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Abstract. We obtain the Plancherel decomposition for a reductive sym-
metric space in the sense of representation theory. Our starting point is the
Plancherel formula for spherical Schwartz functions, obtained in part I. The
formula for Schwartz functions involves Eisenstein integrals obtained by
aresidual calculus. In the present paper we identify these integrals as matrix
coefficients of the generalized principal series.
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1 Introduction

In this paper we establish the Plancherel decomposition for a reductive
symmetric space X = G/ H, in the sense of representation theory. Here G is
areal reductive group of Harish-Chandra’s class and H is an open subgroup
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of the group G? of fixed points for an involution o of G. This paper is
a continuation of the paper [12] in the sense that we derive the Plancherel
decomposition from its main result [12], Thm. 23.1, the Plancherel formula
for the space C(X: t) of T-spherical Schwartz functions on X. Here (z, V;)
is a finite dimensional unitary representation of K, a o-stable maximal
compact subgroup of G. At the end of the paper, we make a detailed
comparison of our results with those of P. Delorme [21].

The results of this paper were found and announced in the fall of 1995,
when both authors were visitors of the Mittag—Leffler Institute in Djursholm,
Sweden. At the same time Delorme announced a proof of the Plancherel
theorem. For more historical comments, we refer the reader to the introduc-
tion of [12].

Before giving a detailed outline of the results of this paper, we shall first
give some background and describe the main result of [12], which serves as
the basis for this paper. The space X carries an invariant measure dx; accord-
ingly, the regular representation L of G in L?(X) is unitary. The Plancherel
decomposition amounts to an explicit decomposition of L as a direct inte-
gral of irreducible unitary representations of G. These representations will
turn out to be discrete series representations of X and generalized principal
series representations of the form

Toen=Id5E @V D), (1.1)

with Q = My ANy aob-stable parabolic subgroup of G with the indicated
Langlands decomposition, £ a discrete series representation of the symmet-
ric space Xp:= My/My N H, and v a unitary character of Ap/Ap N H.
To keep the exposition simple, we assume here, and in the rest of the in-
troduction, that the number of open H-orbits on Q\G is one. In general,
there are finitely many open orbits, parametrized by a set ¢'W of represen-
tatives, and then £ should be taken from the discrete series of the spaces
Xo.wi=Mg/MgNvHY™!, forv e 2W.

Let 6 be the Cartan involution associated with K; it commutes with o. Let
a4 be a maximal abelian subspace of the intersection of the —1 eigenspaces
for 6 and o in g, the Lie algebra of G. We denote by &, the collection of
fo-stable parabolic subgroups of G containing Ay: = exp aq. For Q € &,
we put aggy: = ap Nay. In [12] we defined a spherical Fourier transform %
in terms of a so called normalized Eisenstein integral

E°(Q:v)=E(Q: ).
The Eisenstein integral is a D(X)-finite and 1 ® t-spherical function in
C*(X) ® Hom(A» ¢, V;), depending meromorphically on the parameter
V € g Here Az o = Az o(7) is defined as the space of Schwartz
functions Xy — V; that are 7p: = tlmMQ-spherical and behave finitely
under the algebra D(Xy) of invariant differential operators on Xy. The
space A, o is finite dimensional, and inherits the Hilbert structure from
the bigger space L*(Xg : tp). Without the simplifying assumption, #; g is
defined as a finite direct sum of similar function spaces for X ,,as v € Qw,
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Let Py be a fixed minimal element of #,. Then the Eisenstein integral
E°(Py: X) is essentially obtained as a (sum of) matrix coefficient(s) of
a K-finite vector with an H-fixed distribution vector of a o-minimal princi-
pal series representation of the form (1.1) with QO = Py, see [4]
and [7].

In contrast, for non-minimal Q € £, the Eisenstein integral E°(Q : v)
is obtained from E°(Py: A) by means of a residual calculus in the variable
A€ ch’ see [12], Eqn. (8.7) and Lemmas 13.18 and 13.12. In particular,
for such Q it is a priori not clear that the normalized Eisenstein integral
E°(Q: v) is a matrix coefficient of the generalized principal series repre-
sentation (1.1).

In terms of the Eisenstein integral, the spherical Fourier transform is
defined by the formula

Fofv) = /XEO(Q: —V:x)" f(x) dx € Az g,

for f e C(X:1)andv € ia*Qq; see [12], § 19. The star indicates that the
adjoint of an endomorphism in Hom(+4> o, V) is taken. The transform %
is a continuous linear map from C(X: 7) into the space 4 (ia*Qq) ® A o of
Euclidean Schwartz functions on ia*Q q with values in the finite dimensional
Hilbert space 4, o. The wave packet transform &, is defined as the adjoint
of the Fourier transform with respect to the natural L?-type inner products on
the spaces involved; see [12], § 20. It is a continuous linear map 5(ia*Qq) ®
A2 0 — C(X: 1), given by the formula

Fop) =f E°(Q: v: x) g(v) dv,
ia*Qq

for ¢ € 5(ia*Qq) ® s ¢ and x € X. Here dv is Lebesgue measure on ia*Qq,

suitably normalized.

Two parabolic subgroups P, Q € &, are called associated if their o-
split components apq and apq are conjugate under the Weyl group W of the
root system of aq in g. The notion of associatedness defines an equivalence
relation ~ on P,. Let P, be a choice of representatives in &, for the classes
in #;/ ~. Then the Plancherel formula for functions in C(X: 7) takes the
form

f= 2 IW:WildoFof.  (f €CX:),
Q€Ps
with W, the normalizer in W of agq. The operator [W: W14, o is a con-
tinuous projection operator onto a closed subspace Co(X: 1) of C(X: 7).
Moreover,
C(X: 1) =®pep, CoX: 1),

with orthogonal summands. It follows from the above that [W : Wa]l/ 25FQ
extends to a partial isometry from L*>(X: 1) to L(i u*Qq) ® A2 . Its adjoint

extends [W : W;]]/ g o to a partial isometry in the opposite direction.
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In the present paper, we build the Plancherel decomposition for
(L, L*(X)) from the above results for all z. For this it is crucial to re-
late the Eisenstein integral E°(Q: v) to the generalized principal series
representations g ¢ .

In [19], Delorme has defined a normalized Eisenstein integral ‘E°(Q : v)
essentially as a matrix coefficient of the generalized principal series. One
way to establish the wanted relationship of E°(Q : v) with the generalized
principal series would thus be to prove the following identity of meromor-
phic functions in the variable v € aj,.:

E°(Q:v) =‘E°(Q: —v). (1.2)

In view of the vanishing theorem of [11], the Eisenstein integral E°(Q : v)
can be uniquely characterized in terms of its annihilating ideal in D(X)
and its asymptotic behavior towards infinity on X; see [12], Def. 13.7 and
Prop. 13.6. The identity (1.2) would follow if not only the Eisenstein integral
on the left-hand side but also the Eisenstein integral on the right-hand side
satisfied these characterizing conditions. For the latter to be true one needs
that, for € A, o, the family v — ‘E°(Q: —v)y belongs to the space
é‘thp(X: 7) of [12], Prop. 13.6. For this in turn, the full set of exponents of
the family ‘E°(Q : —v)¥ in its asymptotic expansion along P, must be of
a certain form; see [12], Defs. 6.3 and 6.1. We have not been able to deduce
this type of information from Delorme’s work. Nevertheless, by following
a different strategy we have been able to establish (1.2), but only at the end
of the paper, in Corollary 11.21, after a relation of our Eisenstein integrals
with the principal series has been established.

More precisely, the mentioned characterization of the Eisenstein integral
E°(Q : v) is used to construct certain embeddings of (g, K)-modules

7o > (L, C*(X)). (1.3)

The existence of these embeddings, on the level of (g, K)-modules, is suffi-
cient to establish the Plancherel decomposition in the sense of representation
theory, Theorem 10.9. Further details will be given at a later stage in this
introduction.

At the end of the paper we invoke the automatic continuity theorem,
Theorem 11.1, due to W. Casselman and N.R. Wallach, see [18] and [29], to
show that the embedding (1.3) extends to a G-homomorphism. This implies
that our Eisenstein integrals are essentially generalized matrix coefficients of
K-finite and H-fixed distribution vectors of principal series representations.
From this information combined with results of [16], the identity (1.2) can
then be established.

After this motivation, we shall now give an outline of the paper, in
particular describing how the Eisenstein integrals give rise to the embed-
dings (1.3).

In Sect. 3 we show that the discrete part L3(X: 1) of L*(X: 7) is finite
dimensional. This fact can be derived from the description of the discrete
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series by T. Oshima and T. Matsuki in [26]. We show that it can be ob-
tained from [12] and weaker information on the discrete series, also due
to [26], namely the rank condition and the fact that the D(X)-characters of
L3(X) are real and regular. The mentioned result implies that the parameter
space 4, o(7) of the Eisenstein integral equals L3(Xy : o). Accordingly,
it may be decomposed in an orthogonal finite dimensional sum of isotypi-
cal subspaces 5 o(7)e, where & € X@’ s> the collection of discrete series
represetations for X.

In Sect. 4 we explain the connection of the Eisenstein integrals with
the principal series. Let K be the unitary dual of K, i.e., the collection
of equivalence classes of irreducible unitary representations of K. If V is
a locally convex space equipped with a continuous representation of K,
then by Vi we denote the subspace of K-finite vectors; for # C K a finite
subset we denote by V, the subspace of Vi consisting of vectors whose

K -types belong to . Let 9 C K be a finite subset. We define Vs to be
the space of continuous functions K — C that are left K-finite with types
contained in the set ©*. Moreover, we define 73 to be the restriction of the
right regular representation of K to V. Let §,: Vy — C be evaluation in e.
Then F +> 8,0 F is a natural isomorphism from L?(X : 7y) onto L*(X)y.
Its inverse, called sphericalization, is denoted by ¢y.

For § € Xj, 45> we denote by V(&) the space of continuous linear M-
equivariant maps #; — L?(X,). This space is a finite dimensional Hilbert
space. We denote by L?(K : £) the space of the induced representation
Indfm My (§lknmy). It is well known that the induced representation (1.1)
may be realized as a v-dependent representation in L%(K : £), which we
shall denote by 7 ¢, as well; this is the so-called compact picture of (1.1).

If 9 C K is a finite subset, there is a natural isometry from V() ®
L*(K : &)y into A2 0(Ty), denoted T' +— 7. We show in Sect. 4 that we

may use the Eisenstein integrals to defineamap Jg ¢, : VERL> (K : &g —
C*(X)k by the formula

Jo.en(T)(x) = 8.[E5(Q: v: x)yr]. (1.4)

Here © C K is any finite subset such that 7 € V(§) @ C®(K : &)y and
E3 denotes the Eisenstein integral with 7 = 73. The map Jg ¢, is a priori
well-defined for v in the complement of the union of a certain set #(Q, &)
of hyperplanes in aj, .. This union is disjoint from iaj,.

The main result of the section is Theorem 4.6. It asserts that #(Q, &)
is locally finite and that, for v in the complement of U#(Q, &), the map
Jo £y 1s (g, K)-equivariant for the infinitesimal representations associated
with 1 ® mp ¢, and L. The proof of this result is given in the next two
sections. In the first of these we prepare for the proof by showing that
oy 18 finitely generated, with local uniformity in the parameter v, see
Proposition 5.1. This result is needed for the proof of the local finiteness of

H(Q., §).
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In Sect. 6 the (g, K)-equivariance of the map Jy ¢, is established. The
K-equivariance readily follows from the definitions. For the g-equivariance
it is necessary to compute derivatives of the Eisenstein integral of the form
LxE2(Q: v){, for ¢ € A2 o(7) and X € g. The computatign is achieved
by introducing a meromorphic family of spherical functions F: aj,. X X —
gr ® V; by the formula

Fo(0)(2) = LA[EX(Q: v: Y] ),

for v € a*QqC, x € X and Z € g.. The function fu is T-spherical, with
T:= Ady ® r and Adg: = Ad|g. It has the same annihilating ideal in D(X)
as the Eisenstein integral E7(Q : v)y. Moreover, its asymptotic behavior
on X can be expressed in terms of that of E7(Q: v). By the msntioned
characterization of Eisenstein integrals this enables us to show that F, equals
an Eisenstein integral of the form E2(Q : v)dg(v)¥, with dg (v) an explicitly
given differential operator A (1) — A2 o(7), see Theorem 6.12. The
g-equivariance of Jg ¢ , is then obtained by computing the action of d (v) on
Yr,for T € V(§) @ C®¥(K : £)y; see Lemma 6.13 and Proposition 6.15. At
the end of the section we complete the proof of Theorem 4.6 by establishing
the local finiteness of #(Q, &), combining the results of Sects. 5 and 6; see
Proposition 6.16.

In Sect. 7 we define a Fourier transform f +— f (Q:&:v)fromC(X)k
to V() ® L*(K : &)k by transposition of the map Jg ¢ ;. It is given by the
formula

(f(Q:&:0)|T) = f f)Tge_o(T)(x) dx
X

and intertwines the (g, K)-module of L with thatof 1 ® wg ¢ .. In view of

(1.4), the transform f > f is related to the spherical Fourier transform by
the formula

(f(Q:&:0)IT) = (Folsy HW) | ¥r), (1.5)

for f € C°(X)y.

The established relation (1.5) combined with the spherical Plancherel
formula implies that the Fourier transform f +— f (Q: &:v) defines an
isometry from L?(X) into the direct integral

T= 0 YW Wg]/ 1@ mye_y dv, (1.6)
ia*Qq

0ePs geXyy 4

realized in a Hilbert space £2. The continuous parts of this direct integral
are studied in Sect. 8. In Sect. 9 it is first shown, in Theorem 9.5, that the
Fourier transform f +— f extends to an isometry § from L2(X) into £2.
Moreover, its restriction to C2°(X)g is a (g, K)-module map into £, By
an argument involving continuity and density, it is then shown that § is
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G-equivariant, see Theorem 9.6. At this stage we have established that §
maps the regular representation L isometrically into a direct integral decom-
position. For this to give the Plancherel decomposition, we need to show that
the image of § is a direct integral with representations that are irreducible
and mutually inequivalent outside a set of Plancherel measure zero. This is
done in Lemma 10.5 and Proposition 10.8. In the process we use results of
F. Bruhat and Harish-Chandra on irreducibility and equivalence of unitarily
parabolically induced representations, see Theorem 10.7. The Plancherel
theorem is formulated in Theorem 10.9. Finally, in Theorem 10.11 a precise
description of the image of § is given.

