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A GENERAL APPROACH TO LOWER SEMICONTINUITY AND LOWER
CLOSURE IN OPTIMAL CONTROL THEORY*

E. J. BALDERT

Abstract. A self-contained approach to lower semicontinuity and lower closure evolves from an
extension of relaxed control theory, which is based on a central relative weak compactness criterion (called
tightness) and relaxation in all but one variable. Two lower closure results for outer integral functionals
with variable abstract time domain are developed. The first of thesc has convexity condition for the
integrand and generalizes all similar results in the literature. The second lower closure result is of a pew
kind; among other things, it implies a quite general version of Fatou's lemma in several dimensions,

Key words. relaxed control theory, tightness, normal integrands, outer integral functionals, lower
semicontinuity, lower closure, Fatou's lemma in several dimensions

1. Introduction. This paper presents a rather self-contained approach to lower
closure—and lower semicontinuity—in optimal control theory. (An excellent descrip-
tion of the role of lower closure in the existence theory for optimal control has been
given in [27a].) Quite similar approaches lead to existence results in other areas of
the decision sciences, notably in economics (competitive equilibria, optimal growth
theory) and statistics (statistical decision theory); f. e.g. [3d,h,i,1]. Essentially, this
approach is an extension of relaxed control theory [33], [23], [32], [6], [3]. Thus, in
our approach the subjects of relaxed control theory and lower closure are brought
together.

We shall obtain here essentially two quite general lower closure results. The first
step in either proof is the same; it depends on relaxation in all but one variable (cf.
[22]) and an associated relative weak compactness criterion, called tightness, for sets
of measurable functions (considered as parametrized measures); cf. [3]. It turns out
that tightness can hold naturally for the trajectories, time domains (variable), “deriva-
tive functions™, “singular component functions”™ and control functions of a control
problem: cf. Examples 2.1-2.5. To facilitate the presentation of our results, central
results of relaxed control theory have been concentrated in Theorem I, which can be
regarded as an extension of the classical theorem by Yu. V. Prokhorov in topological
measure theory [7]; cf. [3i].

After this common step the proofs are quickly finished by two quite different
continuations. Theorem 3.1 follows by an application of Jensen's inequality, and
Theorem 3.7 by applying Lyapunov’s theorem. These results are then expanded by
the consideration of variable time domains (as introduced in [3g]) and nonmeasurable
integrands (by means of Lemma 11, first formulated in |3k |). This leads to Theorems
3.3 and 3.8. The former result is a generalization of a well-known lower semicontinuity
result (e.g. [16); cf. Corollary 3.5. In § 4 it is shown to be equivalent to a lower closure
result for abstract finite-dimensional orientor fields (Theorem 4.3). As such it general-
izes all similar lower closure results in the literature (e.g. [10d, (6.i)], [30a, Thm. 3.1],
[11b, Thm. 4.1], [11c, Thm. 3.1),[11d, Thm. 3.1, [3e, Thm. 5]). For a more concrete
orientor field it leads to Theorem 4.6, a lower closure result of Lagrange type; this,
100, subsumes all similar results in the literature, such as [10d, (6.ii)), [11b, Thm. 4.2),
[3e, Thms. 7, 8, 10, Prop. 9]. The other main lower closure result, Theorem 3.8, is
more gencral than Corollary 3.9, the multidimensional Fatou lemma of [31], which in
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turn subsumes all previous versions of this lemma ([29], (11cl, [1b]) as well as certain
existence results for allocation problems ({2}, (6, Prop- 1213, (1al; [3al)-

In our presentation of the major results on the subject of lower closure we have
tried to keep the principal results as uncluttered as possible. In subsequent remarks
we then present alternative formulations, “extension modules”, etc. ‘We hope that this
enables the reader to see the main lines of thought more clearly.

Let us now introduce some conventions and definitions concerning (outer) integra-
tion. Let (T, 7, w) be a The set of all J -measurable functions
from T into [—0, +o0] will be denoted by MT5 120 +o0]). For any ponnegative
b e M(T; [~ +oo]) the integral [, & dp—possibly equal to +oo—is defined in the

El

classical sense [26]. For any de (T, [—o0, +oo]) we define

E ff)dﬂ—EE ¢+du'j' ¢ dps
T T T

where ¢ " =max (¢,0), ¢ =max (—¢,0), with the convention (400)— (+00) = +0. For
any ¢: T +00], possibly Dot 7 -measurable, the outer integral of ¥ OVeT T with
respect to 18 defined by

j o dp = inf {j ddp: & e M(T: =% +o0]), =W a.c in T};
T T

it is easy to s€¢ that this infimum is attained for some be M(T; [—00, +x)), ¢ =Y 2L
in T. Also, 1t is obvious that outer and ordinary integration coincide on

M(T3 (=00, +0).

2. Tighiness. Let (T, s w) bea finite measure space and S 2 standard Borel
gpace (alias metrizable Lusin space [12]). Let B(S) stand for the Borel o-algebra oD
S, and M3 (S) for the set of all probability measures on (S5, B(SN; equipped with the
usual weak (alias narrow) topology. M(8S) is also standard Borel (12, T11.60]. :

The set of all %(S)-measurable functions from T into S will be denoted by
M(T;S). Instead of MLTS Mi(S)) we shall write R(T; S); the clements of this set
are frequently referred to as “parametrized measures’ «relaxed controls”, €tC- [23],
[32], (6]

An integrand on Tx S is a function from T XS into (—c0, +o0l. An integrand g
on Tx§issaid to be lower semicontinious if g(t, =)t g(t,s)is lower semicontinuous
on S for every (€ T and it is said to be normal if it is lower semicontinuous and
Fx R(S) -measurable. Let 4(T; S) denote the set of a TxS;
G+ (T; S) will then stand for the set of all ponnegative normal integrands on TxS.

The subset # (T;S)of GH(T;S)is defined to consist of all he 4 (T;S) such that for
every te T, ¥ cR

{ses: hit, 8)= y} is compact.-
For soeM(T3S). 8€ 4(T;S) we shall frequently denote the function 1+ g(t, so(1))

by g(-. So). A sequence (s }7 © M(T; S)is defined to be tight if there exists he #(T; S
such that

sup [ h(t, se(1)) pld) <+

When formulated in terms of #(T; S), this concept 18 2 generalization of tightness in
topological measure theory [71. (31} cf. Appendix A and Remark 2.6 below.
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The following examples illustrate the various forms in which tightness can manifest
itself in the existence theory for optimal control. Let X and V be standard Borel

spaces and r, 7 given dimensions.
Example 2.1. Let (X} M(T; X) be such that

(2.1) x (1) = xo(1) a.e.in T.

Then {x.}7 is tight, as we can sce as follows. Let N stand for the exceptional null set
in (2.1). For te T\N we define

h(t, x)g{goo :fl:: {xe(0)}as

For te N we define

0 if x = xo(f),
h(Lx)={+°° o olt)

Then he #(T; X), as is easy t0 see. Also,
supj R+, x) dp=0.
k T

Example 2.2. Let {&)5< %(T;R') be such that
(2.2) {£&}7 converges weakly in o(#1, £%) to &

Then {£&]7 is tight, as can be seen, for instance, by applying de la Vallée-Poussin’s
theorem [12, 1122, 25]. By this result there exists a lower semicontinuous function

h':R, R, such that k'(y)/y=>+Xas ¥~ +0c0 and
sup I b (|& (1)) (dr) < +20,
.

where |-| indicates the usual Euclidean norm. Now take h(1, &)= h'(|€).
Example 2.3. Let {m}7'< %,(T;R’) be such that

(2.3) sup I |l dpe < o0
k T

Then {my}7 is tight, as is evident from setting h(t. n)= Il
Example 2.4. Let {07 M(T; V). Then we shall have

(2.4) ()7 is tight,
when, for instance,
{ou(1)}7 is relatively compact a.e.in T.

This is seen by introducing
h(t, v)= {

The above examples will play roles further on. So as to illustrate the connection
of tightness with topological measure theory, we consider one more example.
Example 2.5. Let Z be a Polish space and let {z}a = M(T; Z) be such that

{ue )T converges weakly to o,

0 if vecl {ult): k e N},
+oo  else.

Setting
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where w stands for the image of the measure under z;. Then {z;}7 is tight, as seen

by applying Prokhorov’s theorem [7, Thm. 6.2]. By this result there exists for every
peN a compact subset K, of Z such that

sup ur(Z\K,) =37
k

2° ifzer\( U K-), peN,
j=p—1

h(t, z)= -
+c0 ifzeZ\( U K)
p=1

we see that k& belongs to %(T; Z) and
sup j h(-, zi) dp =2p(T) +4.
k T

Setting

Remark 2.6. Itis easy to see from the previous example that a subset O of M7 (Z)
is tight in the sense of topological measure theory [7, p- 371if and only if there exists
a function h:Z [0, +oc] such that {ze Z: h(z) = y} is compact for every y<R and

sup I h dv < +0.
rell J 2
This shows that our definition of tightness is a generalization of the classical one.
Good reasons for considering the tightness property will be produced now (and
in later proofs). In Appendix A it is shown that tightness implies relative sequential
compactness in some suitable topology on (T3 S); this actually generalizes one half
of Prokhorov’s theorem [7, Thms. 6.1, 6.2]. (Generalization of the other half is almost
trivial: cf. Example 2.5.) The gist of this can be formulated as follows.
Tueorem L. Suppose that {37 < M (T3 S) is tight. Then there exist 6 subsequence
{4} of {k} and a parametrized measure 5, R(T;S) such that for every g€ 4(T; S)

(2.5) lim L g, s)du= L g(-,85) du= J [L g(t, S)ﬁ*(t)(dS)]#(dt),

provided that
(2.6) {g7(+, s,_g)} is uniformly integrable.

