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Motivation: stat mech

Stat mech à la Gibbs

Issue: to study systems with many components
Examples:

I Particles in space: Each particle characterized by a
position and a velocity

I Spins in a lattice (pixels, particles): Each spin has a finite
number of possible values

Stat mech approach:
I Look at finite “windows” (finite regions) Λ
I Replace detailed laws by a probabilistic description
I Find the asymptotic behavior for Λ huge
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Motivation: stat mech

Rough probabilistic prescription

Probability weights or densities

e−βHλ

ZΛ

where
I HΛ=Hamiltonian; must be sum of local terms so that
HeΛ −HΛ ∼

∣∣Λ̃ \ Λ
∣∣ for Λ̃ ⊂ Λ

I β = inverse temperature (“coolness”)
I ZΛ = partition function (normailzation). Physics info:

lim
Λ

1
|Λ|

logZΛ = pressure or free enegy
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Configuration space

Set up: Finite-spin lattice systems

I Lattice = Countable set L (e.g. L = Zd)
I sites x ∈ L
I finite regions Λ,Γ b L

I Single-spin space S, here finite (e.g. Ising spins:
S = {−1, 1})

I Configuration space Ω = SL (A copy of S at each site)
I Notation: ΩΛ :=SΛ

I Configurations: Ω 3 ω = (ωx)x∈L
Notation:

I ΩΛ 3 ωΛ = (ωx)x∈Λ

I ωΛηΛc = ωΛη
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Basic objects

Basic kernels

Formally, finite window = finite region of an infinite system:
I Inside Λ: probability measure
I Outside Λ: fixed configuration (external condition)

That is, a family of probability measures

π
(
·
∣∣ ωΛc

)
or, more precisely, a kernel with two slots π( | )
This is a probability kernel
Need some formalization
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Topology and measure structure

Measure-theoretical and topological set-up

Gibbsianness: interplay between topology and measure-theory
I S endowed with discrete topology and σ-algebra
I Ω endowed with the product topology and σ-algebra

In more detail:
I F = σ-algebra generated by the cylinders

CσΛ =
{
ω ∈ Ω : ωΛ = σΛ

}
I FΓ = σ-algebra generated by cylinders with basis in Γ ⊂ L

CσΛ , Λ ⊂ Γ

I Topology also generated by the cylinders
I cylinders are open
I continuous functions are measurable
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Topology and measure structure

Locality and continuity

f is a local function if
I It depends only on the spins on a finite region
I ∃Γ b L such that f(ω) = f(σ) whenever ωΓ = σΓ

I ∃Γ b L such that (f ∈ FΓ)

Properties:
I Local functions are continuous
I More generally: f is continuous iff, it is quasilocal

sup
ω∈Ω

sup
σ∈Ω

∣∣∣f(ωΛnσ)− f(ω)
∣∣∣ −−−−→

n→∞
0
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Basic definition

Probability kernels

Definition
A probability kernel Ψ from a probability space (A,Σ) to
another probability space (A′,Σ′) is a function

Ψ( · | · ) : Σ′ ×A −→ [0, 1]

such that
(i) Ψ( · |ω) is a probability measure on (A′,Σ′) for each ω ∈ A;

(ii) Ψ(A′| · ) is Σ-measurable for each A′ ∈ Σ′.



Setup Kernels Gibbsian NonGibbs Renorm Evolutions Balance

Stat mech kernels

Equilibrium systems in stat mech

System in Λ b L described by a probability kernel

πΛ( · | · ) from (Ω,F) to itself

where

πΛ(f | ω) = equilibrium value of f when the
configuration outside Λ is ω
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Operations

Operations with kernels

Composition of kernels
Ψ from (A,Σ) to (A′,Σ′) and Ψ′ from (A′Σ′) to (A′′,Σ′′),

(
ΨΨ′

)
(A′′|ω) =

∫
A′

Ψ(dω′|ω) Ψ′(A′′|ω′)

Linear transformations of measures

P(A,Σ) −→ P(A′,Σ′)
µ 7−→ µ′ = µΨ

µ′(A′) =
∫
A
µ(dω) Ψ(A′|ω)
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Equilibrium

Equilibrium condition

System in Λ b L described by a probability kernel πΛ( · | · )

Equilibrium in Λ iff equilibrium in every box Λ′ ⊂ Λ:

πΛ(f | ω) = πΛ

(
πΛ′(f | · )

