Homework 3*

Starred exercises to be turned in next Thursday

Exercise 3-1 = Exercise 2.1.19
Exercise 3-2* Prove $\{y-x: x, y \in(q+A)\} \subset\{0\} \cup \mathbb{Q}^{c}$, as claimed in the last line of the proof of Theorem 2.1.17.

Exercise 3-3 Prove: $\mathcal{H} \subseteq \mathcal{P}(E)$ is a λ-system if and only if ($\left.a^{\prime}\right) E \in \mathcal{H},\left(b^{\prime}\right) \Gamma \in \mathcal{H} \Rightarrow \Gamma^{c} \in$ $\mathcal{H},\left(c^{\prime}\right)\left\{\Gamma_{n}\right\}_{1}^{\infty} \subseteq \mathcal{H} \Rightarrow \cup_{1}^{\infty} \Gamma_{n} \in \mathcal{H}$ if $\Gamma_{n} \cap \Gamma_{m}=\emptyset$ for $n \neq m$.
Exercise 3-4* The following claims are made in Example 3.1.5(ii): 1) The collection $\overline{\mathcal{B}}^{\mu}$ of all $\Gamma \subseteq E$ for which there exist $A, B \in \mathcal{B}$ such that $A \subseteq \Gamma \subseteq B$ and $\mu(B \backslash A)=0$, is a σ-algebra. 2) Setting above $\bar{\mu}(\Gamma):=\mu(A)$ yields a map $\mu: \overline{\mathcal{B}}^{\mu} \rightarrow[0, \infty]$ that is a measure. Prove these two claims. Hint: Observe that the definition of $\bar{\mu}$ must also be inspected for being well-defined (i.e., non-ambiguous).

Exercise 3-5 = Exercise 3.1.8
Exercise 3-6 = Exercise 3.1.9

[^0]
[^0]: *Re: Measure and Integration, 21 January, 2002

