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A UNIFYING NOTE ON FATOU'S LEMMA IN SEVERAL 
DIMENSIONS*t 

E. J. BALDER 

State University of Utrecht 

A general version of Fatou's lemma in several dimensions is presented. It subsumes the 
Fatou lemmas given by Schmeidler (1970), Hildenbrand (1974), Cesari-Suryanarayana (1978) 
and Artstein (1979). Also, it is equivalent to an abstract variational existence result that 
extends and generalizes results by Aumann-Perles (1965), Berliocchi-Lasry (1973), Artstein 
(1974) and Balder (1979) in several respects. 

1. Main results. Let (T,, , Ij) be a finite measure space and m a prescribed 
dimension. Let Y-m J m"(T, f-, gi) be the space of all integrable functions from T 
into Rm. For any y E Rm we shall define y ,y- in Rm by (y +)= max(yi, 0), 
i = 1,..., m and y-=(-y)+. In this note we introduce a pair of equivalent 
existence results, one of which is the following version of Fatou's lemma in several 
dimensions. 

FATOU LEMMA. Suppose {fk} C dYm is such that 

(1) { fk } is uniformly integrable, 
(2) limk f fk d,t exists (in R'n). 

Then there exists f, E 1dm with 
(3) f,(t) is a limit point of {fk(t)} a.e. in T, 
(4) f f* d7 < limk f fk d/. 
This lemma subsumes similar results by Schmeidler (1970), Hildenbrand (1974), 

Cesari-Suryanarayana (1978) and Artstein (1979). To begin with, it clearly generalizes 
Schmeidler's original result; this is obtained by setting f =-- 0 for all k. Further, the 
result in Cesari-Suryanarayana (1978, 2.2) follows from it, since by (3) certainly f*(t) 
belongs to the closure of {fk(t)} for a.e. t in T. (The stronger result in (3) is essential 
for a lot of applications!) Moreover, Cesari and Suryanarayana require (T, 5-, it) to be 
nonatomic. (Since they do not provide a proof of their version of Fatou's lemma, it is 
not possible to determine whether this restriction could be lifted.) Because the original 
version of Fatou's lemma in Hildenbrand (1974, p. 69) is a special case of the later 
result by Artstein (1979), it suffices to show that the latter result also follows from our 
version of Fatou's lemma (Hildenbrand (1974) requires additionally that {fk(t)} be 
pointwise bounded). 

COROLLARY 1. Suppose { fk} C of is such that 
{fk } is uniformly integrable, 
limk f fk d!, exists. 
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Then there exists f. Ei Yf with 
f*(t) is a limit point of fk(t)) a.e. in T, 
ff* d-t = limk f fkdt. 

PROOF. Apply the Fatou lemma to {(fk, -fk)}. This gives existence of (f*,-f*) 
Ei22m with (f*(t),-f*(t)) a limit point of {(fk(t), -fk(t))} a.e. in T and f f* 
< limk f fk < f f*. The former property gives that f*(t) = f*(t) a.e. in T. Q.E.D. 

Before stating other consequences of the Fatou lemma, we shall need some defini- 
tions and notation. Suppose S is a metrizable Lusin space (alias standard Borel space) 
(Dellacherie-Meyer (1975, III.15)).' The Borel a-algebra on S is denoted by s(S). 

The set of all Borel measurable functions from T into S is denoted by A(T; S). 
A function g: Tx S->(-oo, +oo] is said to be a normal integrand on Tx S if 
g is -< x (S)-measurable and g(t, .) is lower semicontinuous on S for every t in 
T. The set of all (nonnegative) normal integrands on T x S is denoted by S(T; S) 
[J 

+ (T; S)]. The set of all g E S + (T; S) such that g(t, *) is inf-compact2 on S for 
every t in T is denoted by A(T; S). For any g e S(T; S), u E /4(T; S) we shall 
write 

Ig(u)- g(t, u(t))p(dt) =_f g+ (t, u(t))tt(dt) 
- g- (t, u(t))M(dt), 

where g + max(g, 0), g- = max(- g, 0), with the understanding that (+ oo) - 

(+oo)_ +oo by convention. Also, for any g E S(T; S), h E6 (T; S) the sym- 
bolism g- < h will indicate the following growth property of h with respect to g- - 
max(- g, 0): for every E > 0 there exists f,E Il such that on T x S 

g- (t, x) < ,h(t,x)+ f,(t). 

