Exact and Useful Optimization Methods for Microeconomics

Erik Balder
University of Utrecht
Lecture Haverford

Summary

Presentation of exact methods for determination of all global optimal solutions of the utility maximization problem (UMP) in microeconomics:

$$
\text { maximize } u\left(x_{1}, x_{2}, \ldots, x_{\ell}\right) \text { over all bundles }\left(x_{1}, x_{2}, \ldots, x_{\ell}\right) \in \mathbb{R}_{+}^{\ell}
$$ subject to the budget constraint $p_{1} x_{1}+p_{2} x_{2}+\cdots p_{\ell} x_{\ell} \leqslant y$

$p_{1}, p_{2}, \ldots, p_{\ell}>0$: prices of goods $1,2, \ldots, \ell$ and $y>0$: income Similar methods also exist for UMP with \mathbb{R}_{+}^{ℓ} replaced by \mathbb{R}_{++}^{ℓ}, but not discussed here

Will present two solution methods:

1. Solution method 1 via parts (a)-(b) of Main Theorem: no (quasi-)concavity conditions
2. Solution method 2 via parts (c)-(d) of Main Theorem: need (quasi-)concavity conditions, including a new stringent quasiconcavity condition, custom-made for microeconomics

Presentation stresses how imposing precise microeconomic specifications can inspire the mathematics to be used

Origins lie in teaching solution method 1 and simplified version of solution method 2. Similar approach is also possible for expenditure minimization problem

Survey of this presentation

Criteria for operational usefulness of UMP solution methods: four test cases

A remarkable modelling error in the advanced literature
Main Theorem, first part, and UMP-solution method 1
Unusual application of method 1 to a test case
Preparations for Main theorem, second part
Main Theorem, second part, and UMP-solution method 2
Application of method 2 to a test case

Criteria for operational usefulness of solution methods: test cases

Method(s) must work to determine all global optimal UMP-solutions for at least the following test cases on \mathbb{R}_{+}^{ℓ} :
(i) Cobb-Douglas utility functions, i.e., u's of the type

$$
u\left(x_{1}, x_{2}, \ldots, x_{\ell}\right) \stackrel{\operatorname{def}}{=} A x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{\ell}^{\alpha_{\ell}}
$$

with $A, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}>0$
(ii) standard CES utility functions, i.e., u's of the type

$$
u\left(x_{1}, x_{2}, \ldots, x_{\ell}\right) \stackrel{\operatorname{def}}{=}\left[a_{1} x_{1}^{\rho}+a_{2} x_{2}^{\rho}+\cdots+a_{\ell} x_{\ell}^{\rho}\right]^{1 / \rho}
$$

with $a_{1}, a_{2}, \ldots, a_{\ell}>0$ and $0<\rho<1$
(iii) u's of the type

$$
u\left(x_{1}, x_{2}\right)=x_{1}^{2}\left(x_{2}+1\right)
$$

whose optima can be interior solutions (i.e. in \mathbb{R}_{++}^{ℓ}) or boundary/corner solutions (i.e., in $\mathbb{R}_{+}^{\ell} \backslash \mathbb{R}_{++}^{\ell}$), depending on prices and income
(iv) Leontiev utility functions, i.e., u 's of the type

$$
u\left(x_{1}, x_{2}, \ldots, x_{\ell}\right) \stackrel{\text { def }}{=} \min \left(b_{1} x_{1}, b_{2} x_{2}, \cdots, b_{\ell} x_{\ell}\right)
$$

with $b_{1}, b_{2}, \ldots, b_{\ell}>0$.
Note: Leontiev utility functions are non-differentiable ...

