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1. Introduction

Fatou’s lemma in finitely many dimensions goes back to Aumann [2] and Schmeidler [32].
It plays an important technical role in the usual proofs of competitive equilibrium exis-
tence. Related versions of Fatou’s lemma were given by Artstein and Hildenbrand-Mertens
[1, 24], and in [3] a version was given that subsumes the aforementioned ones. In another
development, Olech introduced the use of cones of directions with uniform integrability
properties [30]. Extensions of Fatou’s lemma to infinite dimensions were given by Khan-
Majumdar [26] and Yannelis [33], in [5] and by Castaing-Clauzure [14]; such extensions are
usually of an approximate nature because of the failure of Lyapunov’s theorem to hold in
infinite dimensions. Multivalued versions of Fatou’s lemma were given by Pucci-Vitillaro
[31], Hiai [23], Hess [22] and by Balder-Hess [12]. The results in [12] are of a quite general
and unifying nature. They are stated in two somewhat different versions, i.e., finite- and
infinite-dimensional ones, and apply to multifunctions that can have unbounded values.
As is explained in [12], those results contain all the aforegoing results, including the single-
valued ones (with the exception of [14] – see [13] for more on that type of result). All
the aforementioned extensions to infinite dimensions involve Bochner integrable functions.
Motivated by general equilibrium existence questions in a model of spatial economies [16],
Cornet-Médécin [17] gave a Fatou lemma for Gelfand integrable (also called weak star in-
tegrable) functions that map into the dual of an infinite-dimensional Banach space. Their
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result was improved in [11]. Subsequently, that improvement was again sharpened by
Cornet-Martins da Rocha [18]. In their paper it is shown that, unlike the current situa-
tion for Bochner integrable functions, an infinite-dimensional result can be formulated for
Gelfand integrable functions that does not require a separate and parallel development in
finite dimensions. In other words, it can be applied to finite dimensions without any loss
of power. Thus, the result in [18] includes the unifying finite-dimensional Fatou lemma
of Balder [3]. The present paper continues this development. It presents a multivalued
Fatou-type result that generalizes not only Theorems 2.1, 2.2 and Corollary 2.1 of [18],
but also the finite-dimensional version of the multivalued Fatou lemmas of Balder-Hess,
as given in [12, Theorem 3.2].

2. Preliminaries

Let (X, ‖ · ‖) be a separable Banach space; on X we consider the norm topology. Let
Y = X∗ be the dual of X, endowed with the w∗-topology σ(Y,X). We use the usual
symbols w∗-cl, w∗-seq-cl and co to denote the w∗-closure, the w∗-sequential closure and
the convex hull of a subset of Y respectively (recall that the sequential closure of a set
is the intersection of all sequentially closed sets containing that set). The dual norm
on Y is given by ‖y‖∗ = supx∈X,‖x‖≤1 |〈x, y〉|, which also shows that y 7→ ‖y‖∗ is lower
semicontinuous for the w∗-topology. The radius of a bounded set K of Y is denoted by
‖K‖∗ = supy∈K ‖y‖∗. We also denote B̄∗(0; ρ) := {y ∈ Y : ‖y‖∗ ≤ ρ} and B∗(0; ρ) :=
{y ∈ Y : ‖y‖∗ < ρ} for ρ > 0; both sets are w∗-metrizable, and the former set is also
w∗-compact by the Alaoglu-Bourbaki theorem. So Y = ∪n∈NB̄

∗(0;n) is certainly a Suslin
space. Hence, the Borel σ-algebra B(Y ) on Y is the same for the w∗- and the dual norm
topology (this can also be demonstrated directly, of course). For y ∈ Y recall that the
Dirac probability measure concentrated at y is the probability measure εy on (Y,B(Y )),
defined by εy(B) := 1 if B 3 y and εy(B) := 0 otherwise.

For every nonempty V ⊂ Y the support function of V is the functional s(· | V ) : X →
(−∞,+∞] defined by s(x | V ) := supy∈V 〈x, y〉. The asymptotic cone of a set V ⊂ Y ,
denoted by As(V ), is defined by

As(V ) := {y ∈ Y : 〈x, y〉 ≤ 0 for every x ∈ X with s(x | V ) < +∞}.

Thus, As(V ) is precisely the negative polar cone of the effective domain of the support
function s(· | V ), for we recall that the negative polar cone C∗ of a cone C ⊂ X is the set
of all y ∈ Y such that supx∈C〈x, y〉 ≤ 0. Evidently, the asymptotic cone of V coincides
with the asymptotic cone of the closed convex hull cl co V of V , and when V itself is
closed and convex then As(V ) is also the asymptotic cone in the classical sense of convex
analysis (apply [27, 6.8.5]). We adopt the following unifying device; it was introduced by
Cornet-Martins da Rocha [18] and will enable us to treat implicitly the situation where
X and Y are finite-dimensional. Let H the family of all finite subsets of X. For every
H ∈ H we define

H⊥ := {y ∈ Y : 〈x, y〉 = 0 for all x ∈ H}.