Now let XI, X2 be metrizable Lusin spaces and n a prescribed number. We have the 
following abstract variational existence result as a consequence of the Fatou lemma. 
Later, we shall prove a very weak version of this result from which the Fatou lemma 
follows. Hence, the two results are in fact equivalent. 

PROPOSITION 1. Suppose {(xk, /uk)} C 4 ( T; XI X X2) satisfies 
(5) (Xk) converges in measure to xo c -E ( T; XI), 
(6) supklh(uk) < + oo for some h E A(T; X2). 

Suppose also that { gl, . . . , g}n C S(T; Xl X X2) is such that 
(7) { gi- (', xk ('), uk ('))} is uniformly integrable, i = 1, .. ., n. 

Then there exist a subsequence ( uk) of uk } and u. E 4 ( T; X2) with 
(8) u.(t) is a limit point of (uk (t)} a.e. in T, 
(9) Ih (u*) < supk Ih(u), 
(10) Ig(xo, u.) < liminfg Ig,(X,U), i = 1 . . , n. 

PROOF. Let ,/ denote the supremum in (6). By (7) {fIg(xk,uA)} is bounded from 
below by a constant for every i, 1 < i < n. Hence, there is a subsequence ((xk,uk)}) 
of {(xk,uk)} such that for every i, 1 < i < n, (Igj(xk,uk)} converges to some fi3 E 

(-oo, +oo] and {Ih(xk,uk)} to some n+l E [0, /]. Rather than extracting a subse- 
quence once more, we may suppose without loss of generality that xk (t) -> xo(t) a.e. in 
T, by (5) (Hildenbrand (1974, p. 47)). Let E denote the (possibly empty) set of those i, 
1 < i < n, for which fi < + oo. Define fk to consist of e + 1 component functions 

gi(',xk (), u(k)), i E E, and h(., uk(-)). Here e stands for the number of indices in E. 
In view of (7), gi(.,xk(.),uk(.)) is integrable whenever Ig(xk,ukj)< +oo, so our 
construction of E gives fk E yjf+ for sufficiently large kj. Now condition (1) of the 

' For instance, every Polish (separable metric complete) space is metrizable Lusin. 
2 (x S : g(t, x) < /f) is compact for every ,f e R. 
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Fatou lemma holds by (7), and (2) holds in view of the choice of {(xk, uk)). By the 
Fatou lemma there existsf* E fe + 1 such that f(t) is a limit point of {fk (t)} a.e. in T 
and f f*, < Ai for every i E E U {e + 1). It follows that for a.e. t in T there exists a 
subsequence (kl) of (kj}-quite possibly depending upon t-such that gi(t, xk(t), 

Uk(t))f/*(t) for every i E E and with h(t,uk,(t))->f* (t) < + oo. By inf- 
compactness of h(t,, *) uk,(t)) contains a subsequence converging to some ut E X2. 
Note that ut belongs to Q(t)- n ClUk>>/n { Uk(t)}.3 From the facts that xk(t)-> xo(t) 
a.e. in T and that gi(t,., ) is lower semicontmnuous, we conclude that for a.e. t in T 
there exists ut E a(t) such that gi(t, Xo(t),ut) < f*(t), i E E, and h(t,ut) < f*+I(t). By 
Himmelberg (1975, Theorem 6.1) the graph of the multifunction Q is easily seen to be 
ST x (X2)-measurable. Hence, the set of all (t,x)E T x X2 such that x e E(t), 
gi(t,xo(t),x) < f*(t), i E E, and h(t,x) < f+ l(t) is also 

- 
x X (X2)-measurable. By 

Aumann's measurable selection theorem (Himmelberg (1975, Theorem 5.2)) there 
exists u,* E (T; X2) such that a.e. in T u,(t) E Q(t), gi(t, xo(t), u*(t)) < f*(t) for each 
i E E and h(t,u*(t)) < f*+ (t). This gives Ih(u*) < f fe+ < Af and Ig(xo,u*) < /i for 
all i, 1 < i < n, since the inequality holds trivially when i q E. Q.E.D. 