At this point it is still not clear that our description of the Plancherel
decomposition uses the same parametrizations as the one in Delorme’s
paper [21]. It is the object of the last section to show that this is indeed
the case. As said, a key idea is to use the automatic continuity theorem,
Theorem 11.1, due to Casselman and Wallach, see [18] and [29]. It implies
that the map Jy ¢, has a continuous linear extension, hence can be real-
ized by taking the matrix coefficient with an H-fixed distribution vector of
Indg (¢ ® v® 1). By means of the description of such vectors in [16], com-
bined with an asymptotic analysis, it is shown that our Eisenstein integral
is related to Delorme’s by the identity (1.2), see Corollary 11.21.

Finally, the constants [W: W;] occurring in our formula (1.6) differ from
those in the similar formula of Delorme. This is due to different choices of
normalizations of measures, as is explained in the final part of the paper.

2 Notation and preliminaries

Throughout this paper, we use all notation and preliminaries from [12],
Sect. 2. In particular, G is a group of Harish-Chandra’s class, o an involution
of G and H an open subgroup of G, the group of fixed points for o. The
associated reductive symmetric space is denoted by

X = G/H.

All occurring measures will be normalized according to the conventions
described in [12], end of Sect. 5.

Apart from the references just given, we shall give precise references to
[12] for additional notation, definitions and results.

3 A property of the discrete series

In this section we discuss an important result on the discrete part of
L?(X), which is a consequence of the classification of the discrete series by
T. Oshima and T. Matsuki in [26]. In our approach to the Plancherel formula
via the residue calculus, we obtain it as a consequence of the rank condition
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and the regularity of the infinitesimal character, also due to [26], see [12],
Rem. 16.2.

In the rest of this section we assume that (z, V) is a finite dimensional
unitary representation of K. A function f:X — V. is called t-spherical
if flkx) = t(k)f(x), for all x € X and k € K. The Hilbert space of
square integrable T-spherical functions is denoted by L?(X: 7). Its discrete
part, denoted LEZ(X: 7), is defined as in [12], § 12. The Fréchet space of
t-spherical Schwartz functions, denoted C(X: 1), is defined as in [12],
Eqn. (12.1). The subspace of D(X)-finite functions in C(X: 1) is denoted
by A>(X: 7).

Proposition 3.1 Let (t, V) be a finite dimensional unitary representation
of K. Then

LA(X: 1) = Ay(X: 7). (3.1
Moreover, each of the spaces above is finite dimensional.

Proof: By the reasoning at the end of the proof of Lemma 12.6 in [12] it
follows that the space on the right-hand side of (3.1) is contained in the
space on the left-hand side. If the center of G is not compact modulo H,
then it follows from [26], see [12], Thm. 16.1, that X has no discrete series.
Hence, L3(X) = 0 and we obtain (3.1).

On the other hand, if G has a compact center modulo H the result is part
of [12], Lemma 12.6. |

If (&, #¢) is an irreducible unitary representation of G, let Homg (#,
L*(X)) denote the space of G-equivariant continuous linear maps from #;
into L2(X). This space is non-trivial if and only if (the class of) & belongs to
X/, the collection of equivalence classes of discrete series representations
of X. If £ € X)), then the mentioned space is finite dimensional, by the
finite multiplicity of the discrete series, see [1], Thm. 3.1.

For any irreducible unitary representation &, the canonical map from
the tensor product Homg (#, L*(X)) ® H; to L*(X) is an embedding,
which is G-equivariant for the representations 1 ® & and L, respectively.
We denote its image by LZ(X)g and equip the space Homg (He, L*(X))
with the unique inner product that turns the mentioned embedding into an
isometric G-equivariant isomorphism

mg: Homg (He, L2 (X)) ® He —> L2(X)e. (3.2)

Obviously the space on the right-hand side of (3.2) depends on & through its
class [£], and will therefore also be indicated with index [£] in place of &.
With the notation just introduced, it follows that

L3(X) = Buexy LX), (3.3)

with orthogonal summands. Here and elsewhere, the hat over the summation
symbol indicates that the closure of the algebraic direct sum is taken.
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If w is an equivalence class of an irreducible unitary representation of G,
we write L2(X: 0),:= L*(X: 1) N [L*(X), ® V,]. It is readily seen that
this space is non-trivial if and only if w belongs to X/, and has a K-type in
common with the contragredient of t. The collection of w with this property
is denoted by X/ (7).

Lemma 3.2 The collection X)) (7) is finite. Moreover,
Ly(X: 1) = Buex)(n L*X: Do (3.4)

where the direct sum is orthogonal and all the summands are finite dimen-
sional.

Proof: That the direct sum decomposition is orthogonal and has closure
Lfl(X: 7) follows from the similar properties of (3.3). The space on the
left-hand side of (3.4) is finite dimensional, by Proposition 3.1. Since all
summands on the right-hand side are non-trivial, the collection parametriz-
ing these summands is finite. O

Remark 3.3 1t follows from Proposition 3.1 that the spaces L*(X: 1), for
w € X/, are contained in #A,(X: 7); we therefore also denote them by
A»(X: 7). Note that L>(X: 1),, = 0 for w an irreducible unitary represen-
tation of G that does not belong to X/.. Accordingly, we put #4,(X: 1), = 0
for such w. In view of what has been said, the decomposition (3.4) may be
rewritten as

A2(X: 1) = Buexim A2(X: Dop. (3.5)

Let C(K) g denote the space of right K -finite continuous functions on K.
If ¥ is a finite subset of K, the unitary dual of K, then by C(K)y we denote
the subspace of C(K) g consisting of functions with right K-types contained
in the set ©. If § € K, then 8" denotes the contragredient representation.
Accordingly, we put 9V: = {8 | § € ¥}. We define

Vy:= C(K)yv (3.6)

and equip this space with the restriction of the right regular representation
of K; this restriction is denoted by 7. We endow V with the L?(K)-inner
product defined by means of normalized Haar measure. By §, we denote
the map Vy — C, ¢ — ¢(e).

Lemma 3.4 Let E be a complete locally convex space equipped with a con-
tinuous representation of K. Then the map I ® d, restricts to a topological
linear isomorphism from (EQ®V )X onto Ey. If E is equipped with a contin-
uous pre-Hilbert structure for which K acts unitarily, then the isomorphism
is an isometry. In particular, this yields natural isometries

L*(X: 19) = L*(X)y, CX(X: 1) = CX(X)y,

where the last two spaces are equipped with the inner products inherited
from the first two spaces.
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Proof: This is well known and easy to prove. O

The inverse of the isomorphism I ® §, will be denoted by ¢ = ¢y; see
[7], text before Lemma 5, for similar notation. Given a finite subset # C K
we shall write X/ (¢) for X/ (1), the set of discrete series representations
that have a K-type contained in . The following result is now an immediate
consequence of Lemma 3.2.

Corollary 3.5 Let 9 C K bea finite set of K-types. Then X/ (9) is a finite
set.

We end this section with two simple relations between ¢y and ¢y,
for finite subsets o, ' C K with ¥ C ¥'. Let E be a complete locally
convex space equipped with a continuous representation of K. We denote
by iy »: Ey — Ey the natural inclusion map and by Py y: Ey — Ej the
K-equivariant projection map. Likewise, the inclusion map Vy — V and
the K-equivariant projection Vy — V, (relative to 7y, 7y) are denoted
by iy » and Py g, respectively. By K-equivariance, the maps I ® iy » and
I ® Py y induce maps

IQiy 9: (EQVy)X — (EQVy)X, 1Py y: (EQVy)* — (EQVy)X.
Lemma 3.6 Let notation be as above. Then
Goro(I @iy ) =iy oGSy, SooI @ Pyy) = Py yogy.

Proof: The first identity is immediate from the definitions. The second
identity follows from the first by using that the maps Py y: Ey — E» and
Py 52 Vy — Vy, may both be characterized by the identities Py g oigr 9 = 1
and Pﬂ’ﬂ’ o iﬂ”ﬂ’\ﬁ =0. O

4 Eisenstein integrals and induced representations

Let Q € #,. We denote by X, . the collection of equivalence classes of
unitary irreducible representations § € M such that £ is a discrete series
representation of X ,, for some v € Ng (ag).

In this section we describe the relation of the normalized Eisenstein
integral E°(Q : v) with the induced representations Ind(Q; ((®v®1), where
VEap,and§ € X© «.as- In the rest of this section we assume § € X{, ,
to be fixed.

Let €W C Ng (aq) be a choice of representatives for Wo\W/Wxny,
see [12], text after Eqn. (2.2). For v € 2W, we equip X, with the left
M p-invariant measure dx ,, specified at the end of [12], Sect. 5. Moreover,

we define V(Q, &, v) = V(£ v) by

V(& v): = Homy, (#:, L*(X0.,)). 4.1)
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As mentioned in Sect. 3, this space is finite dimensional. In accordance with
the mentioned section, we equip it with the unique inner product that turns
the natural map

mey: V(EV)®He —> L2Xgo)e, 4.2)

into an isometric M p-equivariant isomorphism. We define the formal direct
sums

VE:=@ueow VED),  Lys=0ueow L’KXon)e  (43)

and equip them with the direct sum inner products. The first of these direct

sums will also be denoted by V(Q, &). The second of these direct sums is
a unitary Mp-module. The direct sum of the maps m; , as v ranges over
2W, is an isometric isomorphism

me: VE @ He — L, (4.4)
that intertwines the natural M -representations.

Remark 4.1 If Q is minimal, then X, , ,; coincides with the set Mps, de-
fined in [3], p. 368. Moreover, W = ‘W is a choice of representatives
for W/Wknn in Ng(ag). If v € W, and € J(’é”m')”'rl, then the map
JniHe — L*>(M/M N vHv™"), defined by Jn()(m) = (v |&(m)n)), is an
M-equivariant map. Moreover, n + j, defines an anti-linear map from
V(&, v) onto Homy (Hs, L*(M/M N vHv™")). This gives an identifica-
tion of V(£, v) with V (£, v). We recall from [3], p. 378, that we equipped
V(E, v) = HMVH! With the restriction of the inner product from FHe.
By the Schur orthogonality relations this implies that the inner product on
V(E, v) coincides with dim(£) times the inner product on V (&, v). Let V(§)
be defined as in [3], Eqn. (5.1). Then Wg) ~ V(&) and the inner product on
@ coincides with dim(£) times the inner product on V (£).

Forv € aj, ac let L?>(Q: & : v) denote the space of measurable functions
G — H¢, transforming according to the rule

@(manx) = a"*"2 &(m) (x), (x € G, (m,a,n) € Mg x Ag x Np),

and satisfying || K ||(p(k)||§ dk < 00. As usual we identify measurable func-

tions that are equal almost everywhere. The space L>(Q : £ : v) is a Hilbert
space for the inner product given by

{01y =/K(€0(k)|1/f(k)>s dk. (4.5)

The restriction of the right regular representation of G to this space is
denoted by Indg (6 ® v® 1), or more briefly by ¢ ¢, = g .
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Let C®(Q: &: v) denote the subspace of L?(Q: &: v) consisting of
functions that are smooth G — F¢:°. This subspace is G-invariant; the as-
sociated G-representation in it is continuous for the usual Fréchet topology.

Remark 4.2 1t follows from [13], § IIL.7, that the Fréchet G-module
C*®(Q: &:v) equals the G-module of smooth vectors for the represen-
tation 7 ¢, equipped with its natural Fréchet topology.

It will be convenient to work with the compact picture of the induced
representation 7z ,. Let L*(K : &) denote the space of square integrable
functions ¢: K — #{; that transform according to the rule

p(mk) = E(m)p(k), (ke K,m e Kyp). (4.6)

Multiplication induces a diffeomorphism Q x g, K >~ G. Hence, restriction

to K induces an isometry from L?(Q : £ : v) onto L>(K : £). This isometry
restricts to a topological linear isomorphism from C*°(Q: &: v) onto the
subspace C®°(K : &) of functions in L?(K : £) that are smooth K — F°,

where the latter space is equipped with the usual Fréchet topology. Via the
isometric restriction map we transfer 7, to a G-representation in L>(K : &),
also denoted by ¢ ¢, = 7¢,.

Let (7, V;) be a finite dimensional unitary representation of K. We define

LX(K:&:0:=[LAK: 9@ V,]". (4.7)

By finite dimensionality of 7, the space in (4.7) is finite dimensional and
contained in C(K, #¢) ® V.

Let ev, denote the evaluation map C(K, #:) — Hz, ¢ — ¢(e), and let
ev, ® I denote the induced map L>(K: £: 1) — He® Vr.

Lemma 4.3

(a) The map ev, ® I defines an isometric isomorphism from L*(K : & : 1)
onto the space (H: @ v,)Ke.

(b) The space L*(K:&:7) equals its subspace C®(K:&:1):=
[C*(K: &) Q V. ]¥.

Proof: Observe that L2(K : &) is the representation space for Indllgg (Elkg)-

Hence (a) follows by Frobenius reciprocity. It is readily checked that
ev, ® [ maps C*(K: &: 1) onto (Jfgo ® V)Xo, The latter space equals

(Hek, ® Vo)*e = (H: ® V;) e; hence (b) follows. ]

Given T € V(£) ® L>(K : £: T) we may now define the element /7 €
L. ® V. by

Yr =[me @ Io[I ®ev, ® II(T).
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We agree to denote the map ev, ® I: L*(K: &: 1) — (H: ® V)X also

by ¢ > ¢(e). With this notation, if T = n ® ¢, with n € V(£) and
¢ e L*(K: £: 1), then

Vo = [y @ I1(g(e)), (ve2w). (4.8)

We recall from Remark 3.3, applied to the space Xy , in place of X, for
v e 2w, that [LZ(XQ,U)g ® V.]Ke ~ A2(Xp.v: To)e, naturally and iso-
metrically. The space

A2,0(De: = Byecow A2(Xg.v: To)s 4.9

is a subspace of the space 4, ¢ (1), defined in [12], Eqn. (13.1), as the similar
direct sum without the indices & on the summands. It follows from the above
discussion combined with (4.3) that summation over ¢ ‘W naturally induces
an isometric isomorphism

(Loe® V)2 2 Ay o (D) (4.10)

via which we shall identify.

Lemma 4.4 The map T +— Yr is an isometry from V(£) @ L>(K: &: 1)
onto AZ,Q(T)&

Proof: 1t follows from Lemma 4.3 that
IQev.®1: VEOQLYK:&:1) — VEQ[H: ® V. I" (4.11)

is an isometric isomorphism. The map m¢ ® I is an isometry from V() ®
He ® V; onto L2 £® Vz, which intertwines the K p-actions 1 ® &| Ko ®To
and L|g, ® Tp. Therefore it induces an isometry between the subspaces of
K p-invariants, which by (4.10) is identified with an isometry

me @I V() ® [H: ® V1K > Ay (D). (4.12)

Since T +— 7 is the composition of (4.11) with (4.12), the result follows.
O

It follows from Lemma 3.4 that
L*(K: &:1p) ~ L*(K: &),

with an isometric isomorphism. The latter space is equal to C*°(K : &)y, in
view of Lemmas 4.3 (b) and 3.4. Accordingly, the map T + 7, defined
for T = 19, may naturally be viewed as an isometric isomorphism

T yr, V(Q.H@C®(K: 8y —> Aro(ty)e. (4.13)
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Moreover, it is given by the following formula, for T = n®¢ € V(Q, &) ®
C®(K: §)y;
pr,¥r = ny(e(e)), (ve?w).