Evidently, this gives for any V ⊂ Y

V ⊂
⋂

H∈H

(V +H⊥) ⊂ w∗-cl V (1)
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and, in fact, the first inclusion becomes an identity when X is finite-dimensional. For
any sequence (Vk)k of subsets Vk ⊂ Y the sequential w∗-limes superior w∗-LskVk of that
sequence (in the sense of Kuratowski) is defined as the set of all ȳ ∈ Y for which there exist
a subsequence (Vkj)j of (Vk)k and a corresponding sequence (ykj)j in Y , with ykj ∈ Vkj for
every j ∈ N, such that ȳ = w∗-limj ykj . The space Y is in general non-metrizable for the
w∗-topology, so the sequential limes superior set w∗-LskVk does not have to be w∗-closed.
However, it is certainly sequentially w∗-closed:

Proposition 2.1. For every sequence (Vk)k of subsets Vk ⊂ Y the sequential w∗-limes
superior set w∗-LskVk is sequentially w∗-closed.

Proof. Let (ȳn)n be a sequence in w∗-LskVk that w∗-converges to ȳ ∈ Y . By the Banach-
Steinhaus theorem (ȳn)n is bounded for the dual norm, whence contained in B∗(0; ρ) for
some ρ > 0. As observed earlier, such a ball is w∗-metrizable; let d∗ stand for some
associated metric. Then there exists ȳn1 in B∗(0; ρ) with d∗(ȳn1 , ȳ) < 1/2; hence there
also exist a set Vk1 and yk1 ∈ B∗(0; ρ)∩Vk1 such that d∗(ȳn1 , yk1) < 1/2. So d∗(ȳ, yk1) < 1.
Similarly, there exists ȳn2 ∈ B∗(0; ρ) with d∗(ȳn2 , ȳ) < 1/4; hence there exist a set Vk2 ,
k2 > k1, and yk2 ∈ B∗(0; ρ)∩ Vk2 such that d∗(ȳn2 , yk2) < 1/4. So d∗(ȳ, yk2) < 1/2, etc. In
this way a sequence (ykp)p is obtained with ykp ∈ Vkp and d∗(ȳ, ykp) < 21−p.

Let (Ω,A, µ) be a complete1 finite measure space. As is well-known [20], Ω can be
partitioned as Ω = Ωpa∪(Ω\Ωpa), where Ωpa is the purely atomic part of the measure space
(Ω,A, µ), i.e., the union of all its non-null atoms, of which there are at most countably
many. Then Ωna := Ω\Ωpa, equipped with the traces of A and µ, forms a nonatomic
measure space. As is usual, we denote the (prequotient) space of all µ-integrable real-
valued functions on Ω by L1

R(Ω). Recall that a sequence (φk)k ∈ L1
R(Ω) is said to be

uniformly integrable if

lim
a→∞

sup
k

∫

{|φk|≥a}
|φk| dµ = 0.

The outer integral of a function ψ : Ω → [−∞,+∞] is defined by

∫ ∗

Ω

ψ dµ := inf{
∫

Ω

φ dµ : φ ∈ L1
R(Ω), φ ≥ ψ a.e. in Ω},

where the infimum is defined to be +∞ when the set is empty. Of course, one easily
observes that when ψ itself is in L1

R(Ω), then the above outer integral coincides with the
classical integral. A function f : Ω → Y is said to be Gelfand integrable if it is X-scalarly
integrable, i.e., if the scalar function 〈x, f〉 : ω 7→ 〈x, f(ω)〉 belongs to L1

R(Ω) for every
x ∈ X. It is convenient to denote the collection of all Gelfand integrable functions by
L1

Y (Ω)[X]. For every f ∈ L1
Y (Ω)[X] the following property holds automatically (see [19,

p. 52] or [17, footnote 2]): for every A ∈ A there exists a unique element yA in Y , called
the Gelfand integral or w∗-integral of f over A and denoted by yA =

∫

A
f dµ, such that

〈x, yA〉 =
∫

A

〈x, f〉 dµ for every x ∈ X.

1Completeness is not really needed, but it facilitates the proofs. Because our main results hold modulo
null sets, it can be dropped in the usual way (first complete the measure space and select a.e.-equivalent
modifications afterwards).
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The Gelfand integral of a multifunction F : Ω → 2Y is defined in the sense of Aumann
[2]. That is, we define it to be the subset

∫

Ω
F dµ of Y which is given by

∫

Ω

F dµ := {
∫

Ω

f dµ : f ∈ L1
Y (Ω)[X], f(ω) ∈ F (ω) for a.e. ω in Ω}.

Because we allow this set to be empty, this definition does not require any measurability
properties for F .

3. Main results

Our main result is a Fatou-type lower closure result for the Gelfand integrals of a sequence
(Fk)k of multifunctions Fk : Ω → 2Y . We shall use the same structural assumptions as in
[12]. Observe that in principle no measurability is required for the multifunctions Fk. Let
L be a subset of Y whose closed convex hull is locally w∗-compact and does not contain
any line. We suppose that

(A1) Fk(ω) ⊂ Gk(ω) + rk(ω)L for every k ∈ N and a.e. ω in Ω,

where (rk)k ⊂ L1
R(Ω) is a uniformly integrable sequence and (Gk)k is a sequence of w∗-

compact-valued multifunctions Gk : Ω → 2Y such that

(A2) supk

∫ ∗
Ω
‖Gk(ω)‖∗ µ(dω) < +∞.

