
On subdifferential calculus ∗

Erik J. Balder

1 Introduction

The main purpose of these lectures is to familiarize the student with the basic ingre-
dients of convex analysis, especially its subdifferential calculus. This is done while
moving to a clearly discernible end-goal, the Karush-Kuhn-Tucker theorem, which is
one of the main results of nonlinear programming. Of course, in the present lectures
we have to limit ourselves most of the time to the Karush-Kuhn-Tucker theorem for
convex nonlinear programming. While this is on the one hand restrictive, it is some-
what compensated for by extra structure that the Karush-Kuhn-Tucker theory gains
in the presence of convexity.

The material is presented in the following way. It is assumed that several – but
perhaps not all – students have already been exposed to some standard material on
convex sets. This material has been collected in the appendix; it will be referred to
during the lectures whenever the need arises. Sometimes further references will be
given; as a rule these concern results that can be found in the textbooks [1] or [2].
The less standard part of the material, notably subdifferential calculus, is treated in
the main part of the text.

2 Fundamental results on subdifferentials

The introduction of +∞ and −∞ as extended real numbers is an essential, simplifying
ingredient of convex analysis, as we shall see below. The additional arithmetic is
simple, but needs some care. Of course, one has α + (+∞) = (+∞) + α = +∞ for
every α ∈ (−∞, +∞]; also, α− (+∞) = −∞ for every α ∈ [−∞, +∞). Similar rules
for adding/subtracting −∞ can easily be gathered. However, neither (+∞)− (+∞)
nor (+∞) + (−∞) is defined. This requires constant vigilance on the part of the
reader: for instance, the identity α + β = γ + β can only be used to conclude that
α = γ for α, γ ∈ [−∞, +∞] if β ∈ R. For multiplication the additional rules apply:
α·(+∞) = +∞ for every α ∈ (0, +∞] and α·(+∞) = −∞ for every α ∈ [−∞, 0). By
definition, one also sets 0 · (+∞) = 0 · (−∞) = 0. As for division, it is consistent with
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the above to have α/(+∞) = α/(−∞) = 0 for every α ∈ R, but of course fractions
like (+∞)/(+∞), etc. are undefined. Similar warnings hold: for instance, α/β = γ/β
can only be used to conclude that α = γ for α, γ ∈ [−∞, +∞] if β ∈ R\{0}. Recall
that the definition of a convex set can be found in Appendix A (Definition A.1). We
now introduce a fundamental concept of this course.

Definition 2.1 A function f : S → (−∞, +∞], defined on a convex set S ⊂ Rn, is
said to be convex on S if for every x1, x2 ∈ S and every λ ∈ [0, 1]

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

The same function is said to be strictly convex if for every x1, x2 ∈ S, x1 6= x2, and
for every λ ∈ (0, 1)

f(λx1 + (1− λ)x2) < λf(x1) + (1− λ)f(x2).

This definition does not take into consideration functions that can take the value −∞,
even though it could be expanded to include these.1 By a “sign-mirror treatment”
the above definition can be turned into the following: a function f : S → [−∞, +∞),
defined on a convex set S ⊂ Rn, is said to be [strictly] concave on S if the function
−f is [strictly] convex, as defined above. Because concave functions can always be
turned into convex ones by changing the signs, this course will not consider concave
functions explicitly.

Exercise 2.1 Prove the following:
a. Every linear2 function f(x) := atx + α, with a ∈ Rn and α ∈ R, is a convex
function on Rn (and note that it is also concave).
b. The function f(x) := β|x|2 is strictly convex on Rn if β > 0 (note that f is strictly
concave if β < 0).
c. The function f defined on R+ by f(x) := 1/x if x > 0 and by f(0) := γ can only
be made convex by choosing γ = +∞.
d. The function f defined on R by f(x) := 1/x if x > 0 and f(x) := +∞ if x ≤ 0 is
convex.
e. The function f(x) := −

√
x is convex on R+.

f. The function f defined on R by f(x) := −
√

x if x > 0 and by defining f(x) ∈
(−∞, +∞] for x ≤ 0 can only be a convex function if one sets f(x) := +∞ for every
x < 0 and f(0) := γ with γ ∈ [0, +∞].

Exercise 2.2 Let S ⊂ Rn be a convex set and let f : S → (−∞, +∞]. Then f is
said to be quasiconvex on S if for every α ∈ R the so-called lower level set

Sα := {x ∈ S : f(x) ≤ α}
1Functions that can take the value −∞ are called improper in convex analysis. It can be shown

that improper convex functions have a certain “pathological” structure, which is never encountered
in realistic convex optimization problems.

2More accurately, such a function is called affine.
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is convex.
a. Prove that if f is convex on S, then it is also quasiconvex on S.
b. Prove that f is quasiconvex on S if and only if for every α ∈ R the set {x ∈ S :
f(x) < α} is convex.
c. Let g : D → R be a nondecreasing function on an interval D ⊂ R with D ⊃ f(S)
(note that this forces f to have values in R). Prove that the composed function
h(x) := g(f(x)) is also quasiconvex on S. Hint: Be careful: the function g is allowed
to have discontinuities.

Exercise 2.3 Prove that the function f(x) := − exp(−x2) is quasiconvex on R, but
not convex on R. Hint: Prove monotonicity properties of f on respectively R+ and
R−.

Exercise 2.4 For a function f : S → (−∞, +∞] one denotes by argminx∈Sf(x) the
set (possibly empty) of all minimizers of f on S. That is to say

argminx∈Sf(x) := {z ∈ S : f(z) = inf
x∈S

f(x)}.

a. Prove that the set argminx∈Sf(x) is convex if the function f is quasiconvex on S.
b. Prove that the set argminx∈Sf(x) contains at most one element if the function f
is strictly convex on S.

Exercise 2.5 Prove the following automatic extension result for the domain of a
convex function: if f : S → (−∞, +∞], defined on the convex set S ⊂ Rn, is convex
on S, then f̂ : Rn → (−∞, +∞] is convex on Rn, where f̂(x) := f(x) if x ∈ S and
f̂(x) := +∞ if x 6∈ S.

Note that this kind of extension has been practiced already in Exercise 2.1d, f above.
As an important consequence of Exercise 2.5, we can often limit ourselves to the
study of convex functions on the full space Rn. This standardization can be very
convenient. In the converse direction, we distinguish the subset of Rn on which a
convex function f : Rn → (−∞, +∞] “really matters” in the following way:

Definition 2.2 The essential domain of a function f : Rn → (−∞, +∞] is the set
dom f , given by

dom f := {x ∈ Rn : f(x) < +∞}.

It is clear that for every x0 ∈ Rn the following equivalence holds: x0 ∈ domf if
and only if f(x0) ∈ R. Note also that if f : Rn → (−∞, +∞] is a convex function
(see Definition 2.1), then dom f is a convex set (see Definition A.1).

Next, we discuss some methods to create new convex functions from known convex
functions. To begin with, it is easy to see that if f1, . . . , fm : Rn → (−∞, +∞] are
convex functions, then so are their pointwise sum f(x) :=

∑m
i=1 fi(x) and pointwise

maximum max1≤i≤m fi(x). More generally, if α1, . . . , αm are in R+, then the pointwise
sum f(x) :=

∑m
i=1 αifi(x) is also a convex function (on Rn). Another, more powerful

device to create new convex functions out of known convex functions is composition;
this is the subject of the following two exercises:
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Exercise 2.6 Let f : S → R be a convex function on the convex set S and let
g : D → R be a convex function on the convex set D ⊂ R, with D ⊃ f(S). Suppose
in addition that the function g is also nondecreasing on D (i.e., ξ1 ≤ ξ2 implies g(ξ1) ≤
g(ξ2) for all ξ1, ξ2 ∈ D). Demonstrate that the composed function h(x) := g(f(x))
is also convex on S. Prove also that if g is merely nondecreasing (but perhaps not
convex), then h is a quasiconvex function on S.