We now come to the connection with the normalized Eisenstein in-
tegral ES(Q:v) = E°(Q: v), defined as in [12], Def. 13.7. The Eisen-
stein integral is meromorphic in the variable v € ap,., as a function
with values in C*(X) ® Hom(A; o, Vo). If ¥ € A, o, we agree to write
E°(Q:Y:v: - )=E°(Q:v: ). Then E°(Q: ¥:v) € C*(X: 1), for
generic v € o

We need a ‘functorial’ property of the normalized Eisenstein integral
that we shall now describe. Let (7/, V,/) be a second finite dimensional
unitary representation of K, and let S: V; — V.- be a K-equivariant linear
map. Then via action on the last tensor component, S naturally induces
linear maps C*¥(K : §: 1) — C®(K: &: 1), A 0(1)e = A2 0(T)e and
C*¥X: 1) > C®(X: /) that we all denote by I ® S.

Lemma 4.5 Let S: V., — V. be a K-equivariant map as above.

(@) Let T € V(§) @ C¥(K : £: 7). Then Yryeigsir = LI ® SI¥r.
(b) Let yr € Az (7). Then

[ QSIE(Q:Y:v)=EN(Q:[I®SY:v),
as a meromorphic C*(X: 1)-valued identity in the variable v € a,.

Proof: (a) is a straightforward consequence of the definitions. Assertion
(b) follows from the characterization of the Eisenstein integral in [12],
Def. 13.7. More precisely, it follows from the mentioned definition and [12],
Prop. 13.6 (a), that the family f = E°(Q: i) belongs to é‘thp(X: 7). See
[12], Def. 6.6, for the definition of the latter space. Moreover, still by [12],
Prop. 13.6, for v in a non-empty open subset €2 of aj,,., each v € 2W and
all X € agqandm € Xg ,, 4,

Gv—po(Q, V| fo, X, m) = Y, (m). (4.14)

It readily follows from the definitions that g: (v, x) — S(f(v, x)) belongs
to €4P(X: 7'); moreover, (4.14) implies that

Gv—po(Q, v | g, X, m) = S(Y,(m)) = [pr,[1 & STYr](m),

forallv e Q,eachv € ¢W,and all X € agq and m € Xg , 4. In view of
[12], Def. 13.7 and Prop. 13.6 (a), this implies that g = E°(Q: [I ® Sy).
O

If & C K is a finite subset and Y € Ay o(Ty), we denote the associated
normalized Eisenstein integral £7 (Q: ¥ : v) also by EG(Q: ¢ : v). This
Eisenstein integral is a smooth 7y-spherical function, depending meromor-
phically on the parameter v € ap, .
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Lemma 4.5 implies an obvious relation between the Eisenstein integrals
E5(Q: v v) for different subsets 0. If & C ¢’ are finite subsets of K, then
Vy C V. The associated inclusion map is denoted by iy y; it intertwines
Ty with 7y. From Lemmas 3.6 and 4.5 (a) it follows that

Vi 1T = YURISiy 4I0c)IT
=U®ipolyr. (T €VE®CUK:£),). (4.15)
Moreover, from Lemma 4.5 (b) it follows that

ES(Q: U ®iyyly:v) = QiyslEy(Q:¥:v), (Y€ a‘\az,Q((TX)l)é)

We have similar formulas for the K-equivariant projection operator Py :
Vs — V. From Lemmas 3.6 and 4.5 it follows that

Vigier, i1 = [ & Py o 1Yr, (TeVE®COK:§y), (417)

and

ES(Q: I ®Pyply:v)=[QPyylEy(Q:y:v), (Y€ e/‘vz,Q((Zﬁ/l)g)-

We recall from [12], § 4, thata X, (Q)-hyperplane in ay, . is a hyperplane
of the form (at)c + &, with o € X,(Q) and £ € a*QqC. The hyperplane is
said to be real if § may be chosen from ap, . If ¥ C K is a finite subset,
then by [12], Prop. 13.14, there exists a locally finite collection # of real
%, (Q)-hyperplanes in ap,. such that for each T € V() Q@ C®(K : &)y the
function v = E3(Q: ¥r: v) has a singular locus contained in UF. We
denote by #(Q, &, ¥) the minimal collection with this property. It follows
from the definition just given that ¥ C ¢’ = #(Q,&,9) C H(Q, &, V).

Let #(Q, &) denote the union of the collections #(Q, &, ), as ¥ ranges
over the collection of finite subsets of K. Then

ia*Qqﬂ UFH(Q, &) =0, (4.19)

by the regularity theorem for the normalized Eisenstein integral, see [12],
Thm. 18.8.
Forv e a*Qq(C \ UH(Q, &), we define the linear map

Jogw=Jev: VE ®CP(K:Ex - C¥X)k
by
Jeo(T)(x) = Ex(Q: Yrr:v:ix)(e), (x € X), 4.20)

for  C K a finite subset and T € V(&) ® C®(K : &)y. This definition is
unambiguous in view of (4.15) and (4.16).
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Theorem 4.6 Let Q € P, andé& € X@’*’ 45~ The collection # (Q, &) consists
of real X,(Q)-hyperplanes and is locally finite. Its union is disjoint from
iap, Let v € apy. be in the complement of this union. Then Jo g, is
a (g, K)-intertwining map from V(£) ® C*(K : &)k, equipped with the
induced representation 1 @ mwg ¢ ., to C*°(X) g, equipped with the (g, K)-
module structure induced by the left regular representation of G in C*°(X).

The proof of this theorem will be given in the next two sections. In
Sect. 5 we investigate uniformity of generators for ¢ ¢, relative to the
parameter v. In Sect. 6 we shall investigate the effect of left differentiations
on left spherical functions.

5 Generators of induced representations

In this section we show that the parabolically induced representations, in-
troduced in Sect. 4, are generated by finitely many K-finite vectors, with
local uniformity in the continuous induction parameter.

Proposition 5.1 Let Q € $; and let & be a unitary representation of My of
finite length. Assume that Q C ap,. is a bounded subset. Then there exists

a finite subset ¥ C K such that, forallv e Q,
70.en(U(@)CT(K 1 §)y = CT(K: §)k. (6.1

Remark 5.2 In particular, the result holds for o = 6; then Q is an arbitrary
parabolic subgroup of G and a4 equals its usual Langlands split component
agp.
Proof: 1t suffices to prove the result for & irreducible. We shall do this by
a method given for £ tempered in [28], § 5.5.5. Let

w:={v e a*QqC | (Rev—pg,a)>0, YaecA (D)}

Then for v € w we may define the standard intertwining operator A(v) =

A(Q: Q:&:v) from C®(Q: &:v)to C®°(Q: &:v), by
AW) f) =/_ fiix) di,  (x<G).
No

where dii denotes a choice of Haar measure on N o - The integral is absolutely
convergent; this follows by an argument that involves estimates completely
analogous to the ones given for Q minimal in [4], proof of Lemma 15.6.
It also follows from these estimates that, for f € C*(K : &), the function
A() f € C*(K : &) depends holomorphically on v € w.

Lemma 5.3 Let f,g e C*°(K:&),vewand X € aJQFq. Then

lim e (7 o (mexptX) f1g) = (EMIAW) f1(e) [ g(e))s. (5.2)

1—00
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Proof: See [29], Lemma 10.5.1. O

Completion of the proof of Prop. 5.1: From (5.2) it can be deduced, by an
argument due to Langlands [24], Lemma 3.13, see also Milicic [25], Proof
of Thm. 1, thatif f € C®°(Q: &: v)x and A(v) f # 0, then f is a cyclic
vector for g, in the sense that the (g, K)-module generated by f equals
C*®(Q: &:v)k. See also [29], Cor. 10.5.2. We can now prove the result
in the case that the closure of €2 is contained in w. Indeed, assume this
to be the case and let vy € 2. Since f — A(vp) f(e) can be expressed as
a convolution operator with non-trivial kernel, there exists a finite set # C K
and a function f € C*°(K : &)y such that A(vy) f(e) # 0; by continuity in
the parameter v there exists an open neighborhood w of vy in w such that
A(v) f(e) # Ofor all v € wy. From what we said above, it follows that (5.1)
holds for all v € wy. By compactness of the set Q, the result now readily
follows in case Q is contained in w.

We shall now use tensoring with a finite dimensional representation to
extend the result to an arbitrary bounded subset 2 C ap..

Let P € 27" be such that P C Q. Let Ap(P):= {a € A(P) |
®|ay, = 0} and put A(Q) = A(P) \ Ag(P). We fix n € N such that
(Rev—pg, a)/{a, a) > —8nforallv € Qanda € A(Q). We fix p € U
with the property that (1, «)/(o, «) equals 8n for all « € A(Q) and zero
for all @ € Ap(P). Then p + Q C w. Hence there exists a finite subset
® C K such that e v (U(@)CP(K : &)y = CP(K : &g, forallv e Q.

It follows from the condition on w that (i, «)/2{(x, o) € 4Z for all
a € A(P). Since X is a possibly non-reduced root system, this implies
that (u, a)/2(a, a) € 2Z for all @« € X. According to [4], Cor. 5.7 and
Prop. 5.5, there exists a class one finite dimensional irreducible G-module
(F, ) of A(P)-highest ag-weight p; the highest weight space F), is one
dimensional, and M, = M p, acts trivially on it. Since My, centralizes apq,
it normalizes F),. By compactness it follows that (K ), acts trivially on F),.
Since u vanishes on *apq = a4 Nmy, it follows that *A o4 also acts trivially
on F),. Finally, since M, is generated by M, (Kp). and *A g, it follows
that My, acts by the identity on F),.

Let e, € F, be a non-trivial highest weight vector. Then the map
m: F* — C*°(G) defined by m(v)(x) = v(n(x*])eﬂ) is readily seen to be
an equivariant map from F* into C*°(Q: 1: —u). Themap M,: C*(Q: &:
V+ ) ® F* — C®(Q: &:v) given by M,(¢ ® v) = m(v)p is G-equi-
variant, for every v € a*QqC.

Let vx € F* be a non-trivial K-fixed vector. Then, since G = QK,
the function m(vg) is nowhere vanishing. From this we see that M, is
surjective, for every v € ap, .. It follows that the U(g)-module generated by

Vyi= M,(C®(Q: &E: v+ )y @ F*)equals C*(Q: £: v)g, forallv e Q.
Let 9 C K be the collection of all K -types occurring in § ® F* for some
8 € . Then ¢ is a finite set and V,, C C®(Q: &: v)y, forall v € a*QqC.
Hence, (5.1) follows for all v € . m|
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6 Differentiation of spherical functions

In this section we assume (z, V) to be a finite dimensional unitary repre-
sentation of K. We shall investigate the action of Ly, for Z € g, on the
Eisenstein integral £°(Q : v). Here L denotes the infinitesimal left regular
representation. As a preparation, we shall first investigate the action of L,
on functions from the space C*°(X, : 1), defined in [12], § 6. Secondly,

we shall investigate the action of L on families from Ethp(X: 7), defined
in [12], Def. 6.6. N

Given a function F € C*(X,: 1), we define the function F: X, —
g2 ® V; = Hom(ge, V;) by

F(x)(2) = LzF(x),  (xeXy, Z€go).
One readily checks that
F(kx)(Z) = t(k) F(x)(Ad(k~") Z), (xeX,, ke K, Zego).

Hence, Fisa spherical function of its own right. In fact, let Ady denote
the restriction to K of the coadjoint representation of G in g7 and put
T:= Ady ® t. Then _

FeC*¥X,y:7).

Our first objective is to show that if F has a certain converging expansion
towards infinity along (Q, v), for Q € £, and v € Ng(aq), then F has
a similar expansion, which can be computed in terms of that of F. As
a preparation, we study sets consisting of points of the form mav, where
v € Ng(ag), m € Mg, and a — 00 in AJQFq. They describe regions of
convergence for the expansions involved, in the spirit of [11], § 3. We will
also describe decompositions of elements of g along such sets, in a fashion
similar to [11], § 4. These will be needed to compute the expansion of F.

Let Q € #,. We define the function Ry ,: M1p — 10,00 as in [11],
Sect. 3. Recall that Ry , is left K- and right Mo N vHv ™ '-invariant; thus,
it may be viewed as a function on X ,. If Q = G, then Ry , equals the
constant function 1 and if Q # G, then according to [11], Lemma 3.2, it is
given by

Ry ,(au) = max a %,

aeX(Q)

fora € Aq and u € Nk, (ag). The inclusion map My — M, induces an
embedding via which we may identify X, , with a sub My-manifold of
X0,y From [11], Lemma 3.2, we recall that Ry, > 1 on Xy ,.

Lemma 6.1 Let v € Nk(aq) and put Q' = v 'Qu. Then
RQ’v(m) = RQ/,](vflmv), (m € M]Q).

Proof: This follows immediately from the characterization of Ry , given
above. O
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In accordance with [11], Eqn. (3.7), we define, for v € Ng(aq) and
R >0,
Mg [R]:={m € Mg | Rg.,(m) < R},

and My ,[R]: = Mo, N Mo ,[R]. Note that M, 1[R] and My, [ R] equal
the sets M;o[R] and My,[R], defined in [11], text preceding Lemma 4.7,
respectively. Finally, for R > 0 we define

Ay (R):= laeAggla™® <R forall ae A (0} 6.1)

Lemma 6.2 Let v € Nk(aq) and put Q' = v 'Qu. Let R > 0.

(@) Mg, [R]l =vM o [RIv', Mgy, [R] =vMg,[Rlv".
(b) AJQFq(R) = UAg,q(R)U_l.

Proof: Assertion (a) follows readily from combining Lemma 6.1 with the
definitions of the sets involved. Assertion (b) is clear from (6.1). O

We define the open dense subset MiQ of M as in [11], Eqn. (4.3).
Write g*: = ker(—/ + 00) and put gX:= g, N g*, for @ € X. Write
Hip:= Mo N H. Then by [11], Cor. 4.2,

M, =Ko [M},N Al Hig,
M, NAg={aeAy|a® #1foralla € £(Q) with g} # 0}. (6.2)

In particular, M|, is a left K- and right H;p-invariant open dense subset
of Mip. If v € Ng(aq), then by MiQ’U we denote the analogue of the set
M;, for the pair (G, vHv ™).

Lemma 6.3 Let v € Ng(aq) and put Q' = v 'Qu. Then Miy,i=
uM{, vl

Proof: This readily follows from the definition. O

Lemma 6.4 Let v € N (ag).
(a) M]Q,U[]] C MiQ,U'
(b) Let R{, R, > 0. Then MQU’U[Rl]AJQFq(Rz) C M]Q’U[Rle].

