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1 Manifolds

Notation and preliminaries

Let V, V ′ be finite dimensional real linear spaces, and let Ω be an open subset
of V. We recall that a map ϕ : Ω → V ′ is called differentiable at a point a ∈ Ω
in the direction v ∈ V if

∂vϕ(a) =
d

dt
[ϕ(a+ tv)]t=0

exists.
The map f is called differentiable at a ∈ Ω if there exists a linear map

Df(a) : V → V ′ such that

f(a+ h)− f(a) = Df(a)h+ o(h) (h→ 0).

The linear map Df(a), which is unique when it exists, is called the derivative
of f at a. If f is differentiable in a, then ∂vf(a) exists for every v ∈ V and we
have

∂vf(a) = Df(a)v.

When V = Rn, V ′ = Rm, then the above formula may be used to express the
matrix of Df(a) in terms of the partial derivatives ∂jfi = ∂ejfi (the Jacobi
matrix).

If f is differentiable in (any point of) Ω, then Df is a map from Ω to the
space Hom(V, V ′) of linear maps V → V ′. If this map is differentiable, then f
is called twice differentiable. The derivative of Df is denoted by D2f. It is now
clear how to define the notion of a p times differentiable function and its p–th
derivative Dpf. A function f is called p times continuously differentiable, or
briefly Cp, if it is ptimes differentiable and Dpf is continuous. We recall that
f is Cp on Ω if all mixed partial derivatives of f order at most p exist and are
continuous on Ω. Let Cp(Ω, V ′) denote the linear space of Cp–maps Ω → V ′.
Then the effect of any sequence of at most p partial derivatives applied to
Cp(Ω, V ′) is independent of the order of the sequence.

A map f : Ω → V ′ is called smooth (or C∞) if it is Cp for every p ≥ 0. We
put

C∞(Ω, V ′) = ∩p≥0C
p(Ω, V )

1



for the space of smooth maps Ω → V ′.
Let e1, . . . , en be a basis of V, and abbreviate ∂j = ∂ej . Then ∂j is a linear

operator on the space C∞(Ω, V ′). By the above mentioned result on the order
of mixed partial derivatives we have that ∂i and ∂j commute (1 ≤ i, j ≤ n).
Hence, as an endomorphism of C∞(Ω, V ′) every mixed partial derivatives of
order at most p is of the form:

∂α = ∂α1
1 · · · ∂αn

n ,

with |α| := α1 + · · ·+ αn ≤ p.
We briefly write Cp(Ω) for Cp(Ω,C) (0 ≤ p ≤ ∞). By a linear partial

differential operator with C∞–coefficients on Ω we mean a linear endomorpism
P of C∞(Ω) of the form:

P =
∑
α

cα ∂
α

with finitely many non-trivial functions cα ∈ C∞(Ω). The number k = max{|α|; cα 6=
0} is called the order of P.

Manifolds

Let ϕ : Ω → Ω′ be a bijection between open subsets of finite dimensional real
linear spaces. Then ϕ is called a Cp–diffeomorphism (1 ≤ p ≤ ∞) if ϕ and
ϕ−1 are Cp. Note that by the inverse function theorem this is equivalent to the
requirement that ϕ ∈ Cp and Dϕ(a) is bijective for every a ∈ Ω.

We shall now develop the theory of C∞–manifolds (we leave it to reader to
keep track of what can be done in a Cp–context, for further reading we suggest
the references [La]1, [Wa]2).

Let X be a Hausdorff topological space. A pair (U, χ), consisting of an open
subset U ⊂ X and a homeomorphism χ from U onto an open subset of Rn is
called an n–dimensional chart of X. If (U ′, χ′) is a second n–dimensional chart
of X, such that U ∩ U ′ 6= ∅, then the map χ′ ◦χ−1 is a homeomorphism from
χ(U ∩ U ′) onto χ′(U ∩ U ′). This homeomorphism is called the transition map
from the chart χ to the chart χ′.

A set {(Uα, χα) ; α ∈ A} of n–dimensional charts is called a C∞ (or smooth)
n–dimensional atlas of X, if

(a) ∪α∈AUα = X;

(b) all transition maps τβα = χβ ◦χ
−1
α are smooth (i.e. C∞).

Remark. Note that since τβα is the inverse of ταβ , it actually follows that
all transition maps are diffeomorphisms.