Common features of the test cases

Basic features of utility functions u on \mathbb{R}_{+}^{ℓ} in all four test cases:

- u is continuous on \mathbb{R}_{+}^{ℓ}
- u is strictly increasing on \mathbb{R}_{+}^{ℓ}, i.e., $x_{1}^{\prime}>x_{1}, x_{2}^{\prime}>x_{2}, \ldots, x_{\ell}^{\prime}>x_{\ell}$ implies $u\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{\ell}^{\prime}\right)>u\left(x_{1}, x_{2}, \ldots, x_{\ell}\right)$
- u is differentiable on an open set $\Omega \subset \mathbb{R}_{++}^{\ell}$
$\Omega \stackrel{\text { def }}{=} \mathbb{R}_{++}^{\ell}$ works in cases (i) to (iii), but in case (iv) take

$$
\Omega \stackrel{\text { def }}{=}\left\{\left(x_{1}, x_{2}, \ldots, x_{\ell}\right) \in \mathbb{R}_{++}^{\ell}: b_{i} x_{i} \neq b_{j} x_{j} \text { for all } i \neq j\right\}
$$

From now on: above three basic conditions for u are in force. Note: these conditions are unconventional from classical optimization viewpoint, so use of standard literature might be restrictive ...
... and turns out to be so!

A remarkable modelling error in the advanced literature

Observe: to take a differentiability set Ω for u with $\Omega \supset \mathbb{R}_{+}^{\ell}$, as encountered frequently, is not a common characteristic!

Reason 1: Differentiability need not hold on $\mathbb{R}_{+}^{\ell} \backslash \mathbb{R}_{++}^{\ell}$. For instance, think of $u\left(x_{1}, x_{2}\right)=\sqrt{x_{1} x_{2}}$. This holds for cases (i) (Cobb-Douglas) and (ii) (CES), i.e., the most popular applications

Reason 2: Defining u outside \mathbb{R}_{+}^{ℓ} may be problematic or impossible: again cf. cases (i) (Cobb-Douglas) and (ii) (CES). Supported by intuition: defining u outside \mathbb{R}_{+}^{ℓ} is economically unnatural.

Reasons 1-2 explain a remarkable error in the literature (including Mas-Colell-Whinston-Green, Simon-Blume, Luenberger ...)

Intermezzo: the subtle test case (iii)

Illustrations:

Case (i) for $\ell=2$: only interior UMP-solutions $\mathbf{x}^{*} \stackrel{\text { def }}{=}\left(x_{1}^{*}, x_{2}^{*}\right)$:

Figure: Interior solution of UMP: $\mathbf{x}^{*} \in \mathbb{R}_{++}^{\ell}$

Here $B \stackrel{\text { def }}{=}\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2}: p_{1} x_{1}+p_{2} x_{2} \leqslant y\right\}$ is the budget set

In contrast, case (iii) can have interior UMP-solutions $\left(x_{1}^{*}, x_{2}^{*}\right)$ if $\frac{p_{1}}{p_{2}}$ is sufficiently large:

Figure: Interior solution of UMP in case (iii)
... case (iii) can also have corner UMP-solutions \mathbf{x}^{*} if $\frac{p_{1}}{p_{2}}$ is sufficiently small, i.e., when good 2 is so expensive that consumer wants none of it:

Figure: Corner solution of UMP in Case (iii): $\mathbf{x}^{*}=\left(\frac{y}{p_{1}}, 0\right)$

Main Theorem, parts $(a)-(b)$

Use vector notation: e.g., $\mathbf{x} \stackrel{\text { def }}{=}\left(x_{1}, x_{2}, \ldots, x_{\ell}\right), \mathbf{p} \stackrel{\text { def }}{=}\left(p_{1}, p_{2}, \ldots, p_{\ell}\right)$, etc.
Main Theorem (a) The UMP has an optimal solution and every optimal solution \mathbf{x}^{*} is such that

$$
p_{1} x_{1}^{*}+p_{2} x_{2}^{*}+\cdots+p_{\ell} x_{\ell}^{*}=y \text { (budget-balancedness) }
$$

(b) If the UMP has a solution \mathbf{x}^{*} in Ω, then there exists $\lambda \geqslant 0$ such that

$$
\frac{\frac{\partial u}{\partial x_{1}}\left(\mathbf{x}^{*}\right)}{p_{1}}=\frac{\frac{\partial u}{\partial x_{2}}\left(\mathbf{x}^{*}\right)}{p_{2}}=\cdots \frac{\frac{\partial u}{\partial x_{\ell}}\left(\mathbf{x}^{*}\right)}{p_{\ell}}=\lambda
$$

This is Gossen's second law (1854): the marginal cost of acquisition is constant across goods
Remark: λ in part (b) acts as a Lagrange/Kuhn-Tucker multiplier (but (b) also has an elementary direct proof)