Moreover, for a.e. t€ T the measure 8,(1) is carried by the set

F_% ol {s.(t): £=p}

1

of all limit points of {3¢(1)}-
Remark 2.7. The following obvious addition can be made in Theorem I; the
generalized limit 8, of the subsequence {s,} satisfies

(2.7 L’ h{-, 84) d,u,éslip ,[r h(-, s;) dp <+00,

where he (T;S) is as in the definition of tightness for {5.}7- :
An important property of tightness is the following. Let S be another standard

Borel space. Then marginal tightness implies joint tightness, as is expressed more
formally below. '
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ProposITION 2.8. Suppose that {se}Tc M(T;S) and {si}Tc M(T;S’) are right.
then {(sw. Sk)}T is tight in (T3 SX SN,

Proof. Tt is enough to remark that for he #(T; S), h'e #(T;S') an integrand
fie #(T; SxS') is defined by

Rt (s, s))=hit, $)+h'(Ls). QED

Let us see what more can be said about the “generalized limits” of a tight sequence

by considering again the above examples.
Example 2.1 (continued). Every generalized limit 3, of {x,} can be identified

with Xg, in that
(2.8) 3.(1) is the Dirac (or point) measure at xo(t)ae.in T.

This follows from Theorem I by observing that for a.e. te T the only limit point of

{x4(1)} is xo(1).
Example 2.2 (continued). Every generalized limit 8, of {&,} is such that

(2.9) bar 8,(1)= I £8,(1)(dé) exists and equals &(f) a.e.in T.
-
To see this connection, note first that for a.e. te T
I |€]8,(1)(dg) < +oo
»n

by (2.7) and the properties of h'. These same properties imply that for every £eR,
Be 7 the sequences {g (*, &)} and {g*(-, &)} are uniformly integrable, where

_[(E& ifteB,
8(t, )= {0 else.

Here (-, +) stands for the usual inner product. Hence, we may invoke Theorem I for
both g and —g. By (2.2) it follows that

L (€ E()pl(dn) = L (£ bar 8,(1)u(dr).

Since £ and B were arbitrary, the result follows.
Example 2.3 (continued). Every generalized limit 3, of {n,} is such that

(2.10) (1) = bar 8,(() exists a.c. in T,

(2.11) ne(t)e N cleo{n.r): £=ptac. inT,
p=1

(2.12) ns € (T, ®r).

To prove this, let us first note that by (2.7)

J U |n|5*(l)(dn)]n(dt)<+°0;
T Q

therefore (2.10) and (2.12) hold. By Theorem [ we also have that the probability
measure 8,(1) is carried by the set Np=1cl{n1): £= p}a.e.in T; hence, the barycenter
of 8,(¢) belongs to the closed convex hull of that same set. This proves (2.11).
Example 2.3 (variant). In addition to the usual suppositions in Example 2.3,
suppose that T is the unit interval, 7 the Lebesgue o-algebra and p the Lebesgue
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measure on 1. Suppose now also that there exists F': T »R’, componentwise non-
decreasing and right-continuous on T, such that for every 1€ T

(2.13) lim j ni(7) dr=F(1),

where (n5) =max (7%, 0) defines m3 in terms of its component functions, j=1,---,F
Then we have in addifion to (2.10)—(2.12) that

ac

dF
(2.149) n;(t)é-—dt—(r) a.e. in T,

where F7 stands for the absolutely continuous part (componentwise) of F with respect
to the Lebesgue measure [ (Lebesgue decomposition). This is demonstrated by an
application of Theorem 1to

U ={max(nj,0) fa=t=p,
L1 0 else,

for arbitrary a, Be T.j=1,""".T . In view of (2.13) it follows then that
- - a | ﬁ - .
vi((e, B =F/(B)—F(a)= j (my) (1) dt.
Since the collection of finite disjoint unions of intervals (o, B8] forms an algebra

generating the Borel o-algebra on T, it follows by Carathéodory’s extension theorem
that for every Borel set B in T

ve(B)= J ny(r) dt.
B

Augmenting B by 2 negligible set can only increase the left side of this inequality.
Therefore the inequality also holds for Be 7. Now (2.14) follows from 2 well-known
property of Lebesgue decomposition [26, IV.1.3].

Example 2.4 (continued). There exists a subsequence of {v}7 of which every
generalized limit 8 is such that

8,(1) is a Dirac measure a.e. in TP,

where T™ denotes the purely atomic part of T. (For the sake of clarity we remark
that this statement is made under the mere assumption (2.4) of tightness.) We prove
this by fixing a collection of atoms A, of which T P2 i the unjon; of course, this
collection can be taken so as to be at most countable. Let he #(T; V) be as in the
definition of tightness; it follows from Lemma A.1 (Appendix A) that for every atom
A, there is hy: V [0, +o0] such that h(t,")=h, a.e. on Ap Also, since a standard
Borel space is isomorphic to a Borel set in R [12, IT11.20], every function vy is equal
to a constant a.e. on Ap; this constant will be denoted by vy It is now easy 0 se€
¢rom the definition of tightness that for every atom A, the sequence {vy,} 1s relatively
compact. Hence, by a diagonal extraction argument we can find a subsequence {k'}
of {k} such that for every p the sequence {v,r ) converges. We conclude that on T,
with {k} replaced by {k'}, the situation of Example 2.1 prevails. The proof is now
easily finished. _

Example 2.5 (continued). Every generalized limit 5, of {z4} is such that the
marginal on Z of the product measure of p and 8, equals wo. This is seen as follows.
Let c € €,(Z) be arbitrary, where %,(Z) stands for the set of all bounded continuous
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functions on Z. We can apply Theorem I to ¢ and —c. This gives

J- C(Z)Fo(dz)=J “ 6(2)8*(1)(d2)]n(dt),
z T z

and since c is arbitrary the result has been proven.

3. Lower closure for outer integral functionals. The first in a series of lower
closure results for integral functionals will now be formulated.

TueoREM 3.1. Suppose that {x.}5, {&}5, {m )7 satisfy (2.1)=(2.3). Then there
exist a subsequence {£} of {k} and n,€ %,(T;R’) such that

(3.1) liTng('.x;, £e,M4) dniLg(-,Xo, o, "l*) du

for every normal integrand g on T X (X XR"XR’) satisfying
(3.2) gt xo(), -, ) isconvexon R" xR a.e. in T,
(3.3) {g87(-, xe, &6, o)} is uniformly integrable.

Moreover, n,, is such that

(3.4) nelt) e ﬁ clco{ndt):£=p}laeinT
p=1

Proof. By what was proven for Examples 2.1-2.3 the sequence {(xy, &, m)}T ©
M(T; X XR"XR") is tight (Proposition 2.8). It follows from Theorem I that there exist
a subsequence {£#} of {k} and &,€ R(T; X XR"XR") such that for every normal

integrand g satisfying (3.3)
(3.5) az L 8(-.8,) du,

where a denotes the left side of (3.1). Moreover, we know that for a.e. t€ T the
measure 8,(¢) is carried by the set of limit points of {(x,(r), &(1), n.(1)}, i.e., by the
Cartesian product of {x,(#)} and the set of limit points of {(£.(1), n.(1))}, in view of
(2.1). Denote by 6%(¢) the marginal probability measure of 8,(f) on R"XR’ and the
submarginals on B" and R” by 87(r) and 83(¢) respectively. For g as in (3.5) it now
follows that

(3.6) az I 8(, xp, 8%) dp.
T

A fortiori, we now have for every g'e 9(T;R") for which {g' (-, &)} is uniformly
integrable, that marginally

hﬂj g'(, &) duBJ' g'(-,87) dp.
« JT T
A similar situation is found for 8%. Thus, marginally we find precisely the situations
investigated in Examples 2.2-2.3. this means
&o(t) =bar 6(t) a.e.in T,
n4(1)=bar 63(z) existsa.e.in T,
with n, satisfying (2.11)-(2.12). Hence, by definition of barycenter
(3.7) bar 8%(1) = (&(1), ny(1)) ae.in T




LOWER SEMICONTINUITY AND LOWER CLOSURE 577

We finish the proof by applying Jensen’s inequality. Suppose for a moment that g is
bounded from below by a constant. Then for a.e. te T the function g(% xo(t), *» -) is
proper convex, unless it is identically equal to +co. The latter possiblity is trivial to
deal with, so let us only look at the former. By applying a well-known result about
proper convex functions and their affine minorants [9, 1.4] and using (3.7) it follows that

(1, xo(1), 8%(0) 2 (1, xo(1). &o(1), ms(1)) ace-in T.