∣∣∣ ω) (Λ′ ⊂ Λ b L)



Setup Kernels Gibbsian NonGibbs Renorm Evolutions Balance

Equilibrium

Equilibrium condition

System in Λ b L described by a probability kernel πΛ( · | · )

Equilibrium in Λ iff equilibrium in every box Λ′ ⊂ Λ:

πΛ(f | ω) = πΛ

(
πΛ′(f | · )

∣∣∣ ω) (Λ′ ⊂ Λ b L)



Setup Kernels Gibbsian NonGibbs Renorm Evolutions Balance

Equilibrium

Equilibrium condition

System in Λ b L described by a probability kernel πΛ( · | · )

Equilibrium in Λ iff equilibrium in every box Λ′ ⊂ Λ:

πΛ(f | ω) = πΛ

(
πΛ′(f | · )

∣∣∣ ω) (Λ′ ⊂ Λ b L)



Setup Kernels Gibbsian NonGibbs Renorm Evolutions Balance

Specifications

The notion of specification

Specification:
Family Π = {πΛ : Λ b L} of prob. kern. from (Ω,F) to itself s.t.

(i) πΛ(f | ·) ∈ FΛc for each Λ b L and bounded measurable f
(ii) Each πΛ is proper: If g ∈ FΛc ,

πΛ(g f | ω) = g(ω)πΛ(f | ω)

for all ω ∈ Ω and bounded measurable f
(iii) The family Π is consistent:

πΛ πΛ′ = πΛ if Λ′ ⊂ Λ b L
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Consistency

Consistent measures

Definition
µ on F is consistent with a specification Π = {πΛ : Λ b L} if

µπΛ = µ for each Λ b L

(DLR equations)

Remarks

I Several consistent measures = first-order phase transition
I specification ∼ system of regular conditional probabilities

I No apriori measure: conditions for all ω rather than a.s.

I Stat. mech.: conditional probabilities in search of measures
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Gibbsian specifications

Boltzmann prescription

Heuristically: πΛ ∝ e−βHΛ

I β inverse temperature (to be absorbed)
I HΛ Hamiltonian = sum of local terms

Formally:
Interaction: family Φ = {φA ∈ FA : A b L}
Example: Ising interaction

φA(ω) =


−J{x,y} ωxωy if A = {x, y} with |x− y| = 1
−hx ωx if A = {x}

0 otherwise
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Gibbsian specifications

Hamiltonian for Λ b L with frozen external condition ω

HΦ
Λ (σΛ | ωΛc) =

∑
AbL:A∩Λ 6=∅

φA(σΛω)

Existence: Φ uniformly absolutely summable (Φ ∈ B1) if∑
A3x
‖ΦA‖∞ < ∞ for each x ∈ L .

Definition
The Gibbsian specification for Φ ∈ B1 has kernels

πΦ
Λ(CσΛ | ω) =

e−H
Φ
Λ (σΛ|ωΛc )

Norm.

A Gibbs measures for Φ is a measure consistent with ΠΦ
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Gibbsianness

Gibbsianness and its properties

Definition

I Π is a Gibbsian specification if ∃ Φ ∈ B1 s.t. Π = ΠΦ

I µ is a Gibbs measure if it is consistent with some ΠΦ
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Gibbsianness

Gibbsian description (1968): equilibrium statistical mechanics

Exploited in other settings:
I Renormalized measures
I Spin-flip evolutions
I Particle systems
I Dynamical systems
I Quenched disordered systems.
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Gibbsianness

106$ question: How to tell whether a measure is Gibbsian?

Theorem (Kozlov)
A specification is Gibbsian if, and only if, it is both
(i) Uniformly non-null: for each Λ b L

inf
σΛ∈ΩΛ,ωΛc∈ΩΛc

πΛ(CσΛ | ωΛc) =: cΛ > 0

(ii) Quasilocal (almost Markovian): for each Λ b Λ, σΛ ∈ ΩΛ

sup
ω,η,eη∈Ω

∣∣∣πΛ(CσΛ | ωΛnη)− πΛ(CσΛ | ωΛn η̃)
∣∣∣ −−−−→

n→∞
0

[
C.f. Markovian:

πΛ(CσΛ | ω∂rΛη)− πΛ(CσΛ | ω∂rΛη̃) = 0
]
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Gibbsianness

