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Summary

Presentation of exact methods for determination of all global optimal

solutions of the utility maximization problem (UMP) in microeconomics:

maximize u(x1, x2, . . . , xℓ) over all bundles (x1, x2, . . . , xℓ) ∈ R
ℓ
+

subject to the budget constraint p1x1 + p2x2 + · · · pℓxℓ 6 y

p1, p2, . . . , pℓ > 0: prices of goods 1, 2, . . . , ℓ and y > 0: income

Similar methods also exist for UMP with R
ℓ
+ replaced by R

ℓ
++, but not

discussed here
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Will present two solution methods:

1. Solution method 1 via parts (a)-(b) of Main Theorem: no

(quasi-)concavity conditions

2. Solution method 2 via parts (c)-(d) of Main Theorem: need

(quasi-)concavity conditions, including a new stringent quasiconcavity

condition, custom-made for microeconomics

Presentation stresses how imposing precise microeconomic

specifications can inspire the mathematics to be used

Origins lie in teaching solution method 1 and simplified version of

solution method 2. Similar approach is also possible for expenditure

minimization problem
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Survey of this presentation

Criteria for operational usefulness of UMP solution methods: four test

cases

A remarkable modelling error in the advanced literature

Main Theorem, first part, and UMP-solution method 1

Unusual application of method 1 to a test case

Preparations for Main theorem, second part

Main Theorem, second part, and UMP-solution method 2

Application of method 2 to a test case
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Criteria for operational usefulness of solution methods:

test cases

Method(s) must work to determine all global optimal UMP-solutions for

at least the following test cases on R
ℓ
+:

(i) Cobb-Douglas utility functions, i.e., u’s of the type

u(x1, x2, . . . , xℓ)
def
= A xα1

1 xα2

2 · · · xαℓ

ℓ

with A, α1, α2, . . . , αℓ > 0

(ii) standard CES utility functions, i.e., u’s of the type

u(x1, x2, . . . , xℓ)
def
= [a1x

ρ
1 + a2x

ρ
2 + · · · + aℓx

ρ
ℓ ]

1/ρ

with a1, a2, . . . , aℓ > 0 and 0 < ρ < 1
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(iii) u’s of the type

u(x1, x2) = x2
1(x2 + 1),

whose optima can be interior solutions (i.e. in R
ℓ
++) or

boundary/corner solutions (i.e., in R
ℓ
+\Rℓ

++), depending on prices and

income

(iv) Leontiev utility functions, i.e., u’s of the type

u(x1, x2, . . . , xℓ)
def
= min(b1x1, b2x2, · · · , bℓxℓ),

with b1, b2, . . . , bℓ > 0.

Note: Leontiev utility functions are non-differentiable ...
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Common features of the test cases

Basic features of utility functions u on R
ℓ
+ in all four test cases:

u is continuous on R
ℓ
+

u is strictly increasing on R
ℓ
+, i.e., x′1 > x1, x′2 > x2, . . . , x′ℓ > xℓ

implies u(x′1, x′2, . . . , x′ℓ) > u(x1, x2, . . . , xℓ)

u is differentiable on an open set Ω ⊂ R
ℓ
++

Ω
def
= R

ℓ
++ works in cases (i) to (iii), but in case (iv) take

Ω
def
= {(x1, x2, . . . , xℓ) ∈ R

ℓ
++ : bixi 6= bjxj for all i 6= j}

From now on: above three basic conditions for u are in force. Note:

these conditions are unconventional from classical optimization

viewpoint, so use of standard literature might be restrictive ...

... and turns out to be so!
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A remarkable modelling error in the advanced

literature

Observe: to take a differentiability set Ω for u with Ω ⊃ R
ℓ
+, as

encountered frequently, is not a common characteristic!

Reason 1: Differentiability need not hold on R
ℓ
+\Rℓ

++. For instance,

think of u(x1, x2) =
√

x1x2. This holds for cases (i) (Cobb-Douglas) and

(ii) (CES), i.e., the most popular applications

Reason 2: Defining u outside R
ℓ
+ may be problematic or impossible:

again cf. cases (i) (Cobb-Douglas) and (ii) (CES). Supported by

intuition: defining u outside R
ℓ
+ is economically unnatural.

Reasons 1-2 explain a remarkable error in the literature (including

Mas-Colell-Whinston-Green, Simon-Blume, Luenberger ...)
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Intermezzo: the subtle test case (iii)

Illustrations:

Case (i) for ℓ = 2: only interior UMP-solutions x∗
def
= (x∗1, x∗2):

b
x
∗

B

Figure: INTERIOR SOLUTION OF UMP: x∗ ∈ R
ℓ
++

Here B
def
= {(x1, x2) ∈ R

2
+ : p1x1 + p2x2 6 y} is the budget set
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In contrast, case (iii) can have interior UMP-solutions (x∗1, x∗2) if p1

p2
is

sufficiently large:

b x
∗

B

Figure: INTERIOR SOLUTION OF UMP IN CASE (iii)

But ...
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... case (iii) can also have corner UMP-solutions x∗ if p1

p2
is sufficiently

small, i.e., when good 2 is so expensive that consumer wants none of it:

b
x
∗B

Figure: CORNER SOLUTION OF UMP IN CASE (iii): x∗ = ( y
p1

, 0)
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Main Theorem, parts (a)-(b)

Use vector notation: e.g., x
def
= (x1, x2, . . . , xℓ), p

def
= (p1, p2, . . . , pℓ), etc.