In view of (3.6) the desired inequality (3.1) then follows. Thus far, we worked under
the extra assumption that g js bounded from below. For general g it follows easily
from (3.3)—cf. [16]—that for every £ = 0 there exists v > 0 such that

j-Tg(.s Xgs ga{s 'ql) d)u'gj max.(_-'}’a g('axl’: gta nﬁ)) d#’-_s
T .

for all £. By the inequality (3.1) for the normal integrand max (-7, g) established
above, by the inequality max (—v, g) = g and the arbitrary choice of &, the inequality
(3.1) must now also hold for g QED

This is essentially our main lower closure result “with convexity”. Its relation to
other results in the literature will be discussed after Theorem 4.3. Next we shall derive
more general and useful versions of this result; these apply to general integrands,
whether measurable or not. The following lemma is instrumental [3k]; its proof can
be found in Appendix A.

Lemma 1. Suppose that g is a lower semicontinuous integrand on T X (X XR™X R
with

(3.8) 2(t, xo(1), -, +) is convex on R xR a.einT.

Then there exists a normal integrand g on TX (XX R™XR") such that
(3.9) 8= 4
(3.10) g(t, xo(1), -, ) is convex on R xR a.e.inT

and for every x€ M(T; X), &€ M(T;R"), ne M(T;R")

-

(3.11) L 2(t, x(£), &), n(D)p(dr) = L g (5, x(2), (1), (1)) u(de),

where outer integration and integration are subject to conventions introduced in § 1.
THEOREM 3.2. Suppose that {x}5, 1&30- {m}T satisfy (2.1)-(2.3). Then there
exist a subsequence {£} of {k} and 1y € LT R') such that

(3.12) _hmj I(-, Xes €es M) d,wéL I(+, Xg» €0» M) A1

£

for every integrand 1 on TX XX R'XR’ satisfying
(3.13) Kt,-,-,-) islower semicontinuous at every point in {Xo(1)} X R XR a.e inT,
(3.14) (1, x(1), ", -) is convex on R* xR a.e inT,

(3.15) there is a uniformly integrable sequence {1} = £i(T; R) with
10+, %4, £sm0) Z Mg forall £. _

Moreover, 14 satisfies (3.4).
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Proof. Suppose first that [ is bounded from below by a constant. The lower
semicontinuous integrand [ on T X (X XR"XR') is defined by

(3.16) fx&m= lim 1(6x', &7

x'xf=En'=n
By (3.13), (3.16) we have
(3.17) 1t xp(0), =, ") = I(t, xo(t), -, ") a.e.in T

Clearly, (3.8) now holds for g= [ in view of (3.14). Applying Lemma Il to g = [ gives
that there exists a normal integrand g on T X (X %R* xR") such that (3.9)-(3.11) hold.
We can now apply Theorem 3.1 to g, since (3.2) holds by (3.10) and (3.3) by (3.9),
(3.16) and the extra supposition. Thus, (3.1) holds for g. By using successively the
inequality 1= g, (3.11), (3.1) and (3.17), the inequality (3.12) follows. Secondly,
consider the general case. By elementary properties of outer integration it follows
casily from (3.15) that for every & >0 there exists y >0 such that for all £

I‘l‘ I(' s X4s gb "l) dll = jT max (-'Y, I(' » Xy §4v 7")) d""_ E.
(Let ¢ € M(T; (-0, +0o0]) correspond to I(-, X, £, m.) as in the attainment property
for outer integrals mentioned in §1, &=+, x4 €6, ma) a0 in 7. and consider the

identity

I l('athb 7)‘) dl"=j
T

{de&—7}

b, dut [ &, du.
{@s=—v}
From this the above inequality follows quickly.) Just as in the proof of Theorem 3.1,
the inequality (3.12) now follows by the previous step. QED
It is easy to convert Theorem 3.2 into a more useful result by “recombination of
variables™ [3e, g]. In particular, this will lead to closure results for models with variable

time domain.
Let {T}5 = 7 be such that

(3.18) lTh(t)" 11'0(!) ae.in T,

where 17, stands for the characteristic function of the set Ti. Note that this s
equivalent to saying that the set T,=lim, T} exists modulo a null set; cf. [26, [.4].
Further, {x:}5 © #(T; X), {&}5 = #(T;R") and [} #(T:R") are now also

allowed to satisfy

(3.19) X (1) > xo(1) ae. in T,
(3.20) {17,&]7 converges weakly in o(£], Z%) to 160,
(3.21) sup j (| dpp < +e0.

k Ty

Note that (3.20) is already implied by (2.2) and (3.18); this follows by 2 simple
imitation of the proof of Theorem 3.3 below. Further, let {di}5 < #(T:R"), {di}T =

M(T:R") and {&}7 < £(T;R") be such that
(3.22) di(t)»0a.e.in Tp,
(3.23) d.(ty>0a.e.in To,
(3.24) {17,&)7 converges weakly in a(FI, %) 100.
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THEOREM 3.3. Suppose that {Ti}o, {x o, {838, {mdT satisfy (3.18)~(3.21) and
that {di}7, {di}T. {87 satisfy (3.22)-(3.24). Then there exist a subsequence {£} of
{k} and n,e £\(T:R") such that

. (3.25) @J (-, Xe, éxt dy, 1?;’1‘5,@"'5;) du -ZJ 1(+, Xo, £os 7?:1:) dp,
Te :

£ Ty
for every integrand [ on T < X XR"XR” satisfying
(3.26) I(t,-,-,+) is lower semicontinuous at every point in
{xo(N}XR"XR" a.e. in Ty,
(3.27) 1(t, xp(1), -, - ) is convexon B XR’ a.e in Ty,

(3.28) there is a uniformly integrable sequence At ZUTR) with
IT‘I(- 2 Xgs §£+d£) 7?§+d£+é_£)::’ I\; fof all £.

Moreover, n, satisfies
o
(3.29) ()€ N clco{n(t): £=p}ae inT.
- =l

Proof. Let < X be arbitrary but fixed. Let % € #(7T; X )} be such that it coincides
with x, on T, and has the constant value £ on T\T%; then X (1) > %o(¢) a.e. in T by
(3.18)—(3.19). Let us now define & € #(T; X x{0, 1} XR"XR") by £ = (%, 11, I1,de
11,dy) for keN and %= (%, 17, 0, 0) for k=0. Also, we define {EIT = LUAT;R™)
by & =116, 11.8&) and &= (17,£,0), and finally {§}7 by 7« =1z m By (3.18)-
(3.24) and the above wc have

X ()= Xp(t) ae.in T,

{£.}T converges weakly in o( £, £577) to .

sup [ [ dp <40,
k T .

Given [ with (3.26)—(3.28), wec define the integranci [ by
| I(4% &n)=Hl(t,x, é+d n+d+8)
for £=(x, v, d, d) e X x{0, I}XR"XR", £= (¢ &) eR" XR". By (3.26)
[(1,-,-,-) is lower semicontinuous at every point in {(Z(H}XR™"XR  ae.in T
Also, in the same notation, we have

Tt 2,(1), & m) ={é(fa xo(1), & m+ &) glsce- T,
This shows that by (3.27)
It %,(1), -, ) isconvexon R""" xR a.e.in T.
Finally, it follows from (3.28) by definition of [ that for all £
. r('sx”;b é:é’! ﬁi)z’\f
Hence the situation found in the statement of this theorem has been redﬁced completely
to that of Theorem 3.2. It remains to invoke this result. 0
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Remark 3.4. Suppose that instead of the suppositions (2.1), (3.18)-(3.19) regard-

ing convergence a.e. we make the following weaker suppositions about convergence
in measure:

(2.1) p({re T: dist (x(1), xo(t)) > £}) » 0 for every £ >0,
(3.18) p((TAT)U(T\T,)) 0 for every e >0,
(3.19") p({re Ty dist (x, (1), x5(1)) > £}) > 0 for every £ >0,

to be used instead of (2.1), (3.18) and (3.19) respectively. Then our previous results
will remain valid, since we will now have (2.1), (3.18) and (3.19) respectively for

suitable subsequences of {x.}5 and {T,}5. The same can be said if instead of (2.2),
(3.20) we suppose

(2.2") {&]7 is uniformly integrable,
(3.20") {17.&}7 is uniformly integrable,

provided that we denote any weak limit point in either case by & here we use the
Dunford-Pettis theorem [12, I11.25] (or, alternatively, Theorem I and Example 2.2).

COROLLARY 3.5. Suppose that {T,}s, {xi}o, {£&}5 satisfy (3.18)-(3.20). Then

h.mJ' l('.xk,&)dl-béj I(+, xo, &0) du
k T To

for every integrand | on T X X XR' satisfying
I(t,-,-) is lower semicontinuous at every point in {Xo(1)} X X XR" a.e. in To.
I(t, xo(2), +) is convex on R a.e. T,,

there is a uniformly integrable sequence {A,}T < £,(T;R) with 140,1(-, xi, &)= Ax
forall kefy,

This generalizes a classical lower semicontinuity result for integral functionals to
outer integral functionals with variable time domain [13, VIIL.2.2], [17, 9.1.4), [10d,
(1.iii)], [27c, d], [16], [3c, f].