Proof: For v = 1, the results are given in [11], Lemma 4.7. Let now v
be arbitrary and put Q' = v~!'Qu. Using Lemma 6.2 (a) with R = 1 and
Lemma 6.3 we obtain (a) from the similar statement with Q’, 1 in place of
0, v. Likewise, assertion (b) follows by application of Lemma 6.2. O

We now come to the investigation of decompositions in g, needed for
the study of the asymptotic behavior of F. Write £0):= €N (ng + nyp).
Then I + 0: X +— X + 60X is a linear isomorphism from iy onto €(0). For
o € ¥ we put E;‘E: ={+0) (gfa). Then £(0) is the direct sum of the spaces
Eof, for o € (Q).
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Lemma 6.5 Letv € Ng(aq). If m € MiQ’v, then ng C £0) @ Ad(mv)b.

Proof: For v = 1 this follows from [11], Lemma 4.3 (b), with Q in place
of Q. If v is arbitrary, put Q' = v~'Qu. Then for m ¢ MiQ,v we have

v imv e M, hence Ad(v"Hng = ny C L) & Ad(v'mv)h, and the
result follows by application of Ad(v). O

By the above lemma, for m € M;
®(m) = ®g,,(m) € Hom(ng, &) by

X € ®(m)X 4+ Ad(mv)h, (X € ng). (6.3)

we may define a linear map

Qv

It is readily seen that ® , is an analytic Hom(n, £(0))-valued function on

MiQ’v.

Lemma 6.6 Ifm € M, , k€ Ky andh € Mg N vHv™", then
@ (kmh) = Ad(k) o ®(m) - Ad(k) .

Proof: Since M, normalizes ny and Ky normalizes £(@) the result is an
immediate consequence of the definition in equation (6.3). O

Lemma 6.7 Letv € N (aq) andput Q' = v Qv Then, forallm € MiQ’v,
Dy (m) = Ad(v) o Do (v 'mv) o Ad(v) 7"

Proof: This follows from (6.3), by the same reasoning as in the proof of
Lemma 6.5. O

Let W = W, MiQ — Hom(np, £0)) be defined as in [11], Eqn. (4.4).
Then, for X € g and m € M,

X € Ad(m) " Ww(m)X + b. (6.4)
Lemma 6.8 Letm € MiQ. Then
Dy (m) = —W(m)oo o Ad(m™). (6.5)

Proof: If X € ng and m € Mj,, then oAd(m™)X € ngp, so that
oAd(m~") X belongs to Ad(m~")W(m)o Ad(m ") X+h. Since Ad(m ") X ¢
—oAd(m~")X + b, this implies that

Ad(m X € —Ad(m "HW(m)o Adim™") X + b.

Comparing with the definition of ® ;(m) given in (6.3) with v = 1, we
obtain the desired identity. O

In the formulation of the next result we use the terminology of neat
convergence of exponential polynomial series, introduced in [11], § 1.
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Proposition 6.9 Let v € Ng(aq). There exist unique real analytic
Hom(ny, £©))-valued functions ®, = ®p ., on My, for u € NA,(Q),
such that, for everym € My, and all a € qu(RQ,v(m)’]),

Do (ma)= Y a'd,(m), (6.6)
HENA(Q)

with absolutely convergent series. Moreover, ®y, = 0. Finally, for every
R > 1 the series in (6.6) converges neatly on AEq(R_l) as a A, (Q)-power
series with coefficients in C*°(M o, [R]) ® Hom(ng, £0)).

Proof: We first assume that v = 1. Let ¥ ,,: My, — End(np) be asin [11],
Prop. 4.8. Then it follows from combining the mentioned proposition with
(6.5) that, form € My, and a € AJQFq(RQ,l(m)*]),

O(ma) =—(I+60)o Y a W, (m)oooAd(ma)’,
HENA,(Q)

with absolutely convergent series. We now see that the restriction of ® (ma)
to gy, for o € X(Q), equals

—(+0o Y @ TW,(m)oo o Ad(m)ly,.
HeNAL(Q)
Put &y = 0 and, for v € NA,(Q) \ {0}, define ®,(m) € Hom(ny, £0)) by
®,(m)|g,:=—U+0)oW,_o(m)oooAd(m)|g,

ifv—a € NA,(Q),andby ®,(m)|g, = 0otherwise. Then (6.6) follows with
absolute convergence. All remaining assertions about convergence follow
from the analogous assertions in [11], Prop. 4.8.

We now turn to the case that v is general. Let Q' = v~ Qu, and define

Dg.pu(m) = Ad(V) o @ | Ag)-1, (V' m) 0 Ad(v) ',

for u € NA,(Q) and m € Mg,. Then all assertions follow from the similar
assertions with Q’, 1 in place of Q, v, by application of Lemmas 6.7 and 6.2.
O

We now come to the behavior of Lz, for Z € g, at points of the form
mav, withv € Ng(aq),m € My, anda — ooin qu. We start by observing
that

g=ng ®agy ® (Mg, Np) G ¢, 6.7)
as a direct sum of linear spaces. Accordingly, we write, for Z € g,

Z =70+ Zo+ Zo + Zi, (6.8)
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with terms in the complexifications of the summands in (6.7), respectively.
If [ is a real Lie algebra, then by U(l) we denote the universal enveloping
algebra of its complexification, and by Ui ([), for k € N, the subspace of
elements of order at most k. For Z € g. we define the element Dy(Z) =
Dy v 0(Z) of Ui(mps) @ Ui(ape) ® End(V;) by

DN(Z)=ZnRIQI+1RZ, QI+ 1R t(Z), (6.9)

where X +— X denotes the canonical anti-automorphism of U(g). If,
moreover, m € Mg,, we define, for u € NA,(Q) \ {0}, the element
Du(Za m) = DQ,U,M(Zv m) of Ul (mQa) ® Ul (aQq) ® End(Vt) by
Dy (Z,m):=1Q1Q Py, (m)Zy).

Finally, if m € My, and a € AJQ“q(RQ,U(m)_l), we define the element
DQ,U(Z’ a, m) € Ul (mQO‘) ® Ul(aQq) ® El’ld(Vr) by

Do(Z.a,m)= Y a"Du(Z,m), (6.10)

HENAL(Q)

where we have put Dy(Z, m) = Dy(Z). We also agree to write

D} (Z,a,m):= Dg (Z, a,m) — Dy(Z).

It follows from Prop. 6.9 that, for each R > 1, the series (6.10) is neatly
convergent on AJQFq(R*I) as a A,(Q)-exponential series with values in

C*®(Mys[R]) ® Ui(mgs) ® Ui(agg) ® End(V;). Moreover,
D) (Z.a.m) =1Q1Q(Pgy..(ma)Zy). (6.11)

In the formulation of the following result we use the notation of the paper
[11], Sects. 1-3. Via the left regular representation, we view U(mg,) ®
U(apq) ® End(V;) as the algebra of right-invariant differential operators on
Mo = Mg, X Agq, with coefficients in End(V;).

Proposition 6.10 Let F € C°(X : 7). Then F € C®(X4: T). Moreover,
if Q € 5 and v € Nk(ay), then Exp(Q,v | F) C Exp(Q,v | F) —
NA,(Q). Finally, for every Z € g, the A,(Q)-exponential expansion

F(mav)(Z) = > " d* q:(Q.v | F.loga,m)(Z) (6.12)
§

along (Q, v) arises from the similar expansion

Fmav) = _d* g:(Q, v | F,loga, m) (6.13)
3

by the formal application of the expansion (6.10). In particular, if & is
a leading exponent of F along (Q, v), then, for every Z € g,

q:(Q.v | F,log(+), )(2) = [Dg.v0(Z) — &(Z)]14:(Q. v | F, 10g('(%, ]~4))-
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Proof: 1tis obvious that FecC (X4 : 7). We shall investigate its expansion
along (Q, v), for Q € &, and v € Ng(aq). We start by observing that, for
R > 1, the expansion (6.13) converges neatly on A(J{(R*I) as a A, (Q)-
exponential polynomial expansion in the variable a, with coefficients in the
space C*(Xg » +[R]: 79), see [11], Thm. 3.4.

If ¢ is a smooth function on a Lie group L, with values in a com-
plete locally convex space, then for X € [and x € L we put ¢(X; x): =
d/dt p(exp tXx)|;—o. Accordingly, it follows from (6.8) that for Z € g., and
m € Mg, and a € Apq with mav € X, we have

F(mav)(Z) = F(Z; mav)
= ©(Zy) Fimav) + F(Zy: mav)
+F(Zy; mav) + F(Z,: mav). (6.15)

The sum of the first three terms allows an expansion that is obtained by
the termwise formal application of Dy, o(Z) to the expansion (6.13),
by [11], Lemmas 1.9 and 1.10. Moreover, the resulting expansion con-
verges on A(J{(R_l) as a A,(Q)-exponential polynomial expansion in the
variable a, with coefficients in the space C*(Xg . +[R], V). Thus, it re-
mains to discuss the last term in (6.15). Since F is right H-invariant and left
T-spherical, we see by application of (6.3) and (6.11) that the mentioned
term may be rewritten as

F(Zn; mav) = F(CIDQ,v(ma)ZVn; mav)
= (g, (ma) Zy,) F(mav)
= DJQF’U(Z, a, m)F(-v)(ma).

It follows from Proposition 6.9 that the series for D+’U(Z) converges neatly
on A;]*(R_l) as a A,(Q)-exponential polynomial expansion in the vari-
able a, with coefficients in the space C* (M ,,[R]) ® End(V;). From [11],
Lemma 1.10, it now follows that F(Zn; mav) admits a A, (Q)-exponential
polynomial expansion that is obtained by the obvious formal application of
the series for DJQr’v(Z, a, m) to the series for F(mav). The resulting series
converges neatly on AJQFq(R*I) as a A,(Q)-exponential polynomial expan-
sion in the variable a with coefficients in C*(M g, ,[R], V7). It follows
that F (mav)(Z) has an expansion of the type asserted along (Q, v), with
exponents as indicated.

In particular, if Q is minimal, it follows that F(mav) allows a neatly
converging A(Q)-exponential polynomial expansion in the variable a €
A(‘]*(Q), with coefficients in C*(Xyp ) ® g- ® V;. This implies that F
belongs to the space CP(X : T), defined in [11], Def. 2.1.

It remains to prove the assertion about the leading exponent & for F
along (Q, v). From the above discussion we readily see that the term in
the expansion (6.12) with exponent £ is obtained from the application of



590 E.P. van den Ban, H. Schlichtkrull

the constant term Dy , o(Z) of D¢ ,(Z, a, m) to the term in the expansion
(6.13) with exponent . This yields

aéqg(Q, v | f, loga, m)(Z)
= Dg.v0(Z)[(m, a) — d®qs(Q, v | F,loga, m)].

Now use that a ¢ o Dg.,.0(Z) 0 a = Dg..0(Z) 4 &(Z,) to obtain (6.14). O

We can now describe the action of Lz, for Z € g, on families from the
space é‘thp(X: 1), defined in [12], Def. 6.6.

Theorem 6.11 Let Fe&p"(X: 1). Then the family F: a}y,.xX — gi®V.,

defined by (F)v = (F,)" belongs to é‘thp(X : T). Moreover, for every Z € gc
and all v in an open dense subset of ap.,

Gupo (@0 | Fy: log(+): )(2) (6.16)
=[Dgv,0(Z) — (v = po)(Z)] qv—po (Q, v | Fy:log(-): -).
Proof: There exist § € Do and a finite subset ¥ C *af, . such that F €

hyp V(X:1:8). Let # = Hp, d = dp and k = deg,F be defined as

in the text following [12], Def. 6.1. Then F satisfies all conditions of the

mentioned definition. It follows from the characterization of the expansions

for F in Proposition 6.10 that F satisfies the hypotheses of [12] Def. 6.1

with T in place of t, with the same Y, #, d, k. In particular, F belongs to
ep hyp X, : 7).

+
Smce F, is annihilated by the ideal /5, for generic v € aj,, the same

holds for ﬁv, and we see that F € é’hgyf’,,(XJr 1 T:6), see [12], Def. 6.3.
Let now s € W, P € 2! such that s(agq) € apq and v € Nk (ag).

Then there exists an open dense subset © C dpqc such that F satisfies the
condition stated in [12], Def. 6.4. It follows from Proposition 6.10 and the
fact that the functions m +— Dp, ,(Z, m) are smooth on all of Mp,, for
Z € gc, u € NA,(P), that F also satisfies the condition of [12], Def. 6.4,
with the same set Q. We conclude that F € & ypy(X+' T: 8)glob- In view
of [12] Lemma 6.9, v = F), is a meromorphic C°° (X: 7)-valued function
on aQqC Hence, v —~ F is a meromorphic C*°(X: 7)-valued function on

aQqC In view of [12], Def. 6.6, we now infer that F e Shyp(X: 7).
Finally, for v in an open dense subset of aj,., the element v — pg 18
a leading exponent for F along (Q, v). Thus, (6.16) follows from (6.14). O

Next, we apply the above result to the normalized Eisenstein integral
E°(Q: v¥:v), defined for v € Ay o. Let v € 2W. Given a function
Yy € A2(Xg v Tg) and an element v € a*QqC we define the function

0.0 Yy: Xg v — g:[k; R V; (6.17)
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by

30,0 (MY (X)(Z) = [Lz, — (v = po)(Z)]Vy(x) — ((Z) [V (X)],

for x € Xgp,, and Z € gc. Clearly, the function 9y ,(V)¥, is a D(Xgp,,)-
finite Schwartz function with values in g¢ ® V:. Since Ky normalizes the
decomposition (6.7) and centralizes a¢q, one readily checks that the function
is Tp-spherical, with 7p: = T| k- Hence,

0.0V, € A2(Xg.v: To).

We define the map 9y (v): Az o(t) — A2 (T) as the direct sum, for
v e 2W, of the maps 90.0(V): AL Xy Tg) = A2(Xg.v: To)-

Theorem 6.12 Let vy € A o(7) and let the family F: a*Qq(C x X — V; be
defined by

Fv,x) =E(Q:vy:v:x).
Then the family F: Upqe X X — g2 ® Vi, defined by (F), = (F,)", is given
by
F(v,x) = E2(Q: 9p(WY:v:x).

Proof: 1t follows from [12], Def. 13.7 and Prop. 13.6, that the family F
belongs to 8thp(X: 7) and that the family G: = E°(Q : 9o (v)¥) belongs to

é‘thp (X: 7). Let v e 2W. Then it follows from the mentioned proposition,
combined with [11], Thm. 7.7, Eqn. (7.14), that, for v in an open dense
subset of a,. and all X € agq and m € Xg ,,+,

Gv—po(Q, v | Fy, X, m) =y (m), (6.18)
Gv—po(Q v | Gy, X, m) = 09 (V)Y (m). (6.19)

From Theorem 6.11 we see that F € 8thp(X: 7). Moreover, combining
(6.18) and (6.16) we infer that, for Z € g, v in an open dense subset of
Upqc and all X € agq and m € Xg o 4,

Go-pp(Q. v | Fy, X, m)(Z) =[Dg..0(Z)—~(v—po)(Z)1[(m, a) = vr, (m)].