COROLLARY 2. Suppose h E -"(T; X2) and { go, gl,..., gn, C J(T; X2) satisfy 
(11) gi- < h, i = 0, , . . ., n. 

For given constants a , . . . , an , a + I let . be the set of all u E 4 (T; X2) which satisfy 
the following constraints 

(12) Ig(u) < ati, i= 1, . . . , n and Ih(u) < an+I. 
Suppose that X' is nonempty; then there exists u* E 4 such that 

(13) Igo(U*) = infu E ,Igo(). 

PROOF. Since .4 is nonempty, there exists a minimizing sequence { uk } in 4 (i.e., 
Igo(Uk) -> infv Igo). Now (11)-(12) imply the validity of (6)-(7). It follows from applying 
Proposition 1 that there exist a subsequence {Uk}) of { Uk} and uE,, E h (T; X2) such 
that (8), (9) and (10) hold for i = 0, 1, ..., n. By our choice of {Uk}, u* then satisfies 
(12) and (13). Q.E.D. 

COROLLARY 3. Suppose T is the unit interval [0, 1], equipped with Lebesgue a-algebra 
and measure. Suppose h E Y'( T; X2) and { go, gl, . . . , gn) C (T; X2) satisfy 

(14) g- <<h, i = O, 1, .. . , n. 
For given constants aI, .. . a, an an+ let 4' be the set of all (to, t, u) E [0, 1] x [0, 1] x 

/ ( T; X2) which satisfy 
(15) ftt gi(t,u(t))dt < a, i = 1, . . ., n, and Ih(u) < an+l. 

Suppose that 4' is nonempty; then there exists (to, t1*, u*) 0E '4 such that 
(16) Jft go(t,u*(t))dt = inf{ft go(t, u(t))dt: (to, t,u) E ')}. 

PROOF. 
X ' being nonempty, there exists a minimizing sequence {(tok, tlk, Uk)} in 

_'. By compactness of [0,1] x [0, 1] we may suppose without loss of generality that 

t0,k 
---> t*, t,k > t* for some to*, tI* in [0, 1]. Take X 0, 1 } and define xk to be the 

characteristic function l( k,t 1,) of the interval (tOk, tl,k). Define g, E ( T; XI x X 2) by 
g'(t, x, x2)- x g(t, x2). Condition (5) of Proposition 1 is fulfilled by the choice of 

{(tk,tl,k))} . For (go . gn} (6)-(7) hold by virtue of (14)-(15). By Proposition 1 
there exist a subsequence {(tok, ,t kj, Uk)} and u* E ( T; X2) such that (9) holds for 

= 0,1, . . . , n [and with xo = I(t0o*, t,l]. This shows that (to*,t1*,u*) has the required 
properties. Q.E.D. 

Like its counterpart, Proposition 1 is a novel result. We should point out that it 
strongly resembles a classical lower semicontinuity result for integral functionals; cf. 

3Here cl stands for closure. 
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Cesari (1974b), loffe (1977), Balder (1981b, 1982,1983a) and their references. There 
seem to be no references in the literature on Fatou's lemma that indicate the 
reciprocity between this lemma and abstract variational existence results. 

Corollary 2 extends the existence results obtained thus far for a well-known 
variational problem concerning the optimal selection of continuous-time allocation 
plans, to the case where the underlying measure space may have atoms. Influenced by 
Yaari (1964), the first such result was given by Aumann-Perles (1965) (for T,X2 
Euclidean and ju Lebesgue). Subsequently, this result was generalized by Berliocchi- 
Lasry (1973) (T,X2 locally compact Polish and ju nonatomic), Artstein (1974) (T 
abstract, X2 Polish and / nonatomic) and Balder (1979) (T abstract, X2 metrizable 
Lusin and ti nonatomic). Corollary 3 deals with a variable consumption period. In its 
present abstract form it seems to be a new result. Less abstract versions of it would 
turn out to be well-known existence results for optimal control with variable time 
"without convexity"; cf. Cesari (1974a) and forthcoming work by Balder (1983b). 
(Incidentally, it is interesting to note that a version of Fatou's lemma in several 
dimensions was also used to deal with existence results for optimal control "with 
convexity"; cf. Cesari-Suryanarayana (1978), Angell (1981).) 