Necessary conditions for lower semicontinuity in similar setups have been obtained
in e.g. [16], [27d]; they indicate that the conditions of Corollary 3.5—and Theorem
3.3 by implication—are quite sharp.

COROLLARY 3.6. Suppose that (T, 7, ) is as in the variant of Example 2.3, that
{aw}s, {Be}s = T are such that

@ > g, Bi— B

and that for T, =[a, Bi] the sequences {x,}5., {&}5, {me}y satisfy (3.18)-(3.21) and
(2.13). Then

i

By
hTmI 8(',xb§mﬂk)dﬂaj

g(r, xo(:),fo(r),%(r)) dr

for every normal integrand g on T X (X XR"xR") satisfying
g(t, xo(1), -, ) is convex on R" xR a.e. in T,,

“x @

g(t, xo(1), &(1), -) is nonincreasing on R a.e. in T,,,

(&7 (-, Xt €, )} is uniformly integrable.

It wo
[3C, ] n
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It would seem that this corollary is a new result; it can also be derived from
[3c, Thm. 5], as was already argued in [3f, Thm. 3.2]for 2 slightly less general version.
Let us return to the proof of Theorem 3.1, which has been essential for the
developments thus far. We can see that in deriving the inequality (3.6) the convexity
property (3.2) was not used. Therefore (3.6) suggests a2 radically different way to
obtain a lower closure result for integral functionals; namely, we can try 1o trade the
convexity condition (3.2) for “extreme point considerations and Lyapunov’s theorem™.
Thus, we enter the domain of «existence without convexity’’, explored for the first
time in optimal control theory by L. W. Neustadt [25], from a completely new angle.
The tollowing lemma, proven in Appendix A by extreme point considerations and
Lyapunov’s theorem, will bring us the desired results.

Lemma 111 Suppose that (T, T, @) s nonatomic and that §% e R(T; V) is tight
with respect to h € H(T; V), e,

j h(-, %) dp <+oo.
T

Suppose that the normal integrands g1, " " > 8m O T X V satisfy the following growth
condition with respect to h: for every €= 0 there is ¢. € Z:(T5 R) with

(3.30) (o) Seh(b o)+ a0, J=hr T

Then there exists o*e M(T; V) such that

J g;(-,v*}d,u.éj gi(-,8%) dp.  j=LT I
T T

TuEOREM 3.7. Suppose that {xi}o» {0 )T satisfy (2.1), (2.4). Then there exists a
subsequence {£} of {1k} such that to every finite collection g, =" * - 8m of normal integrands
on Tx (X X V) there corresponds Uy € M(T; V) with

(331 lim j g+, %0 va) AR E j gi(-, X0, V) dit- j=Lm
T T

provided that

(3.32) {g7 (-, X6 ve)} is uniformly integrable,

Moreover, Uy satisfies
(3.33) v (e N cl v (t): £Z py a-e inT.
p=1

Proof. We start by considering a preliminary subsequence {k'} of {k} which 18
such that {v,(#)} converges a.e. on T™ (Example 2.4). It is left to the reader to see
that the proof of Theorem 3.1 can now be imitated up to formula (3.6). Here R’ XR"
is replaced by Vv and {&e M DY Uk Iso we use tightness of {x}, {vx} and condition
(3.32). Hence, there exist a subsequence {£} of {k'} and ¥ e M(TP V), §%e
R(T™; V) such that for all j

(3-34) l_izm -[ gj(' » X vg) du = I 8}(' » Xos v*) dut -\. 8j(‘u Xo» 5%) d,
T ™ ™
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where T™ = T\T™ denotes the nonatomic part of T and where the pointwise conver-
gence on T"‘ has been taken into account (cf. Example 2.1). Moreover, we have that

(335  oMeVin= N d{vd:£=phac.in T,
p=1
(3.36) §*(1) is carried by V(1) a.e.in T,
I h(-, 8%) dy <+,
1“

where h is as in Example 2.4. Momentarily we shall make an extra assumption: we
assume that for every &> 0 there exists &, € F (T R) with

(3.37) g; (L xo(1), v) S eh(r, 0)Te(r),  j=1, -, m.

This allows us to invoke Lemma I1I: there exists p** e M(T™; V) such that

(3.38) L,,s;(-,xo,v‘*)duéjrmg,(-.xo.s')dp, j=1l,em,

(339) j gm+l( ) ”**) d}" = 0»
TM

where g..1€ % (T; V) is defined by

gm*l('a t5) = {

Defining v, = v* on T, v, =v** on T™, we see that (3.34) and (3.38) imply (3.31).
Also, (3.35), (3.36) and (3.39) imply (3.33). Let us now see how the extra assumption
(3.37) can be revoked. We shall apply the result established under (3.37) to the normal
integrands gy, " . &m ON T x(X X V XR) defined by

(3.40) (1, x, v, A)=max (g(t x, v), A).

We define also

0 ifve Vi(1),
+00  else.

Au(f)=—1g (&, x (1), v (D)l
where (g7)/=(g’)". By de la Vallée-Poussin’s theorem there exists h':R. =R, with
with h'(y)/y—=> T a> ¥+ and

sup L h'([Ac(D)]) p(dt) < +o0,
in view of (3.32); cf. Example 2.2. Hence, by (2.4) the sequence {(vs Au)}T satisfies

(3.41) sup I R(- . U Ax) du <+,
k Jr

where h(t, v, A)= h(t, v)+h'(JAl), and
(3.42) &y X Vo M) = g (-, X v) for all k and J.

We may now apply the result established above. Note that (3.41) replaces (2.4) and
that (3.37) obviously holds for g; with respect to Ji: in view of (3.40) and the properties
of h', we have for every &> 0 that there exists ¥, > (0 with

g7t x,v,A)=max (—A,0)= eh' (A + 7. = eh(t, v, \) + ¥,
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Thus, we find that there exists (vy, A,) € M(T: VXR) with

IEJ. gj(',xﬁa U.e’:)l,e’) d;u‘:;J‘ gj(':x()y v*s)‘*) d.yu‘: }=19 . L
T T

£
In view of (3.40), (3.42), this amounts to (3.31). Moreover, we have
(v.(1), A,.(1)) is a limit point of {(v,(1), A,(t))}a.e.in T,

and this implies (3.33). QED
Theorem 3.7 is a quite new result. Just as Theorem 3.1 was upgraded by using
Lemma II and recombination of variables, so can this be done with Theorem 3.7.
Let {T}5 be as in (3.18) fi. We shall now also consider a sequence {v;}7 of
measurable functions, vy € #(T,; V), such that there exists hc #(T; V) with

(3.43) sup J- h(-, v.) du <+co,
k Te
TueOoREM 3.8. Suppose that {Ti}o, {x}o, {vlT safisfy (3.18), (3.19), (3.43).
Then there exists a subsequence {£} of {k} such that to every finite collection l,,- - -, I,
of integrands on T X (X X V) there corresponds v, € M(Ty; V) with

lim !;(-,x,g,ﬂ,g)dpij L, xp,v4) dp,  j=1,"++,m,
Ty

£ Te
provided that

there is a uniformly integrable sequence {A¢} = £, (T;R) with [(-, x, v)Z A,
forall £, j=1, -+, m,

where I, is defined by
L(t,x,v)= lim Lt x', v').

x'=xp =y

Moreover, v, satisfies

v(t) e ﬂ cl{u(t): £=pl a.e in T,
=1
Proof. The proof is quite similar to the argument by which Theorem 3.1 was
transformed—via Theorem 3.2—into Theorem 3.3. It will be left to the reader, except
for the following point. Define A: T [0, +oc] by A(r) =inf {h(t, v): ve V}. Then & is
measurable with respect to the completion 9 of 7 [9, II1.39]. By Fatou’s lemma it
follows from (3.18) that

(3.44) J Ed,u,éirg hi-, v) du.
Ty T:

By inf-compactness of h(t,-) there exists for every te T an element v, V with
h(t,v,)=h(t). Since the set of all (t,v)e TXV for which h(s, v)=Hh(t) is TX
%(V)-measurable, it follows from Aumann’s theorem [14] that there exists 5: T v,
F-measurable, such that h(t, 5(¢)) = A(z) a.e. in T. Since V is isomorphic to a Borel
subset of R [12], it follows that there exists a J-measurable modification & € 4((T; V)
of #. In view of (3.44) we conclude that

J‘ h(-,ﬁ)dpésup-[ (-, ve) du.
T, L Jr,
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Hence we obtain a tight sequence {57 = M(To3 V) by defining T = bk O0 ToN Tk
and B, = 0 on To\Tw AS explained above, the rest of the proof is quite simple. QED
COROLLARY 3.9 (Fatou's lemma in several dimensions). Suppose that (&)1 <
Z(T;R™) is such that

(3.43) h‘x:n I oy dp exists (inR™),
T

(3.46) (DT is uniformly integrable.
Then there exists ¢4 € LT ”™) such that

_‘ by duéli;nj d dpss
T T

b, (1) is a limit point of {d(N}T ae.inT.