From (6.9) we see that the expression on the right-hand side of this equation
equals [0, (V)Y (m)](Z); hence

Gv—po(Q, v | Fo, X, m) = 39, (v)yr,(m). (6.20)
Comparing (6.20) with (6.19) we deduce that the family F-Ge 8thp(X: 7)

satisfies the hypothesis of the vanishing theorem, [12], Thm. 6.11. Hence,
F=0G. O
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Given v € a*Qq(C and ¢ € C*(K : £: 1) we define the function
d(Q,6v)peCT(K: ) ®g @ V;
by
[d(Q, &, v) plk, Z) = ([, —v(2) ® 1] p) (k), (6.21)
fork € Kand Z € g.. Onereadily verifiesthatd(Q, &, v)p € C®°(K : £: 7).

Lemma 6.13 Let T € V(§) ® C(K : &: 7). Then, for all v € aj,.,
Yed.evr = 0o Yr.

Proof: By linearity it suffices to prove this for T = n ® ¢, with n € V(&)
and ¢ € C*(K:&:1). Letv € €W and Z € g.. Then combining (6.21)
with the decomposition (6.8) we infer that

[d(Q, & v)gl(e)(Z) = [6(Zn) @ I — 1 ® T(Zx)]p(e) — (v — po)(Za)p(e).

By equivariance, 1, maps J(’go into LZ(XQ,U)EO C C*(Xg,v), intertwining
the (mg, Kp)-actions. Using formula (4.8) we now obtain that
Vied.evro(-)(Z)
= [ny ® 11([§(Zm) ® I]¢(e))
—[(v=p)(ZII QI +1® T(Z)](ny ® I)(p(e))
=[Lz, — = p)(Z)]IWr1,)(-) — (Z)[Yr0(-)]
= (0(Q, )Yr)u(-)(Z).

O

Corollary 6.14 LetT € V(§)®C>®(K : & : 1) and let the family F: e XX
— V. be defined by
F,=E°(Q: Yr:v).
Then the family F:v — (F,)" is given by
Fy = E°(Q: Yusio.emr: V)- (6.22)
Proof: This follows from Theorem 6.12 and Lemma 6.13. O
As a consequence of the above, we can now express derivatives of the

normalized Eisenstein integral in a form needed for the proof of Theo-
rem 4.6.

Proposition 6.15 Let v C K be a finite subset, and let V' C K be the
union of the collections of K-types occurring in Adg ® §, as § € v. Let

TeVERC®(K: &)y Then (I @me_(Z)T € V(E) @ C¥(K : &)y, for
all Z e gcand v € a*QqC. Moreover, forall Z € g¢, x € Xand k € K,

Laay-12zE5(Q: Yr: v)(xX)(k) = E(Q: Yiign._,znr: vVI(X)(k), (6.23)

as a meromorphic identity in v € ap,.
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Proof: Let T = 3. We shall use the natural identification C*°(K : &)y =~
C*®(K: &: 1) of Lemma 3.4, so that {/; may be viewed as an element of
VE) Q@ C¥(K: &: 7).

Define the family F as in Corollary 6.14. We shall derive the identity
(6.23) from (6.22) by using the functorial properties of Lemma 4.5.

Fix Z € g.. We define the matrix coefficient map mz: g — C*°(K) by

mz(Q)(k) = {(Ad(k™)Z), (¢ egr keK).

The map m intertwines the representation Ady of K in g’ with the right
regular representation of K in C(K). In particular, it maps into the finite
dimensional space C(K)yy, with 99 C K the set of K -types in Adg. We
define the equivariant map

Sii=mz®I: gz ®Vy = C(K)yy ® Vy.

On the other hand, we define the map S;: C(K)ﬁov ® Vy — C(K) by
¢ ® ¥ — ¢y. This map intertwines 1,5, ® 7y with the right regular represen-
tation of K in C(K), hence maps into C(K) . The space C(K)ﬂg ®Vy may
be naturally identified with a finite dimensional K-submodule of C(K x K),
the latter being equipped with the diagonal K-action from the right. Under
this identification the map S, corresponds with the restriction of the map
A*:C(K x K) — C(K) given by A*p(k) = ¢(k, k).

The map § = 57081 gi ® V; — Vy is K-equivariant. We shall apply
I ® S to both sides of the identity (6.22). Application of I ® §; to the
left-hand side yields (I ® S))[F,(-)](k) = F,(-, Ad(k~')Z), which in turn
equals L yqq-1)zF,. By application of I ® S5 to the latter function we find

(I ® IF, (1K) = LaagezFo(-)(%)
= LAd(k—')on(Qi Yr:v)(-)(Kk). (6.24)

On the other hand, from Lemma 4.5 we see that application of / ® S to the
expressions on both sides of (6.22) yields

(I®)F, = E°(Q: Vusiesiiedo.:nr: V)- (6.25)

We observe that (1 ® S) -d(Q, &, v) is a linear map from C*(K : &: ty) to
C*®(K : &: 1yp) and claim that the following diagram commutes, for every
VE Upges

(I®S) 0d(Q.§,v)

C*®(K:&:19) C®(K:&:1y9)
\ l (6.26)
C®(K: &)y e Co(K: &)y .

Here the vertical arrows represent the natural isomorphisms of Lemma 3.4.
We denote both of these isomorphisms by ¢ +— ¢'. It suffices to prove
the claim, since its validity implies that 7 _,(Z) maps C*(K : &) into
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C*®(K : &)y and that the expression on the right-hand side of (6.25) equals
the one on the right-hand side of (6.23). Combining this with (6.24) we
obtain (6.23).

To see that the claim holds, letp € C®(K : £: 1y9) = (C®(K : £)@Vy)X.
The associated element ¢’ € C*°(K : &)y is given by

¢'(k) = pk)(e), (k € K).

The element (I ® S1)d(Q, &, v)p of [C*(K: &) ® C(K)ﬁov ® V1K is given
by

(I ® $)d(Q. £ V)gl(k) (k) = [d(Q. £ v)p(R))(Ad(k; ") Z)
= [I ® 7z o (Ad(k; ") Z) ] (k);

see (6.21). Hence, the element (I ® S)d(Q, &, v)g € [C®(K : §) ® Vy1X
is given by

(I ® $)d(Q, &, v)pk) (k) = (I ® 7 _,(Ad(k; ") Z)) (k) (k1).

The natural isomorphism from [C®(K : &) ® V1% onto C®(K : &)y is
induced by the map / ® 4., where 8,: Vy — C denotes evaluation at e (see
(3.6)). Hence,

(I ® $)d(Q, &, v)) (k) = [(I @ 7z, (2))pl(k)(e) = [1we, v (Z)¢1(K).
This establishes the claim. O

We shall apply the above result in combination with Proposition 5.1
to obtain the assertion of Theorem 4.6 about finiteness. If H C a*Qq<C is a
2, (Q)-hyperplane, we denote by «y the shortest root of 3, (Q) such that H
is a translate of (aﬁ)C. Thus, (ay, -) equals a constant ¢c on H; we denote
by /g the linear polynomial function (@g , -) — c. In accordance with [12],
Eqn. (4.3), given a locally finite collection #¢ of X, (Q)-hyperplanes in aj,
and a map d: # — N, we define, for every bounded subset w of aj,., the
polynomial =, ; by

Toa = [] 4™ 6.27)

HeH
HNw#)

Proposition 6.16 Let Q € 7, & € Xy, 4 Then H(Q, ) is a locally
finite collection of real X,(Q)-hyperplanes. Moreover, there exists a map
d: #(Q, &) — N such that, for every finite dimensional unitary represen-

tation T of K, every T € V(§) ® C®(K : &£ : 1) and every bounded open
subset w C a*QqC, the C*(X: 1)-valued function

V> T, (WES(Q: Yr i v) (6.28)
is holomorphic on w. Here 1, 4 is defined by (6.27) with 3 = #(Q, §).
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Proof: Select any bounded open subset @ C ap .. Let & C K be a fi-
nite set associated with Q, &, —w as in Proposmon 5 1. According to [12],
Prop. 13.14, there exists a map d: #(Q, &, ¥) — N with the property that,
for every T € V(&) @ C®°(K : &), the map v — E3(Q: ¥r: v) belongs
to M(azq, H(Q,E,0),d, C*°(X: 1y)). See [12], § 4, for the definition of
the latter space.

Let » C K be an arbitrary finite subset. Fix vy € w. Then by Proposi-
tion 5.1 there exists k € N such that the map

M,: U@ @ C(K: 8y — C(K: 8k, u® @ > me_,(u)g

has image containing C(K : &)y for v = vy. On the other hand, let 9" C K
be the finite collection of K-types occurring in §; ®§,, with §; € Kak- -type
occurring in the adjoint representation of K in U(g) and with 6, € . Then
the image of M, is contained in C*°(K : &)y~ for all v € a*QqC. Let Py
denote the K-equivariant projection from C(K : &)y~ onto C(K : &€)y. Then
Py 37 o M, is surjective. Hence there exists a finite dimensional subspace
E CU(g) ® C(K: &y such that R,:= Py yr oM, |p: E — C(K: &)y is
a bijection for v = vy. By continuity and finite dimensionality, there exists
an open neighborhood wg of vy in w such that R, is a bijection for all v € wy.
By Cramer’s rule, the inverse S,:= R;l € Hom(C(K : &)y, E) depends
holomorphically on v € wg. Let (u; | 1 < i < I) be a basis of U(g)
and (¢; | 1 < j < J) abasis of C(K: &)y. Then there exist holomorphic
[C(K : &)y ]"-valued functions s;; on wp, for 1 <i <1, 1 < j < J, such
that

Sy = D s, Qui®p;, (v Ewy),

1<i<I
l<j<J

forp € C®(K:&y.Let o € C(K: &)y. Then ¢ = Py yroM,0S,(p),
hence

Y= ZSU (v, @) Py grrwe o (ui)@;.

ij

Let n € V(£). Then it follows from the above by application of (4.17) and
(4.18) that

nw,d(V)E;/(Q: ‘/’n@go: V)
= ZSU (v, @) a (V) EG(Q : wn@Pﬁ/ﬁ//ﬂg’,v(ui)(pj V)
ij

= " s5i0. @) I ® Py 9)[7T0d W E3(Q : Yyame gy V)]-

i,j
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Applying I ® §, = gl;,l and using Lemma 3.6 and Proposition 6.15 we infer
that

”w,d(V)E;’(Q : Wn®tp cv:o)(e)
= 3 550, 0 Py [T d WV ES(Q Vome ugy v: )(O)]

i,J
= 50, 9) Py g L [T a W EF(Q : Yy, v +)(e)].
i,J

(6.29)

From this we conclude that the expression on the left-hand side of the
above equation depends holomorphically on v € wy, as a function with
values in C*°(X). Since vy was arbitrary, it follows that the expression on
the left-hand side of (6.29) in fact depends holomorphically on v € w.
Hence, every H € H(Q,&,9') with H N w # ¢ must be contained in
H(Q, &, ¥). This shows that the collection #(Q, &) is locally finite. The
argument also shows that there exists a map d: #(Q, &) — N such that
the assertion of the proposition holds for every 7 of the form t = 7/, with
¥ C K afinite subset. The general result now follows by application of the
functorial property of Lemma 4.5. O

Corollary 6.17 Let d: #(Q, &) — N be as in Proposition 6.16. Then, for
every T € V(§) @ C¥(K : &)k and every bounded open subset @ C a*QqC,
the function

V= nw,d(V)JQ,E,v(T)

extends to a holomorphic C*(X)-valued function on w.

Proof: This follows from Proposition 6.16 and the definition of Jy ¢ ,, see
(4.20). 0

We can now finally give the promised proof.

Proof of Theorem 4.6: The properties of F(Q, &) have been established in
Proposition 6.16 and (4.19). Let v € ap .. That Jo ¢, is a g-equivariant
map follows from formula (4.20) combined with formula (6.23) with k = e.
It remains to establish the K-equivariance of Jy ¢ ,. Let ¥ C K be a finite
subset andlet T = n ® ¢ € V(£) ® C®°(K : £)3. We denote the natural
isomorphism C*(K: &)y — C>®(K: &: ty) of Lemma 3.4 by ¢ = ¢y.
Let k; € K. Then one readily checks that gome (k1) = (I ® §)og,
with S the endomorphism of Vy = C(K)»v given by restriction of the left
translation Ly, . In particular, S intertwines 7y = R|y, with itself. By the
identification discussed in the text before (4.13) we have

Ve ,kIT = Yo k)T
= 1//(I®I®S)(1®g)r-
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By Lemma 4.5 (a), combined with the identification mentioned above, the
latter expression equals

(I Q@ Vugor = I & S)Yr.

Applying Lemma 4.5 (b) we now find that

Joen(I @ e v (kDIT) = E5(Q 2 Yiign, kit : V)()(€)
= [[I ® SIEZ(Q: ¥r: v)()](e)
= E3(Q: Yr:v)() (k")
= Ly, Jo.eu(T).

7 The Fourier transform

Let Q € £, and & € X@* as- We will use the map Jy ¢, introduced in

(4.20), to define a (g, K)-equivariant Fourier transform for functions from
CX(X)k.
We define the collection #(Q, &) of hyperplanes in AHqc DY

H(Q,8):={—H|HeHQ.O}

Since H(Q, &) is a locally finite collection of real X,(Q)-hyperplanes,
see Theorem 4.6, the same holds for #V(Q, &). It also follows from the
mentioned theorem that U (Q, &) is disjoint from i a*Qq.

Since H(Q, &) consists of real X,(Q)-hyperplanes, every hyperplane

of #(Q, §) is invariant under the complex conjugation A > A in aj.,

defined with respect to the real form a7, . Hence, HY(Q,6) ={—H|He
H(Q, &)}. This justifies the following definition.

Definition 7.1 Let f € C2°(X)k. Forv e a*QqC \ UHY(Q, &), the Fourier

transform f(Q : £:v) is defined to be the element of V(£) ® C*(K : )k
determined by

(f(Q:&:0)|T) = /Xf(X)JQ,g,—a(T)(X) dx, (7.1)

forall T € V(§) ® C¥(K : £)k.