Exercise 2.7 a. Let f : Rn → [0, +∞] be convex on Rn. Prove that f 2 is also a
convex function on Rn.
b. Prove that the function f(x) := 1−

√
1− x2 is convex on [−1, +1].

c. Prove that the function f(x) := exp(x2) is convex on R.

Below, in Proposition 2.7, the reader will find another important tool to determine
whether a given function is convex.

Definition 2.3 Given S ⊂ Rn, consider the following function χS : Rn → {0, +∞}

χS(x) :=

{
0 if x ∈ S
+∞ if x 6∈ S.

This function is called the indicator function of the set S.

This definition turns sets into closely related functions. It is easy to see that S ⊂ Rn

is a convex set if and only if its indicator function χS is a convex function. In a
converse direction, convex functions can also be turned into closely related convex
sets:

Definition 2.4 The epigraph of a function f : Rn → (−∞, +∞] is the subset epi f
of Rn × R defined by

epi f := {(x, y) ∈ Rn × R : f(x) ≤ y}

Exercise 2.8 Let f : Rn → (−∞, +∞]. Prove the following: the function f is
convex if and only if its epigraph epi f is a convex subset of Rn × R.

Definition 2.5 a. A subgradient of a function f : Rn → (−∞, +∞], f 6≡ +∞, at
the point x0 ∈ Rn is a vector ξ ∈ Rn such that

f(x) ≥ f(x0) + ξt(x− x0) for all x ∈ Rn.

The set ∂f(x0) (possibly empty) of all such subgradients is called the subdifferential
of f at the point x0. Observe that this definition is only nontrivial if x0 ∈ domf : if
x0 ∈ Rn\dom f , then f(x0) = +∞, so ∂f(x0) = ∅.

From now on, the trivial function f ≡ +∞ is excluded from our considerations.
For convex functions, subgradients form a generalization of the classical notion of
gradient:
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Proposition 2.6 Let f : Rn → (−∞, +∞] be a convex function that is differentiable
at the point x0 ∈ int dom f . Then ∂f(x0) = {∇f(x0)}.

The proof of this proposition will be given later, because its proof uses Theorem 2.15.
Observe that below this proposition applies to some points in Example 2.9(a) and
also to Example 2.9(b).

Exercise 2.9 a. Consider the function f : R → (−∞, +∞], defined by

f(x) :=


0 if x ∈ [−1, +1]
|x| − 1 if x ∈ [−2,−1) ∪ (1, 2]
+∞ if x ∈ (−∞,−2) ∪ (2, +∞).

Demonstrate that

∂f(x) =



{0} if x ∈ (−1, 1)
[−1, 0] if x = −1
[0, 1] if x = 1
{−1} if x ∈ (−2,−1)
{1} if x ∈ (1, 2)
(−∞,−1] if x = −2
[1, +∞) if x = 2
undefined if x ∈ (−∞,−2) ∪ (2, +∞).

b. Let f : Rn → (−∞, +∞] be given by f(x) := 1−
√

1− x2 if x ∈ [−1, +1] and by
f(x) := +∞ if x < −1 or x > 1. Demonstrate that

∂f(x) =

{
{x/

√
1− x2} if x ∈ (−1, +1)

∅ if x ≤ −1 or x ≥ 1.

Proposition 2.6 can be used to provide a very useful characterization of convexity
for differentiable functions on R:

Proposition 2.7 (i) Let f : S → R be a differentiable function on the open, convex
set S ⊂ Rn. Then f is convex on S if and only if the following monotonicity property
holds

(∇f(x1)−∇f(x2))
t(x1 − x2) ≥ 0 for every x1, x2 ∈ S.

(i′) Let f : S → R be a differentiable function on the open, convex set S ⊂ Rn.
Then f is strictly convex on S if and only if the following monotonicity property holds

(∇f(x1)−∇f(x2))
t(x1 − x2) > 0 for every x1, x2 ∈ S, x1 6= x2.

(ii) Let f : S → R be a second order continuously differentiable function on the
open, convex set S ⊂ Rn. Then f is convex on S if and only if its Hessian matrix

Hf (x) :=

(
∂2f(x)

∂xi∂xj

)
i,j
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is positive semidefinite at every point x of S.
(ii′) Let f : S → R be a second order continuously differentiable function on the

open, convex set S ⊂ Rn. Then f is strictly convex on S if its Hessian matrix

Hf (x) :=

(
∂2f(x)

∂xi∂xj

)
i,j

is positive definite at every point x of S.

Recall here that an n×n matrix M is positive semidefinite if dtMd ≥ 0 for all d ∈ Rn.
It is positive definite if dtMd > 0 for all d ∈ Rn.

Proof. (i) If f is convex on S, then Proposition 2.6, together with the definition
of subdifferential, implies

f(x2) ≥ f(x1) +∇f(x1)
t(x2 − x1) and f(x1) ≥ f(x2) +∇f(x2)

t(x1 − x2).

This immediately gives the desired monotonicity.
Conversely, given monotonicity, fix x, x′ in S and let φ(t) := f(tx′ + (1 − t)x′′),

t ∈ [0, 1]. By the mean value theorem there exists θ ∈ (0, 1) such that φ(1)− φ(0) =
φ′(θ), i.e., f(x′)− f(x′′) = ∇f(x̃)t(x′−x′′), where x̃ := θx′ +(1− θ)x′′. Monotonicity
implies (∇f(x̃)−∇f(x′′))t(x̃−x′′) ≥ 0, i.e., θ(∇f(x̃)−∇f(x′′))t(x′−x′′) ≥ 0. Hence,
∇f(x̃)t(x′ − x′′) ≥ ∇f(x′′))t(x′ − x′′). Thus, it follows that

f(x′) ≥ f(x′′) +∇f(x′′)t(x′ − x′′) for every pair x′, x′′ ∈ S.

To prove that this property implies the convexity of f , let x1, x2 ∈ S, let λ ∈ [0, 1]
and set x3 := λx1 + (1 − λ)x2. By applying the previous property to x′′ := x3 and
successively to x′ = x1 and x′ = x2, we obtain

f(x1) ≥ f(x3) +∇f(x3)
t(x1 − x3) and f(x2) ≥ f(x3) +∇f(x3)

t(x2 − x3).

Multiplying the left hand sides by λ and 1 − λ respectively, this easily leads to
λf(x1) + (1− λ)f(x2) ≥ f(x3).

(ii) The underlying idea is that monotonicity (as in part (i)) of the first or-
der derivative of f can, in turn, be characterized by “nonnegativity” (i.e., positive
semidefiniteness) of the second order derivative. We refer to [2] for the details. Parts
(i′) and (ii′) go analogously (exercise). QED

Specialized to n = 1, Proposition 2.7 is as follows:

Corollary 2.8 (i) Let f : S → R be a differentiable function on the open, convex
set S ⊂ R. Then f is convex [strictly convex] on S if and only if its derivative is
nondecreasing [increasing].

(ii) Let f : S → R be a second order continuously differentiable function on the
open, convex set S ⊂ R. Then f is convex [strictly convex] on S if and only if [if ] its
second derivative is nonnegative [positive].
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Exercise 2.10 Find the smallest α ∈ R for which f(x) := x exp(−x) is convex on
the set [α, +∞).

Exercise 2.11 Consider for α, β > 0 the function f(x1, x2) := −xα
1 xβ

2 on R2
+. Prove

the following:
a. If α + β ≤ 1, then f is convex on R2

+.
b. If α + β > 1, then f is not convex on R2

+, but it is still quasiconvex. Hint: use
Exercise 2.6.

Theorem 2.9 (Moreau-Rockafellar) Let f, g : Rn → (−∞, +∞] be convex func-
tions. Then for every x0 ∈ Rn

∂f(x0) + ∂g(x0) ⊂ ∂(f + g)(x0).