Here outer integration is used, as introduced in Section 2; this avoids unnecessary mea-
surability considerations for the Gk. Consider the following cone in X:

C00 := {x ∈ X : (max{0, s(−x | Gk)})k is uniformly integrably bounded}.

Here the sequence (ψk)k of nonnegative functions ψk : ω 7→ max{0, s(−x | Gk(ω))} is said
to be uniformly integrably bounded if there exists a uniformly integrable sequence (φk)k in
L1

R(Ω) such that 0 ≤ ψk ≤ φk a.e. for all k.

Theorem 3.1. Under assumptions (A1)-(A2)

w∗-Lsk

∫

Ω

Fk dµ ⊂
⋂

H∈H

(

∫

Ω

F00 dµ+As(L−C∗
00)+H⊥) ⊂ w∗-cl (

∫

Ω

F00 dµ+As(L−C∗
00))

and

w∗-Lsk

∫

Ω

Fk dµ ⊂
∫

Ωpa

F00 dµ+

∫

Ωna

w∗-cl co F00 dµ+As(L− C∗
00),

where the multifunction F00 : Ω → 2Y is defined by F00(ω) := w∗-LskFk(ω), ω ∈ Ω.

The proof of this result is given in Section 4. In view of what was observed about (1), an
immediate consequence of Theorem 3.1 is the following corollary, which is the principal
finite-dimensional result of [12] (the infinite-dimensional version of this result in [12],
which is its Theorem 3.1, is for Bochner integrable functions; hence, it is not directly
comparable to the results presented here).

Corollary 3.2 ([12, Theorem 3.2]). Suppose that X is finite dimensional. Under as-
sumptions (A1)-(A2)

Lsk

∫

Ω

Fk dµ ⊂
∫

Ω

F00 dµ+As(L− C∗
00)
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and

Lsk

∫

Ω

Fk dµ ⊂
∫

Ωpa

F00 dµ+

∫

Ωna

cl co F00 dµ+As(L− C∗
00).

Of course, in this case we have F00(ω) := LskFk(ω), and the condition for L comes down
to requiring that the closed convex hull of L does not contain any line. Example 3.7 in
[12] demonstrates that the latter condition is indispensable; this simple example uses the
Lebesgue unit interval as the underlying measure space (Ω,A, µ), employs X = Y = L =
R and has Fk ≡ {k} on [0, 1/2] and Fk ≡ {−k} on (1/2, 1].

We now specialize Theorem 3.1 to the single-valued case Fk := {fk}, Gk := {gk}, where
(fk)k and (gk)k are given sequences in L1

Y (Ω)[X]. Then the previous cone C00 specializes
into the following cone C0:

C0 := {x ∈ X : (max{0,−〈x, fk〉})k is uniformly integrable}.

We formulate the following assumptions: We suppose that

(A′
1) fk(ω) ∈ gk(ω) + rk(ω)L for every k ∈ N and a.e. ω in Ω,

where (rk)k ⊂ L1
R(Ω) is a uniformly integrable sequence and (gk)k is a sequence such that

(A′
2) supk

∫

Ω
‖gk(ω)‖∗ µ(dω) < +∞.

Corollary 3.3. Under assumptions (A′
1)-(A

′
2)

w∗-Lsk

∫

Ω

fk dµ ⊂
⋂

H∈H

(

∫

Ω

F0 dµ+ As(L− C∗
0) +H⊥) ⊂ w∗-cl (

∫

Ω

F0 dµ+As(L− C∗
0))

and

w∗-Lsk

∫

Ω

fk dµ ⊂
∫

Ωpa

F0 dµ+

∫

Ωna

w∗-cl co F0 dµ+As(L− C∗
0)),

where the multifunction F0 : Ω → 2Y is defined by F0(ω) := w∗-Lsk{fk(ω)}, ω ∈ Ω.

The main Theorems 2.1 and 2.2 of Cornet-Martins da Rocha [18] follow from this result
(take L := {0}, which causes fk = gk – see Corollary 4.1 below), as does their Corol-
lary 2.1: take L to be a pointed locally w∗-compact closed convex cone and set rk ≡ 1.
Still in infinite dimensions, Corollary 3.3 also generalizes the Fatou lemmas of Balder [11]
and Cornet-Médécin [17]. In finite dimensions, Corollary 3.3 coincides with Corollary 4.3
of [12]. Consequently, Corollary 3.3 also generalizes the finite dimensional Fatou lemmas
of Artstein [1], Aumann [2], Balder [3], Hildenbrand and Mertens [24], Olech [30] and
Schmeidler [32].

