droplet $\hat{\omega}'_\Lambda$

- *Nature*: created initially and survived?
- *Nurture*: created by the dynamics?

The history of $\hat{\omega}'_\Lambda$

- is it uniquely defined by the final configuration?
- admits competing possibilities?
Interpretation: Tentative answers:

Short times:
 ▶ Only a few changes possible
 ▶ Everybody nature
 ▶ Only one possible history

Not-too-short times:
 ▶ System relaxes first and forms $\tilde{\omega}'_\Lambda$ at the last moment
 ▶ Everybody nurture
 ▶ Possibility of multiple histories:
 ▶ Histories start from typical configurations of different phases
 ▶ Same volume cost, different boundary cost
 ▶ The configuration around $\tilde{\omega}'_\Lambda$ may tilt overall cost
Interpretation: Tentative answers:

Short times:

- Only a few changes possible
- Everybody nature
- Only one possible history

Not-too-short times:

- System relaxes first and forms $\tilde{\omega}'_\Lambda$ at the last moment
- Everybody nurture
- Possibility of multiple histories:
 - Histories start from typical configurations of different phases
 - Same volume cost, different boundary cost
 - The configuration around $\tilde{\omega}'_\Lambda$ may tilt overall cost
Interpretation: Tentative answers:

Short times:
- Only a few changes possible
- Everybody nature
- Only one possible history

Not-too-short times:
- System relaxes first and forms $\hat{\omega}'_\Lambda$ at the last moment
- Everybody nurture
- Possibility of multiple histories:
 - Histories start from typical configurations of different phases
 - Same volume cost, different boundary cost
 - The configuration around $\hat{\omega}'_\Lambda$ may tilt overall cost
Non-Gibbsianness as discontinuity

Conclusion:

Non-Gibbsianness = history with discontinuous dependence on the surrounding configuration

Scenario:

- Single history = Gibbsianness
- Multiple histories can lead to non-Gibbsianness:
Non-Gibbsianness as discontinuity

Conclusion:

Non-Gibbsianness = history with discontinuous dependence on the surrounding configuration

Scenario:

- Single history = Gibbsianness
- Multiple histories can lead to non-Gibbsianness:
Non-Gibbsianness as discontinuity

Conclusion:

\[\text{Non-Gibbsianness} = \text{history with discontinuous dependence on the surrounding configuration} \]

Scenario:

- Single history = Gibbsianness
- Multiple histories can lead to non-Gibbsianness:
Wake-up calls for non-Gibbsianness

Griffiths and Pearce (1978): *peculiarities* in Renormalized measures

Israel (1979): peculiarity=absence of *quasilocality*

Other examples (1987–9):

- Spin contractions (Lebowitz-Maes, Dorlas-van Enter)
- Lattice projections (Schonmann)
- Stationary measures of stochastic evolutions (Lebowitz-Schonmann)

Systematization and overview: van Enter, F. and Sokal (1993)
Wake-up calls for non-Gibbsianness

Griffiths and Pearce (1978): *peculiarities* in Renormalized measures

Israel (1979): peculiarity=absence of *quasilocality*

Other examples (1987–9):

- Spin contractions (Lebowitz-Maes, Dorlas-van Enter)
- Lattice projections (Schonmann)
- Stationary measures of stochastic evolutions (Lebowitz-Schonmann)

Systematization and overview: van Enter, F. and Sokal (1993)
Wake-up calls for non-Gibbsianness

Griffiths and Pearce (1978): peculiarities in Renormalized measures

Israel (1979): peculiarity=absence of quasilocality

Other examples (1987–9):

- Spin contractions (Lebowitz-Maes, Dorlas-van Enter)
- Lattice projections (Schonmann)
- Stationary measures of stochastic evolutions (Lebowitz-Schonmann)

Systematization and overview: van Enter, F. and Sokal (1993)
State of affairs: Positive side

Extensive catalog of instances

- Renormalization transformations
- Spin-flip evolutions (simulations)
- Joint measures of disordered systems
- Intermittency in dynamical systems

Good knowledge of non-Gibbsianness mechanisms

- Physical: hidden variables, ph. transitions of restricted systems
- Mathematical: lack of quasilocality, lack of non-nullness

Clarification of conceptual issues

- Renormalization transformations are not discontinuous
- Morita approach for disordered systems redeemed
State of affairs: Positive side

Extensive catalog of instances

- Renormalization transformations
- Spin-flip evolutions (simulations)
- Joint measures of disordered systems
- Intermittency in dynamical systems

Good knowledge of non-Gibbsianness mechanisms

- Physical: hidden variables, ph. transitions of restricted systems
- Mathematical: lack of quasilocality, lack of non-nullness

Clarification of conceptual issues

- Renormalization transformations are not discontinuous
- Morita approach for disordered systems redeemed
State of affairs: Positive side

Extensive catalog of instances

- Renormalization transformations
- Spin-flip evolutions (simulations)
- Joint measures of disordered systems
- Intermittency in dynamical systems

Good knowledge of non-Gibbsianess mechanisms

- Physical: hidden variables, ph. transitions of restricted systems
- Mathematical: lack of quasilocality, lack of non-nullness

Clarification of conceptual issues

- Renormalization transformations are not discontinuous
- Morita approach for disordered systems redeemed
Lack of answers to practitioners

- Calculations of critical exponents?
- Consequences for simulations or sampling schemes?
- Observable (numerical) consequence of non-Gibbsianness? (van Enter and Verbitskiy!)
State of affairs: Negative side - Homework

Lack of answers to practitioners

- Calculations of critical exponents?
- Consequences for simulations or sampling schemes?
- Observable (numerical) consequence of non-Gibbsianness? (van Enter and Verbitskiy!)
State of affairs: Negative side - Homework

Lack of answers to practitioners

- Calculations of critical exponents?
- Consequences for simulations or sampling schemes?
- Observable (numerical) consequence of non-Gibbsianness? (van Enter and Verbitskiy!)