Solution method 1 - based on $(a)-(b)$ in Main Theorem

STEP 0: Verify that u is continuous and strictly increasing on \mathbb{R}_{+}^{ℓ} STEP 1: Determine the set C of all budget-balanced bundles $\mathbf{x} \in \mathbb{R}_{+}^{\ell}$ for which either
(a) \mathbf{x} is in Ω and satisfies Gossen's second law
or
(b) $\mathbf{x} \in \mathbb{R}_{+}^{\ell} \backslash \Omega$

STEP 2: Determine $\mu \stackrel{\text { def }}{=} \max _{\mathbf{x} \in C} u(\mathbf{x})$; then $\{\mathbf{x} \in C: u(\mathbf{x})=\mu\}$ is the set of all globally optimal solutions

Name: C is called the set of all optimality candidates; in above method it is certainly nonempty
Observe: method 1 is only practical if $\mathbb{R}_{+}^{\ell} \backslash \Omega$ is "small", but even then step 2 can be hard; this is particularly true for case (iii). It explains forthcoming method 2

Example: application of method 1 to test case (iv)

Example: Leontiev case (iv) for $\ell=2$, i.e., $u\left(x_{1}, x_{2}\right)=\min \left(b_{1} x_{1}, b_{2} x_{2}\right)$, with $b_{1}, b_{2}>0$

Recall choice of $\Omega \stackrel{\text { def }}{=}\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}_{++}^{2}: x_{2} \neq \frac{b_{1}}{b_{2}} x_{1}\right\}$
STEP 0 is OK: u is evidently continuous and strictly increasing on \mathbb{R}_{+}^{ℓ}
STEP $1(a)$: Gossen's law states $\frac{b_{1}}{p_{1}}=0$ if $x_{2}>\frac{b_{1}}{b_{2}} x_{1}$ and $\frac{b_{2}}{p_{2}}=0$ if $x_{2}<\frac{b_{1}}{b_{2}} x_{1}$: both are impossible, so step $1(a)$ gives no candidates
STEP $1(b)$ gives $\left(\frac{y}{p_{1}}, 0\right),\left(0, \frac{y}{p_{2}}\right)$ and all budget balanced $\left(x_{1}, x_{2}\right)$ with $x_{2}=\frac{b_{1}}{b_{2}} x_{1}$, i.e., the single bundle $\overline{\mathbf{x}} \stackrel{\text { def }}{=}\left(\frac{b_{2} y}{b_{2} p_{1}+b_{1} p_{2}}, \frac{b_{1} y}{b_{2} p_{1}+b_{1} p_{2}}\right)$
Summary: step 1 yields $C=\left\{\left(\frac{y}{p_{1}}, 0\right),\left(0, \frac{y}{p_{2}}\right), \overline{\mathbf{x}}\right\}$
STEP 2: Obviously $\mu=u(\overline{\mathbf{x}})>0=u\left(\frac{y}{p_{1}}, 0\right)=u\left(0, \frac{y}{p_{2}}\right)$, so $\overline{\mathbf{x}}$ is the unique UMP-solution, i.e., the Marshallian demand bundle

Preparations for parts $(c)-(d)$ of Main Theorem

Definition: A set $D \subset \mathbb{R}_{+}^{\ell}$ is convex if for every $\mathbf{x}, \mathbf{x}^{\prime} \in D$

$$
t \mathbf{x}+(1-t) \mathbf{x}^{\prime} \in D \text { for every } 0<t<1
$$

Definition: $1 . u$ is quasiconcave on a convex set $D \subset \mathbb{R}_{+}^{\ell}$ if for every $\mathbf{x}, \mathbf{x}^{\prime} \in D$

$$
u\left(t \mathbf{x}+(1-t) \mathbf{x}^{\prime}\right) \geqslant \min \left(u(\mathbf{x}), u\left(\mathbf{x}^{\prime}\right)\right) \text { for every } 0<t<1
$$