Proof. We define the normal integrands 8" "> gsm on TX V by gt v)=
max (v, 0), gmej{t v) = max (—v",0) and g2m+s(h g)=min (v,0), j=1," """ Also,
we set U = oy Note that (3.45)-(3.46) imply

sup J || dp < +0.
e Jr

Hence (2.4) holds. Since (3.46) implies that (3.32) is fulfilled, we have by Theorem
3.7 the desired result, as is seen at once. QED

The above corollary was given in was shown to be equivalent to
slightly weaker form of Theorem i multidimensional Fatou lemmas
of [29], [11c] and [1b], as well as a number of existence results for allocation problems
arising in economics ([2], [6, Prop. 111.2.1], [1a], [3a))- Corollary 3.9 can also be used
directly to obtain existence results “without convexity conditions” for the optimal
control of certain linear dynamical systems. In this way an existence result has been
derived in [3m] for the optimal control of a linear integral equation having singular
components; this generalizes the existence results of [25],[19] [41,110b] and essentially
also that of [30b).

4. Lower closure for orientor fields. It turns out that cach of the main lower
closure results of the previous section can be expressed in an alternative form, involving
multifunctions. Here we shall only work out such a procedure for the lower closure
result “with convexity”, i.e. Theorem 3.3. It will Jead us to the so-called lower closure
results for orientor fields.

For a multifunction Q:TX X = R’ XR’ we define dom O 1o be the sct of those
(1, x)e T*X for which the set Q(f x) is nonempty. We shall say that Q has property
(K)ata point (f, x)e TxX if

(4.1) Ot x)= ﬂocl Ui x'): ¢'e X, dist (x', %)< v},
y>

where ‘‘dist” refers to any compatible metric on X. Note that x' runs effectively in
the section at t of dom Q.

LemMa 4.1, Suppose O: TXX=3R'XR and (1, x")eTxX are given. Let
19,19 be integrands on Tx X xR xR, defined by

j .
(4.2) 1901, %, & M= {n if (& m) € Q1 x),

+oo  else.
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(a) The following are equivalent:
(4.3) . Qhas property (K) at (t, x°),

(44) 1201, )zs lower semicontinuous at every point of {x"} XR" X R,
j=1,-

(b) The following are also equivalent:

Q(t, x") is convex,

12(t, x°, -, +) isconvex on R"XR", j=1,++ -, F.

Proof. Suppose first that (4.3) holds. Let {(x*, &%, n*)}T be arbitrary and such
that x*—=x% £5=£°% 7%= 5" for certain £°, °. Without loss of generality we may
assume that {=lim, [¥ is finite, where [F=17(z, x*, £* n*). Further, we can assume
that ¢ =lim; IF, instead of restricting ourselves to a suitable subsequence. It now follows
that eventually If is finite, so without loss of generality we can suppose that (£*, n) e
Q(t, x*) and (n*)’ =If for all keN. Also, it follows that { = (n°)’. For every y>0 we
have now evidently

(&% M ed U{0(t x): xe X, dist (x, x%) < y},

so it follows from (4.3) that (¢°, n%) e Q(r, x°). By (4.2) we find 19(z, x% &% n") =
(n°) = £. This shows that (4.4) holds.

Conversely, suppose that (4.4) holds. One inclusion in (4.1) is always trivial (take
x'=x). To prove the other inclusion, let (£°, nY) belong to the right side in (4.1) (with
x = x). This is easily seen to be equivalent to the following: for every k €N there exist
x“e X, (&%, %) € O(1, x*) such that dist (x¥, x°), [£*—£°| and |n* — 7| are all smaller

than k™%, Hence x* - x°, £“» £° and n* > 1", By (4.4) we have for any j

(n°) =lim [2(z, x*, €, n*) = 12(1, x°, £°, n").
k

Since the left side is finite, (4.2) gives that (£°, n°) € Q(z, x°).

(b) The demonstration of this part is trivial. QED
- Remark 4.2. From the final step in the proof of Lemma 4.1(a) it appears clearly
that (4.3)—(4.4) are also equivalent to

(4.4) IP(1,-,-,) is lower semicontinuous at every point of {x"} XR"XR" for
some j, I1=j=F

A similar remark holds with regard to part (b) of Lemma 4.1.

We shall now state our main lower closure result for orientor fields and show that
it is equivalent to Theorem 3.3.

THEOREM 4.3. Suppose that {Ti.}o, {xc} o, 1€ctas {meti satisfy (3. 18) —(3.21) and
that {d.}7, {de}T, {e}y satisfy (3.22)—(3.24). Then there exist a subsequence {£} of
{1k} and nye EI(T, R”) such that

(4.5) (£0(1), 15(1)) € Q(1, xo(1)) aue. in Ty,

(4.6) lﬂj 7% du%[ % du,
£ JTy Ty

for every multifunction Q: Tx X =R’ XR’ and every j, 1 =j=F, such that

(4.7) Q has property (K) at (£, xo(t)) a.e. in Ty,
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(4.8) (1, xo(1)) is a convex subset of R' xR a.e. in Ty,
(4.9) (ED)+de(1), ne() + d(1)+e,(1)e Ot x,(1) a.e. in Ty,
(4.10)  {(14,m%)"} is uniformly integrable.

Moreover, n, satisfies (3.29). -
Proof. Suppose Q and j satisfy (4.7)-(4.10). Define %, = (x, di) for k€N and
Xo= (x4, 0). Then by (3.19), (3.22)

T (t) = Xy(r) a.e.in Ty,
We shall apply Theorem 3.3 to [; defined by
(6% &n)=17(t,x, &n+d)~d
for = (x, d). Hence, in view of (4.2), (4.9),
Ty (- Xes € met Ed) = 1r,(nk+él).

Further, by Lemma 4.1 it follows from (4.7)-(4.8) that

I(t,+,, ) is lower semicontinuous at every point in {Zo(f)} XR" xR,

1,(1, (1), -, -) is convex on R" X "
Hence we conclude that the conditions of Theorem 3.3 are fulfilled. We find therefore

(4-11) i:n_ JT ('71'*’5%) dﬂ’ = IT II( ) iOs os ’7*) d“'

In view of (3.21), (3.24) and elementary properties of the outer integral it follows that
L(1, %o(1), £6(1), me(1)) < +0ae.in Tp.

This gives (4.5) by definition of /. Finally, (4.11) implies now (4.6). QED
Remark 4.4. Evidently, it follows from (4.5) that

(4.12) (1, xo(t))edom Qa.e.in Tj.

In the literature one usually considers only the restriction O’ of Q to dom Q. Let A(r)
denote the set of all x' € X with (£, x') € dom Q. The multifunction Qp:dom O = R" X
B’ is said to have property (K) with respect to A(t) at (¢, x)edom Q if

Qplt, x)= ﬂo U {0Op(t, x'): x" € A1), dist (x', x) < y}.
y>

To connect the formulation of results in the literature with that employed here, it is
enough to observe that Q has property (K) at a point (¢, x) € Tx X)\dom Q if (but
not only if!) A(t) is closed, whereas Q has property (K) at (¢, x) e dom Q if and only
if Qp, has property (K) with respect to A(r) at (£, x). This explains also why (4.12) is a
final conclusion in our somewhat more general approach, while it is a necessary
preliminary step for the usual approach in the literature.

Before discussing Theorem 4.3, we show that Theorems 3.2, 3.3 are in fact
equivalent to it.

PROPOSITION 4.5. The lower closure resulis obtained in Theorems 3.2, 3.3 and 4.3
are equivalent.

Proof. Theorem 3.3 was shown to follow from Theorem 3.2 by “recombination
of variables”. Theorem 4.3 was derived from Theorem 3.3. Hence it i$ enough to show
that Theorem 4.3 implies Theorem 3.2.
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Suppose that [ satisfies (3.13)-(3.15). If the left side in (3.12) equals +o0, there
is nothing left to prove. Thus, we shall assume that this is not the case. We shall apply
Theorem 4.3 to Q: TxX=2R XR™, defined by

(4.13) 0, ) ={(& 1 ) R <R xR y =Lt x. &)
in particular, we shall look at the coordinate j=F+1. In the present case (4.2) gives

y ifyzlLx &)
+oc  else.

1940t x, &m, ) ={

Hence, (3.13)—(3.14) imply (4.7)-(4.8), as follows by Lemma 4.1 and Remark 4.2.
By the elementary properties of outer integrals, established in § 1, there exists for
every k eN a function i € M(T; (—ec, +o0]) with

(4.14) ()2 1, 5 (1), £ (0), () ae.in T

-

(4.15) J (-, X s ) A = j Vi di.
T T

Since we work under the assumption that the left side in (3.12) is not equal to +20,
we can suppose without loss of generality that

sup j |yi dp <40,
k T

in view of (3.15). A fortiori, we have ve(t)<+x ae. in T for all keN, Thus,
(4.13)—(4.14) entail that for all kel : '

(&(0), (D), ve()) € Q(t, i (1)) ae.in T. _

Hence, condition (4.9)—with T, = T. d, =0, d,=0, & =0—1s also satisfied. Further,
(3.15) and (4.14) imply that (4.10) holds. Application of Theorem 4.3 gives the
existence of a subsequence {#} of {k} and of (7, vy) € £ (T; R™) such that

(1) = 1(t, xa(1), &(1), 1)) ae. nT,

' Luﬂj T;dﬂéj Vi At
£ T T
In view of (4.15) this establishes the inequality (3.12). Note that the subsequence {£}
and the function 7, would seem to depend upon the choice of the integrand L Although
this certainly applies to ¥y, it is easy to see from Example 2.3 and formula (3.7) that
{#} and 7, can indeed be chosen independently from L QED

A result which is very closely related to Theorem 4.3 is due to Cesari and
Suryanarayana[11c, Thm. 3.1] (rather similar results already figure in [10a]). In several
respects this result is generalized by our present result. In [11c] the orientor field Q
has to have the following property:

n'=n and (& 1) € Q(t x) imply (¢ n") € O, x).