Moreover, suppose that int dom f ∩ dom g 6= ∅. Then for every x0 ∈ Rn also

∂(f + g)(x0) ⊂ ∂f(x0) + ∂g(x0).

Proof. The proof of the first part is elementary: Let ξ1 ∈ ∂f(x0) and ξ2 ∈ ∂g(x0).
Then for all x ∈ Rn

f(x) ≥ f(x0) + ξt
1(x− x0), g(x) ≥ g(x0) + ξt

2(x− x0),

so addition gives f(x) + g(x) ≥ f(x0) + g(x0) + (ξ1 + ξ2)
t(x − x0). Hence ξ1 + ξ2 ∈

∂(f + g)(x0).
To prove the second part, let ξ ∈ ∂(f + g)(x0). First, observe that f(x0) = +∞

implies (f + g)(x0) = +∞, whence f + g ≡ +∞, which is impossible by ξ ∈ ∂(f +
g)(x0). Likewise, g(x0) = +∞ is impossible. Hence, from now on we know that both
f(x0) and g(x0) belong to R. We form the following two sets in Rn+1.

Λf := {(x− x0, y) ∈ Rn × R : y > f(x)− f(x0)− ξt(x− x0)}

Λg := {(x− x0, y) : −y ≥ g(x)− g(x0)}.

Observe that both sets are nonempty and convex (see Exercise 2.8), and that Λf ∩
Λg = ∅ (the latter follows from ξ ∈ ∂(f + g)(x0)). Hence, by the set-set-separation
Theorem A.4, there exists (ξ0, µ) ∈ Rn+1 and α ∈ R, (ξ0, µ) 6= (0, 0), such that

ξt
0(x− x0) + µy ≤ α for all (x, y) with y > f(x)− f(x0)− ξt(x− x0),

ξt
0(x− x0) + µy ≥ α for all (x, y) with −y ≥ g(x)− g(x0).

By (0, 0) ∈ Λg we get α ≤ 0. But also (0, ε) ∈ Λf for every ε > 0, and this gives
µε ≤ α, so µ ≤ 0 (take ε = 1). In the limit, for ε → 0, we find α ≥ 0. Hence α = 0
and µ ≤ 0. We now claim that µ = 0 is impossible. Indeed, if one had µ = 0, then
the first of the above two inequalities would give

ξt
0(x− x0) ≤ 0 for all (x, y) with y > f(x)− f(x0)− ξt(x− x0),
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which is equivalent to

ξt
0(x− x0) ≤ 0 for all x ∈ dom f

(simply note that when f(x) < +∞ one can always achieve y > f(x)−f(x0)−ξt(x−
x0) by choosing y sufficiently large). Likewise, the second inequality would give

ξt
0(x− x0) ≥ 0 for all x ∈ dom g.

In particular, for x̃ as above this would imply ξt
0(x̃− x0) = 0. But since x̃ lies in the

interior of dom f (so for some δ > 0 the ball Nδ(x̃) belongs to dom f), the preceding
would imply

ξt
0u = ξt

0(x̃ + u− x0) ≤ 0 for all u ∈ Nδ(0).

Clearly, this would give ξ0 = 0 (take u := δξ0/2), which would be in contradiction to
(ξ0, µ) 6= (0, 0). Hence, we conclude µ < 0. Dividing the separation inequalities by
−µ and setting ξ̄0 := −ξ0/µ, this results in

ξ̄t
0(x− x0) ≤ y for all (x, y) with y > f(x)− f(x0)− ξt(x− x0),

ξ̄t
0(x− x0) ≥ y for all (x, y) with −y ≥ g(x)− g(x0).

The last inequality gives −ξ̄0 ∈ ∂g(x0) (set y := g(x0) − g(x)) and the one but last
inequality gives ξ + ξ̄0 ∈ ∂f(x0) (take y := f(x)−f(x0)− ξt(x−x0)+ ε and let ε ↓ 0).
Since ξ = (ξ + ξ̄0)− ξ̄0, this finishes the proof. QED

Exercise 2.12 Show by means of an example that the condition int dom f∩dom g 6=
∅ in Theorem 2.9 cannot be omitted.

Exercise 2.13 Find and prove an version of the Moreau-Rockafellar theorem that
applies to the subdifferentials of a finite sum of convex functions.

As a precursor to the Karush-Kuhn-Tucker theorem, we have now the following
application of the Moreau-Rockafellar theorem.

Theorem 2.10 Let f : Rn → R be a convex function and let S ⊂ Rn be a nonempty
convex set. Consider the optimization problem

(P ) inf
x∈S

f(x).

Then x̄ ∈ S is an optimal solution of (P ) if and only if there exists a subgradient
ξ̄ ∈ ∂f(x̄) such that

ξ̄t(x− x̄) ≥ 0 for all x ∈ S. (1)
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Proof. Recall from Definition 2.3 that χS is the indicator function of S. Now
let x̄ ∈ S be arbitrary. Then the following is trivial: x̄ is an optimal solution of (P )
if and only if

0 ∈ ∂(f + χS)(x̄).

By the Moreau-Rockafellar Theorem 2.9, we have

∂(f + χS)(x̄) = ∂f(x̄) + ∂χS(x̄).

To see that its conditions hold, observe that dom f = Rn and dom χS = S. So it
follows that x̄ is an optimal solution of (P ) if and only if 0 ∈ ∂f(x̄) + ∂χS(x̄). By
the definition of the sum of two sets this means that x̄ is an optimal solution of (P )
if and only if 0 = ξ̄ + ξ̄′ for some ξ̄ ∈ ∂f(x̄) and ξ̄′ ∈ ∂χS(x̄). Of course, the former
means ξ̄′ = −ξ̄, so −ξ̄ ∈ ∂χS(x̄), which is equivalent to

χS(x) ≥ χS(x̄) + (−ξ̄)t(x− x̄) for all x ∈ Rn,

i.e., to (1). QED

Remark 2.11 As the application of the Moreau-Rockafellar theorem in the above
proof shows, the sufficiency part of Theorem 2.10 remains valid for a convex function
f : Rn → (−∞, +∞], i.e., a function that can attain the value +∞. In that same
situation the necessity also remains valid, provided that we suppose either int dom f∩
S 6= ∅ or dom f∩int S 6= ∅. In particular, this remark applies to automatic extensions
of the type introduced in Exercise 2.5.

Exercise 2.14 Show by means of an example that, without the additional condition
suggested in Remark 2.11, it is essential in Theorem 2.10 to have a function f with
values in R. [Hint: In boundary points of dom f the subdifferential of f can be
empty, as shown in certain examples above.]

Exercise 2.15 Let S ⊂ R2 be given by the following system of inequalities: ξ1 ≥
0, ξ2 ≥ 0, −ξ1 + ξ2 ≤ 2, 2ξ1 + 3ξ2 ≤ 11. Let f(ξ1, ξ2) := ξ2

1 + ξ2
2 − 8ξ1 − 20ξ2 + 89.

a. Prove that S is a convex set and that f : S → R is convex.
b. Use Theorem 2.10 to show that ξ1 = 1, ξ2 = 3 is an optimal solution for minimizing
f over S.
c. Prove that, actually, f is strictly convex, i.e., prove that f(λx1 + (1 − λ)x2) <
λf(x1) + (1− λ)f(x2) for every x1, x2 ∈ S, x1 6= x2, and every λ ∈ (0, 1).
d. Use part c to prove that (1, 3) in part b is the only optimal solution.