2. Proof of the Fatou lemma. We shall derive the Fatou lemma from a very weak 
version of Proposition 1, to be proven here by using what are essentially the main 
results of relaxed control theory combined with Lyapunov's theorem. This would seem 
to suggest a new approach to the Fatou lemma. Of course, since Proposition 1 was 
already shown to follow from the Fatou lemma, this also establishes the equivalence of 
this lemma and Proposition 1. 

In the weak version of Proposition 1 presented below, Proposition C, we shall only 
need to take X =-N U {oo}, X2 Rm. Observe that these are both locally compact 
Polish spaces. Before proving Proposition C we shall introduce some facts, notation 
and terminology about relaxed control functions. Practically all of this can be found in 
Berliocchi-Lasry (1973) and Warga (1972); in a more abstract setting it can be found 
in Balder (1979, 1981a-b). 

Let S be a locally compact Polish space. Such a space is countable at infinity, so its 
Alexandrov (one point) compactification S is metrizable (Hildenbrand (1974, p. 15)). 
Let p stand for a fixed compatible metric on S. Define {(S) to be the set of all 
continuous functions on S and We (S) to be the set of all elementary functions c in 
{(S) that are of the form c = yp(-, x) + y', x E S, y, y' E R. 

LEMMA A. For every normal integrand g E + (T; S) [g E- S+ (T; S)] there exist a 
null set N and sequences {Tp} in Y-, {c} in We(S) such that on (T\N) x S 
[(T\N) x S] 

g(t,x) = supp 1 T(t)cp(x). 

PROOF (cf. Balder (1981a, proof of Theorem 1)). Let {xi} be a countable dense 
subset of S and let { rj} be an enumeration of the rationals. For i, j,k E N we define 

Cijk E e(S) by cijk 
- 
r.-kp(xi, ) and set Bijk {t E T: cijk(x) < g(t,x) for all 

x E S}. Then Bijk is the projection of the set of all (t,x) E T x S such that c.k (X) 
> g(t,x) onto T. By a well-known projection theorem (Castaing-Valadier (1977, 
III.23)), the set Bijk belongs to the completion of the a-algebra 

- 
with respect to [L. 

Hence, there exists for every i, j, k a set Tjk in Y such that Tj. C Bk and Bijk\Tijk is 
contained in a null set Nijk. Using the lower semicontinuity and nonnegativity of the 
function g(t, -), it is not hard to see that 

sup lBi(t)Cik(x) = g(t,x) on TXS. 
i,j,k 
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Taking N to be the union of all Njk, the result for the first case now follows. The 
second case is proven in an entirely similar way. Q.E.D. 

Let M(S) [M1+(S/)] be the set of all signed bounded measures (probability mea- 
sures) on (S, (S)). We shall equip these with the (relative) vague topology a(M(S), 
{(S)) (Dellacherie-Meyer (1975, III.54)). Let L = L(T,, ,/; I(S)) be the space of 
(equivalence classes of) integrable functions from T into {(S). The topological dual of 
Ll can be identified with the space L, =- L,o (T, Y, Ij; M(S)) of (equivalence classes 
of) essentially bounded Borel measurable functions from T into M(S) (Ionescu-Tulcea 
(1969, VII.7); cf. Meyer (1966, p. 301) for a short proof). More precisely, Lo consists 
of (equivalence classes of) functions 8: T-> M(S)) that are vaguely Borel and have 

ess sup 8 (t)v < +00, 
t 

where | * I denotes the total variation norm. Let R be the set of (equivalence classes of) 
Borel measurable functions 8: T-> M(S) such that 8(t) M1+(S) a.e. in T; then 
evidently R c L.o We shall equip Loo[R] with the (relative) topology o(L,o,LI); 
note that this makes Lo into a Hausdorff locally convex space. By abuse of notation 
we write for any 8 E R, g E S(T; S) 

Ig(S) --g(t,$(t))t(dt)- f g+ (,,i (t))tt(dt)-f g-(,i8 (t))lA(dt), 

with the provision (+ oo) - (+ oo) + oo. Here g+ ((t)) f= gg+ (t,x)8(t)(dx), etc. 
It follows easily from Lemma A that, modulo abuse in our notation, this integral is 
well defined. Our next result forms the centerpiece of relaxed control theory; cf. 
Warga (1972, IV), Castaing-Valadier (1977, V.2). 