An n–dimensional smooth (or C∞) manifold is a Hausdorff topological space
X equipped with a smooth n–dimensional atlas {(Uα, χα) ; α ∈ A}. An n–
dimensional chart (U, χ) of the manifold X is called smooth if all the transition
maps χα ◦χ−1 are diffeomorphisms. The components χ1, . . . , χn will then be

1[La]: S. Lang, Differential Manifolds, Addison Wesley, Reading Massachusetts 1972
2[Wa]: F. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman

and Co., Glenview Illinois 1971.
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called a system of local coordinates of X. The collection of all smooth charts of
X is an atlas by its own right, called the maximal atlas of the smooth manifold
X.

Remark. Any open subset of a finite dimensional linear space is a smooth
manifold in a natural way, its dimension being the dimension of the linear space.
More generally any open subset of an n–dimensional smooth manifold X is a
smooth manifold of dimension n in a natural way.

A map f : X → Y of smooth manifolds (of possibly different dimensions)
is called Cp at a point x ∈ X if there exist smooth charts (U, χ) and (V, ψ)
of X and Y respectively, such that x ∈ U, f(U) ⊂ V and ψ ◦ f ◦χ−1 is a Cp

map from χ(U) to ψ(V ). (Similarly one may define the concept of a p times
differentiable map between smooth manifolds.)

One readily checks that the composition of Cp maps between smooth man-
ifolds is Cp, etc.

The map f : X → Y is called a (C∞) diffeomorphism if it is bijective,
and if f and its inverse f−1 are smooth (i.e C∞). Note that diffeomorphic
manifolds have the same dimension. The present notion generalizes that of a
diffeomorphism of open subsets of finite dimensional real linear spaces.

Our next objective is to generalize the notion of derivative of a differentiable
smooth map between manifolds. The key to this is the concept of a tangent
vector. Since our manifold is not contained in an ambient linear space, it may
seem strange that tangent vectors can be defined at all. The basic idea is that
it makes sense to say that two curves are tangent at a point. A tangent vector
of a manifold is then defined as an equivalence class of tangential curves. More
precisely, let X be smooth manifold of dimension n. Then by a differentiable
curve in X, we mean a differentiable map c : I → X, where I ⊂ R is some open
interval containing 0. The point c(0) is called the initial point of c. Let x ∈ X
be a fixed point. Then two differentiable curves c, d with initial point x are said
to be tangent at x if there exists a smooth chart (U, χ) containing x, such that

d

dt
χ ◦ c(t)|t=0 =

d

dt
χ ◦ d(t)|t=0. (1)

Suppose now that (V, ψ) is another smooth chart, and let τ = ψ ◦χ−1 be the
associated transition map. Then by the chain rule we have:

d

dt
ψ ◦ c(t)|t=0 = D(τ)(χ(x))

d

dt
χ ◦ c(t)|t=0. (2)

From this we see that if (1) holds in one chart containing x, then it holds in
any other chart containing x. Let Cx denote the set of all differentiable curves
in X with initial point x. Define the equivalence relation ∼ on Cx by c ∼ d if
and only if c and d are tangential at x. We define

TxX := Cx/ ∼ .

The class of an element c ∈ Cx is denoted by c′(0). The elements of TxX are
called the tangent vectors of X at x.
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Let (U, χ) be a chart containing x. Then for every c ∈ Cx, the vector
d/dt [χ ◦ c](0) only depends on the equivalence class c′(0). We denote it by
Txχ c

′(0) (this notation will be justified at a later stage).

Lemma 1.1 The map Txχ : TxX → Rn is bijective.

Proof. The injectivity of Txχ is an immediate consequence of the definitions.
To establish its surjectivity, let v ∈ Rn and fix any differentiable curve c in
χ(U), with initial point χ(x), and with d/dt[c](0) = v. Let c = χ−1c. Then
c ∈ Cx, and by definition we have Txχ c′(0) = v. 2

Let now (V, ψ) be another chart containing x. Then by (2) we have that

Txψ = D[ψ ◦χ−1] (χ(x)) ◦Txχ on TxX.

This implies the following.

Corollary 1.2 The set TxX has a unique structure of real linear space such
that for every chart (U, χ) containing x the map Txχ : TxX → Rn is linear.