4. Proofs.

The proof of Theorem 3.1 is based on an idea already pursued in [12], namely that a mul-
tivalued Fatou-type result can actually be obtained from its single-valued specialization,
i.e., the following corollary, which is a further specialization of Corollary 3.3 for L := {0}.
To formulate this specialization, we need only one assumption, namely:

(A′) θ := supk

∫

Ω
‖fk‖∗ dµ < +∞.
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Corollary 4.1 ([18, Theorems 2.1,2.2]). Under assumption (A′)

w∗-Lsk

∫

Ω

fk dµ ⊂
⋂

H∈H

(

∫

Ω

F0 dµ− C∗
0 +H⊥) ⊂ w∗-cl (

∫

Ω

F0 dµ− C∗
0) (1)

and

w∗-Lsk

∫

Ω

fk dµ ⊂
∫

Ωpa

F0 dµ+

∫

Ωna

w∗-cl co F0 dµ− C∗
0 . (2)

This result is proven in [18] by means of its Theorem 3.1, which is an infinite-dimensional
extension of Komlos theorem that builds on its Proposition 4.1 (which is a special case
of [7, Theorem 2.1]) and several other intermediate results. Here we shall provide a new,
shorter proof, which is based on Young measure theory. It is therefore in line with the
proofs given in [3, 5, 11]. We refer the reader to the introductory section of [5] for a
broad outline of this approach. In fact, our proof of Corollary 4.1 considerably sharpens
the Young measure based proof of [11, Theorems 1.1, 1.2]. The improvements stem
from the use of Proposition 2.1 and a result from [8] (incidentally, the resulting proof
shows quite some similarity with the proof of the finite-dimensional Fatou lemma in [8,
Proposition 3.5]). Thereupon we shall use Corollary 4.1 to prove Theorem 3.1. Just as in
[12], the key instrument for this is Lemma 4.8, a result due to Hess [22].

Our proof of Corollary 4.1 will involve the next six lemmas. Throughout, the topology
used on Y will be the w∗-topology. To begin with, we let a ∈ w∗-Lsk

∫

Ω
fk dµ be fixed

and arbitrary. We start with the preliminary selection of a suitable subsequence of (fk)k.

Lemma 4.2. There exist a subsequence (fkj)j of (fk)k such that a = w∗- limj

∫

Ω
fkj dµ

and such that the limit Ýf(ω) := w∗- limj fkj(ω) exists for a.e. ω in Ωpa.

Proof. By definition of the sequential limes superior set, there exists a subsequence
(fkm)m of (fk)k such that a = w∗- limm

∫

Ω
fkm dµ. Since each fkm is a.e. constant (say

equal to cm ∈ Y ) on each non-null atom Ai of Ω, we have supm ‖cm‖∗ ≤ θ/µ(Ai) for
every i, as a consequence of (A′). So, by w∗-compactness and metrizability of the ball
B̄∗(0; θ/µ(Ai)) in Y , we can apply a diagonal extraction argument to ensure the existence
of a further subsequence (fkj)j of (fkm)m such that Ýf(ω) := w∗- limj fkj(ω) exists for a.e.
ω in Ωpa.

Recall that a Young measure from Ω to Y is a transition probability δ with respect to
(Ω,A) and (Y,B(Y )); in other words, δ is a function from Ω into the probability measures
on Y such that ω 7→ δ(ω)(B) is A-measurable for every B ∈ B(Y ). The set of all Young
measures from Ω into Y will be denoted by Y(Ω;Y ). It is equipped with the narrow
topology, for which we refer to [9].

Lemma 4.3. To the sequence (fkj)j in Lemma 4.2 there correspond a further subsequence
(fkp)p and a Young measure δ ∈ Y(Ω;Y ) such that the sequence (εfkp )p of Dirac transition
probabilities εfkp : ω 7→ εfkp (ω) converges to δ in the narrow topology. Moreover, δ satisfies

∫

Ω

[

∫

Y

‖y‖∗ δ(ω)(dy)]µ(dω) ≤ θ, (3)

δ(ω)(F0(ω)) = 1 for a.e. ω in Ω, (4)

δ(ω) = ε Ýf (ω) for a.e. ω ∈ Ωpa. (5)
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This result is contained in the proof on pp. 322-326 of [11], but instead of (4) one only
finds there δ(ω)(w∗-clF0(ω)) = 1 a.e. (see formula (3.3) in [11]). The present form, which
is more more precise, follows directly from the observation contained in Proposition 2.1.
This improvement was instigated by [18], although that reference does not use Young
measures.

Proof. By Prohorov’s theorem for Young measures [6, 10], the existence of a narrowly
convergent subsequence and its narrow limit δ is guaranteed if we can demonstrate that
(εfkj )j is tight in the sense of [4] (here we also use the fact that Y is a completely regular

Suslin space for the w∗-topology). By (A′) the tightness follows, since y 7→ ‖y‖∗ is inf-
compact on Y . The inequality (3) then follows, by (A′) and narrow convergence combined,
from the fact that y 7→ ‖y‖∗ is also lower semicontinuous (apply the portmanteau theorem
for narrow convergence [9, Theorem 4.10]). Also, by the support theorem for narrow
convergence [9, Theorem 4.15(ii)] we obtain

δ(ω)(w∗-seq-cl(w∗-Lsp{fkp(ω)})) = 1 for a.e. ω in Ω

for the narrow limit δ. Because of Lemma 4.2, this immediately implies (5) and be-
cause of w∗-seq-cl(w∗-Lsp{fkp(ω)}) ⊂ w∗-seq-cl(w∗-Lsk{fk(ω)}), the above also implies
(4), for it was already observed in Proposition 2.1 that the sequential limes superior sets
w∗-Lsk{fk(ω)} are always sequentially w∗-closed.