2. u is strictly quasiconcave on a convex set $D \subset \mathbb{R}_{+}^{\ell}$ if for every $\mathbf{x}, \mathbf{x}^{\prime} \in D$ with $\mathbf{x} \neq \mathbf{x}^{\prime}$

$$
u\left(t \mathbf{x}+(1-t) \mathbf{x}^{\prime}\right)>\min \left(u(\mathbf{x}), u\left(\mathbf{x}^{\prime}\right)\right) \text { for every } 0<t<1
$$

Distinction: indifference curves of strictly quasiconcave u's cannot have straight line segments

Graphical illustration of (strict) quasiconcavity:

 The function u on \mathbb{R}_{+}^{ℓ} is [strictly] quasiconcave if and only if for every $\alpha \in \mathbb{R}$$$
\{u \geqslant \alpha\} \stackrel{\text { def }}{=}\left\{\mathbf{x} \in \mathbb{R}_{+}^{\ell}: u(\mathbf{x}) \geqslant \alpha\right\} \text { is a [strictly] convex set }
$$

Figure: Convexity of $\{u \geqslant \alpha\}$

Question: which u 's in cases (i) to (iv) are quasiconcave or strictly quasiconcave on \mathbb{R}_{+}^{ℓ} ?

Case (i) (C-D): quasiconcave on \mathbb{R}_{+}^{ℓ}, but only strictly quasiconcave on \mathbb{R}_{++}^{ℓ}
Case (ii) (CES, $0<\rho<1$): strictly quasiconcave on \mathbb{R}_{+}^{ℓ}
Case (iii) ("subtle case"): quasiconcave on \mathbb{R}_{+}^{ℓ}, but only strictly quasiconcave on $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}>0\right\}$
Case (iv) (Leontiev): quasiconcave on \mathbb{R}_{+}^{ℓ}, but not strictly quasiconcave

Conclusion: quasiconcavity is common to all test cases, but strict quasiconcavity, more desirable because it leads to uniqueness of UMP-solutions, is not

A new property: stringent quasiconcavity

Follow-up question: is there a useful property "between" quasiconcavity and strict quasiconcavity that is shared by all test cases ?

Answer: yes, there is, but with exclusion of case (iv), which is "too linear" (but recall: solution method 1 can handle it)

Definition: u is stringently quasiconcave on \mathbb{R}_{+}^{ℓ} if it is quasiconcave on \mathbb{R}_{+}^{ℓ} and if it has the following property: for every $\mathbf{x}, \mathbf{x}^{\prime} \in \mathbb{R}_{+}^{\ell}$ with $\mathbf{x} \neq \mathbf{x}^{\prime}$ and $u(\mathbf{x})=u\left(\mathbf{x}^{\prime}\right)>u(0)$

$$
u\left(\frac{1}{2} \mathbf{x}+\frac{1}{2} \mathbf{x}^{\prime}\right)>u(\mathbf{x})=u\left(\mathbf{x}^{\prime}\right)
$$

Observe how stringent quasiconcavity exploits that in microeconomics u is strictly increasing!

Such monotonicity is unparalleled in ordinary nonlinear programming, operations research, etc.

Employing stringent quasiconcavity

Of course, for any u
strictly quasiconcave \Rightarrow stringently quasiconcave \Rightarrow quasiconcave

Sufficient conditions for stringent quasiconcavity of u :
(1) $C_{0} \stackrel{\text { def }}{=}\left\{x \in \mathbb{R}_{+}^{\ell}: u(\mathbf{x})>u(\mathbf{0})\right\}$ is convex
(2) there is a strictly increasing $h:(u(0),+\infty) \rightarrow \mathbb{R}$ such that $h(u(\mathbf{x}))$ is strictly quasiconcave on C_{0}
Can show: u 's in test cases (i) to (iii) are stringently quasiconcave
Example: case (iii): $u\left(x_{1}, x_{2}\right)=x_{1}^{2}\left(x_{2}+1\right)$, so $u(0,0)=0$ and
$C_{0}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2}: x_{1}>0\right\}$; now pick $h(t) \stackrel{\text { def }}{=} \log (t)$ on $(0,+\infty)$
Then $h\left(u\left(x_{1}, x_{2}\right)\right)=2 \log \left(x_{1}\right)+\log \left(x_{2}+1\right)$ is strictly concave, whence strictly quasiconcave on C_{0}. So u is stringently quasiconcave in case (iii)