The set TxX, equipped with the structure of linear space described in the
above corollary, is called the tangent space of X at x.

The tangent map

We can now generalize the concept of derivative to manifolds. Let f : X → Y
be a map between smooth manifolds, and suppose that f is differentiable at
the point x ∈ X. If c, d ∈ Cx, then f ◦ c, f ◦ d ∈ Cf(x). Let (U, χ), and (V, ψ) be
charts of X and Y such that x ∈ U, f(U) ⊂ V. Then the map F = ψ ◦ f ◦χ−1

is differentiable. Moreover, if c′(0) = d′(0), then by definition we have

d

dt
[χ ◦ c](0) =

d

dt
[χ ◦ d](0).

If we apply DF (χ(x)) to this expression we obtain

d

dt
[ψ ◦ f ◦ c](0) =

d

dt
[ψ ◦ f ◦ d](0),

by the chain rule. It follows from this that f ◦ c and f ◦ d are equivalent elements
of Cf(x). This shows that the map Cx → Cf(x), c 7→ f ◦ c induces a map TxX →
Tf(x) Y, which we denote by Txf.

Note that it is immediate from the above discussion that the following dia-
gram commutes:

TxX
Txf−→ Tf(x)Y

Txχ ↓ ↓ Tf(x)ψ

Rn D(ψ ◦ f ◦χ−1)(χ(x))−→ Rm.

(3)

Hence it follows from Lemma 1.1 and Cor. 1.2 that the map Txf : Tx →
Tf(x) is linear; it is called the tangent map of f at x.
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Theorem 1.3 (The chain rule). Let f : X → Y and g : Y → Z be maps,
such that f is differentiable at x ∈ X and g is differentiable at f(x). Then g ◦ f
is differentiable at x, and

Tx(g ◦ f) = Tf(x)g ◦Txf.

Proof. This follows from the ordinary chain rule by using the commutative
diagram (3) three times, once for f : X → Y at x, once for g : Y → Z at f(x),
and once for g ◦ f : X → Z at x. 2

Let U be an open subset of X. Then if x ∈ U one readily checks that the
tangent map Txi of the inclusion map i : U → X is an isomorphism TxU → TxX.
Via this isomorphism we shall identify TxU ' TxX. In particular, if U is an
open subset of Rn, then TxU ' TxRn. The latter space is identified with Rn

as follows. For v ∈ Rn, define the curve cv : [0, 1] → Rn by cv(t) = x + tv.
Then we identify Rn ' TxRn via the map v 7→ c′v(0). We leave it to the reader
to check the following. If f : U → V is a map between open subsets U ⊂ Rn

and V ⊂ Rm then via the identifications discussed above, the tangent map
Txf : TxU → Tf(x)V (x ∈ U) corresponds to the derivative Df(x) : Rn → Rm.
Also, if (U, χ) is a chart of a smooth manifold X containing the point x ∈ X,
then the map Txχ : TxX → Rn of Lemma 1.1 corresponds to the map Txχ :
TxX → TxRn. Finally, observe that when c ∈ Cx, then the element c′(0), defined
as the ∼ class of c, equals T0c(1).

Remark. In the literature one also finds the notation df(x) and Df(x) for
Txf.

Submanifolds

Let X be an n–dimensional smooth manifold. A subset Y ⊂ X is called a
smooth submanifold of dimension k if for every y ∈ Y there exists a chart
(U, χ) containing y, such that χ(U ∩Y ) = χ(U)∩Rk. Here we agree to identify
Rk with the subspace {x ∈ Rn ; xj = 0 (j ≥ k)}.

Suppose that Y is a submanifold of X, and let iY : Y → X denote the
inclusion map. Then one readily verifies that for every y ∈ Y the map TyiY
is an injective linear map. Via this map we shall identify TyY with a linear
subspace of TyX.

Notice that the notion of submanifold as defined above generalizes the notion
of smooth submanifold of Rn. Notice also that a subset Y ⊂ X is a submanifold
of X if it looks like a submanifold of Rn in any set of local coordinates. More
precisely, Y is a submanifold if for every smooth chart (U, χ) of X the set
χ(U ∩ Y ) is a smooth submanifold of Rn (which may be empty).