Example 2.12 Let the convex set S ⊂ R2 be given by the following four inequalities:
ξ1 ≥ 0, ξ2 ≥ 0, ξ2 ≥ ξ2

1 and ξ2 ≤ 4. Let f(ξ1, ξ2) := (ξ1−10)2+(ξ2−5)2; this measures
the squared distance from (ξ1, ξ2) to the point (10, 5). From a picture of S it would
seem that x̄ = (2, 4) is the point in S that is closest to (10, 5). To check that
x̄ = (2, 4) is indeed the optimal solution of minx∈S f(x), we apply Theorem 2.10:
it is enough to verify that ∇f(2, 4)t(ξ1 − 2, ξ2 − 4) ≥ 0 for every (ξ1, ξ2) ∈ S. Now
∇f(2, 4) = (−16,−2), so it must be verified that −16(ξ1−2)−2(ξ2−4) ≥ 0, i.e., that
8ξ1 + ξ2 ≤ 20 for every (ξ1, ξ2) ∈ S. This holds, because (ξ1, ξ2) ∈ S implies directly
ξ1 ≤ 2 and ξ2 ≤ 4. Since the function f is strictly convex, we conclude, moreover,
from Exercise 2.4 that (2, 4) is the unique point in S that is closest to (10, 5).
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Definition 2.13 The directional derivative of a convex function f : Rn → (−∞, +∞]
at the point x0 ∈ domf in the direction d ∈ Rn is defined as

f ′(x0; d) := lim
λ↓0

f(x0 + λd)− f(x0)

λ
.

The above limit is a well-defined number in [−∞, +∞]. This follows from the fol-
lowing proposition (why?), which shows that the difference quotients of a convex
functions possess a monotonicity property:

Proposition 2.14 Let f : Rn → (−∞, +∞] be a convex function and let x0 be a
point in domf . Then for every direction d ∈ Rn and every λ1, λ2 ∈ R such that
λ2 > λ1 > 0 we have

f(x0 + λ1d)− f(x0)

λ1

≤ f(x0 + λ2d)− f(x0)

λ2

Proof. Note that

x0 + λ1d =
λ1

λ2

(x0 + λ2d) + (1− λ1

λ2

)x0.

So by convexity of f

f(x0 + λ1d) ≤ λ1

λ2

f(x0 + λ2d) + (1− λ1

λ2

)f(x0).

Simple algebra shows that this is equivalent to the desired inequality. QED

In Appendix B the Fenchel conjugation of convex functions is studied; this tool
plays a major role in the proof of the next theorem:

Theorem 2.15 Let f : Rn → (−∞, +∞] be a convex function and let x0 be a point
in int dom f . Then

f ′(x0; d) = sup
ξ∈∂f(x0)

ξtd for every d ∈ Rn.

Exercise 2.16 You are asked to verify the identity of Theorem 2.15 explicitly in
each of the following cases (so in each case you are asked to determine both the left
and right hand sides independently, and then to show that the identity holds).
a. Let f : Rn → R be a convex function which is differentiable at the point x0 ∈
int dom f .
b. Let x0 := 0 and let f : Rn → R be the convex function given by f(x) := |x| :=
(
∑

i x
2
i )

1/2 (Euclidean norm). Hint: here you must show, among other things, that
∂f(0) = {x ∈ Rn : |x| ≤ 1}.
c. Let x0 := 1 and let f : R → R be the convex function f(x) := max(1, x).

The proof of Theorem 2.15 uses the following lemma:
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Lemma 2.16 Let f : Rn → (−∞, +∞] be a convex function. Then f is continuous
at any point x0 ∈ int dom f ; moreover, then ∂f(x0) is nonempty and compact.

Proof. Continuity: Consider g(x) := f(x0 + x) − f(x0). Then g is convex and
g(0) = 0. Let e1, . . . , en be the unit vectors in Rn. Denote the set {e1, . . . , en,−e1, . . . ,−en}
by {y1, . . . , y2n}. Let α ∈ (0, 1] be so small that x0 + αyi ∈ dom f for all i. Now for
every x ∈ Rn such that |xi| ≤ α/n one has

x =
∑

i,xi>0

xi

α
αei +

∑
i,xi<0

−xi

α
α(−ei) + (1−

∑
i

|xi|
α

)0

so that

g(x) ≤
n∑

i,xi>0

|xi|
α

g(αei) +
n∑

i,xi<0

|xi|
α

g(−αei) ≤ β
∑

i

|xi|,

where β := α−1 max1≤i≤2n(f(x0 + αyi)− f(x0)) < +∞. Also, for the same x one has
0 = 1

2
x + 1

2
(−x), so

0 ≤ 1

2
g(x) +

1

2
g(−x),

Hence g(x) ≥ −g(−x) ≥ −β
∑

i |xi| holds as well. We conclude therefore that g is
continuous (and even Lipschitz-continuous) at 0, i.e., f is continuous at the original
point x0.

Nonemptiness: Let g := χx0 . Then by the Moreau-Rockafellar theorem ∂(f +
g)(x0) = ∂f(x0) + ∂g(x0). But both ∂(f + g)(x0) and ∂g(x0) are equal to Rn in this
case, so ∂f(x0) cannot be empty (because of ∅+ Rn = ∅).

Compactness: Exercise 2.17. QED

Exercise 2.17 Prove the compactness part of Lemma 2.16. Hint: Use the continuity
part and mimic certain components of the proof of that part.

Proof of Theorem 2.15. By Proposition 2.14

q(d) := f ′(x0; d) := lim
λ↓0

f(x0 + λd)− f(x0)

λ
= inf

λ>0

f(x0 + λd)− f(x0)

λ
.

Since the pointwise limit of a sequence of convex functions is convex, it follows that
q : Rn → R is convex (by the infimum expression for q(d) the fact that x0 ∈ int dom f
implies automatically q(d) < +∞ for every d; also, q(d) > −∞ for every d, because
of the nonemptiness part of Lemma 2.16). Hence, q is continuous at every point
d ∈ Rn (apply the continuity part of Lemma 2.16). So by the Fenchel-Moreau theorem
(Theorem B.5 in the Appendix) we have for every d

q(d) = q∗∗(d) := sup
ξ∈Rn

[dtξ − q∗(ξ)].

Let us calculate q∗. For any ξ ∈ Rn we have

q∗(ξ) := sup
d∈Rn

[ξtd−q(d)] = sup
d,λ>0

[ξtd−f(x0 + λd)− f(x0)

λ
] = sup

λ>0
sup

d
[ξtd−f(x0 + λd)− f(x0)

λ
]

11



by the above infimum expression for q(d). Fix λ > 0; then z := x0 + λd runs through
all of Rn as d runs through Rn. Hence

sup
d

[ξtd− f(x0 + λd)− f(x0)

λ
] =

f(x0)− ξtx0 + supz[ξ
tz − f(z)]

λ
.

Clearly, this gives

q∗(ξ) = sup
λ>0

f(x0)− ξtx0 + f ∗(ξ)

λ
=

{
0 if ξ ∈ ∂f(x0)
+∞ otherwise

where we use Proposition B.4(v). Observe that in terms of the indicator function
of the subdifferential this can be rewritten as q∗ = χ∂f(x0). Now that q∗ has been
calculated, we conclude from the above that for every d ∈ Rn

f ′(x0; d) = q(d) = q∗∗(d) = χ∗∂f(x0)(d) = sup
ξ∈∂f(x0)

ξtd,

which proves the result. QED

Proof of Proposition 2.6. By Theorem 2.15 we get

∇f(x0)
td = sup

ξ∈∂f(x0)

ξtd.

The remainder of the proof is left as an exercise.

Theorem 2.17 (Dubovitskii-Milyutin) Let f1, · · · , fm : Rn → (−∞, +∞] be con-
vex functions and let x0 be a point in ∩m

i=1int dom fi. Let f : Rn → (−∞, +∞] be
given by

f(x) := max
1≤i≤m

fi(x)

and let I(x0) be the (nonempty) set of all i ∈ {1, · · · , m} for which fi(x0) = f(x0).
Then

∂f(x0) = co ∪i∈I(x0) ∂fi(x0).