Adding to the Main Theorem

First recall parts (a)-(b) of Main Theorem:
(a) The UMP has an optimal solution and every optimal solution \mathbf{x}^{*} is budget balanced.
(b) If $\mathbf{x}^{*} \in \Omega$ is an optimal UMP-solution, then \mathbf{x}^{*} satisfies Gossen's law:
there exists $\lambda \geqslant 0$ such that all $\frac{\frac{\partial u}{\frac{\partial x_{i}}{}\left(x^{*}\right)}}{p_{i}}=\lambda$ for all $i=1,2, \ldots, n$.
Now add a well-known part (c) and a new part (d):
(c) Suppose u is quasiconcave. If $\mathbf{x}^{*} \in \Omega$ is budget-balanced and satisfies Gossen's law for $\lambda>0$, then \mathbf{x}^{*} is an optimal UMP-solution
(d) Suppose u is stringently quasiconcave. If $\mathbf{x}^{*} \in \Omega$ is budget-balanced and satisfies Gossen's law for $\lambda>0$, then \mathbf{x}^{*} is the unique optimal UMP-solution

Only part (d) is new; under its conditions one finds all optimal UMP-solutions, i.e., a single one

Solution method 2

Use parts (c)-(d) to build solution method 2:
STEP 0 . Verify that u is continuous, strictly increasing and stringently quasiconcave on \mathbb{R}_{+}^{ℓ}

STEP 1: Determine if there is a budget-balanced bundle $\mathbf{x} \in \mathbb{R}_{+}^{\ell}$ for which
\mathbf{x} is in Ω and satisfies Gossen's second law
If such \mathbf{x} exists, then STOP: there can only be one and it is the unique optimal UMP-solution

If not, then CONTINUE:
STEP 2: Determine the set C of all budget-balanced bundles in $\mathbb{R}_{+}^{\ell} \backslash \Omega$ STEP 3: Determine $\mu \stackrel{\text { def }}{=} \max _{\mathbf{x} \in C} u(\mathbf{x})$. Then $\{\mathbf{x} \in C: u(\mathbf{x})=\mu\}$, is the set of all globally optimal solutions

Testing solution method 2
Solution method 2 can deal with all three cases (i)-(iii)
Example: case (iii). Here $u\left(x_{1}, x_{2}\right)=x_{1}^{2}\left(x_{2}+1\right), \Omega=\mathbb{R}_{++}^{\ell}$
STEP 0: OK, we already saw that u is stringently quasiconcave
STEP 1: Gossen's law gives $2\left(x_{2}+1\right)=\frac{p_{1}}{p_{2}} x_{1}$; together with budget balancedness get one solution, i.e.

$$
\left(\bar{x}_{1}, \bar{x}_{2}\right)=\left(2 \frac{y+p_{2}}{3 p_{1}}, \frac{y-2 p_{2}}{3 p_{2}}\right)
$$

Case 1: $y>2 p_{2}$. Then $\left(\bar{x}_{1}, \bar{x}_{2}\right) \in \Omega$ and $\lambda>0$. So step 1 says STOP: (\bar{x}_{1}, \bar{x}_{2}) is the unique optimal solution in case 1

Case 2: $y \leqslant 2 p_{2}$. Then step 1 says CONTINUE with C, formed by the two corner points. By $u\left(\frac{y}{p_{1}}, 0\right)>0=u\left(0, \frac{y}{p_{2}}\right)$ this implies that $\left(\frac{y}{p_{1}}, 0\right)$ is the unique optimal solution in case 2

Reference: E.J. Balder, "Exact and useful optimization methods for microeconomics" in: New Insights into the Theory of Giffen Goods (W. Heijman and P. Mouche, eds.), Lecture Notes in Economics and Mathematical Systems 655, Springer, 2012, pp. 21-38
Related literature: Existence and Optimality of Competitive Equilibria, Aliprantis, Brown and Burkinshaw, Springer, 1989

The above article provides a comparison with the much more restrictive contribution by Aliprantis et al. and its Appendix gives a detailed critique of the treatment of optimization in the advanced microeconomics literature, as regards exactness, usefulness and completeness

```
www.staff.science.uu.nl/~}\mathrm{ balde101
```