Let X,Y be smooth manifolds. A map f : X → Y is called an immersion
at a point x ∈ X if the tangent map Txf : TxX → Tf(x)Y is injective. It is
called a submersion at x ∈ X if the tangent map Txf is surjective.

One now has the following useful result, which is a consequence of the
implicit function theorem for Rn.
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Lemma 1.4 (Immersion Lemma). Let f : X → Y be a smooth map, and let
x ∈ X. Then f is an immersion at x if and only if dimX − dimY = p ≥ 0
and there exist open neigbourhoods X ⊃ U 3 x and Y ⊃ V 3 f(x) and a
diffeomorphism ϕ of V onto a product U ×Ω with Ω 3 0 an open subset of Rp,
such that the following diagram commutes:

U
f−→ V

IU ↓ ↓ ϕ

U
i1−→ U × Ω

Here i1 denotes the inclusion x 7→ (x, 0).

Lemma 1.5 (Submersion Lemma). Let f : X → Y be a smooth map between
smooth manifolds. Then f is submersive at x ∈ X if and only if dimX −
dimY = p ≥ 0, and there exist open neigbourhoods X ⊃ U 3 x and Y ⊃ V 3
f(x) and a diffeomorphism ϕ : U → V × Ω with Ω an open subset of Rp, such
that the following diagram commutes

U
f−→ V

ϕ ↓ ↓ IV

V × Ω
pr1−→ V

Here pr1 denotes the projection onto the first component.

In particular it follows from the above lemmas that an immersion is locally
injective, and that a submersion always has an open image. From the definitions
given before combined with the two lemmas above we now obtain:

Theorem 1.6 Let X be a smooth manifold, and let Y ⊂ X be a subset. Then
the following conditions are equivalent.

(a) Y is a smooth submanifold;

(b) Y is locally closed in X, and for every y ∈ Y there exists an open neigh-
bourhood U 3 y such that U ∩ Y is the image of an injective proper
immersion;

(c) for every y ∈ Y there exists an open neigbourhood X ⊃ U 3 y and a
submersion ϕ of U onto a smooth manifold Z such that Y ∩ U = ϕ−1z
for some z ∈ Z.

Here we recall that a continuous map between locally compact Hausdorff
topological spaces is proper if the preimage of every compact set is compact.

2 Vector fields

If X is a smooth manifold, we write TX for the disjoint union of the tangent
spaces TxX, x ∈ X. The set TX is called the tangent bundle of X.3 We define
the map π : TX → X by the requirement that π(TxX) ⊂ {x} for every x ∈ X.

3usually one reserves this name for TX equipped with a canonical structure of vector
bundle
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A map v : X → TX with v(x) ∈ TxX for every x ∈ X is called a vector field
on X. The set of vector fields on X is denoted by Γ(TX). By defining addition
and scalar multiplication of vector fields pointwise, we turn Γ(TX) into a linear
space.

Recall that if U ⊂ Rn is open, and x ∈ U, then we have a natural identi-
fication νx : TxU

'−→Rn. We identify TU with U × Rn via the map ν given by
ν(ξ) = (x, νx(ξ)), for x ∈ U, ξ ∈ TxU. Via this identification a vector field on U
may be viewed as a map v : U → U × Rn, with v(x) ∈ {x} × Rn for all x ∈ U.
Thus v(x) = (x, f(x)) for a uniquely defined function U → Rn. In this way we
may identify Γ(TU) with the linear space of maps U → Rn. We now agree to
call a vector field v ∈ Γ(U) of class Cp, if it is Cp as a map U → Rn.

If f : X → Y is a differentiable map then we define the map Tf : TX → TY
by Tf = Txf on TxX.

A smooth map f : X → Y is a diffeomorphism if and only if Tf : TX → TY
is bijective. Moreover, if this is the case then we have an induced bijective map
f∗ : Γ(TX) → Γ(TY ), defined by the formula:

[f∗v](f(x)) = Txfv(x).

After these preliminaries we can introduce the notion of a Cp vector field.
On open subsets of Rn this has been done already. If X is a smooth manifold,
then a vector field v ∈ Γ(TX) is said to be Cp if for every x ∈ X there exists
a chart (U, χ) containing x so that χ∗(v|U) is smooth. By what we said above
the latter assertion can also be rephrased as: the map

χ∗(v|U ) ◦χ : x 7→ Txχ [v(x)] (4)

is Cp. By the chain rule it follows that if v is a Cp vector field on X, then for
any smooth chart (U, χ) the map (4) is Cp. The set Γp(TX) of Cp vector fields
on X is obviously a linear subspace of Γ(TX).