THEOREM B. (i) R is compact and sequentially compact. 
(ii) For every g E S + (T; S) the function Ig: R -> [0, + oo] is lower semicontinuous. 

PROOF. (i) Compactness of the closed convex set R in the unit ball of Loo follows 
by the Alaoglu-Bourbaki theorem (Holmes (1975, 12.D)). Sequential compactness of 
R is seen as follows; cf. N6lle-Plachky (1967), Kirschner (1976). Given a sequence 
{Sk} in R, let -' be the sub-o algebra of a- generated by {k}. Since Mi+(S) is 
metrizable and separable, J7' is countably generated. Hence, L L (T, ',_ ; _(S)) 
is separable, so by Holmes (1975, 12.F) the set R' of all (equivalence classes of) - 

'-measurable functions 8: T- Ml+(S) is metrizable for the topology o(L,,Ll), 
where L o( , L(T,-', ,; M(S)). Also, R' is compact for a(Lo,L). Hence, a sub- 
sequence of {8k} converges to some So R' in the topology a(L',Li). It follows 
easily from the conditional expectation result of Castaing-Valadier (1977, VIII.32) that 
this subsequence converges now also to 0o in a(L?,L,). 

(ii) Given g E S + (T; S), we can apply Lemma A. In the notation of that lemma, 
define 

q min{q, max[ sup lc p ,0} 

Then gqTg on (T\N) X S. Note that each gq is a version of an equivalence class in L. 
Hence, Ig is the supremum of a collection of continuous functions on R, as follows by 
applying the monotone convergence theorem. Q.E.D. 

We are now in a position to prove Proposition C, a weak version of Proposition 1. 
Let [N = N U { oo) denote the usual Alexandrov compactification of N ("addition of 
point at infinity"). 

PROPOSITION C. Suppose uk) C ( T; 1Fm) satisfies 
(17) SUpk lh(uk) < + oo for some h E '(T; Rm). 
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Suppose also that go E j + (T; N X Rm) and { g1, . . , g, } C (T; R') are such that 
(18) g- << h, i = 1,..., n. 

Then there exist a subsequence { ukj of { } and u, E ( T; Rm) with 

(19) Ih(u*) < suPkIh(uk), 
(20) Igo(oo,u) < liminfk Igo(kj.,), 
(21) Ig, (u*) < liminfk Ig (Uk), 

' = 1,..., n. 

PROOF. By (17)-(18) the sequences (Igo(k,uk)} and {Ig(uk)), i = 1, ..., n, are 
bounded below, so there exists a subsequence {uk} of {uk) such that {Igo(kj, uk)} 
converges to some /Bo E [0, oo] and {I (uk)) converges to some /li E (- oo, + oo]. 

Secondly, we shall show now that to a subsequence of {Uk}), there corresponds a 
generalized limit 83 E R such that 81(t) is a point measure a.e. in T1. Here T, denotes 
the purely atomic part of (T, 7-, A), (a version of) the essential supremum of all atoms. 
Let To T\ Tl be the nonatomic part. For S = Rm we shall apply Theorem B to the 
case where (T, , ,) is replaced by (To,0o, ,to). Here 0o=_ 7 To, o- =io-. 

Also, we write correspondingly Lo, LR, o, etc. The Alexandrov compactification of 
S - RW is denoted by m = Rm U (o}. Since Rm is open in Rm, each function uk To 
also belongs to 4(TO; Rm). Hence, the mapping t - (point mass at uk(t)) defines (a 
version of) an element ?u in R . By Theorem B(i) {Uk)} has a subsequence (uk,) such 

A Th eom : A AO 

that (E } R? converges to some /0 E R? in the topology a(L?,L?). We can split T, 
into at most countably many atoms Aj (modulo null sets this decomposition is unique). 
Every function Uk is equal to a constant u J E Rm almost everywhere on an atom Aj. 