Also, it is assumed there that for al k T, =T, d,=0, d, =0, & =0. Other restrictions
are that (T, 7, u) must be nonatomic, complete and that X must be finite-dimensional.
There are other, less significant differences; with respect to each of these Theorem
4.3 is the more general result. (Apart from this, it should be pointed out that the
argument in [11c] is incomplete: the proof of [11c, 2.2]is not given, even though this
concerns a quite nontrivial extension of Fatou’s lemma in several dimensions.)
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Further, Theorem 4.3 generalizes [3e, Thm. 5), which has 7=1. Therefore we
can refer the reader to a number of comparisons with other results in the literature
made in [3e]. (Note that the measurability conditions for the orientor field there are
superfluous in the light of Theorem 4.3.)

The main point made in [3e] is that when =1 a large number of lower closure
results follows from the lower semicontinuity result in Corollary 3.5. Conversely, it is
well known that such lower semicontinuity results follow from lower closure results.
Needless to say, the equivalence result of Proposition 4.5 advances such insights.
Interestingly enough, by making use of R. V. Chacon’s “biting lemma™ (8] one can
also obtain Theorem 4.3 from Corollary 3.5 (this has been observed independently
by the referee and the author). From the above it will be clear that the necessary
conditions for lower semicontinuity of e.g. [16], [27d] can also be converted into
necessary conditions for lower closure in certain problems.

Let us now look at more concrete orientor fields. Similar fields figure in many
existence problems of optimal control theory.

Let ¢:TXXXV-R" and §: TXXx V= (-0, +0]" be TXxB(XXV)-
measurable functions. We shall consider the multifunction O: T X =$R"XR' defined
by

Ot x)={(q(1, x, v), n) eR"XR": ve V, n=q(t, x, v)},

In what follows we shall consider the sequence {vc}y, v € M(Ty; V), of the previous
section. Let us agree to set g(-, x,, 0)=0, g+, xi, v.)=0 on T\ T
THEOREM 4.6. Suppose that {T,}%, {xc}o satisfy (3.18)-(3.19), thar

(4.16) {q(-, xi, v)}T converges weakly in o (£}, %) to ¢, £,(T;R"),
(417)  {g7(-, X v)}T is uniformly integrable,

(4.18) lim L. G(+, xi, vy) dp exists (in R'),

and that

(4.19) O has property (K) at (1, Xo(t)) a.e inT,,

(4.20) Q(t, x,(1)) is a convex subset of R' xR’ a.e, in To.

Then there exists v, € M(Ty; V) such that

(4.21) fo=q(-. xo, v,) a.e.in Ty,

(4.22) li{nj G-, x, vy) dnéj q(-, xo, vy) dp.
Te To

Moreover, condition (4.19) can be lifted altogether either: if (3.43) holds and a.e. in T

(4.23) q(t, -, ) is continuous at every point of {xy(1)} X V,

(4.24) G(t,+, ) is lower semicontinuous at every point of {x,(t)} X V,
or under the following set of conditions

(4.25) q(t, x (1), (1)) = q(1, xo(1), v (1)) >0 a.e. in To,
(4.26) G(t, x (1), () = q(8, x5(0), (1) 0 a.e. in T,




LOWER SEMICONTINUITY AND LOWER CLOSURE

Proof. It follows from (4.17)—(4.18) that

Sup ‘[ |Q(-3xkv vk)i dlu'{-‘_w'
k T

Also, by definition of O
(q(t, % (), v()), 48 % (), ve(1)) € Q(t, x (1)) ae.in T

Applying Theorem 4.3 (with di =0, d=0, & =0) we find that there exists 7y¢€
%,(T;R") such that for a.e. f€ T, there is ve V with

(427) f()(t) = Q(ra X()(f), IJ), T!*(‘) :=> f?(f, x()(t)v "U)s

(428) h{n j fﬂ X Uk) dnu‘ = J UEY dp"
Tx Ty

The set of all (1, v)€ TyX V for which (4.27) holds is 7 X % (V)-measurable. Hence,
by Aumann’s measurable selection theorem [14] there exists vz € M(Ty; V) such that
gﬂ-__Q(-:xﬂ" U*)’ n*EQ(',XU, U*) a.c. il’l To.

Together with (4.28) this shows that (4.21)—(4.22) hold.

Next, we show that in the specified special cases condition (4.19) can be omitted.
In the first case we define g=1(g, h), where h is as in (3.43). We then consider the
multifunction Q": TXX — R’ XR™! defined as follows

ér(t ):{é{t: x[,(t))XR ifx:xﬂ(t))
X = {(q(t, x, V), -r,u)ER’XlRF“: veV,n=4(1,x,v)} else.

From the inf-compactness property of h(z, -) and (4.23)—(4.24) it follows by elementary
. reasoning that Q' has property (K) at (& xo(1))s irrespective of condition (4.19). We
now have

(q(t, x(8), vl2)), 4, x(0), v(D))) € O'(t,x(1) aeinTe

and the remaining conditions of the previously established part of the theorem are
easily seen to hold (with @', 7 instead of 0, §; note that in view of (3.43), condition
(4.18) is fulfilled without loss of generality). Hence, there exists v, € M(Ty; V) such
that (4.21) holds and

11{“ I]" ‘T('axks vk) dﬂ'gj ‘i('sxO: U*) dﬂ'

Ty

By definition of § this entails (4.22).
For the second case we define

di=q(-, Xo, o) —q (s X Vi)
di=4q(-, xo, ) — (" Xao O)>
Q" (1, x)= O, xo(1)).
Then (3.22)-(3.23) hold by (4.25)-(4.26). Evidently
O" has property (K) at every (r,x)e TXX,
(q(t, % (D), vel()) + i (1), G (1 % (D), v (1) + di(1) € O"(5, xi(D)) ae.in Ti

It is now easy to verify that we may invoke Theorem 4.3 and Aumann’s theorem as
before to arrive at (4.21)-(4.22). QED
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Remark 4.7. Define domg’ to be the set of all (t,x,v)e TXxX XV with
31, x,v) <+ (dom Q is precisely the projection of Nj-,domg’ on TXX:
of. Remark 4.4). It is easy to verify that (4.23) can be replaced by the weaker
condition
(4.23") q(1,+,+) is continuous at every point of {xo(£)} % V relative to the section

at t of N}, dom g’ a.e. in Ty

Remark 4.8. In the literature one usually restricts the considerations from the
beginning to a J X B(X X V)-measurable subset D of TxX xV. One introduces
functions gp: D~ R’ §p: D-R" and the multifunction Op: Dy=SR"XR' given by

Oult, x) = {(gult, % v), M €R XR': (1, %, v) € D, n = ot x, )},
where D, stands for the projection of D on T xX. The present setup is regained by
introducing the integrand g~ ' on TxX XV, given by

0 if (f, x, v)e D,
+o0  else,

G x, v)-{

by letting g: T XX % V>R be the extension of gp, obtained by setting ¢=0 on
(T x X % V)\D,and by letting g’ be the extension of Gl with g/ =+0on (T X X X VID.
As for (4.19), Remark 4.4 holds. Concerning the use of (4.23')-(4.24), we note that
these are satisfied if a.e. in T

gp(t,+,-) is continuous at every point of ({xo(t)}X V)N D,

Fip(t, -, ) is lower semicontinuous at every point of ({xo(0)}x V)N D,
i= 1, e ) f,
g1, -, ) is lower semicontinuous at every point of {xo(1)} X V3

here D, stands for the section at t of D. As for (4.25)~(4.26), note that they arc
equivalent to having a.e. in T,

qD('s xk(l): vk(t)) - QD(" x()(’), vk(t)) nd 01
ap(t, x.(0), (1)) — ot Xolt), v (1)) =0,
(1, (1), vi(1)) € D, (1, xo(1), vi()) € D for large enough k.

Remark 4.9. Conditions (3.13), (4.23)-(4.24) suggest that this special case of
Theorem 4.6 can also be proven directly, in the style of § 3. Indeed, this is true. We
shall leave it to the reader to work out the details for the integrands g;on T X X X R"xV,
defined by

N CACE R L ICE
8i(t, % $2) {+°C else.