Comments

I Non-nullness = no forbidden configuration
I Quasilocal =

I Info from infinity only through intermediate fluctuations
I Experiment independent on state of Andromeda galaxy
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Non-quasilocality

When is a measure non-quasilocal

Notation: µΛ(f | ω) = Eµ(f | FΛc)(ω)
Key observations:

I µ is quasilocal if consistent with no quasilocal specification
I Need violation at a single ω̂ for a single µΛ for a single f
I Discontinuity must be essential (eg. for open neighbhds)

Recipe: Find
I Sequence of frozen regions ΛNi
I “Tilting” configurations η±
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Non-quasilocality

Non-Gibbsianness criterion:

µ not quasilocal if there exist
I a finite region Λ (often |Λ| = 1)
I a “special” configuration ω̂

I a (quasi)local function f

I a diverging sequence of regions
(
ΛNi

)
i≥1

I some δ > 0 (independent of i)
such that for each i ≥ 1 there exist
(i) larger regions ΛRi , Ri > Ni

(ii) two configurations η+, η− (possibly i-dependent), with

lim
i→∞

∣∣∣µΛ

(
f
∣∣ ω̂ΛNi

η+
ΛRi\ΛNi

σ+
)
− µΛ

(
f
∣∣ ω̂ΛNi

η−ΛRi\ΛNi
σ−
)∣∣∣ ≥ δ

for every σ± ∈ Ω
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Causes of non-quasilocality

Mechanism: Hidden variables

Quasilocality: frozen spins shield influence of distant regions
Non-quasilocality: info from afar even without fluctuations
Mechanism?

For transformed measures,

original variables act as “hidden-variables”

I Freezing transformed vbles = conditioning of original vbles
I These conditioned variables keep some freedom to fluctuate
I For particular ω the conditioned “hidden” system

I exhibit a phase transition
I hence, there is long-range order
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Main example: Transformations of measures

Linear stochastic transformations

A linear stochastic transformation is defined by
I An initial or object space SL

I A transformed or image space S′L
′

I A kernel τ from SL to S′L
′

where
τ(dω′ | ω) = distribution of image spins when the

initial spin configuration is ω

Particular cases:
I Stochastic evolutions: Image = evolved
I Renormalization transf.: Image = renormalized
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Renormalization transformations

Block renormalization transformations

Definition: Kernel from SL to (S′)L′
of the form

τ(dω′ | ω) =
∏
x′∈L′

τx′(dω′x′ | ωBx′ )

Main examples: L′ = L, Bx′ = Λb−1 + bx′

Particular case: Deterministic transformations

τx′( · | ωBx′ ) = δTx′ (ωBx′ )( · )
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Renormalization transformations

Deterministic block RT

I Decimation: S = S′

τx′( · | ωBx′ ) = δωbx′

I Spin contractions: S′ ⊂
6=
S, Bx′ = {x′}

I Sign fields: S ⊂ R symmetric,

Tx′(ωx′) = sign(ωx′)

I “Fuzzy” spins: S = ∪i∈ISi (partition), S′ = I

Tx′( · | ωx′) =
∑
i∈I

i 11{ωx′∈Si}
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Renormalization transformations

I Block average: S′ ⊃
6=
S

Tx′(ωBx′ ) =
1
|Bx′ |

∑
y∈Bx′

ωy

I Majority rule: S′ = S = {−1, 1}

Tx′(ωBx′ ) = sign
[ ∑
y∈Bx′

ωy
]
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Renormalization transformations

Stochastic block RT

I Majority with even block: stochastic decision if∑
y∈Bx′

ωy = 0

I p-Kadanoff transformation: S = S′

τx′(dω′x′ | ωBx′ ) =
exp
[
pω′x′

∑
y∈Bx′ ωy

]
Norm.

dωBx′
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The renormalization issue

The question

Physicists: RT at Hamiltonian level

µ
τ−→ µ′

↑ ↓

Φ R−→ Φ′

Success led to applications to 1st-order phase transitions. Then,

{µ1, · · · }
−→−→−→ {µ′1, · · · }

↑↑↑ ↘↓↙
Φ −→ Φ′

or

{µ1, · · · }
−→−→−→ {µ′1, · · · }

↑↑↑ ↓↓↓
Φ −→−→−→ {Φ′1, · · · }

?
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The renormalization issue

The answer

In fact,

{µ1, · · · }
−→−→−→ {µ′1, · · · }

↑↑↑ ↘↓↙
Φ −→ Φ′

or
{µ1, · · · }

−→−→−→ {µ′1, · · · }
↑↑↑ 6 ↓
Φ 6−→ ??