Proof. For our convenience we write I := I(x0). To begin with, observe that
ξ ∈ ∂fi(x0) easily implies ξ ∈ ∂f(x0) for each i ∈ I. Since ∂f(x0) is evidently
convex, the inclusion ”⊃” follows with ease. To prove the opposite inclusion, let ξ0

be arbitrary in ∂f(x0). If ξ0 were not to belong to the compact set co ∪i∈I ∂fi(x0),
then we could separate strictly (note that each set ∂fi(x0) is both closed and compact
(exercise)): by Theorem A.2 there would exist d ∈ Rn and α ∈ R such that

ξt
0d > α ≥ max

i∈I
sup

ξ∈∂fi(x0)

ξtd = max
i∈I

f ′i(x0; d),

where the final identity follows from Theorem 2.15. But now observe that

f ′(x0; d) := lim
λ↓0

max
i∈I

fi(x0 + λd)− fi(x0)

λ
= max

i∈I
lim
λ↓0

fi(x0 + λd)− fi(x0)

λ
= max

i∈I
f ′i(x0; d),

so the above gives ξt
0d > f ′(x0; d). On the other hand, by ξ0 ∈ ∂f(x0) it follows that

f(x0 + λd) ≥ f(x0) + λξt
0d for every λ > 0, whence f ′(x0; d) ≥ ξt

0d. We thus have
arrived at a contradiction. So the inclusion ”⊂” must hold as well. QED
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Exercise 2.18 a. In the above proof the following property is used: if S ⊂ Rn is
compact, then its convex hull co S is compact. Prove this, using the following result
of Carathéodory: in Rn every convex combination x of p ≥ n+1 points x1, . . . , xp (i.e.,
x =

∑p
1 αixi for αi ≥ 0 and

∑p
1 αi = 1) can also be written as a convex combination

of at most n + 1 points xi1 , . . . , xin+1 ⊂ {x1, . . . , xp}.
b. Give an example of a closed set S ⊂ Rn for which co S is not closed (conclusion:
in the above proof it is essential to work with compactness).

Exercise 2.19 Let f(x) := |x| on S := R. Then ∂f(0) = [−1, 1] (by Exercise 2.16(b)
for n = 1). Demonstrate how this result can also be derived from Theorem 2.17.

Exercise 2.20 Show by means of an example that in Theorem 2.17 it is essential to
have x0 ∈ ∩iint dom fi.

3 The Kuhn-Tucker theorem for convex program-

ming

We use the results of the previous section to derive the celebrated Kuhn-Tucker theo-
rem for convex programming. Unlike its counterparts in section 4 of [1], this theorem
gives necessary and sufficient conditions for optimality for the standard convex pro-
gramming problem. First we discuss the situation with inequality constraints only.

Theorem 3.1 (Kuhn-Tucker – no equality constraints) Let f, g1, · · · , gm : Rn →
(−∞, +∞] be convex functions and let S ⊂ Rn be a convex set. Consider the convex
programming problem

(P ) inf
x∈S

{f(x) : g1(x) ≤ 0, · · · , gm(x) ≤ 0}.

Let x̄ be a feasible point of (P ); denote by I(x̄) the set of all i ∈ {1, · · · , m} for which
gi(x̄) = 0.

(i) x̄ is an optimal solution of (P ) if there exist vectors of multipliers ū :=
(ū1, · · · , ūm) ∈ Rm

+ and η̄ ∈ Rn such that the following three relationships hold:

ūigi(x̄) = 0 for i = 1, · · · , m (complementary slackness),

0 ∈ ∂f(x̄) +
∑

i∈I(x̄)

ūi∂gi(x̄) + η̄ (normal Lagrange inclusion),

η̄t(x− x̄) ≤ 0 for all x ∈ S (obtuse angle property).

(ii) Conversely, if x̄ is an optimal solution of (P ) and if x̄ ∈ int dom f∩∩i∈I(x̄)int dom gi,
then there exist multipliers ū0 ∈ {0, 1}, ū ∈ Rm

+ , (ū0, ū) 6= (0, 0), and η̄ ∈ Rn such
that the complementary slackness relationship and obtuse angle property of part (i)
hold, as well as the following:

0 ∈ ū0∂f(x̄) +
∑

i∈I(x̄)

ūi∂gi(x̄) + η̄ (Lagrange inclusion).
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Here the normal case is said to occur when ū0 = 1 and the abnormal case when
ū0 = 0.

Remark 3.2 (minimum principle) By Theorem 2.9, the normal Lagrange inclu-
sion in Theorem 3.1 implies

−η̄ ∈ ∂(f +
∑

i∈I(x̄)

ūigi)(x̄).

So by Theorem 2.10 and Remark 2.11 it follows that

x̄ ∈ argminx∈S[f(x) +
∑

i∈I(x̄)

ūigi(x)](minimum principle).

Likewise, under the additional condition dom f ∩ ∩i∈I(x̄)int dom gi 6= ∅, this mini-
mum principle implies the normal Lagrange inclusion by the converse parts of Theo-
rem 2.10/Remark 2.11 and Theorem 2.9.

Remark 3.3 (Slater’s constraint qualification) The following Slater constraint
qualification guarantees normality: Suppose that there exists x̃ ∈ S such that gi(x̃) < 0
for i = 1, · · · , m. Then in part (ii) of Theorem 3.1 we have the normal case ū0 = 1.

Indeed, suppose we had ū0 = 0. For ū0 = 0 instead of ū0 = 1 the proof of the
minimum principle in Remark 3.2 can be mimicked and gives

m∑
i=1

ūigi(x̄) ≤
m∑

i=1

ūigi(x̃).

Since (ū1, · · · , ūm) 6= (0, · · · , 0), this gives
∑m

i=1 ūigi(x̄) < 0, in contradiction to com-
plementary slackness.

Proof of Theorem 3.1. Let us write I := I(x̄). (i) By Remark 3.2 the
minimum principle holds, i.e., for any x ∈ S we have

f(x) +
∑
i∈I

ūigi(x) ≥ f(x̄)

(observe that
∑

i∈I ūigi(x̄) = 0 by complementary slackness). Hence, for any feasible
x ∈ S we have

f(x) ≥ f(x) +
∑
i∈I

ūigi(x) ≥ f(x̄),

by nonnegativity of the multipliers. Clearly, this proves optimality of x̄.
(ii) Consider the auxiliary optimization problem

(P ′) inf
x∈S

φ(x),

where φ(x) := max[f(x)−f(x̄), max1≤i≤m gi(x)]. Since x̄ is an optimal solution of (P ),
it is not hard to see that x̄ is also an optimal solution of (P ′) (observe that φ(x̄) = 0
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and that x ∈ S is feasible if and only if max1≤i≤m gi(x) ≤ 0). By Theorem 2.10
and Remark 2.11 there exists η̄ in Rn such that η̄ has the obtuse angle property and
−η̄ ∈ ∂φ(x̄). By Theorem 2.17 this gives

−η̄ ∈ ∂φ(x̄) = co(∂f(x̄) ∪ ∪i∈I∂gi(x̄)).

Since subdifferentials are convex, we get the existence of (u0, ξ0) ∈ R+ × ∂f(x̄) and
(ui, ξi) ∈ R+ × ∂gi(x̄), i ∈ I, such that

∑
i∈{0}∪I ui = 1 and

−η̄ =
∑

i∈{0}∪I

uiξi.