Lemma 4.4. There exist f ∈ L1
Y (Ω)[X] and b :=

∫

Ω
f dµ ∈ Y such that

〈x, f(ω)〉 =
∫

Y

〈x, y〉δ(ω)(dy) for all x ∈ X for a.e. ω in Ω. (6)

f(ω) ∈ w∗-cl co F0(ω) for a.e. ω in Ωna, (7)

f(ω) = Ýf(ω) ∈ F0(ω) for a.e. ω in Ωpa, (8)

b− a ∈ C∗
0 . (9)

Proof. The inequality
∫

Y
‖y‖∗δ(ω)(dy) < +∞ holds for a.e. ω in Ω, as is immediate by

(3). Every probability measure ν on (Y,B(Y )) with
∫

Y
‖y‖∗ν(dy) < +∞ has a unique

resultant (also called barycenter) yν ∈ Y , for which 〈x, yν〉 =
∫

Y
〈x, y〉ν(dy) for all x ∈ X.

This follows either by Lemma 1 of [11] or by simply observing that x 7→
∫

Y
〈x, y〉ν(dy)

is norm-continuous on X [28]. So the above implies that for a.e. ω in Ω the probability
measure δ(ω) has a barycenter, which we shall denote by f(ω); this means that (6) holds
for all such ω. Besides, on the exceptional null set we set f(ω) := 0. Then scalar
measurability of f follows, by (6), from standard measurability results for integration
over transition probabilities [29, Section III.2]. Moreover, by (3) the same lemma in [11]
implies that the function f is also scalarly integrable, that is to say, Gelfand integrable.
Also, (7) follows directly from (4) by the Hahn-Banach theorem and (8) follows by (5).
Now b :=

∫

Ω
f dµ ∈ Y is well-defined in the sense of Gelfand, which implies that for every

x ∈ X

〈x, b〉 =
∫

Ω

〈x, f〉 dµ =

∫

Ω

[

∫

Y

〈x, y〉δ(ω)(dy)]µ(dω).

For every x ∈ C0 it follows from the narrow convergence established in Lemma 4.3 that

〈x, a〉 = lim
p

∫

Ω

〈x, fkp〉 dµ ≥
∫

Ω

[

∫

Y

〈x, y〉δ(ω)(dy)]µ(dω).
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Namely, for x ∈ C0 one can apply the Fatou-Vitali part (e) of Theorem 4.10 in [9] to the
integrand (ω, y) 7→ 〈x, y〉. Because of the previous identity, this inequality proves (9).

In particular, (2) follows from Lemma 4.4 (write a =
∫

Ω
f dµ + a − b). To prove (1), let

H := {x1, . . . , xm} ∈ H be arbitrary. First, we prove two results about measurability that
will play a role in the proof of the concluding Lemma 4.7:

Lemma 4.5. The graph of the multifunction F0 : Ω → 2Y is A ⊗ B(Y )-measurable.
Moreover, under assumption (A′) one has F0(ω) 6= ∅ for a.e. ω in Ω

Proof. Since a w∗-convergent sequence is always bounded in the dual norm, it follows
immediately that F0(ω) = ∪∞

q=1Fq(ω) for every ω ∈ Ω, similarly to [21, Remark 3.4].
Here Fq(ω) := w∗-Lsk({fk(ω)} ∩ B̄∗(0; q)). So it is enough to prove that the graph of
Fq : Ω → 2Y is measurable. Now the ball B̄∗(0; q) is w∗-metrizable, so it is well-known
that for every ω ∈ Ω and q ∈ N

Fq(ω) = ∩∞
m=1w

∗-cl ({fk(ω) : k ≥ m} ∩ B̄∗(0; q)).

By X-scalar measurability of every function fk, it follows from [15, Theorem III.36] that
its graph is also A⊗ B(Y )-measurable (here we use the fact that Y is a Suslin space for
the w∗-topology). Hence, also the intersection of that graph with the set Ω × B̄∗(0; q)
is measurable. So the w∗-compact-valued multifunction ω 7→ {fk(ω)} ∩ B̄∗(0; q) from Ω
into 2B̄

∗(0;q) is measurable for every k (apply [15, Theorem III.30]). Therefore, it follows
by [15, Proposition III.4] that the multifunction Fq is measurable (here we again use
w∗-metrizability of B̄∗(0; q)). Finally, (A′) implies

∫

Ω
lim infk ‖fk‖∗ dµ ≤ θ < +∞, by

Fatou’s lemma. So lim infk ‖fk(ω)‖∗ < +∞ for almost every ω; by w∗-metrizability and
w∗-compactness of the balls B̄∗(0; ρ), ρ > 0, this implies that F0(ω) is nonempty for every
non-exceptional ω.