Remark 4.10. An obvious extension of (3.43),(4.23)-(4.24) is obtained by letting
h also depend on the x-variable: Suppose instead of (3.43) that there exists a nonnega-
tive 7 X B(X % V)-measurable integrand h on Tx X % V such that a.e. in Ty

(3.43") h(t,+,+) is lower semicontinuous at every point of {xa(D}XV,

(3.437)  supgh(tx* p*) < +0 implies that {v*}T has a limit point for every
{(x*}7< X, {v¥}7= V with x* = xo(1).
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Suppose further that

(3.43") sup J h(, Xy, U} dp <00,
r Jn

Then the conclusions of Theorem 4.6 regarding (3.43), (4.23)—(4.24) remain valid.
This is seen by noting that the multifunction Q' in the proof of Theorem 4.6 then still
has property (K) at (£,x,(1)} a.e. in Tp. ' .

Remark 4.11. Note that the graph of the multifunction Q is the projection on
TXXXR'XR" of a TXRB(XXR XR™ X V)-measurable set. In itself this does not
bestow any useful sort of measurability on Q. Hence, our consideration of nonmeasur-
able integrands in § 3 is justified. Note also that conditioss like (4.25)-(4.26) warrant
the use of the perturbations dy, d, in §§ 3-4.

By taking into account our Remarks 4.4, 4.8 it is easy to see that Theorem 4.6
generalizes [3e, Thms. 7, 10] (where 7= 1 among other things). This also means that
a large number of lower closure results in the literature (e.g. [5], [10c,d], [11a, b, d])
follow from our result. '

In conclusion, we wish to remark that a large number of existence results can be
obtained as follows (applications include the optimal control of ordinary differential
equations, functional-differential equations, nonlinear integral equations and elliptic
boundary value problems): One applies Corollary 3.5 to the dynamical system and
Theorem 4.6 to the orientor field Q, where §' may stand for the usual cost functional
(for instance). Details can be found in [3g] and in forthcoming work by the author.

Appendix A. In this appendix we shall gather some facts about relaxed control

-theory that were established in [3]. In particular, we shall prove Theorem I and Lemmas

11, 111, .

Since S is a standard Borel space, we may identify it with a Borel subset of a

compact metric space S, the metric of which will be denoted by p [12, III]. Hence

M(T; S) and %(T; S) are subsets of #(T; §) and R(T; S) respectively. '
Define €.(S) < €(S) as follows: :

€.(8)={—np(-,s)+n: neN,seS neR}

LemMMA A.1. For every g 4 (T; S) there exist a null set N< T and sequences
{T,}T<= 7, {c,}T = €.(S) such that -

(a.1) g(t, s)=sup 14 (t)c,(s) on (T\N) X S.

Proof. Let {s’}7 be a countable dense sequence in S and let {¥*}T be an enumer-
ation of the rationals. For j, k, meN we define Cirn € (€é(§) by Cim = Y —mp(s’, )
and By, ={te T: ¢yp,(s)=g(t, 5) on S}. Then By... is the projection of the set of all
(t, 5) € T xS such that ¢y, (s) > g(z s) onto T. Hence, B;..» belongs to the completion
of I with respect to u [9, I11.23]; this implies that there exists Tim € T, Tim < Bigms
such that B;,,\Ty,, is contained in a null set Nim. Using nonnegativity and lower
semicontinuity of g(z, *) it is entirely elementary to prove that sup; 1 Byon () Citem (8) =
g(t s) on TX S, By taking N to be the union of all Niem the result now follows, QED

A T X B(S)-measurable integrand g on T X S issaid to be a Carathéodory integrand
if g(# +) is continuous on S for every € T and there exists ¢ € £,(T: R) such that

lg(t, s)|=¢(r)on TXS.
The set of all Carathéodory integrands on TX S will be denoted by %.-(T: S).
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We shall equip %(T; S) with the coarsest topology € for which all functions
8] g(-,8) du are continuous on #(T; S). gc 4-(T: S). Its relative topology on
R(T; S) will be denoted €.

LemmA A.2. The topology C is the coarsest topology for which all functions
8=>[g(+,8) du are lower semicontinuous on R(T; S), g 4*(T; S).

Proof. Call the topology that figures in the statement above @'. Given ge
%c(T; 8), its restriction to T § is easily seen to belong to (T S). It follows easily
that 5+ [, g(+, 8) du is € -continuous on R(T; S). Conversely, given ge 47(T; S),
let {T,}7 and {¢,}7 be as in Lemma A.l. Define «,:R-[0,p] by kp(y) =
max (min (v, p), 0) and set

gL s)= x,,(fgp 14,(6)¢i(s)).

Then it follows by the monotone convergence theorem and (a.1) that for every
s A(T:;S)

I g(-,8) du=supJ' 8p(+,8) dp.
T r T

Hence, 8+>[;g(-,8)du is C-lower semicontinuous on #(T:S) for every ge
%*(T; S). This finishes the proof. QED

Let M"($) denote the set of all bounded nonnegative measures on S; set M(§) =
M™($)=M*(S). It is well known that the usual L.-space L.(T, T, u: M(S)) of
essentially bounded 7-measurable functions from T into M(S) has as its dual the
usual L,-space L,(T, 7, u; €(8)) of integrable functions from T into €(S) [18, VIL.7];
cf. [24, p. 301] for a short proof. (For a good understanding we note that L(T, 7,
wy M (£) consists of (equivalence classes of) functions o : T- M(S) that are Borel
measurable with respect to the usnal weak topology on M ($) and have ess sup, lo(1)], <
+20, where |-/, stands for the total variation norm.) Let X be the set of all € L.(T,
F, w; M(8)) for which o(1) e M7($) a.e. in T. It will be equipped- with the relative
(L, L,)-topology.

LeMma A3, X is compact and sequentially compact for the topology (L., L,).

Proof. Compactness of X is well known; it follows from the above by a simple
application of the Alaoglu-Bourbaki theorem [9, V.2, [32, IV]. Further, it is well
known that X is metrizable if the o-algebra 7 is countably generated, since in that
case Li(T, 7, p; 6(5)) is separable [15, 12.F]: cf. [32, IV]. Sequential compactness
is proven next (cf. [20]). Let {0} }7 = = be arbitrary and let 7, stand for the o-algebra
generated by this sequence; it is countably generated, since M }'(g) is mctrizable and
separable for the weak topology. Hence, it follows from the above that there exist a
subsequence {£} of {k} and a J,-measurable o, € X such that {o,} converges 1o o,
in the topology o(L(T, Ty, 3 M(8)), L,(T, Ty, u; €(S))). Since each element of
L(T, 7, u; €(5)) has a conditional expectation in L,(T, J,, u; €(S)) [9, VIIL.32],
it follows directly that {o,} also converges to oy, in o(L.,L,). QED

LeMMA Ad. R(T; S) is compact and sequentially compact for the topology €.

Proof. Denzte by x the usual quotient mapping from the set of all 8 € A(( T; M($))
such that sup,.r [8(1)|, <+ into Lo(T, 7, u; M(8)). It is easy to sce that € is the
coarsest topology for which y is continuous with respect to o(L., L,). Since x is a
surjection from (T §) into X, the desired result now follows directly from Lemma
A3. QED

Proof of Theorem 1. By supposition there exists he %#(T;S) such that
supy f h(+, s) du <+, For every k a parametrized measure 8, € R(T: $) is defined
by taking 8,(#) to be the Dirac measure (point mass) at s;(¢). By Lemma A.4 there
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exist a subsequence {#} of {k} and 6. € R(T; §) such that {5,} converges to 8, in the
topology 0. We shall show that in fact 64 € R(T; S), which wguld mean that {8}
converges to 8, in the relative topology O. To see this, we define A: Tx$-[0, +x] by

. h TxS
h{t, S)E{ (r.s) on ’

+o0  onTX(8\S).
Since S is Borelin S, his T % %(S‘ )-measurable. Also, the topological ]%meomorphism
that makes S into a subset of ¢ turns compact subsets of § into compact subsets of
§ Hence, for every teT, yeR the set {s€ $: h(t, 5) =y} is compact. We conclude
that he %#(T; $). By compactness of § the latter set is precisély G (T, $), so it follows
from the above that

j ﬁ(',ﬁ*)duéﬁ_gl_j ﬁ(-,ax)dwmj B+, 8e) dp < +o0.
T £ T £ T

By definition of fi this implies that fora.e. 7€ T the probability measure 8,(1) is carried
by S. Of course, we can modify 8.(f) on the exceptional set, and this does not affect
the values of integrals. Thus we may conclude that 8, R(T; S) without loss of
oenerality. By definition of @ we have now for every £ %*(T; S) that (2.5) holds.
For g€ 9(T; S) such that there exists ¢ € £1(T;R) with

gL 5= ¢(L) on TXS,

(2.5) is also valid, as is easily seen by working with g— ¢ € &*(T; S). Further, for
g€ %(T;S) with (2.6) there exists for every €~ 0 a constant >0 such that

I g(+,s¢) d,u.zj max (—v, g(-, 8) dp—€ for all 4.
T T

In view of the above, (2.5) is now easy to derive.