Main Theorem (a) The UMP has an optimal solution and every optimal

solution x∗ is such that

p1x∗1 + p2x∗2 + · · · + pℓx
∗

ℓ = y (budget-balancedness)

(b) If the UMP has a solution x∗ in Ω, then there exists λ > 0 such that

∂u
∂x1

(x∗)

p1
=

∂u
∂x2

(x∗)

p2
= · · ·

∂u
∂xℓ

(x∗)

pℓ
= λ

This is Gossen’s second law (1854): the marginal cost of acquisition is

constant across goods

Remark: λ in part (b) acts as a Lagrange/Kuhn-Tucker multiplier (but (b)
also has an elementary direct proof)
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Solution method 1 – based on (a)-(b) in Main Theorem

STEP 0: Verify that u is continuous and strictly increasing on R
ℓ
+

STEP 1: Determine the set C of all budget-balanced bundles x ∈ R
ℓ
+ for

which either

(a) x is in Ω and satisfies Gossen’s second law

or

(b) x ∈ R
ℓ
+\Ω

STEP 2: Determine µ
def
= maxx∈C u(x); then {x ∈ C : u(x) = µ} is the set

of all globally optimal solutions

Name: C is called the set of all optimality candidates; in above method

it is certainly nonempty

Observe: method 1 is only practical if R
ℓ
+\Ω is “small”, but even then

step 2 can be hard; this is particularly true for case (iii). It explains

forthcoming method 2
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Example: application of method 1 to test case (iv)

Example: Leontiev case (iv) for ℓ = 2, i.e., u(x1, x2) = min(b1x1, b2x2),
with b1, b2 > 0

Recall choice of Ω
def
= {(x1, x2) ∈ R

2
++ : x2 6= b1

b2
x1}

STEP 0 is OK: u is evidently continuous and strictly increasing on R
ℓ
+

STEP 1(a): Gossen’s law states b1
p1

= 0 if x2 > b1

b2
x1 and b2

p2
= 0 if

x2 < b1

b2
x1: both are impossible, so step 1(a) gives no candidates

STEP 1(b) gives ( y
p1

, 0), (0,
y
p2

) and all budget balanced (x1, x2) with

x2 = b1

b2
x1, i.e., the single bundle x̄

def
= ( b2y

b2p1+b1p2
,

b1y
b2p1+b1p2

)

Summary: step 1 yields C = {( y
p1

, 0), (0,
y
p2

), x̄}

STEP 2: Obviously µ = u(x̄) > 0 = u( y
p1

, 0) = u(0,
y
p2

), so x̄ is the

unique UMP-solution, i.e., the Marshallian demand bundle
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Preparations for parts (c)-(d) of Main Theorem

Definition: A set D ⊂ R
ℓ
+ is convex if for every x, x′ ∈ D

tx + (1 − t)x′ ∈ D for every 0 < t < 1

Definition: 1. u is quasiconcave on a convex set D ⊂ R
ℓ
+ if for every

x, x′ ∈ D

u(tx + (1 − t)x′) > min(u(x), u(x′)) for every 0 < t < 1

2. u is strictly quasiconcave on a convex set D ⊂ R
ℓ
+ if for every x, x′ ∈ D

with x 6= x′

u(tx + (1 − t)x′) > min(u(x), u(x′)) for every 0 < t < 1

Distinction: indifference curves of strictly quasiconcave u’s cannot have

straight line segments
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Graphical illustration of (strict) quasiconcavity:

The function u on R
ℓ
+ is [strictly] quasiconcave if and only if for every

α ∈ R

{u > α} def
= {x ∈ R

ℓ
+ : u(x) > α} is a [strictly] convex set

{u ≥ α}

Figure: CONVEXITY OF {u > α}
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Question: which u’s in cases (i) to (iv) are quasiconcave or strictly

quasiconcave on R
ℓ
+?

Case (i) (C-D): quasiconcave on R
ℓ
+, but only strictly quasiconcave on

R
ℓ
++

Case (ii) (CES, 0 < ρ < 1): strictly quasiconcave on R
ℓ
+

Case (iii) (“subtle case”): quasiconcave on R
ℓ
+, but only strictly

quasiconcave on {(x1, x2) ∈ R
2 : x1 > 0}

Case (iv) (Leontiev): quasiconcave on R
ℓ
+, but not strictly quasiconcave

Conclusion: quasiconcavity is common to all test cases, but strict

quasiconcavity, more desirable because it leads to uniqueness of

UMP-solutions, is not
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A new property: stringent quasiconcavity

Follow-up question: is there a useful property “between” quasiconcavity

and strict quasiconcavity that is shared by all test cases ?