and even
µ

τ−→ µ′

↑ 6 ↓
Φ 6−→ ??
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Decimation example

Israel: 2× 2-decimation of the Ising model

I ω̂′x′ = (−1)|x
′| = decorated Ising model on internal spins

I Model equivalent to an Ising model at a higher temperature
I η′±x′ = ±1 in an annulus chooses the “±”-phase

Thus,

µ′
(
σ′0

∣∣∣ ω̂′Λ′
R

(+1)Λ′
R+1\Λ

′
R
σ′+
)
− µ′

(
σ′0

∣∣∣ ω̂′Λ′
R

(−1)′ −
Λ′
R+1\Λ

′
R
σ′−
)

−−−−→
R→∞→

2m(β′)
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Decimation example

General case

Specification with densities proportional to

e−H
Φ
Λ (σΛ|ωΛc )

∏
x′∈B′

Λ

Tx′

(
ω′x′

∣∣∣ (σΛ ω)Bx′

)
= exp

{
−HΦ

Λ (σΛ | ωΛc) +
∑
x′∈B′

Λ

log Tx′

(
ω′x′

∣∣∣ (σΛ ω)Bx′

)}

The image ω′ acts as “fields” on the original σΛω

ω̂′ so that conditioned original spins have a phase transition.
In this way, all usual transformations lead to non-Gibbsianness
(even outside the coexistence region)
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Unquenching

Non-Gibbsianness in spin-flip evolutions

Simulations: spin-flip dynamics converging to a target measure
(Metropolis, heath-bath, Glauber)

Often: ordered initial configuration

“Unquenching”: high-T dynamics applied a low-T Gibbs state

Non-Gibbsianness enters into the picture
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Out and in from Gibbsianness

Results for parallel independent updating

(h = 0)
0

Gibbs
n1

. . . . . . -Non-G (NQL)
n2

(h > 0)
0

Gibbs
n1

. . .
n2

Non-G (NQL)
n3

. . . -Gibbs
n4
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Heuristics

Interpretation: The key questions

Which is the most probable history of an improbable
configuration?

Is the (atypical) droplet ω̂′Λ
I Nurture: created by the dynamics?
I Nature: created initially and survived?

The history of ω̂′Λ
I is it uniquely defined by the final configuration?
I admits competing possibilities?
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Heuristics

Interpretation: Tentative answers:

Short times:

I Only a few changes possible
I Everybody nature
I Only one possible history

Not-too-short times:

I System relaxes first and forms ω̂′Λ at the last moment
I Everybody nurture
I Possibility of multiple histories:

I Histories start from typical configurations of different phases
I Same volume cost, different boundary cost
I The configuration around ω̂′Λ may tilt overall cost
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Heuristics

Non-Gibbsianness as discontinuity

Conclusion:

Non-Gibbsianness = history with discontinuous depen-
dence on the surrounding configura-
tion

Scenario:
I Single history = Gibbsianness

I Multiple histories can lead to non-Gibbsianness:
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Prehistory

Wake-up calls for non-Gibbsianness

Griffiths and Pearce (1978): peculiarities in Renormalized
measures

Israel (1979): peculiarity=absence of quasilocality

Other examples (1987–9):
I Spin contractions (Lebowitz-Maes, Dorlas-van Enter)
I Lattice projections (Schonmann)
I Stationary measures of stochastic evolutions

(Lebowitz-Schonmann)

Systematization and overview: van Enter, F. and Sokal (1993)
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State of affairs

State of affairs: Positive side

Extensive catalog of instances
I Renormalization transformations
I Spin-flip evolutions (simulations)
I Joint measures of disordered systems
I Intermittency in dynamical systems

Good knowledge of non-Gibbsianness mechanisms
I Physical: hidden variables, ph. transitions of restricted

systems
I Mathematical: lack of quasilocality, lack of non-nullness

Clarification of conceptual issues
I Renormalization transformations are not discontinuous
I Morita approach for disordered systems redeemed
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State of affairs

State of affairs: Negative side - Homework

Lack of answers to practitioners
I Calculations of critical exponents?
I Consequences for simulations or sampling schemes?
I Observable (numerical) consequence of non-Gibbsianness?

(van Enter and Verbitskiy!)
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