Lemma 7.2 Letv € a*Qq<C \UH"(Q, &). Then the map f > f(Q: E:v)

Sfrom C°(X)g to V(&) ® C®(K : &)k intertwines the (g, K)-module struc-
ture on C*(X) ¢ coming from the left regular representation with the (g, K)-

module structure on V(£€) ® C*°(K : &) coming from 1 @ Q. —v
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Proof: The spaces C2°(X)k and V(&) ® C®(K : &) are equipped with the
natural L>-type inner products. The first of these inner products is equiv-
ariant for the (g, K)-module structure coming from the left regular repre-

sentation. The second induces a sesquilinear pairing of V(£) ® C®(K : £)
with itself that is equivariant for the (g, K)-module structures coming from
l®mpe—yand 1 ® o ¢ 5, respectively. On the other hand, it follows from

(7.1) that the map f +— f(Q, &, v) is adjoint to the map J ¢ _y, with respect
to the given inner products. Therefore, the (g, K)-intertwining property of
f = f (Q, &, v) follows by transposition from the similar property for
Jo.£,—v, asserted in Theorem 4.6. O

Ifd: #(Q, &) — Nis a map, we define the map d”: #"(Q, §) — Nby
dV(H) = d(—H), for H € #"(Q, £).

Lemma 7.3 Let d, dV be as above and let w C a*Qq<C be a bounded subset.
Then

T_g.a(—=0) = (=D)V7p a0 (V). (v € ajpye)s (7.2)
with N =Y, d(H), for H € #(Q,v), HNw # .

Proof: In the notation of the text preceding (6.27), we have, for H €
H(Q, §),

ln(=v) = —{ap, —v) —cy = (@-p, V) + oy =—l_g(v). (7.3)

Moreover, since H is real, —o N H # @ is equivalent to w N (—H) # (. In
view of the definition in (6.27), the identity (7.2) follows from (7.3) raised to
the power d"(H) = d(—H), by taking the product over all H € #"(Q, &)
withw N (—H) # @. O
Lemma 7.4 Let d: #(Q,&) — N be as in Proposition 6.16 and define
d": #'(Q,&) — Nbyd'(H) = d(—H). Then, for every bounded open
subset o C ap, ., every finite subset © C K and every [ € C*(X)y, the
function

Vi e (0) (O, €, v), (7.4)

originally defined on w \ UH"(Q, &), extends to a holomorphic V(£) ®
C*®(K : &)y-valued function on w.

Proof: Let f be fixed as above. It follows from Lemma 7.2 that the function

(7.4) has values in the finite dimensional space V() ® C®(K : £). Hence,
it suffices to establish the holomorphic continuation of the function that
results from (7.4) by taking the inner product with a fixed element 7 from

V(&) ® CP°(K : £)y. In view of (7.1) the resulting function equals

V> T (W1 Jo.e—5(T)) = (f [71-6,4(=V)Jg.5,—5(T)),

see Lemma 7.3. We may now apply Corollary 6.17, with —® in place of w,
to finish the proof. O
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The following result gives the connection between the present Fourier
transform and the spherical Fourier transform, defined in [12], § 19.

Lemma7.5 Let © C K be a finite subset, let f € C>®(X)y and let
F = ¢y(f) € C®(X: ty) be the corresponding spherical function, see
Lemma 3.4. Let ¥ F be the ty-spherical Fourier transform of F. Then, for

every T € V(€) @ C®(K : &)y,

(f(Q:E:v)|T) = (FFW) | ¥r), (v € apge \UH(Q, 8).
Proof: It follows from (7.1) and (4.20) that

(fo(Q:E:0)|T) = fo(X)EB(Q: Y —v)(x)(e) dx.

One may now proceed as in [7], p. 539, proof of Prop. 3, displayed equations,
but in reversed order. O

8 A direct integral

In this section we assume that Q € P, and & € X, , , are fixed. We will
define and study a direct integral representatlon JTQ £ that will later appear
as a summand in the Plancherel decomposition.

We equip

H(Q,8:=VE L (K: §) 8.1)

with the tensor product Hilbert structure and the natural structure of
K-module. Moreover, we define

£4(Q,8):= L*(iahy, H(Q,8), [W: Wylduo),

the space of square integrable functions i a*Qq — 9H(Q, &), equipped with the

natural L2-Hilbert structure associated with the indicated measure. Recall
that djug is Lebesgue measure on iaj, , normalized as in [12], end of § 5.

By unitarity of the representations 7 ¢ ., for v € ia*Qq, the prescription

(o)) (V):=[I @ o e (D)](V), (¢ € £2(0. 9, x € G),

defines a homomorphism 7 ¢ from G into the group U(£%(Q, &)) of unitary
transformations of £2(Q, £).

Lemma 8.1 The homomorphism mg ¢: G — U(L%(Q, &)) is a unitary rep-
resentation of G in £*(Q, ).
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Remark 8.2 It follows from the result above that 7 ¢ provides a realization
of the following direct integral

@
nQ,S:/* Ipey @ ey [W: W5 dpg(v).
oq

For the proof of Lemma 8.1 it is convenient to define a dense subspace
of £(Q, &) by

£5(0,8): = Cc(iag,, V() ® C*(K : §)). (8.2)

This space is equipped with a locally convex topology in the usual way. Thus,
if A C ia*Qq is compact, let S%A(Q, &) denote the space C 4 (ia*Qq, V() ®
C>®(K : &)) of continuous functions from (8.2) with support contained in .
This space is equipped with the Fréchet topology determined by the semi-
norms
@ — sups(p(v)),
VEA

where s ranges over the continuous seminorms on V() ®C>®(K : &). More-
over,

£3(0,8) =Ux £54(0, 8
is equipped with the direct limit locally convex topology. Thus topologized,
23(Q, &) is a complete locally convex space.
Lemma 8.3

(a) The space S%(Q, &) is G-invariant.
(b) The restriction of wg ¢ to S%(Q, &) is a smooth representation of G.
Moreover, if 9 € £3(Q, &) and u € U(g), then 7wy £ (u)@ is given by

(70,6 Wel(v) = [I @ g g -v(u)] (V). (8.3)

Proof: Let A C iaj,, be compact. Then it is a straightforward consequence

of the definition that the space S% 4(0, &) is G-invariant. In particular, this
implies (a).

For (b) it suffices to prove that the restriction of mg ¢ to S% 4(0,8) is
smooth and that (8.3) holds for ¢ € S%A(Q, ).

Lety € £2,(Q, &). We consider the function ®: A x G x K — V(§) ®
Jte° defined by

D, x,k):=[I @ evi]([mge(D)@](V) = [I ® evimg e () ]@(v),

where ev; denotes the map C*(K : &) — J(’go induced by evaluation in k.

We recall that the multiplication map Ny x Ag x exp(mgp Np) x K — G
is a diffeomorphism. Accordingly, we write

x =ngx)ag(x)mox)kg(x), (x € G), (8.4)
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where vy, ap, m o and kg are smooth maps from G into Ny, A, exp(moNp)
and K, respectively. Applying (8.4) with kx in place of x, we find that

D (v, x, k) = ag(kx)""PCE(m o (kx))p(v, ko (kx)).

From this expression we see that the function @ is continuous, and smooth
in the variables (x, k). Moreover, for every C* differential operator D on

G x K, the \7(5) ® Jfgo—valued function
(v, x, k) = D[D(v)](x, k)

is continuous. This implies that the C (i a*Qq, V(&) ® C®(K : £))-valued
function x > ®(-, x, -) is smooth on G; hence ¢ is a smooth vector for ¢ .
Let D be any C* differential operator on G and let v € 4. Then evaluation

in v induces a continuous linear operator S% P V(€)®C>®(K : &). Hence,
forall x € G,

Dlmg (- )@l(x)(v) = Dlevy(mg (- )@)1(x) = D(mwg g —v(- (1)) (x).
Applying this with D = R, and x = e we obtain (8.3). O

Proof of Lemma 8.1: Put w: = mg ¢. It suffices to show that the map G x
£2(0,8 — £2(Q,8), (x, p) — m(x)g is continuous. Since 7 is a homo-
morphism from the group G into U(£%(Q, £)), it suffices to show that for
any fixed ¢ € £2(Q, &) we have

limz(x)g=¢ in £4Q.5). (8.5)

Moreover, again because 7 maps into U(£?(Q, &)), it suffices to prove (8.5)
for ¢ in a dense subspace of £2(Q, &). Let ¢ € S%(Q, &). Then w(x)p — ¢
in £5(0, &), as x — e, by Lemma 8.3. By continuity of the inclusion map
SS(Q, £) — £2(Q, &), this implies (8.5). O

We end this section by establishing some other useful properties of the
invariant subspace S%(Q, £).If ¥ C K, then one readily verifies that

£5(Q,8)y = Ce(iagy,, V(&) @ CP(K : §)). (8.6)

The space of K-finite vectors in £5(Q, &) equals the union of the spaces
(8.6) as ¥ ranges over the collection of finite subsets of K. The natural
U(g)-module structure of 2(2)( 0, &) is given by formula (8.3).

Lemma 8.4 Let (p, W) be a continuous representation of G in a complete
locally convex space, and let U be a dense G-invariant subspace of W. If
U is contained in W™ then it is dense in W™ for the C*°-topology.

Remark 8.5 For W a Banach space, this result is Thm. 1.3 of [27]. The
following proof is an adaptation of the proof given in the mentioned paper.
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Proof: Replacing U by its closure in W if necessary, we may as well
assume that U is closed in W, Fix a choice dg of Haar measure on G. If
¢ € C°(G), then the map

p(p):= /G @(g)p(g) dg

is continuous linear from W to W, as can be seen from a straightforward
estimation. Moreover, since U is closed in W, the map p(¢) maps U into
itself. Let W, be the collection of vectors in W of the form p(¢)wg, with
@ € C°(G) and wy € W*. Then W, is dense in W*. Hence, it suffices
to show that W is contained in U. Select w; € W; and let N; be an open
neighborhood of 0 in W*°. Then it suffices to show that U N (w; + Ny) # @.

Write w; = p(¢)wo, withwy € W and ¢ € C°(G). By the mentioned
continuity of p(¢), there exists an open neighborhood Ny of 0 in W such
that p(¢) Ny C N;. By density of U in W, the intersection U N (wg + Ny)
is non-empty. Hence,

B < p(@)U N (wy+ No)l
C U N p(p)(wo + No)

cUn(w;+ Ny).
0

Lemma 8.6 The space S%(Q, £) g is dense in £2(Q, £)* with respect to the
natural Fréchet topology of the latter space.

Proof: The inclusion map j:SS(Q, £) — £2(0Q, &) is continuous, inter-
twines the G-actions and has dense image. From Lemma 8.3 it follows that
£2(0,6€)> = £4(Q, &). By equivariance of j it follows that £3(Q, &) is
contained in £%(Q, £)®. By application of Lemma 8.4 we see that SS(Q, &)
is dense in £2(Q, ). The conclusion now follows since £3(Q, &)k is
dense in S(Z)(Q, ). |

9 Decomposition of the regular representation

Up till now, for Q € 5%, the expression § € Xj, , , meant, by abuse
of language, that & is an irreducible unitary representation of M, with
equivalence class [£] contained in Xg «.ds- From now on it will be convenient
to distinguish between representations and their classes. For every Q € £,
and all w € X7, , ; we select an irreducible unitary representation § = §,
in a Hilbert space #,,: = #¢, with [§] = w. Moreover, we put (0, w): =
9(Q, &,), see (8.1).

For 9 C K a finite subset, let X5 +.as(?) denote the collection of w €
X x.as that have a K p-type in common with 7.
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Lemma 9.1 Let Q € P, and let ¥ C K bea finite subset. Then XQ wds(D)
is finite. Moreover,

A2.0(T9) = Quexy, ;0 42.0(T9)w;
where the direct sum is finite and orthogonal.

Proof: The collection X@ «.as(D) 1s finite by Lemma 3.2, applied to the

spaces XQ v forv e 2W. Put T = 15 and fix v € 2W. We note that
A2(Xpv: Tp)w = 0forw € XA 0., dv(ﬁ) \XQ v.ds(T0), by Remark 3.3, with
Xo,vs Tg in place of X, 7. Hence, in view of the same remark,

A2(Xg: T0) = Boex)y, 1 A2(Xo.w? 7)o

with orthogonal summands. The result now follows by summation over
v e 2W, in view of (4.9), and [12], Eqn. (13.1). O

Lemma9.2 Let Q € #,, ¥ C K a finite subset and w € X@’*’ds. Then
H(0, w)y ZO0ifand only if w € XQ wds(D)-

Proof- We have that $(Q, w)y = V(Q, £,) @ L*(K : &,), with non-trivial
first component in the tensor product. Hence, $(Q, w)y is non-trivial if and
only if L?>(K: &,)s is. Since L?*(K : &,) is the representation space for
Indﬁg (&,), the assertion follows by Frobenius reciprocity. O

If O € #,, we define the Hilbert space

9(0): = Buexy,, N0, ), .1

Q,*,ds

where the hat over the direct sum symbol indicates that the natural Hilbert
space completlon of the algebraic direct sum is taken. Let 9 C K be a finite
subset. In view of Lemmas 9.1 and 9.2 it follows that we may define a map

Wy =W H(Q)y — Az o(Ty)

as the direct sum of the isometries T+ ¥r7: H(Q, w)y — A2 o(Ty)w, for
w € X@’*’ 45(D), see (4.13). The following result is immediate.

Lemma 9.3 Wy is an isometric isomorphism from $(Q)y onto 4, o(Ty).
If feCr(X)kthenfor Q € #,, w € X@’*’ds and v € ia*Qq we define
the Fourier transform f(Q twiv) e V() ®CP(K: £k by
f(Q:wiv):i= f(Q:&,: ).
This definition is justified since it follows from (4.19) that v ¢ UF"(Q, &).
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Proposition 9.4 Let v C K bea finite set of K-types, let f € CX(X)y
andlet F = ¢y(f) € C(X: tg) be the associated spherical function, see
Lemma 3.4. Then for each Q € P, and every v € laQq,

FoFW) = Y Yigiwn i Asg(m). 9.2)

A
wEXQ.*.ds

If f (Q: w:v) is non-zero, then w € XQ «.ds(D); in particular, the above
sum is finite. Finally,

lrod 2 __ 7 . . 2
IFQFMIP = Y 1@ 0 o

A
weXQ‘*‘dS

Proof: 1t follows from Lemma 7.2 that f (Q: w:v) is an element of
H(0, w)y, forevery w € X@ wds” Hence, if this element is non-zero, then w
belongs to the finite set X7, , ds(z?).

The identity (9.2) follows from Lemma 7.5, since Wy is a surjective
isometry. The final assertion follows by once more using that W, is an
isometry. m|

The following result will turn out to be the Plancherel identity for
K-finite functions We recall from [12], Def. 13.4, that two parabolic sub-
groups P, Q € &, are said to be associated if their o-split components apg
and apq are conjugate under W. The equivalence relation of associatedness
on &£, is denoted by ~. Let P, C £, be a choice of representatives for
Py] ~.If Q € P,, then Wa denotes the normalizer of agq in W.