In case u0 = 0, we are done by setting ūi := ui for i ∈ {0} ∪ I and ūi := 0 otherwise.
Observe that in this case (ū1, · · · , ūm) 6= (0, · · · , 0) by

∑
i∈I ui = 1. In case u0 6= 0,

we know that u0 > 0, so we can set ūi := ui/u0 for i ∈ {0} ∪ I and ūi := 0 otherwise.
QED

Example 3.4 Consider the following optimization problem:

(P ) minimize (x1 −
9

4
)2 + (x2 − 2)2

over all (x1, x2) ∈ R2
+ such that

x2
1 − x2 ≤ 0

x1 + x2 − 6 ≤ 0

−x1 + 1 ≤ 0

Since Slater’s constraint qualification clearly holds, we get that a feasible point (x̄1, x̄2)
is optimal if and only if there exists (ū1, ū2, ū3) ∈ R3

+ such that(
0
0

)
=

(
2(x̄1 − 9

4
)

2(x̄2 − 2)

)
+ ū1

(
2x̄1

−1

)
+ ū2

(
1
1

)
+ ū3

(
−1
0

)
+

(
η̄1

η̄2

)
for some η̄ := (η̄1, η̄2)

t with

η̄t(x− x̄) ≤ 0 for all x ∈ R2
+

and such that

ū1(x̄
2
1 − x̄2) = 0

ū2(x̄1 + x̄2 − 6) = 0

ū3(−x̄1 + 1) = 0

Let us first deal with η̄: observe that the above obtuse angle property forces η̄1 and
η̄2 to be nonpositive, and x̄i > 0 even implies η̄i = 0 for i = 1, 2 (this can be seen as
a form of complementarity). Since x̄1 ≥ 1, this means η̄1 = 0. Also, x̄2 = 0 stands
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no chance, because it would mean x̄2
1 ≤ 0. Hence, η̄ = 0. We now distinguish the

following possibilities for the set I := I(x̄):
Case 1 (I = ∅): By complementary slackness, ū1 = ū2 = ū3 = 0, so the Lagrange

inclusion gives x̄1 = 9/4, x̄2 = 2, which violates the first constraint ((9/4)2 6≤ 2).
Case 2 (I = {1}): By complementary slackness, ū2 = ū3 = 0. The Lagrange

inclusion gives x̄1 = 9
4
(1 + ū1)

−1, x̄2 = ū1/2 + 2, so, since x̄2
1 = x̄2, by definition of

I, we obtain the equation ū3
1 + 6ū2

1 + 9ū1 = 49/8, which has ū1 = 1/2 as its only
solution. It follows then that x̄ = (3/2, 9/4)t.

At this stage we can already stop: Theorem 3.1(i) guarantees that, in fact, x̄ =
(3/2, 9/4)t is an optimal solution of (P ). Moreover, since the objective function
(x1, x2) 7→ (x1− 9

4
)2 +(x2− 2)2 is strictly convex, it follows that any optimal solution

of (P ) must be unique. So x̄ = (3/2, 9/4)t is the unique optimal solution of (P ).

Exercise 3.1 Consider the optimization problem

(P ) sup
(ξ1,ξ2)∈R2

+

{ξ1ξ2 : 2ξ1 + 3ξ2 ≤ 5}.

Solve this problem using Theorem 3.1. Hint: The set of optimal solutions does not
change if we apply a monotone transformation to the objective function. So one can
use f(ξ1, ξ2) :=

√
ξ1ξ2 to ensure convexity (see Exercise 2.11).

Exercise 3.2 Let ai > 0, i = 1, . . . , n and let p ≥ 1. Consider the optimization
problem

(P ) maximize
n∑

i=1

aiξi over (ξ1, . . . , ξn) ∈ Rn

subject to g(ξ) :=
∑n

i=1 |ξi|p = 1.

a. Show that if the constraint
∑n

i=1 |ξi|p = 1 is replaced by
∑n

i=1 |ξi|p ≤ 1, then this
results in exactly the same optimal solutions.
b. Prove that g : Rn → R, as defined above, is convex. Prove also that g is in fact
strictly convex if p > 1.
c. Apply Theorem 3.1 to determine the optimal solutions of (P ). Hint: Treat the
cases p = 1 and p > 1 separately.
d. Derive from the result obtained in part (c) for p > 1 the following famous Hölder
inequality, which is an extension of the Cauchy-Schwarz inequality: |

∑
i aiξi| ≤

(
∑

i a
q
i )

1/q(
∑

i |ξi|p)1/p for all (ξ1, . . . , ξn) ∈ Rn. Here q is defined by q := p/(p− 1).

Corollary 3.5 (Kuhn-Tucker – general case) Let f, g1, · · · , gm : Rn → (−∞, +∞]
be convex functions, let S ⊂ Rn be a convex set. Also, let A be a p × n-matrix and
let b ∈ Rp. Define L := {x : Ax = b}. Consider the convex programming problem

(P ) inf
x∈S

{f(x) : g1(x) ≤ 0, · · · , gm(x) ≤ 0, Ax− b = 0}.

Let x̄ be a feasible point of (P ); denote by I(x̄) the set of all i ∈ {1, · · · , m} for which
gi(x̄) = 0.
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(i) x̄ is an optimal solution of (P ) if there exist vectors of multipliers ū ∈ Rm
+ ,

v̄ ∈ Rp and η̄ ∈ Rn such that the complementary slackness relationship and the obtuse
angle property hold just as in Theorem 3.1(i), as well as the following version of the
normal Lagrange inclusion:

0 ∈ ∂f(x̄) +
∑

i∈I(x̄)

ūi∂gi(x̄) + Atv̄ + η̄.

(ii) Conversely, if x̄ is an optimal solution of (P ) and if both x̄ ∈ int dom f ∩
∩i∈I(x̄)int dom gi and int S ∩L 6= ∅, then there exist multipliers ū0 ∈ {0, 1}, ū ∈ Rm

+ ,
(ū0, ū) 6= (0, 0), and v̄ ∈ Rp, η̄ ∈ Rn such that the complementary slackness rela-
tionship and obtuse angle property of part (i) hold, as well as the following Lagrange
inclusion:

0 ∈ ū0∂f(x̄) +
∑

i∈I(x̄)

ūi∂gi(x̄) + Atv̄ + η̄.

Proof. Observe that ∂χL(x̄) = im At. Indeed, η ∈ ∂χL(x̄) is equivalent to
ηt(x − x̄) ≤ 0 for all x ∈ L, i.e., to ηt(x − x̄) = 0 for all x ∈ Rn with A(x − x̄) = 0.
But the latter states that η belongs to the bi-orthoplement of the linear subspace
im At, so it belongs to im At itself. This proves the observation. Let us note that the
above problem (P ) is precisely the same problem as the one of Theorem 3.1, but with
S replaced by S ′ := S ∩L. Thus, parts (i) and (ii) follow directly from Theorem 3.1,
but now η̄ as in Theorem 3.1 has to be replaced by an element (say η′) in ∂χS′ . From
Theorem 2.9 we know that

∂χS′(x̄) = ∂χS(x̄) + ∂χL(x̄),

in view of the condition int S∩L 6= ∅. Therefore, η′ can be decomposed as η′ = η̄+η,
with η̄ ∈ ∂χS(x̄) (this amounts to the obtuse angle property, of course), and with
η ∈ ∂χL(x̄). By the above there exists v̄ ∈ Rm with η = Atv̄ and this finishes the
proof. QED

Example 3.6 Let c1, · · · , cn, a1, · · · , an and b be positive real numbers. Consider the
following optimization problem:

(P ) minimize
n∑

i=1

ci

xi

over all x = (x1, · · · , xn)t ∈ Rn
++ (the strictly positive orthant) such that

n∑
i=1

aixi = b.

Let us try to meet the sufficient conditions of Corollary 3.5(i). Thus, we must find a
feasible x̄ ∈ Rn and multipliers v̄ ∈ R, η̄ ∈ Rn such that 0

...
0

 =

 − c1
x̄2
1

...
− cn

x̄2
n

 +

 a1
...

an

 v̄ + η̄.
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and such that the obtuse angle property holds for η̄. To begin with the latter, since
we seek x̄ in the open set S := Rn

++, the only η̄ with the obtuse angle property is
η̄ = 0. The above Lagrange inclusion gives x̄i = (ci/(v̄ai))

1/2 for all i. To determine v̄,
which must certainly be positive, we use the constraint: b =

∑
i aix̄i =

∑
i(aici/v̄)1/2,

which gives v̄ = (
∑

i(aici)
1/2/b)2. Thus, all conditions of Corollary 3.5(i) are seen to

hold: an optimal solution of (P ) is x̄, given by

x̄i =

√
ci

ai

b∑n
j=1

√
ajcj

,

and it is implicit in our derivation that this solution is unique (exercise).