By Lemma A, applied to h, there corresponds to each atom Aj an inf-compact 
function h: '-->[O0, + oo] such that h(t, )=hj for a.e. t in Aj. (Note that the 
restrictions of the functions 1 T to Aj are a.e. constant zero or constant one.) By (17) we 
have for each Aj that suPk hj(u ) S< //u(Aj), where / = supk Ih(uk). By inf- 
compactness of hj, each sequence u, } has a subsequence converging to some 
u4 E R'". By an obvious diagonal extraction argument it follows that a subsequence 
{uk} of {uk,} exists with the following properties: for everyj, {u1J} converges to 

UJ4 E R and {%k } C R? converges to 80 E R? in a(Loo,L). Define 8, E R by 

81(t) -_ 0(t) if t E T0o, S(t) = (point mass at uJ*) if t E Aj. By the simple nature of the 
weak star topology of Lo,(TI, -I Tl, I Ti; M(Rm)), it is easy to check that {k }) C R 
(so with domain extended to T) converges to 8l in a(L, oo,L). 

Thirdly, we shall show that (19)-(21) hold with u* replaced by 6,. Define h 
E + (T; 1R") by h(t,x) = h(t,x) if x E Rm and h(t, w) -+ oo. (By definition of the 

topology on Rm , lower semicontinuity of h(t, .) on Rm is equivalent to inf-compactness 
of h(t, -) on FRm.) By Theorem B(ii) 

Ih (S6) < lim inf I7 (E ) = liminfIh(uk ) < /8 < + o0. 
kr kr 

Hence, for a.e. t in T the point co "at infinity" cannot belong to the carrier of the 
probability measure 8i(t). By the above this implies that I^(8) = I^(81) S< /, which 

proves (19) with u* replaced by /J. Applying Lemma A with S =N x R"m, equipped 
with the sum pI + P2 of compatible metrics pI on N and P2 in Rm, we find that there 
exist a null set N, sequences { Tp C 7S and (cp)} C {e (T; N X Wm) such that 

go(t,k,x) = sup lT(t)cp(k,x) on (T\N) x x R X m. 

Define gq =min(q, max[supp<q 1T ,O]}; since elementary functionals are Lip- 
schitz-continuous, it follows that for each gq there exists Kq > 0 such that 

Igq(t,k,x) 
- gq(t,k',x')I < Kq[pl(k,k') + p2(x,x')] 
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on T x N x R". Now by the monotone convergence theorem 

Igo(kr, ukr) = lin tI(kr,Ukr) and Igo(oo, l) = limnIIo(oo,83l), 

where the latter identity follows from the fact that 8,(t) is not supported by o for a.e. t 
in T. In view of this, it is enough to prove that 

lim inf Ig (kr Ukr) > I ( ) 
kr 

m 
? r) > 'oo,8,) 

for arbitrary q E N. By Lipschitz continuity of gq(t, , *) it follows that 

I (kr,, ukr (oo) > -Kq1Pi(kr, xo) + Iq(oo, ukr) - (00,(81). 

Since {E( } is known to converge to 8, and since (t,x) ->gq(t, oo, x) clearly belongs to 

S + (T; Rm), it follows from Theorem B(ii) that (20) holds with u, replaced by 8,. For 
every i = 1, . . ., , E > 0 there exists by (18) a function f, E lI such that gi, 

= gi + 
Eh + fi, is nonnegative and belongs to S + (T; Rm). By applying Lemma A in the usual 
way it follows that there exist a null set N, and g, E S+ (T; Rm) such that &,(tx) 
= gi,(tx) on (T\N,) x Rm. Define R(h) to be the set of all 8 E R such that 
Ii(8) < P/. It is elementary to prove that for every 8 E R(h) 

sup [ ,( p ] )-= -gi(), 
= 1, ... ,n. 