Theorem 9.5 Let f € C(X)k. Then

I7B= 3 X Wewg] [ 17@: 0 vl dio(w,

0€Ps weXy , 4 "%0q

Proof: This follows from [12], Thm. 23.4, combined with Proposition 9.4.
O

Our next goal is to show that the above indeed corresponds with a direct
integral decomposition for the left regular representation L of G in L?(X).
Let O € P,. Forw € XQ «.ds» the direct integral representation g ,: =

T, of Gin £2(0, w): = SZ(Q &,) is unitary, see Lemma 8.1. We define

€(0): = Buexy . L0, 0), 9.3)

where the hat over the direct sum sign has the same meaning as in (9.1). We
note that £2(Q) is naturally isometrically isomorphic with the Hilbert space
of $(Q)-valued L>-functions on i a*Q 9’ relative to the measure [W : WZ] dug.
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Let ¢ be the associated direct sum of the representations 7 ,. Then ¢
is a unitary representation of G in £2(Q).
Finally, we define

£ = @ger, £1(Q) 9.4

and equip it with the direct sum inner product. The direct sum being finite,
£2 becomes a Hilbert space in this way. The associated direct sum 7 =
@gcp, o is a unitary representation of G in £7.

For O € P, and w € X@ «ds We denote the natural inclusion map
£2(0, w) — £ by ig.; its adjoint pry ,: £ — £3(Q, ) is the natural
projection map. If ¢ € £2, we denote its component Pro.¥ € £2(0: w)
by o(Q: w: -). Thus,

ol = Y Y [WW5] [ let@: @i vl duo.

0€Ps weX) , 4, %0q

It follows from Theorem 9.5 that the Fourier transform f of an element
f € C®(X)g belongs to £%. Moreover,

[ l200 = 1 f Il g2

Theorem 9.6 The map f +— f has a unique extension to a continuous
linear map §: L*(X) — £2. The map § is isometric and intertwines the
G-representations (L, L*(X)) and (7, £2).

Proof: The first two assertions are obvious from the discussion preceding
the theorem. It remains to prove the intertwining property. Fix Q € P, and
w € X} .4 then it suffices to prove that g ,,: = pry , 0§ intertwines L
with nQ . We will do this in a number of steps. For convenience, we write

§ =&,
Lemma 9.7 Let f € CZ(X).
(@) Ifk € K, then §g o (Lrf) = 70,0(K)§ 0.0 f-
(b) If u € U(g), then
(S0.0Luf) @) = (§0.o(f) | 7@@)p) 9.5)
forall p € £*(Q, w)™.

Proof: We first assume that f is K-finite. Assertion (a) is an immediate
consequence of the K-equivariance asserted in Lemma 7.2.

In view of Lemma 8.6 it suffices to prove assertion (b) for ¢ € S%(Q, ).
In view of Lemma 8.3 we may as well assume that u = X € g. Then the
expression on the left-hand side of (9.5) equals

/ (Lx Q&2 v) o) 0.0 dito (V).

Pk
lCqu
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The integrand is continuous and compactly supported as a function of v. By
the g-equivariance asserted in Lemma 7.2 and unitarity of the representa-
tions g ¢, for all v € iap,, we see that the integral equals

f (F(Q: &0 @ 7o (X)) dpg(v)

*
lqu

_ / (F(O: &: 1) | [rou(X)el(1) dig),

*
zaQq

see also Lemma 8.3. The expression on the right-hand side of the latter
equality equals the one on the right-hand side of (9.5). This establishes the
result for f in the dense subspace C2°(X) ¢ of C2°(X). The idea is to extend
the result by an argument involving continuity.

For assertion (a) we proceed as follows. Fix k € K. Then the map
f +— Lif is continuous from C°(X) to L*(X). Since F, 0. 18 continuous
L*(X) — £2(Q, w), by the first part of the proof of Theorem 9.6, whereas
To.» 1S a unitary representation, it follows that both f +— ¥y ,Lif and
f = mp.0(k)Fo . f are continuous maps from C°(X) to £2(Q, w). Hence,
(a) follows by continuity and density.

Finally, for the proof of (b) we fix u € U(g) and ¢ € £*(Q, w)™. Then
the map f — L, f is continuous from C°(X) to L*(X), whereas F, 0.0
is continuous from L?(X) to £2(Q, w) as said above. It follows that the
inner product on the left-hand side of (9.5) depends continuous linearly on
f e CX(X). Since g ,(it)¢ is a fixed element of £2(0, w), the same holds
for the inner product on the right-hand side of (9.5). Thus, (b) follows by
continuity and density from the similar statement for K-finite functions. O

Lemma 9.8 Let f € C(X). Then

3'Q,w(fo) = nQ,w(x)gQ,w(f)
forall x € G.

Proof: By Lemma 9.7 (a) it suffices to prove the identity for x in the
connected component of G containing e. Hence it suffices to establish the
identity for x € exp(g). Write m = m¢ , and fix X € g. Then it suffices to
show that w(exp tX )_lgg,w(Lexp xf) is a constant function of ¢t € R with

value §¢ ,(f). For this it suffices to show that, for every ¢ € £2(0, w)™,
the function

®:1 > (m(exptX) ' Fo.w(Lexpix ) | 9)
is differentiable with derivative zero. We observe that

Q1) = (So.0(Lexprx ) | T(exptX)g).

The L?(X)-valued function ¢ > Lepix f 18 C " on R, with derivative
t + LyxLepx f. Moreover, since ¢ is a smooth vector, the £2(0, w)-
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valued function t + m(exptX)p is also C' on R, with derivative
t — m(X)mw(exptX). By continuity of §¢ . and the inner product on
£2(Q, w), it follows that ®(¢) is C! with derivative given by

D'(0) = (So.0(LxLexprx f) | T(exptX)g)
+ $0.0Lexprx ) | T(X)7(exptX)g).

The latter expression equals zero by Lemma 9.7 (b), applied with Ly, x f
and (exptX)gp in place of f and ¢, respectively.

End of proof of Theorem 9.6: In the beginning of the proof of the theorem,
we established that £ ,, is a continuous linear map from L>(X)t0 £2(Q, w).

By density of C°(X)k in L?*(X) and continuity of the representations L
and g ., the G-equivariance of §¢ ,, follows from Lemma 9.8. ]

Let 0 € P, and let ¥ C K be a finite subset. We recall from [12],
Thm. 23.4, that the spherical Fourier transform F, associated with T = 7y,
originally defined as a continuous linear map C(X: ty) — 8( a*Qq) ®
A2,0(Ty), has a unique extension to a continuous linear map L*(X: ty9) —
Lz(ia*Qq) ® A2 o(Ty), denoted by the same symbol. For application in the
next section, we state the relation between the extended spherical Fourier
transform ¥, and § in a lemma. Let pr,, denote the projection operator

£2 — £2(Q) associated with the decomposition (9.4).

Lemma 9.9 Let Q € P, and let ¥ C K be a finite subset. Let f € L>(X)y
and let F = ¢3(f) € L*(X: 19) be the associated spherical function, see
Lemma 3.4. Then

FoF) = W y(pry o5 f(v)), 9.6)

for almost all v € ia*Qq. Here W » is the isometry of Lemma 9.3.

Proof: For f € CZ(X)y we have prjo§f(v) = f(Q: -1 v), so that
(9.6) follows from (9.2) and the definition of W, » before Lemma 9.3.
The general result follows from this by density of C2°(X)y in L*(X)y
and continuity of the maps Fpo ¢y and (I ® Wy ) o pry o § from L*(X)y
to Lz(ia*Qq) ® A o(1y), see [12], Thm. 23.4, and Lemmas 3.4, 9.3 and
Theorem 9.6. |

10 The Plancherel decomposition

Our goal in this section is to establish the Plancherel decomposition. For
this we need to characterize the image of the transform 7§, defined in the
previous section. To achieve this we shall first decompose § into pieces
corresponding with the parabolic subgroups from P, .
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Let Q € P,. For 9 C K a finite subset, we defined in [12], text before
Thm. 23.1, a subspace Cp(X: 73) of C(X: 7p), as the image of the wave
packet transform g o-In[12], text before Cor. 23.3, we defined L2Q (X: 1) as

the closure of Cp(X: 7y) in L*(X: 1y). Accordingly, we denote by LzQ X))y
the canonical image of L7, (X: t3) in L*(X)y, cf. Lemma 3.4. Finally, we

denote by L2Q (X) the L-closure of the union of such spaces for all ©¥. Then
it follows from [12], Cor. 23.3, that

L*(X) = ®gep, LH(X), (10.1)
with orthogonal K-invariant direct summands.

Lemma 10.1 Let Q € P,. The space LZQ(X) is G-invariant. Moreover,
§ maps LzQ(X) into £2(Q).

Proof: We shall first prove the second assertion. Fix P € P,, P # Q, and
assume that ¢+ C K is a finite subset. Then it follows from [12], Cor. 23.3
and Thm. 23.4 (c¢), that £» = 0 on LZQ(X: 7). In view of Lemma 9.9
this implies that prp o §(f) = 0 for every f € LZQ(X)ﬁ; here pr, denotes
the orthogonal projection £* — £2(P). By density of Ly, (X)x in L5(X)
and continuity of the map prpo3§: L*(X) — £%(P), see Theorem 9.6, it
follows that prpo§ vanishes on LZQ(X), for every P € P, \ {Q}. The
second assertion now follows by orthogonality of the decomposition (9.4).

Since F is an isometry, its adjoint §* is surjective from £ onto L?(X).
Moreover, since § is compatible with the decompositions (10.1) and (9.4),
it follows by orthogonality of the mentioned decompositions that

LX) = FH(£2(0)).

By G-equivariance of § and unitarity of the representations L and 7, the
map §* is G-equivariant. If follows that LzQ(X) is G-invariant. O

We denote by § the restriction of § to L2Q(X), viewed as a map into
£2(0).
Corollary 10.2 The map § is the direct sum of the maps § o, for Q € P,.
If #¢ is a Hilbert space, we denote by End(#) the space of continuous
linear endomorphisms of #, equipped with the operator norm. By U(#)
we denote the subspace of unitary endomorphisms. If P € £,, we define

W(apq) = W(apq | apq) asin [12], § 3. Then by [12], Cor. 3.5,

W(apy) ~ Wi/ Wp. (10.2)
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Proposition 10.3 For each s € W(agy) there exists a measurable map
CQ,S:ia*Qq — End(H(Q)), which is almost everywhere uniquely deter-

mined, such that v — ||€q (V)| is essentially bounded, and such that for
every f € C°(X),

So flsv) = o (V) o f(v), (10.3)

for almost all v € ia*Qq. For almost every v € ia*Qq the map €y ((v) is
unitary. Moreover, for all s, t € W(agg),

Co.a(v) = Co (V)0 Cp (V). (10.4)
In particular, €y 1(v) = I and Q:Q,s(v)’1 = €y -1(sv), forall s € W(agg).

For O minimal this result is part of Prop. 18.6 in [8]. In the present
more general setting, we initially reason in a similar way. For  C iaj,
a measurable subset, we denote by £%(Q) the closed G-invariant subspace
of £2(Q) consisting of square integrable functions ia*Qq — $9H(Q) that
vanish almost everywhere outside 2. The orthogonal projection onto this
subspace is denoted by ¢ > ¢q.

The uniqueness statement of Proposition 10.3 follows from the follow-
ing lemma, which generalizes [8], Lemma 18.7. We denote by a*Qr;g the
collection of elements H € aj,, whose parabolic equivalence class relative
to (af, T) is open in aj,,. The set a,,,* consists of finitely many connected
components, called chambers. The group W(apq) acts freely, but in general
not transitively, on the collection of chambers; therefore, there exists an
open and closed fundamental domain for W(agy) in a*Qng .

Lemma 10.4 Ler Q2 C i a*Qng be an open and closed fundamental domain
Jor W(agq). Then f — (pry§ f)a maps C°(X) onto a dense subspace of
Sé(Q/z, and C(X)y onto a dense subspace of ng (Q)y, for every finite set
¥ C K.

Proof: The proof is similar to the proof of Lemma 18.7 of [8]. Fix a finite
subset ¥ C K; then it suffices to prove the statement about C°(X)y,
by density of the K-finite vectors. Let T € £%(Q)s, and suppose that
(pro§f 1 T) =0forall f € CZ(X)y. Then it suffices to show that 7 = 0.
Put T(v) = ) T(w: v) with T(w: v) € H(Q, w)y. Note that this sum is
finite by Lemmas 9.1 and 9.2. Let T = 1y, then Y1, ) € 42 o (7). We put

V)= Wy(TW) = D Yrw:w € Aro(D).

A
weXQ‘*‘dS

Note that for Q minimal, the constants d,, that occur in [8] are absent
here, see Remark 4.1. Let FF € C°(X: 1), and let f = F(-)(e). Then
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feCrX)yand F = ¢y(f), see Lemma 3.4. Moreover, as in [8], proof
of Lemma 18.7,

(FoF | W) = (f(Q)|T) = (proFfIT) =0. (10.5)

Let the space [Lz(ia*Qq) ® Ay, (7)1 be defined as in [12], text before
Cor. 22.2. It follows from the definition of this space that the restriction map
@ > @|q is a bijection from it onto L*(2) ® A, o (7).

The image of C2°(X: 1) under ¥, is dense in the space [L>(i a*Qq) ®
A2.0(0)]"@2) by [12], Thm. 23.4 (c). Combining this with (10.5) we see
that W is perpendicular to the mentioned space. Since W = 0 outside €2, we
infer that W|q is perpendicular to L*(Q) ® A2, 0(7). We conclude that W,
hence T, is zero. O

Proof of Proposition 10.3: We fix a finite subset ¥ C K and put T = Ty.
We will first prove that there exists a measurable map QﬁQ,w:ia*Qq —
End($)(Q)y), such that (10.3) is valid with €y  » in place of € , for every
f € CX(X)y. We define

Cosp(V) = Wy o CQ (st 1) o Wy, (10.6)

where Wy is the isometry from $)(Q)y onto 4, o(7) defined in the text pre-
ceding Lemma 9.3 and where the C-function is defined as in [12], Def. 17.6,
with T = 73. We note that the End($)(Q)y)-valued function €y  » is ana-
lytic on iaj,, by [12], Cor. 18.6. It follows from Lemma 9.3 combined with
the Maass—Selberg relations for the C-function, see [12], Thm. 18.3, that
Co.s,9(v) maps H(Q)y unitarily into itself, for v € ia*Qq. From (10.6) and
[12], Lemma 22.1 with P = R = Q, we deduce that (10.4) is valid with
everywhere the index ¢ added.