We consider now the multifunction Γ0 : Ω → 2R
m+1

, given by

Γ0(ω) := {(〈x1, y〉, . . . , 〈xm, y〉, ξm+1) : y ∈ F0(ω), ξ
m+1 ∈ R, ξm+1 ≥ ‖y‖∗}.

Lemma 4.6. The multifunction Γ0 : Ω → 2R
m+1

has closed values and a A ⊗ B(Rm+1)-
measurable graph.

Proof. Fix ω ∈ Ω. First, we prove that Γ0(ω) is closed. Let (ξk)k be a sequence in Γ0(ω),
with ξik = 〈xi, yk〉 for i = 1, . . . ,m and ξm+1

k ≥ ‖yk‖∗ for yk ∈ F0(ω). Suppose that (ξk)k
converges to ξ̄ ∈ Rm+1. Then evidently supk ‖yk‖∗ < +∞, so by the fact that balls in Y
are w∗-metrizable, we conclude that a subsequence of (yk)k w∗-converges to some vector
in Y , which must belong to F0(ω) by Proposition 2.1. By w∗-continuity of 〈xi, ·〉 and
w∗-lower semicontinuity of the dual norm, it easily follows that ξ̄ belongs to Γ0(ω). Next,
we observe that Γ0(ω) = ∪∞

q=1Γq(ω), where

Γq(ω) := {(〈x1, y〉, . . . , 〈xm, y〉, ξm+1) : y ∈ Fq(ω), ξ
m+1 ∈ R, ξm+1 ≥ ‖y‖∗},

with Fq(ω) := F0(ω) ∩ B̄∗(0; q) as introduced in the proof of Lemma 4.5. So it is enough
to prove measurability of the graph of Γq for an arbitrary q ∈ N. To this end, let
E ⊂ Rm+1 be arbitrary and closed. Correspondingly, we define E ′ as the closed set of all



E. J. Balder, A.R. Sambucini / Fatou’s Lemma for Multifunctions with ... 391

(y, ξm+1) ∈ Y ×R such that both (〈x1, y〉, . . . , 〈xm, y〉, ξm+1) ∈ E and ξm+1 ≥ ‖y‖∗. Then
the easy identity

{ω ∈ Ω : Γq(ω) ∩ E 6= ∅} = {ω ∈ Ω : (Fq(ω)× R) ∩ E ′ 6= ∅}

describes a A-measurable set, because the multifunction Fq × R : Ω → 2B̄
∗(0;q)×R is

evidently measurable, in view of the proof of Lemma 4.5 (apply Proposition 2.3 of [25]).
This proves that Γq is measurable. Because B̄∗(0; q) is compact and metrizable for the
w∗-topology, application of [15, Theorem III.30] gives that the graph of Γq is A⊗B(Rm+1)-
measurable.

Lemma 4.7. There exists fH ∈ L1
Y (Ω)[X] such that fH(ω) ∈ F0(ω) for a.e. ω in Ω and

b ∈
∫

Ω
fH dµ+H⊥.

Proof. Let Φ(y) := (〈x1, y〉, . . . , 〈xm, y〉, ‖y‖∗), y ∈ Y ; this defines a measurable mapping
Φ : Y → Rm+1. We define δΦ(ω)(B) := δ(ω)(Φ−1(B)) for ω ∈ Ω and B ∈ B(Y );
this yields the transition probability δΦ in Y(Ω;Rm+1). By (4) and the trivial inclusion
F0(ω) ⊂ Φ−1(Γ0(ω)) it follows that

δΦ(ω)(Γ0(ω)) = 1 for a.e. ω in Ω. (10)

Also, thanks to (3), we have, by a standard formula for transformations,
∫

Y

Φ(y)δ(ω)(dy) =

∫

Rm+1

ξ δΦ(ω)(dξ) (11)

for a.e. ω in Ω. Here (3) implies

∫

Ω

[

∫

Rm+1

m+1
∑

i=1

|ξi|δΦ(ω)(dξ)]µ(dω) ≤ θ (
m
∑

i=1

‖xi‖+ 1) < +∞.

Define gΓ0 : Ω
na × Rm+1 → [0,+∞] by

gΓ0(ω, ξ) =

{

|ξ| ξ ∈ Γ0(ω)
+∞ otherwise,

where the Euclidean norm is used on Rm+1. In combination with (10), the previous
inequality implies

∫

Ωna

[

∫

Rm+1

gΓ0(ω, ξ)δ
Φ(ω)(dξ)]µ(dω) < +∞.

By Lemma 4.6 this allows us to invoke Theorem 2.2 of [8], which has been recalled in the
appendix as Theorem A.1. This gives

∫

Ωna

[

∫

Rm+1

ξ δΦ(ω)(dξ)]µ(dω) ∈ co

∫

Ωna

Γ0 dµ =

∫

Ωna

Γ0 dµ.