Answer: yes, there is, but with exclusion of case (iv), which is “too

linear” (but recall: solution method 1 can handle it)

Definition: u is stringently quasiconcave on R
ℓ
+ if it is quasiconcave on

R
ℓ
+ and if it has the following property: for every x, x′ ∈ R

ℓ
+ with x 6= x′

and u(x) = u(x′) > u(0)

u(
1

2
x +

1

2
x′) > u(x) = u(x′)

Observe how stringent quasiconcavity exploits that in microeconomics

u is strictly increasing!

Such monotonicity is unparalleled in ordinary nonlinear programming,

operations research, etc.
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Employing stringent quasiconcavity

Of course, for any u

strictly quasiconcave ⇒ stringently quasiconcave ⇒ quasiconcave

Sufficient conditions for stringent quasiconcavity of u:

(1) C0
def
= {x ∈ R

ℓ
+ : u(x) > u(0)} is convex

(2) there is a strictly increasing h : (u(0),+∞) → R such that h(u(x)) is

strictly quasiconcave on C0

Can show: u’s in test cases (i) to (iii) are stringently quasiconcave

Example: case (iii): u(x1, x2) = x2
1(x2 + 1), so u(0, 0) = 0 and

C0 = {(x1, x2) ∈ R
2
+ : x1 > 0}; now pick h(t)

def
= log(t) on (0,+∞)

Then h(u(x1, x2)) = 2 log(x1) + log(x2 + 1) is strictly concave, whence

strictly quasiconcave on C0. So u is stringently quasiconcave in case

(iii)
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Adding to the Main Theorem

First recall parts (a)-(b) of Main Theorem:

(a) The UMP has an optimal solution and every optimal solution x∗ is

budget balanced.

(b) If x∗ ∈ Ω is an optimal UMP-solution, then x∗ satisfies Gossen’s law:

there exists λ > 0 such that all
∂u
∂xi

(x∗)

pi
= λ for all i = 1, 2, . . . , n.

Now add a well-known part (c) and a new part (d):
(c) Suppose u is quasiconcave. If x∗ ∈ Ω is budget-balanced and

satisfies Gossen’s law for λ > 0, then x∗ is an optimal UMP-solution

(d) Suppose u is stringently quasiconcave. If x∗ ∈ Ω is budget-balanced

and satisfies Gossen’s law for λ > 0, then x∗ is the unique optimal

UMP-solution

Only part (d) is new; under its conditions one finds all optimal

UMP-solutions, i.e., a single one
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Solution method 2

Use parts (c)-(d) to build solution method 2:

STEP 0. Verify that u is continuous, strictly increasing and stringently

quasiconcave on R
ℓ
+

STEP 1: Determine if there is a budget-balanced bundle x ∈ R
ℓ
+ for

which

x is in Ω and satisfies Gossen’s second law

If such x exists, then STOP: there can only be one and it is the unique

optimal UMP-solution

If not, then CONTINUE:

STEP 2: Determine the set C of all budget-balanced bundles in R
ℓ
+\Ω

STEP 3: Determine µ
def
= maxx∈C u(x). Then {x ∈ C : u(x) = µ}, is the

set of all globally optimal solutions
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Testing solution method 2

Solution method 2 can deal with all three cases (i)-(iii)

Example: case (iii). Here u(x1, x2) = x2
1(x2 + 1), Ω = R

ℓ
++

STEP 0: OK, we already saw that u is stringently quasiconcave

STEP 1: Gossen’s law gives 2(x2 + 1) = p1

p2
x1; together with budget

balancedness get one solution, i.e.

(x̄1, x̄2) =

(

2
y + p2

3p1
,

y − 2p2

3p2

)

Case 1: y > 2p2. Then (x̄1, x̄2) ∈ Ω and λ > 0. So step 1 says STOP:

(x̄1, x̄2) is the unique optimal solution in case 1

Case 2: y 6 2p2. Then step 1 says CONTINUE with C, formed by the

two corner points. By u( y
p1

, 0) > 0 = u(0,
y
p2

) this implies that ( y
p1

, 0) is

the unique optimal solution in case 2
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Reference: E.J. Balder, ”Exact and useful optimization methods for

microeconomics” in: New Insights into the Theory of Giffen Goods

(W. Heijman and P. Mouche, eds.), Lecture Notes in Economics and

Mathematical Systems 655, Springer, 2012, pp. 21-38

Related literature: Existence and Optimality of Competitive Equilibria,

Aliprantis, Brown and Burkinshaw, Springer, 1989

The above article provides a comparison with the much more restrictive

contribution by Aliprantis et al. and its Appendix gives a detailed

critique of the treatment of optimization in the advanced

microeconomics literature, as regards exactness, usefulness and

completeness

www.staff.science.uu.nl/~balde101
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