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Johann Bernoulli’s brachistochrone problem can be solved completely by using only standard

calculus and the Cauchy-Schwarz inequality.

Johann Bernoulli’s famous 1696 brachistochrone problem asks for the optimal shape of a metal
wire that connects two fixed points A and B in space. A bead of unit mass falls along this wire,
without friction, under the sole influence of gravity. The shape of the wire is defined to be optimal
if the bead falls from A to B in as short a time as possible. In a standard manner (see e.g. [3, p. 20]
for details) this problem can be modeled in the inverted Euclidean plane, with the positive y-axis
pointing downward, by taking A = (0, 0) and B = (x1, y1) with x1 > 0 and y1 ≥ 0 (for obvious
physical reasons the point B cannot lie above the horizontal axis). If the function f describes the
shape of the wire connecting A and B, then the associated falling time T (f) follows by elementary
mechanics:

T (f) =
∫ x1

0

√
1 + f ′2(x)√

2gf(x)
dx.

Here g is the gravitational constant. Formally, this expression must be minimized over the set F
of all continuously differentiable functions f : (0, x1) → (0,∞) that extend continuously to [0, x1],
with f(0) = 0 and f(x1) = y1.

Because of their strictly local character, the classical necessary conditions for optimality are
by themselves not adequate for a complete solution, as is known to every student of optimization
theory. What is needed are either sufficient conditions for optimality (which bypass the necessary
conditions altogether) or an additional result that ensures the existence of an optimal solution.
Unfortunately, because the integrand of T (f) has a singularity for f(0) = 0, application of both
the necessary conditions and the required additional existence result is very difficult. This has led
to the following remarkable situation in the literature: The brachistochrone problem, one of the
oldest and most famous problems in continuous optimization, is solved in a mathematically rigorous
way in very few textbooks (e.g., [2] is such an exception). The other route to a complete solution
of the brachistochrone, via convexifying transformations and the concomitant possibility to apply
sufficient conditions for optimality, seems to have gained attention only in more recent years [4, 5].
While such transformations and conditions are hard to find and apply in general, it is the purpose
of this note to carry them to an extreme in the case of the brachistochrone: We present a new,
completely ad hoc solution of the brachistochrone problem that is based only on standard calculus
and the Cauchy-Schwarz inequality. This inequality is recorded here in the following form.

Lemma 1 For every a > 0, ξ > 0 and b, η ∈ R√
a2 + b2

√
ξ2 + η2 ≥ −a

ξ
(a− ξ)2 + aξ + bη.

This can be rewritten equivalently as√
ξ2 + η2 ≥

√
a2 + b2 +

a2 − a3ξ−1 + bη − b2

√
a2 + b2

.

and holds with equality if and only if (ξ, η) = (a, b).
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Following ideas introduced in [4] and [5] (see Example 1, p. 257), let us rewrite the brachis-
tochrone problem by means of the “convexifying” transformation φ :=

√
f . This gives falling time

the following form: S(φ) :=
√

2gT (φ2) =
∫ x1

0

√
φ−2(x) + 4φ′2(x) dx

The corresponding image Φ of the class F under f 7→
√

f is the set of all continuously differen-
tiable φ : (0, x1)→ (0,∞) that extend continuously to [0, x1], with φ(0) = 0 and φ(x1) =

√
y1.

We shall now prove directly the optimality of φ̂ : [0, x1]→ R, given by the differential equation

4φ̂′2(x)φ̂2(x) = Cφ̂−2(x)− 1, 0 < x < x1, (1)

and the initial value φ̂(0) = 0. Here C > 0 is chosen such that φ̂(x1) =
√

y1. Such a continuously
differentiable solution φ̂ exists and is well-known (see below). As it is easy to see that φ̂(x) > 0 for
0 < x < x1, we have φ̂ ∈ Φ. Unlike [4, 5], which use some convex analysis, we shall only invoke
Lemma 1.

Theorem 1 The inequality S(φ) > S(φ̂) holds for every φ ∈ Φ, φ 6= φ̂.

Proof. Let `φ(x) :=
√

φ−2(x) + 4φ′2(x). First we prove S(φ) ≥ S(φ̂). By Lemma 1 one
has `φ(x) ≥ `φ̂(x) + ρ(x) for every x ∈ (0, x1), where ρ := (φ̂−2 − φφ̂−3 + 4φ̂′φ′ − 4φ̂′2)/`φ̂. Since
S(φ) = S(φ̂)+

∫ x1

0
ρ, it is enough to prove

∫ x1

0
ρ = 0. By (1) we have on (0, x1) that `φ̂ = φ̂−2

√
C, so

ρ = r/
√

C, where r := 1− φ̂−1φ+4φ̂2φ̂′φ′−4φ̂2φ̂′2. Let p := 4φ̂2φ̂′. Using (1), a routine calculation
shows that p′ = −φ̂−1 on (0, x1). Therefore, r = −p′(φ̂− φ) + p(φ′ − φ̂′) = R′ with R := p(φ− φ̂).
This implies

∫ x1

0
r = R(x1)−R(0) = 0. Hence,

∫ x1

0
ρ = 0, which proves S(φ) ≥ S(φ̂).

Next, we complete the proof by demonstrating that S(φ) = S(φ̂) implies φ = φ̂. Since
∫ x1

0
ρ = 0

was just shown, we get
∫ x1

0
(`φ − `φ̂ − ρ) = 0. By Lemma 1, the integrand `φ − `φ̂ − ρ here is

nonnegative and continous, so we conclude that it is zero on (0, x1). By the last part of Lemma 1,
this implies (φ, φ′) = (φ̂, φ̂′) on (0, x1). So φ = φ̂ on [0, x1]. QED

From Theorem 1 it follows that f̂ := φ̂2 is the unique solution to the original brachistochrone
problem. This function describes a cycloid connecting the points A and B, as can be seen by
standard substitutions [2, 5]. Incidentally, it is possible to take instead of Φ a similar but broader
class of functions, viz. absolutely continuous functions. The proof needs very few changes to achieve
this.

Open question: It would be interesting to gain more insight in the nature of “convexifying” transfor-
mations of the kind used here. For instance, which variational problems allow such transformations?

Postscriptum. After this note had been written the author became aware of [1], where another proof
based on the Cauchy-Schwarz inequality is given. However, that note only addresses the case where
the points A and B lie in a horizontal plane (i.e., y1 = 0).
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