Remark 3.7 By using the relative interior (denoted as ”ri”) of a convex set, i.e.,
the interior relative to the linear variety spanned by that set, one can obtain the
following improvement of the nonempty intersection condition in Theorem 2.9: it is
already enough that ri dom f ∩ dom g is nonempty. Since one can also prove that
A(ri S) = ri A(S) for any convex set S ⊂ Rn and any linear mapping A : Rn → Rp

[2, Theorem 4.9], it follows that the nonempty intersection condition in Corollary 3.5
can be improved considerably into ri S ∩ L 6= ∅ or, equivalently, into b ∈ A(ri S).

Exercise 3.3 In the above proof of Corollary 3.5 the fact was used that for a linear
subspace M of Rn the following holds: let

M⊥ := {x ∈ Rn : xtξ = 0 for all ξ ∈ M},

This is a linear subspace itself (prove this), so M⊥⊥ := (M⊥)⊥ is well-defined. Prove
that M = M⊥⊥. Hint: This identity can be established by proving two inclusions;
one of these is elementary and the other requires the use of projections.

Exercise 3.4 What becomes of Corollary 3.5 in the situation where there are no
inequality constraints (i.e., just equality constraints)? Derive this version.

Exercise 3.5 Use Corollary 3.5 to prove the following famous theorem of Farkas.
Let A be a p× n-matrix and let c ∈ Rn. Then precisely one of the following is true:

(1) ∃x∈RnAx ≤ 0 (componentwise) and ctx > 0, (2) ∃y∈Rp
+
Aty = c.

Hint: Show first, by elementary means, that validity of (2) implies that (1) cannot
hold. Next, apply Corollary 3.5 to a suitably chosen optimization problem in order
to prove that if (1) does not hold, then (2) must be true.
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A Standard material on convexity

Definition A.1 A set S in Rn is said to be convex if for every x1, x2 ∈ S the line
segment {λx1 + (1− λ)x2 : 0 ≤ λ ≤ 1} belongs to S.

For instance, a hyperplane S = {x ∈ Rn : ptx = α} or a ball S = {x ∈ Rn : |x−x0| ≤
β} are examples of convex sets. However, the sphere S = {x ∈ Rn : |x − x0| = β}
provides an example of a set that is not convex (β > 0). It is easy to see that
arbitrary intersections of convex sets are again convex; also finite sums of convex sets
are convex again.

Theorem A.2 (strict point-set separation [1, Thm. 2.4.4]) Let S be a nonempty
closed convex subset of Rn and let y ∈ Rn\S. Then there exists p ∈ Rn, p 6= 0, such
that

sup
x∈S

ptx < pty.

Proof. It is a standard result that there exists x̂ ∈ S such that sups∈S |y − s| =
|y− x̂| (consider a suitable closed ball around y and apply the theorem of Weierstrass
[1, Thm. 2.3.1]). By convexity of S, this means that for every x ∈ S and every
λ ∈ (0, 1]

|y − (λx + (1− λ)x̂)|2 ≥ |y − x̂|2.
Obviously, the expression on the left equals

|y − x̂− λ(x− x̂)|2 = |y − x̂|2 − 2λ(y − x̂)t(x− x̂) + λ2|x− x̂|2,

so the above inequality amounts to

2λ(y − x̂)t(x− x̂) ≤ λ2|x− x̂|2

for every x ∈ S and every λ ∈ (0, 1]. Dividing by λ > 0 and letting λ go to zero then
gives

(y − x̂) · (x− x̂) ≤ 0 for all x ∈ S.

Set p := y − x̂; then p 6= 0 (note that p = 0 would imply y ∈ S). We clearly have
ptx ≤ ptx̂. Also, we have now ptx̂ > pty, for otherwise (y − x̂)t(x̂ − y) ≥ 0 would
imply y = x̂ ∈ S, which is impossible. QED

For our next result, recall that ∂S := clS ∩ cl(Rn\S) = clS\int S denotes the
boundary of a set S ⊂ Rn.

Theorem A.3 (supporting hyperplane [1, Thm. 2.4.7]) Let S be a nonempty
convex subset of Rn and let y ∈ ∂S. Then there exists q ∈ Rn, q 6= 0, such that

sup
x∈cl S

qtx ≤ qty.

In geometric terms, H := {x ∈ Rn : qtx = qty} is said to be a supporting hyperplane
for S at y: the hyperplane H contains the point y and the set S (as well as cl S) is
contained the halfspace {x ∈ Rn : ptx ≤ pty}.
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Proof. Let Z := cl S; then ∂S ⊂ ∂Z (exercise). Of course, Z is closed and it is
easy to show that Z is convex (use limit arguments). So there exists a sequence (yk)
in Rn\Z such that yk → y. By Theorem A.2 there exists for every k a nonzero vector
pk ∈ Rn such that

sup
x∈Z

pt
kx < pt

kyk.

Division by |pk| turns this into

sup
x∈Z

qt
kx < qt

kyk,

where qk := pk/|pk| belongs to the unit sphere of Rn. This sphere is compact (Bolzano-
Weierstrass theorem), so we can suppose without loss of generality that (qk) converges
to some q, |q| = 1 (so q is nonzero). Now for every x ∈ Z the inequality qt

kx < qt
kyk,

which holds for all k, implies

qtx = lim
k

qt
kx ≤ lim

k
qt
kyk = qty,

and the proof is finished. QED

Theorem A.4 (set-set separation [1, Thm. 2.4.8]) Let S1, S2 be two nonempty
convex sets in Rn such that S1 ∩ S2 = ∅. Then there exist p ∈ Rn, p 6= 0, and α ∈ R
such that

sup
x∈S1

ptx ≤ α ≤ inf
y∈S2

pty.

In geometric terms, H := {x ∈ Rn : ptx = α} is said to be a separating hyperplane
for S1 and S2: each of the two convex sets is contained in precisely one of the two
halfspaces {x ∈ Rn : ptx ≤ α} and {x ∈ Rn : ptx ≥ α}.

Proof. It is easy to see that S := S1 − S2 is convex. Now 0 6∈ S, for otherwise
we get an immediate contradiction to S1 ∩ S2 = ∅. W distinguish now two cases: (i)
0 ∈ cl S and (ii) 0 6∈ cl S.

In case (i) we have 0 ∈ ∂S, so by Theorem A.3 we then have the existence of a
nonzero p ∈ Rn such that

ptz ≤ 0 for every z ∈ S = S1 − S2, (2)

i.e., for every z = x− y, with x ∈ S1 and y ∈ S2. This gives ptx ≤ pty for all x ∈ S1

and y ∈ S2, whence the result.
In case (ii) we apply Theorem A.2 to get immediately (2) as well. The result

follows just as in case (i). QED

Theorem A.5 (strong set-set separation [1, Thm. 2.4.10]) Let S1, S2 be two
nonempty closed convex sets in Rn such that S1∩S2 = ∅ and such that S1 is bounded.
Then there exist p ∈ Rn, p 6= 0, and α ∈ R, β ∈ R such that

sup
x∈S1

ptx ≤ α < β ≤ inf
y∈S2

pty.

Proof. As in the previous proof, it is easy to see that S := S1 − S2 is convex.
Now S is also seen to be closed (exercise). As in the previous proof, we have 0 6∈ S.
We can now apply Theorem A.2 to get the desired result, just as in case (ii) of the
previous proof. QED
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B Fenchel conjugation

Definition B.1 For a function f : Rn → (−∞, +∞] the (Fenchel) conjugate function
of f is f ∗ : Rn → [−∞, +∞], given by

f ∗(ξ) := sup
x∈Rn

[ξtx− f(x)].