Here Richter’s theorem – i.e., essentially Lyapunov’s theorem – guarantees the convexity
of the set on the right. Since that set is an Aumann integral, its definition means that
there must exist γ0 in L1

Rm+1(Ωna) such that γ0(ω) ∈ Γ0(ω) for a.e. ω in Ωna and

∫

Ωna

[

∫

Rm+1

ξ δΦ(ω)(dξ)]µ(dω) =

∫

Ωna

γ0 dµ.
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By the identity (11), this can also be written as

∫

Ωna

[

∫

Y

Φ(y)δ(ω)(dy)]µ(dω) =

∫

Ωna

γ0 dµ. (12)

In view of Lemma 4.5, we may invoke the implicit measurable function result of [15,
Theorem III.38]. It follows that there exists a measurable function fH : Ωna → Y such
that the following hold for a.e. ω in Ωna: (i) fH(ω) ∈ F0(ω), (ii) γ

i
0(ω) = 〈xi, fH(ω)〉 for

i = 1, . . . , n and (iii) γm+1
0 (ω) ≥ ‖fH(ω)‖∗. By (iii), (12) now gives

θ ≥
∫

Ωna

[

∫

Y

‖y‖∗δ(ω)(dy)]µ(dω) =
∫

Ωna

γm+1
0 dµ ≥

∫

Ωna

‖fH‖∗ dµ,

which proves fH ∈ L1
Y (Ω

na)[X]. Combining (i)-(ii) with (6) and (12) gives

∫

Ωna

〈xi, f〉 dµ =

∫

Ωna

〈xi, fH〉 dµ, i = 1, . . . ,m.

On the purely atomic part Ωpa we set fH(ω) := Ýf(ω); then (8) shows that actually fH = f
a.e. on Ωpa. By definition of b, this gives the desired property of fH .

Following Lemma 4.4, we already concluded that (2) had been validated. We can now
conclude that (1) has been proven as well: write a = b+ (a− b) and recall (9). Thus, the
proof of Corollary 4.1 has been completed.

Next, we prove Theorem 3.1 by means of its own Corollary 4.1. The key is the following
lemma, which is an obvious adaptation to the present context of a similar lemma of Hess
[22, Lemmas 2.1, 4.1], which figures as Lemma 5.1 in [12].

Lemma 4.8. The effective domain dom (s(· | L)) = dom (s(· | w∗-cl co L)) ⊂ X has
a nonempty interior for the norm topology, and for every x0 in this interior there exists
a constant γL such that for every w∗-compact convex K ⊂ Y , every r ≥ 0 and every
y ∈ K + r L

‖y‖∗ ≤ ‖K‖∗ + γL[s(x0 | K) + r − 〈x0, y〉].

Proof. By [15, Corollary I.15], the interior of dom (s(· | L)) = dom (s(· | w∗-cl co L))
is nonempty. Fix an element x0 in this interior; then, by the same result and the w∗-
compactness of K, the set

Wβ := {y ∈ Y : y ∈ K + r L and 〈−x0, y〉 ≤ β}

is w∗-compact for every β ∈ R. If we choose β large enough, i.e., β > β0 := −s(x0 |
K + r L), then Wβ 6= ∅ and there exists ỹ ∈ K + r L such that 〈−x0, ỹ〉 < β. By this
Slater-type condition, a well-known duality result [27] gives

s(x | Wβ) = min
λ≥0

[s(x+ λx0 | K + r L) + λβ].

for every x ∈ X. In particular, this implies s(x | Wβ) ≤ s(x+ x0 | K + r L) + β for every
x ∈ X and β > β0, so clearly

s(x | Wβ) ≤ s(x | K) + s(x0 | K) + rs(x+ x0 | L) + β.
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Since s(· + x0 | L) is norm-continuous at the origin, there exists αL > 0 such that
s(x+ x0 | L) ≤ 1 for every x ∈ X with ‖x‖ ≤ αL. We conclude that

αL‖Wβ‖∗ = sup
x∈X,‖x‖≤αL

s(x | Wβ) ≤ αL‖K‖∗ + s(x0 | K) + r + β

for β > β0. Now let y ∈ K+r L be arbitrary; then β0 ≤ −〈x0, y〉. Let βn := −〈x0, y〉+n−1;
then y ∈ Wβn for every n ∈ N, so the above gives αL‖y‖∗ ≤ αL‖K‖∗+ s(x0 | K)+ r+βn.
In the limit the desired inequality is obtained, by setting γL := α−1

L .

We can now start the proof of Theorem 3.1. Let a ∈ w∗-Lsk
∫

Ω
Fk dµ be fixed and

arbitrary. By definition of the set w∗-Lsk
∫

Ω
Fk dµ there exists a subsequence (Fkj)j of

(Fk) and an associated sequence (fkj)j in L1(Ω;Y )[X] such that a = w∗- limj

∫

Ω
fkj dµ

and for every j ∈ N one has fkj(ω) ∈ Fkj(ω) ⊂ Gkj(ω) + rkj(ω)L for a.e. ω in Ω. By
Lemma 4.8 one gets

∫

Ω

‖fkj‖∗dµ ≤ (1 + γL‖x0‖)
∫ ∗

Ω

‖Gkj‖∗dµ+ γL(

∫

Ω

rkj dµ−
∫

Ω

〈x0, fkj〉 dµ).