(Note that for every 8 E R(h) the point o is not carried by 8(t) for a.e. t in T.) By 
Theorem B(ii) this means that Ig, is lower semicontinuous on R(h). Hence (21) holds 
with u, replaced by 81. 

Lastly, the proof is finished by showing that there exists u, E (T; Rlm) such that 

Igo(Oo,U*) < Igo(oo,8,) and Ig,(U*) < Ig,(8), i = 1 ... n. 

No harm is done if we denote from now on go(t, oo,x) as go(t,x). For i = 0, 1, . . ., n 
we write 

Ig(8,) gi(t, 8(t))tL(dt), etc. 

Define R (h) to be the set of all 8 E R? such that I^(8) < P3. By Theorem B(i) R (h) is 
compact in R ?. It is clear from the previous step that Ig? is lower semicontinuous (and 
affine) on R?(h) for i = 0, 1, .. ., n. Hence, the set P of all 8 E R?(h) with 1?(8) 
< Ig?(8), 0 < i < n, is nonempty and compact. Therefore, it contains an extreme point 
of 8. by the Krein-Milman theorem. By a consequence of Caratheodory's theorem S. 
is a convex combination of at most n + 2 extreme points in R?(h) (Berliocchi-Lasry 
(1973, Proposition 11.2)). By the same result, every extreme point of R?(h) is the 
convex combination of at most two extreme points in R?. By Himmelberg (1975, 
Theorems 5.2, 9.3) there corresponds to every extreme point 8 in R? a function 
u E -(T0; Rm) such that 8(t) = Eu(t) a.e. in To0. We conclude that there exist at most 

2n + 4 coefficients ao > 0 and associated vj E- -(T0; Rm), such that a1j = 1 and 

8*= ajc.v Since 8* E R?(h), we also know that for a.e. t in To the measure 8*(t) 
is not carried by w. Hence, all vj can be supposed to belong to '(TO; RW). Writing 
temporarily gn+I h, we find that 

ajIo?() = I?(8,) 
< (8, i = 0, 1, ... , m + 1. 

By a well-known extension of Lyapunov's theorem there exists v* E ' 
(TO; Rm) with 

Ig(8,) = I?(v*), i = 0,1, . . ., m [Castaing-Valadier (1977, IV.17)]. Now define u* 
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E 1(T; Rm) by u,(t)- v(t) on To, u,(t) - u, on AJ. Then combining the above 

steps gives that (19)-(21) hold. Q.E.D. 
PROOF OF THE FATOU LEMMA. Let us apply Proposition C to the following case. 

Take n = 3m. Define go as follows. For p 4: + o define go(t,p,x)- 0 if x 
E clUJk>p {fk(t)} and go(t, p,x) + oo if not. For p = + xo define go(t, oo, x) 0 if 
x E np= I clUk>p {fk(t)} and go(t, o,x) + oo if not. 

Measurability of go follows by applying Himmelberg (1975, Theorem 6.1) and it is 
not hard to verify that go(t,, ) is lower semicontinuous on N x Rm. Hence go 
E + (T; N x Rm). Define gl, .. gm by g(t,x) (x+ )i, gm+ ... , g2m by gm+i(t,x) 

-(x ) and g2m+1 * * * 9 g3m by g2m+i(t,x) -(x )'. Clearly all gi, 1 < i < 3m, 
belong to S(T; Rm). Now by de la Vallee-Poussin's theorem (Dellacherie-Meyer 
(1975, 11.22)) it follows from (1) that there exists a lower semicontinuous h': R+ ->R + 

such that 
(i) supk f h'(I|fk )dp < + oo, 
(ii) h'( f)/ -> + oo as /-> + oo. 

Define now h(t,x) -Ix+ + h'(Ix- ). Then (17) is valid by (2) and (i). Also, (ii) 
implies that (18) holds. By an application of Proposition C it follows that there exist a 
subsequence { fk) of (fk) and fE, E (T; Rm) such that (19)-(21) hold mutatis 
mutandis. Now (19) implies that f, is integrable, (20) implies (3) and it follows from 
(21) that 

J = lim , lim, ff iminfffk . 

A fortiori (4) follows, in view of (2). Q.E.D. 
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