From now on we assume that 1 ≤ p ≤ ∞, that X is a smooth manifold, and
that v ∈ Γp(X). Let x ∈ X. Then by an integral curve for v with initial point
x we mean a differentiable map c : I → X, with I an open interval containing
0, such that

c(0) = x
ċ(t) = v(c(t)) (t ∈ I).

Here we have written ċ(t) for d
dtc(t) = Ttc ·1. We now come to a nice reformula-

tion of the existence and uniqueness theorem for systems of first order ordinary
differential equations (use local coordinates to see this).

Theorem 2.1 Let v ∈ Γp(TX), x ∈ X. Then there exists an open interval
I 3 0 such that:

(a) there exists an integral curve c : I → X for v with initial point x;

(b) if d : J → X is a second integral curve for v with initial point x, then
d = c on I ∩ J.
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Lemma 2.2 Let c : I → X be an integral curve for v with initial point x. Fix
t1 ∈ Ix, let I1 = I − t1 be the translated interval, and let c1 : I1 → X be defined
by c1(t) = c(t+ t1). Then c1 is an integral curve for v with initial point x1.

Proof. By an easy application of the chain rule it follows that

ċ1(t) = ċ(t+ t1) = v(c(t+ t1)) = v(c1(t)).

Moreover, c1(0) = x1 by definition. 2

Corollary 2.3 Let c, d : I → X be integral curves for v with initial point x.
Then c = d.

Proof. Let J be the set of t ∈ I for which c(t) = d(t). Then J is a closed subset
of I by continuity of c and d.On the other hand, if t1 ∈ J, then c(t+t1) = d(t+t1)
for t in a neighbourhood of 0, in view of Lemma 2.2 and Theorem 2.1. This
implies that J is open in I as well. Hence J is an open and closed subset of I
containing 0, and we see that J = I. 2

From this corollary it follows that there exists a maximal open interval
Ix 3 0 for which there exists an integral curve c : Ix → X for v with initial
point x. Indeed Ix is the union of all the intervals which are domain for an
integral curve with initial point x.

The associated unique integral curve Ix → X is called the maximal integral
curve with initial point x.

Exercise 2.4 Let v be a C1 vector field on a compact manifold X, and let
x ∈ X. Show that Ix = R. Hint: assume that Ix is bounded from above, and
let s be its sup. Let α : Ix → X be the maximal integral curve. Show that
there exists a sequence sn ∈ Ix with sn → s so that α(sn) → x1. Now apply the
existence and uniqueness theorem to v and the starting point x1.

The following results will be of crucial importance in the theory of Lie
groups.

Corollary 2.5 Let v be a Cp vector field on a smooth manifold X. Let x ∈ X,
and let α : Ix → X be the associated maximal integral curve. Let t1 ∈ Ix, and
let α1 be the maximal integral curve with initial point x1 = α(t1). Then Ix1

equals the translated interval Ix − t1. Moreover, for t ∈ Ix we have:

α1(t− t1) = α(t).

Proof. It follows from Lemma 2.2 that c : Ix − t1 → X, t 7→ α(t1 + t) defines
an integral curve with initial point x1. Hence Ix − t1 ⊂ Ix1 . Moreover, c = α1

on Ix− t1. In particular it follows that −t1 ∈ Ix1 . Applying the same argument
to α1 and x = α1(−t1) we see that Ix1 + t1 ⊂ Ix. Hence Ix1 = Ix − t1. The
desired equality now follows from c = α1 on Ix − t1. 2

8



The following result, which is stated without proof, expresses that the in-
tegral curve depends smoothly on the initial value. Let Ω be the union of the
subsets Ix×{x} of R×X. For x ∈ X, let αx : Ix → X be the maximal integral
curve of v with initial point x. Then we define the flow of the vector field v to
be the map Φ : Ω → X given by Φ(t, x) = Φt(x) = αx(t).

Theorem 2.6 Let v be a Cp vectorfield on X. Then Ω is an open subset of
R×X, and the flow Φ : Ω → X is a Cp map.
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