Finally, we shall demonstrate that for a.e. t€ T the measure 5,(f) is carried by
the limit points of {s,(#)}. Let Ri=NU {co} be the usual Alexandrov compactification
of the natural numbers; this is a metrizable compact space. We define g: TXNXS->
[0, +oc] as follows: '

0 if secl{se(t): £=p},

G t’ k- =
&( P3) {+00 else,

for peN. For p= we define

0 ifse N cisd:£=pr,
g(t,OO, 5)= i {54( ) P}
+co  else.

It is easy to check that § belongs to 47(T; RIx S). Let p' be a compatible metric on
R, we shall equip KX § with the metric p’+p. Let (T, }°< g and {cn}T© ¢, (NxS)
correspond to £ as asserted in Lemma A.1. Define & = K (SUDj=m ITj_c,-),_ where k.
is as in the proof of Lemma A.2. Note that for every m there exists a Lipschitz constant
y,, such that

5.0 (5, . 5) = Gt P SV Z ¥ulp' (P P+ p(s,s")-

1t follows that for every m

hf“(] gm(',fasx) dp“_J‘ gm('smy S,e) d;u') =0.
T T
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Hence we find for every m
L‘n_].j. g.m('rlvsl) dﬂ.!“iﬂl_j 8-;'(""0:51) dﬂ'-z—‘“ S.m(‘-°°75*) d”'v
7 JT « JT T

since {8, converges in ¢ to 8,. Also, we have by the monotone convergence theorem
for every 8¢ R(T:;NxS)

IT §(', 8) dl“' =sup j‘l‘ g.m('v 6) dﬂ'-
Combined with the above this gives
JT g( * ’w7 8*) dﬂﬁ_li_:n [r §('. ‘; s‘) d‘lr 30’

where the latter equality follows by definition of g The desired conclusion now also
follows from the definition of g¢ QED
Levma A.S5. For every lower semicontinuous integrand 1 on T x S there exists a
normal integrand g€ %(T:S), 8= I, such that for every ue M(T;S), d¢
M(T; [—00, +0])
I(r, () = &(1) a.e.in T implies that g(, u(t))s o) aeinT
Proof. Suppose first that 1= 0. Although [ need not be I % (S)-measurable, the

proof of Lemma A.1 shows that there exist a sequence {B,}7 of subsets of T and
{c,}7 < €.(S) such that

(a.2) I(t,s)=sup 1 ,,’(t)c,,(s) on TXS.
P

For every p there exists T, € 7, T, = B, such that w(T,) equals the outer measure of
B, [26, 1.4]. Define on TS

g(r, s)=sup 17,(1)c(s):
r

then g=!and g€ %*(T;S). Let ue M(T; S), e M(T;[0, +ac]) be arbitrary with
I(t, u(t)) = &(1) for allre T.

(Evidently, it is enough to prove the desired implication in this case.) We now have
by (a.2) that for every p the set B, is contained in A,={teT: c,,(u(t))§¢(t)}. By
7-measurability of u, A, is I -measurable. By definition of T it follows that T,\A,
is a null set; in other words, we must have

lrp(t)c,(u(t)) <a(r)ae.inT

Thus, the desired implication holds if 1= 0. For general [ we define ! =exp (1). From
the previous step the desired conclusion then follows easily by monotonicity and
continuity of the transformation involved. QED

Lemma A.6. For every F % B(S)-measurable lower semicontinuous integrand g
on T X S there exist a null set Ne Tand g € 9(T;S) such that

g'(t.s)=glt s) on (T\N)XS;

here 7 stands for the completion of T with respect to ji.
Proof. Suppose first that g =0. From the proof given for Lemma A.1 it follows
that there exist sequences {B,}Y <9, {c,}7 = €.(S) with

g(1, 5)=sup lg’(t)c,(s) on TXS.
P

we see that g =

the previous St

Since (1, &7
19, 111.39] tha

every te T,
(3.8) and &

(a.4)




LOWER SEMICONTINUITY AND LOWER CLOSURE 595

For every peN there exists T, € 7, B, < T, such that T,\B, is a null set. Defining on
xS
g'(t,s)=sup 1., (1)c,(s),
P

we see that g'=g =0 and that g’ has the required properties. For general g we apply
the previous step to exp(g). QED

Proof of Lemma 11. Let g be as given. By Lemma A.5 there exists g¢
G(T; X XR"XR"),§ = g,such that forevery x € M(T; X), £ € M(T;R"), n € M(T; R,
¢ e M(T; [0, +x])

(a.3) gl x & n)=¢ae.in Timpliesg(-, x, & n)=dae. in T.

We define the following Fenchel conjugate functions:
g8 & m)=sup & &)+ (m ") — (4 xo(1), &', m'): €' eR’, ' R},
GEH(1, & m)=sup {(& &)+ (. 0y - gE(L &\ n'): E R, n R’}

Since (1, & n)— §(1, Xo(1), & ) is certainly X B(R"XR')-measurable, it follows by
[9, 1I1.39] that g%, g5* are also 7 X B(R" X R")-measurable. It is well known that for
every te T, §8*%(1,+, ) is the lower semicontinuous convex hull of g(# xo(1), -, ). By
(3.8) and g = 4 this implics that for every te T

(ad) golt, Xo(1), +, ) Z 5%(8, -, - ) = gL xo(1), -, *).

Also, by Lemma A.6 the above imply that there exist a null set N= T and go€
%(T;R" xXR") such that for every te T\N

(a.5) Zolt, -, ) =g5*(t+,).
For t€ T\N we now define

gl x, &n) if x# x(1),
8'0(" gv ’7) lf x=x0(')’

and for reN we set gltx&n)=+o Then g=g and g is IX
B(X XR"xR")-measurable. From the first inequality in (a.4), (a.5) and lower semi-
continuity of g(4,*, -, ) it follows now by clementary reasoning that g(#, -, -, -) is lower
semicontinuous. Hence g 9(T; X XR" xR") and (3.9)-(3.10) hold. To prove (3.11),
let x, & m be as in (a.3) and arbitrary. As remarked in § 1, there exists ¢ €
-‘“(T’ [—CD, +w]): b= f( x5 6 77) a.e. in T, such that

gt x, & n)E{

j ¢dﬂ'=‘f f('9x$f9’7) dl""
T T

Note that g(t,+,+,+)=g(t, -, -, ) for te T\N, by definition of g. Hence, it follows from
(a.3) that ¢ = g(-, x, & n) a.e. in T and so

Ly(',x,f,n)d#3J-1_g(-.x,§.n)du.

The converse inequality holds trivially. QED
Proof of Lemma 111. We may work with S= V| so that we can use the results
obtained in this appendix. We shall have to work with X rather than #(T; $), since

Qe T
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X lies in the locally convex Hausdorft space L.(T, 7, > M (.§ )). For this purpose we
define, by abuse of notation, for any ¢ €X, g€ %(T; S)

Lg(',o) dpEJTg(-,S) du,

where & stands for any 86 € R(T; S) with x(8) = o; cf. the proof of Lemma A.4. This
definition makes sense and from what was said in proving Lemma A.4 it follows that
lower semicontinuity of o+ [, g(+, o) du with respect to o(L«, L,) follows from lower
semicontinuity of 8 ~ |- g(-,8) du withrespect to i) (and conversely). Let h e (T; S)
be as given; we define ﬁe 9(T; S) to be its extension defined in the proof of Theorem
1. Define (4) to be the (compact) set of all o€ S with [ A(+, @) du =[; h(-, 6%) du.
Note that by definition of i every o€ S(%) has o(1) carried by S a.e. in T. As follows
from Theorem I (or at least its obvious nonsequential analogue), the functions
o+ |, g(-, o) du are lower semicontinuous on S(h); note that uniform integrability—
as in (2.6)—is guaranteed by (3.30). Hence, the set of all aeX(h) with

_[ gj(':o')d}téj. g+, 8% du, j=1,--",m,
T T

is compact; therefore it has an extreme point o, by the Krein-Milman theorem. By
[6, Prop. 11.2]—a consequence of Carathéodory’s theorem; cf. [21]—it follows that
o, is a convex combination of at most m+1 extreme points of E(E]. By the same
result every extreme point of S(h) is a convex combination of at most two extreme
points of 2. We thus conclude that ¢, is a convex combination of at most 2m+2
extreme points oy, -+, Ogpry of 2. By [14, Thms. 5.2, 9.3] there corresponds an
s;edM(T, $) to each o; such that x(&;) = o;, where &;(1) is the Dirac measure at 5:(1);
in fact, we have that s;€ #(T; S), as follows easily by a*eE(ﬁ). We now find that
for certain ay, - - -, Gam42=0, Z?:lﬂ a;=1,

2m+2

Bi= L ﬂfiJ &> 8) dﬂéj g+, 8%) du, j=1,-,m
i=1 T - T

By a well-known extension of Lyapunov’s theorem [9, IV.17] th.ere exists, in view of
the nonatomicity supposition, a function s*< #(T; S) with

IszJAng’('QS*)dF‘? j=1a"'am,

and the proof is thereby finished. QED
A different proof of Lemma II, based on [31, Prop. 14], has been given in [3k].
(In turn, the above result from [31] has been generalized in [3j].)
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