By repeating the conjugation operation one also defines the (Fenchel) biconjugate of
f , which is simply given by f ∗∗ := (f ∗)∗.

Example B.2 Consider f : R → R, given by

f(x) :=


x log x if x > 0,

0 if x = 0,
+∞ if x < 0.

Observe that this function is convex. Then (counting 0 log 0 as 0) we clearly have
f ∗(ξ) = supx≥0 ξx − x log x for the conjugate. For an interior maximum in R+ (by
concavity of the function to be maximized) the necessary and sufficient condition is
ξ− log x− 1 = 0, i.e., x = exp(ξ− 1), which gives the value ξx−x log x = exp(ξ− 1).
Since this value is positive, we conclude that the point x = 0 stands no chance for the
maximum, i.e., the maximum is always interior, as calculated above, giving f ∗(ξ) =
exp(ξ−1) for the conjugate function. We can also determine the biconjugate function:
by definition, f ∗∗(x) = supξ∈R xξ − exp(ξ − 1). If x < 0, then, by exp(ξ − 1) → 0
as ξ → −∞, the supremum value is clearly +∞. Hence, f ∗∗(x) = +∞ for x < 0.
If x > 0, then setting the derivative of the concave function ξ 7→ xξ − exp(ξ − 1)
equal to zero gives a solution (whence a global maximum) for ξ = log x + 1. Hence
f ∗∗(x) = x log x for x > 0. Finally, if x = 0, then the supremum of − exp(ξ − 1) is
clearly the limit value 0. So f ∗∗(0) = 0. We conclude that f ∗∗ = f in this example.
The Fenchel-Moreau theorem below will support this observation.

Exercise B.1 Determine for each of the following functions f the conjugate function
f ∗ and verify also explicitly if f = f ∗∗ holds.
a. f(x) = ax2 + bx + c, a ≥ 0,
b. f(x) = |x|+ |x− 1|,
c. f(x) = xa/a for x ≥ 0 and f(x) = +∞ for x < 0 (here a ≥ 1).
d. f = χB, where B is the closed unit ball in Rn.

Example B.3 Let K be a nonempty convex cone in Rn (recall that a cone (at zero)
is a set such that αx ∈ K for every α > 0 and x ∈ K; cf. Definition 2.5.1 in [1]). Let
f := χK . Then

f ∗(ξ) = sup
x∈K

ξtx =

{
0 if ξ ∈ K∗,

+∞ otherwise.

Recall here that K∗, the polar cone of K, is defined by K∗ := {ξ ∈ Rn : ξtx ≤
0 for all x ∈ K}. Hence, we conclude that (χK)∗ = χK∗ .

Denote the closure of K by K̄. We also observe that ξ ∈ ∂χK̄(0) is equivalent to
ξtx ≤ 0 for all x ∈ K̄, i.e., to ξtx ≤ 0 for all x ∈ K, i.e., to ξ ∈ K∗.
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Proposition B.4 Let f, g : Rn → (−∞, +∞].
(i) If f ≥ g then f ∗ ≤ g∗.
(ii) If f ∗(x) = −∞ for some x ∈ Rn, then f ≡ +∞.
(iii) For every x0, ξ ∈ Rn

f ∗(ξ) ≥ ξtx0 − f(x0) (Young’s inequality).

(iv) f ≥ f ∗∗.
(v) For every x0, ξ ∈ Rn

f ∗(ξ) = ξtx0 − f(x0) if and only if ξ ∈ ∂f(x0).

Exercise B.2 Give a proof of Proposition B.4.

Theorem B.5 (Fenchel-Moreau) Let f : Rn → (−∞, +∞] be convex. Then

f(x0) = f ∗∗(x0) if and only if f is lower semicontinuous at x0.

Proof. One implication is very simple: if f(x0) = f ∗∗(x0), and if xn → x0 then
lim infn f(xn) ≥ lim infn f ∗∗(xn) by Proposition B.4(iv). Also, lim infn f ∗∗(xn) ≥
f ∗∗(x0) because every conjugate, being the supremum of a collection of continuous
functions, is automatically lower semicontinuous. So we conclude that lim infn f(xn) ≥
f ∗∗(x0) = f(x0), i.e., f is lower semicontinuous at x0.

In the converse direction, by Proposition B.4(iv) it is enough to prove f ∗∗(x0) ≥ r
for an arbitrary r < f(x0), both when f(x0) < +∞ and when f(x0) = +∞.

Case 1: f(x0) < +∞. It is easy to check that C := epi f := {(x, r) ∈ Rn × R :
r ≥ f(x)}, the epigraph of f , is a convex set in Rn+1 (this is Theorem 3.2.2 in [1] – as
can be seen immediately from its proof, it continues to hold for functions with values
in (−∞, +∞] and we know already that this theorem also holds for sets with empty
interior). Hence, the closure cl C is also convex. We claim now that (x0, r) 6∈ cl C.
For suppose (x0, r) would be the limit of a sequence of points (xn, yn) ∈ C. Then
yn ≥ f(xn) for each n, and in the limit this would give r ≥ lim infn f(xn) ≥ f(x0) by
lower semicontinuity of f at x0. This contradiction proves that the claim holds. We
may now apply separation [1, Theorem 2.4.10]: there exist α ∈ R and p =: (ξ0, µ) 6=
(0, 0), with ξ0 ∈ Rn and µ ∈ R, such that

ξt
0x + µy ≤ α < ξt

0x0 + µr for all (x, y) ∈ C. (3)

It is clear that µ ≤ 0 by the definition of C. Also, it is obvious that µ 6= 0 (just
consider what happens if we take (x, y) = (x0, f(x0)) in (3) – and we may do this by
virtue of f(x0) ∈ R). Hence, we can divide by −µ in (3) and get

ξt
1x− f(x) ≤ ξt

1x0 − r for all x ∈ dom f.

Notice that this inequality continues to hold outside dom f as well; thus, f ∗(ξ1) ≤
ξt
1x0 − r, which implies the desired inequality f ∗∗(x0) ≥ r.

Case 2a: f ≡ +∞. In this case, the desired result is trivial, for f ∗ ≡ −∞, so
f ∗∗ ≡ +∞.
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Case 2b: f(x1) < +∞ for some x1 ∈ Rn. We can repeat the proof of Case 1 until
(3). If µ happens to be nonzero, then of course we finish as in Case 1. However, if
µ = 0 we only get

ξt
0x ≤ α < ξt

0x0 for all x ∈ dom f

from (3). We then repeat the full proof of Case 1, but with x0 replaced by x1 and r
by f(x1)− 1. This gives the existence of ξ ∈ Rn such that

ξtx− f(x) ≤ ξtx1 − f(x1) + 1 for all x ∈ dom f.

Now for any λ > 0, observe that by the two previous inequalities

f(x) ≥ (ξ + λξ0)
tx− ξtx1 + f(x1)− 1− αλ for all x ∈ Rn,

which implies f ∗(ξ +λξ0) ≤ ξtx1−f(x1)+1+λα. By definition of f ∗∗(x0), this gives

f ∗∗(x0) ≥ λ(ξt
0x0 − α) + ξtx0 − ξtx1 + f(x1)− 1,

which implies f ∗∗(x0) = +∞, by letting λ go to infinity (note that ξt
0x0 − α > 0 by

the above). QED

Corollary B.6 (bipolar theorem for cones) Let K be a closed convex cone in
Rn. Then K = K∗∗ := (K∗)∗.

Proof. Observe that f := χK is a lower semicontinuous convex function. Hence,
f ∗∗ = f by Theorem B.5. By Example B.3 we know that f ∗ = χK∗ , so f ∗∗ = χK∗∗

follows by another application of this fact. Hence χK = χK∗∗ . QED

Exercise B.3 Prove Farkas’ theorem (see Exercise 3.5) by means of Corollary B.6.

Exercise B.4 Redo Exercise 3.3 by making it a special case of Corollary B.6.
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