On the right, the sequences (
∫ ∗
Ω
‖Gkj‖∗dµ)j and (

∫

Ω
rkj dµ)j are bounded because of (A2)

and uniform integrability of (rk) in (A1). Also, (
∫

Ω
〈x0, fkj〉dµ)j is bounded, since it

converges to 〈x0, a〉. This demonstrates that the sequence (fkj)j meets Assumption (A′)
of Corollary 4.1. Therefore, application of that corollary gives

a ∈
⋂

H∈H

(

∫

Ω

F0 dµ− C∗
0 +H⊥) and a ∈

∫

Ωpa

F0 dµ+

∫

Ωna

w∗-cl co F0 dµ− C∗
0 .

We claim that dom (s(· | L))∩−C00 ⊂ −C0. Indeed, for every x ∈ dom (s(· | L))∩−C00

〈−x, fkj(ω)〉 ≥ −max{0, s(x | Gkj(ω))} − rkj(ω)s(x | L)

holds for a.e. ω in Ω. Because of the definition of C00 and the uniform integrability of
(rk)k, this shows that (max{0, 〈−x, fkj〉})j is uniformly integrable. So x ∈ −C0, which
proves our claim. From this we obtain −C∗

0 ⊂ As(cl(L− C∗
00)) = As(L− C∗

00) by taking
polars; also, F0 ⊂ F00 a.e. is obvious. In view of what was reached above, this finishes the
proof of Theorem 3.1.

A. An extension of Lyapunov’s theorem

We recall the following theorem from [8] for Young measures in Y(Ω;Rd), where d ∈ N. As
demonstrated in Propositions 3.1 and 3.2 of [8], this result generalizes Aumann’s identity
for integrals of multifunctions and also yields an extension of Lyapunov’s theorem.

Theorem A.1 ([8, part one of Theorem 2.2]). Let Γ : Ω → 2R
d
be a multifunction

with measurable graph and closed values. Define gΓ : Ω× Rd → [0,+∞] by

gΓ(ω, ξ) =

{

|ξ| if ξ ∈ Γ(ω),
+∞ otherwise.

Here the Euclidean norm is used on Rd. Let η ∈ Y(Ω;Rd) satisfy
∫

Ω

[

∫

Rd

gΓ(ω, ξ)η(ω)(dξ)]µ(dω) < +∞.



394 E. J. Balder, A.R. Sambucini / Fatou’s Lemma for Multifunctions with ...

Then the barycenter bar η(ω) :=
∫

Rd ξ η(ω)(dξ) exists for a.e. ω in Ω and

∫

Ω

bar η(ω)µ(dω) ∈ co

∫

Ω

Γ dµ.

References

[1] Z. Artstein: A note on Fatou’s lemma in several dimensions, J. Math. Econom. 6 (1979)
277–282.

[2] R. J. Aumann: Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965) 1–12.

[3] E. J. Balder: A unifying note on Fatou’s lemma in several dimensions, Math. Oper. Res. 9
(1984) 267–275.

[4] E. J. Balder: A general approach to lower semicontinuity and lower closure in optimal
control theory, SIAM J. Control Optim. 22 (1984) 570–598.

[5] E. J. Balder: Fatou’s lemma in infinite dimensions, J. Math. Anal. Appl. 136 (1988) 450–
465.

[6] E. J. Balder: On Prohorov’s theorem for transition probabilities, Travaux Sém. Anal. Con-
vexe Montpellier 19 (1989) 9.1–9.11.

[7] E. J. Balder: New sequential compactness results for spaces of scalarly integrable functions,
J. Math. Anal. Appl. 151 (1990) 1–16.

[8] E. J. Balder: A unified approach to several results involving integrals of multifunctions, Set
Valued Anal. 2 (1994) 63–75.

[9] E. J. Balder: Lectures on Young measure theory and its applications in economics, Rend.
Ist. Mat. Trieste 31, suppl. 1 (2000) 1–69, available at:
http://www.dmi.units.it/˜rimut/volumi/31_supp1/balder.ps.gz

[10] E. J. Balder: On ws-convergence of product measures, Math. Oper. Res. 26 (2001) 494–518.

[11] E. J. Balder: A Fatou lemma for Gelfand integrals by means of Young measure theory,
Positivity 6 (2002) 317–329.

[12] E. J. Balder, C. Hess: Fatou’s lemma for multifunctions with unbounded values, Math.
Oper. Res. 20 (1995) 175–188.

[13] E. J. Balder, C. Hess: Two generalizations of Komlós theorem with lower closure-type
applications, J. Convex Anal. 3 (1996) 25–44.

[14] C. Castaing, P. Clauzure: Lemme de Fatou multivoque, Atti Sem. Mat. Fis. Univ. Modena
39 (1991) 303–320.

[15] C. Castaing, M. Valadier: Convex Analysis and Measurable Multifunctions, Lecture Notes
in Math. 580, Springer, Heidelberg (1977).
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