In view of Lemma 10.4, the function €y , » is uniquely determined by
the requirements in the beginning of this proof. If ¢’ C K is a second finite
subset with ¥ C ¢, let iy » denote the inclusion map H(Q)y — H(Q)y,
and let pry ; denote the orthogonal projection H(Q)y — $H(Q)y. Then it
follows from the uniqueness that

pry.g o€ s (V) oy y = Co59(V),

for every v € iap,. By unitarity of the endomorphisms € ;»(v) and
Co.s,»(v) this implies that €y ; 5 (v) leaves the subspace $H(Q)y of H(Q)y
invariant, and equals € ¢ »(v) onit. Thus, we may define the endomorphism
Co.s(v) of h(Q) by\requiring it to be equal to € ; »(v) on h(Q)y, for every
finite subset ¥ C K. The endomorphism defined depends measurably on v,
has essentially bounded norm and satisfies (10.3). We asserted already that
it is uniquely determined by these properties, in view of Lemma 10.4. The
remaining asserted properties of € ((v) follow from the discussion above.

O



Plancherel decomposition II 611

Lemma 10.5 Let Q € P, and let Q2 be an open and closed fundamental do-
main for the W(apq)-actionin ia*Qrgg . Thenthemap f+|W(agg)| 2(F0fa
defines an isometric isomorphism from LZQ (X) onto £2(Q)q, intertwining
the restriction of L to LZQ (X) with the direct integral representation

(&)
Buexyy, /Q 190.0) ® W06 [W:Wé]dﬂg(l)) (10.7)

of G in £2(Q)q.
Proof: In view of Theorem 9.6 and Lemma 10.1, the map § ¢ is an isometry

from LZQ(X) into £%(Q), intertwining the restriction of L to LZQ(X) with

o= 7|g2 ). The map ¢ > @q from £2(Q) to £2(Q)q intertwines o
with the direct integral (10.7). Thus, it remains to be shown that the map
T: f = [W(agg!'*(So.f)e from Ly (X) to £2(Q)q is isometric and onto.

To establish the first property, we note that, for f € L2Q(X) and s €
W(aQq),
IS0 fsv)ll = €0 s (T W = IS0 fWII,

for almost every v € iap, , by Proposition 10.3. Hence,
1FIE = 15 £ 1% = 150 I g,
= [ IS0 P [W: W5l dieo

la*Qq
= Y | IBof6)I? [W:Wp]duo(v)

s€W(agy) ¥ <

|W(agg)l /QIISQf(V)II2 [W:Wg]dio ).

It follows that T is an isometry. On the other hand, 7 has dense image in
view of Corollary 10.2 and Lemma 10.4. We conclude that 7 is surjective.
0

We shall now investigate irreducibility and equivalence of the occurring
representations g o .

Lemma 10.6 Let w € X),.. Then m has a real infinitesimal Z(g)-character
in the following sense. Let j be a Cartan subalgebra of g, W(j) the Weyl group
of the root system X(j) of jc in gc. Let [A] € j%/W() be the infinitesimal
character of . Then (A, «) is real for every a € X(j).

Proof: Let b a 6-stable Cartan subspace of ¢, let X(b) be the root system
of b in g., W(b) the associated Weyl group and I(b) the algebra of W(b)-
invariants in S(b), the symmetric algebra of b¢. Let yp: D(X) — I(b) be the
associated Harish-Chandra isomorphism. Let L(X), be defined as in (3.2)
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with 7 in place of £&. We may fix a non-zero simultaneous eigenfunction
f for D(X) in [L*(X),]®. Let A € b% be such that Df = yu(D: 1) f for
D € D(X). Then in particular, for each element Z of 3, the center of U(g),

Rzf =ve(Z: 1) f. (10.8)

On the other hand, Rz f = L f may be expressed in terms of the infinites-
imal character of & as follows. Let j be a 6-stable Cartan subalgebra of g
containing b, let X(j) and W(j) be as in the lemma, and let /(j) denote the
algebra of W(j)-invariants in S(j). We denote the canonical isomorphism
3 — I(j) by y;5. Let A € jc be as in the lemma, then

Rif =L;f =w(Z: Nf =9(Z: =N f. (10.9)
From (10.8) and (10.9) we obtain that
VW(Z:=A) =ye(Z: 1), (Z € 3). (10.10)

Let [ be the centralizer of b in g, let ([, j) be the root system of j in [,
X7 (le, j) a choice of positive roots and §; € j* the associated half sum of
the positive roots. By a standard computation in the universal enveloping
algebra, involving the definitions of y; and yy, it follows that y4(Z: 1) =
Yi(Z: A — &), for all Z € 3. Combining this with (10.10) we obtain that
—A and A — §; are W(j)-conjugate.

Now (A, «) isreal, for each o € X(b), by [26], see also [12], Thm. 16.1.
It readily follows that A is real. m|

The following result is due to F. Bruhat [14] for minimal parabolic
subgroups and to Harish-Chandra in general. A proof is essentially given
in [23].

Theorem 10.7 For j = 1,2, let P; = M;A;N; be a parabolic subgroup
of G, with the indicated Langlands decomposition. Moreover, let &; be an
irreducible unitary representation of M; with real infinitesimal character
and let v; € ia} be regular with respect to the roots of a; in P;. Let 7,

denote the unitarily induced representation Indgj Ev,1).

(a) The representation 7 is irreducible, for j =1, 2.

(b) The representations m and mw, are equivalent if and only if the data
(aj, v, [§;D, for j = 1,2, are conjugate under K. The latter condition
means that there exists k € K such that Ad(k)a; = ay, v; o Ad(k)~!
= vy and & ~ &, where &f: = & (k™' (- k)| .-

Proof: Taking into account the actions of the centers of M; and G, one
readily checks that it suffices to prove this result for G connected semisimple
and with finite center. Thus, let us assume this to be the case.

Assertion (a) follows from [23], Thm. 4.11. Thus, it remains to prove
assertion (b). We first establish the ‘if” part. If, in addition to the hypoth-
esis, P, = kP,k~!, then the equivalence of 7y, 7, is a trivial consequence
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of conjugating all induction data. Thus, by applying conjugation we may
reduce to the case that a; = a,, v = v, and & ~ &,. Then P, and P, have
the same split component. It now follows from [22], Prop. 8.5 (v), that there
exists a unitary intertwining operator from s, onto 7. Hence m; ~ m,.
We shall now prove the ‘only’ if part. Assume that 7; ~ m,. By con-
jugating all induction data of m; with an element of K, we see that we
may restrict ourselves to the situation that P; and P, contain a fixed min-
imal parabolic subgroup Py of G, with split component A . In particular,
a; C ap for j = 1, 2. It now follows from [23], p. 94, text under the head-
ing ‘equivalence’, that there exists a k € Ng(ag) such that Ad(k)a; = a,
and v; o Ad(k)~' = v,. Conjugating all data of 7; with k we see that we
may as well assume that a; = a, and v; = v,. Moreover, applying [22],
Prop. 8.5 (v), as in the first part of this proof we see that in addition we may
assume that P, = P,. We now claim that & ~ &,. This assertion is essen-
tially proved in [23], proof of Thm. 4.11, but not explicitly stated as a result.
We shall indicate how to modify the mentioned proof. We use the notation
of [23]. In particular, §; = °o;. We follow the proof of [23], Thm. 4.11,
after the heading ‘equivalence’, but with P, = P, = P and v; = v, = v.
From i(7y, 75) > 0 it follows, by application of [23], Thm. 4.10, that

(1 o (E93EY) @ C) "

has positive dimension. Now M;O) equals C*°(P), equipped with the left
times right action of P (see [23], Eqn. (2.6)). Hence the above space is
naturally isomorphic with the space of diag(P x P)-invariants in
(E?@Eg/)’ which in turn is naturally isomorphic with Homp(E?, E(l)) =
Homy,(°07, °o1). It follows that the latter space is non-trivial, hence
°o1 ~ °07, since the representations involved are irreducible. O

*reg

Proposition 10.8 For j = 1,2, let Q; € P,, w; € X@j’*’ds, Vj € Q64
Then the representations T; = 7, o; v; are irreducible. Moreover, they are
equivalent if and only if Q1 = Q, and there exists s € W(ag,q) such that
V) = sV and wr, = swy.

Proof: Put&; =&, and Q = Q. There exists v € ¢W, such that w; be-
longs to the discrete series of Mo/ MoNvHv™!. It follows from Lemma 10.6
that @ has a real infinitesimal character for the center of U(mg). A similar
statement holds for Q,, w;.

If o is aroot of agp in Q, then its restriction g to agq belongs to X, (Q).
Moreover, (o, vi) = (alay, > V1) # 0. Thus, it follows that v; is regular
with respect to the ap-roots in Q. A similar statement holds for v,.

Thus, Theorem 10.7 is applicable and we conclude that 7 and m, are
irreducible.

Assume that 7y ~ ;. Then by Theorem 10.7 (b) we conclude that there
exists k € K such that Ad(k)a; = a, vioAd(k)~' = v, and & ~ &.
Since ov; = —v;, for j = 1,2, it follows by application of o that also
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Vi o Ad(ok)™! = v,. We infer that Ad((ck)~'k)~!* centralizes v,, hence
belongs to the centralizer My of agq, by regularity of v;. The mentioned
element therefore centralizes ap, from which we see that Ad(k) = Ad(ok)
on ag. This implies that o o Ad(k) = Ad(k) oo on ap, hence Ad(k) maps
agq onto ag,q. We conclude that Q; and Q, are associated, hence equal.
Put 0 = Q) = 0.

It follows from the above that Ad(k) normalizes apq. Hence, s:=
Ad(/’c)lcqu belongs to W(agg), see [12], § 3. Finally, it follows that sv; = v,

and s[/] = [§]] = [&]. O
Theorem 10.9 Let, for each Q € P,, an open and closed fundamental do-

main Qg for the action of W(agq) oni a*Qng be given. The Fourier transform

§ induces the following Plancherel decomposition of the regular represen-
tation L of G in L*(X):

Q,*,ds

(&)

L= @0, Bucx;, | 10w ® 70w IWIWol ' dito(. (1011
Qo

and

(7]
Fr=> > /Q ISo flw: =v)I” IW[IWol ™" dug(v), (10.12)
Q

0ePs weXy , 4

or eve e L*(X). In particular, for each € P, and every w €
ry p ry
X5 the induced representation m ,, occurs with multiplicity mg ., =

dim V(Q, w), for almost every v € Q.

J%,ds?

Proof: The fact that § induces the isometric isomorphism of L with the
directintegral as expressed by (10.11) and (10.12) follows from Lemma 10.5
applied to —€2 in place of €2, combined with Corollary 10.2 and (10.2). The
occurring representations g ,, , are all irreducible, by Proposition 10.8. It
remains to exclude double occurrences. For j = 1,2, let Q; € P,, w; €
X, s Vi € 80 » and assume that 779, v, ™ 70s,0.1,- Then it follows
from Proposition 10.8 that O = Q5. Moreover, there exists s € W(ag,q)
such that (svy, sw1) = (v2, w2). Since Qp, = Q¢, is a fundamental domain
for the W(ayp,q)-action, it follows that s = 1. |

We finish this section with a description of the image of the isometry
5 LX) — £

Lemma 10.10 Let Q € P, and s € W(agq). Then for almost every
VeIl a*Qq, the unitary endomorphism €y ((v) of $(Q) maps the subspace
9(Q, ) onto H(Q, sw), for w € Xy, , 4 intertwining the representations
nQ,w,u and T[Q,sa),sv-
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Proof: Lets € W. We will first show that, for almost every v € ia*Qq, the
unitary endomorphism &€ ,(v) of $(Q) intertwines the direct sum g ,
of the representations 1 ® ¢ 4 —y, for € X wds? with the similar dir-
ect sum g g, of the representations 1 ® g o . Let Q be an open and
closed fundamental domain for the W(apg4)-action on zaQ q . Then the map
Soa: f = To(f)q is an equivariant 1sometry from L2 (X) onto £2(Q)q,
by Lemma 10.5. Similarly, the map § ¢ ,q is an mtertwmmg 1somorphlsm
from L2 (X) onto £2(Q),q. Moreover, by (10.3), for every f € L2 (X) we
have

5" (Sosa /)W) = Fosaflsv) = Co (1) Foa f(V),

for almost every v € Q. It follows that the map ¢ — s 1 [Cos(-)elisan
equivariant isometry from £2(Q)q onto £2(Q)q. Let x € G. Then

s* o)™ (€0 5( )l = Co (- )To (D),
for every ¢ € £2(Q). It follows that
7o)€ (V) = o (V)@ v (X) (10.13)

for almost every v € Q. Since 2 was arbitrary, (10.13) holds for almost
every v € iap,. Select a countable dense subset Gy of G. Then there
exists a subset A C id,.° with complement of measure zero in iaj,, such
that €y () is represented by a function on 4 with values in U($(Q)),
satisfying (10.13) for all x € Gy and v € »4. By continuity of €y ((v) and of
the representations 77, and 17 s, it follows that (10.13) holds forall v € A
and all x € G. In view of Theorem 10.7, the representation 1 ® wg 4 —sv,
for & € X}, 4 and s € s, is not disjoint from 1 ® 7g ,, -, if and only if

o = sw. All assertions now follow for all v € A. O

It follows from the above result that, for each s € W(apq), we may
define a unitary endomorphism I"p (s) of £2(Q) by

[Co($)¢l(v) = €g (s~ v)gp(s~ '),

for ¢ € £2(Q) and almost every v € ia*Qq. Moreover, the map 'y (s)
intertwines o with itself. It follows from Proposition 10.3 that s > T"¢ (s)
defines a unitary representation of W(apq) in £2(Q), commuting with the

action of G. Accordingly, the associated space £*(Q)"(@24 of invariants is
a closed G-invariant subspace of £2(Q).

Theorem 10.11

(a) Foreach Q € P,, the image of o equals £*(Q)" @2,
(b) The image of the Fourier transform § is given by the following orth-
ogonal direct sum

im (§) = @gep, £7(Q)"00.
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Proof: From Proposition 10.3 it follows that §o maps into £*(Q)"(®ed).
Thus, for (a) it remains to prove the surjectivity. Let 2 be an open and
closed fundamental domain in i a*Qr;g for the action of W(agg). Then the map

@ > ¢|q is a bijection from £2(Q)"@2d) onto £%(Q)q. The surjectivity
now follows by application of Lemma 10.5.
Finally, assertion (b) follows from (a) combined with Corollary 10.2. [J

11 H-fixed generalized vectors, final remarks

In this section we compare our results with those obtained by P. Delorme
in [21]. This comparison relies heavily on the automatic continuity theorem,
due to W. Casselman and N.R. Wallach, see [18], Cor. 10.5 and [29],
Thm. 11.6.7. We shall therefore first recall this result. The group decomposes
as G >~ °G x exp¢p, where, as usual, °G denotes the intersection of all
subgroups ker | x|, with x a continuous homomorphism G — R*, and where

¢, = center(g) Np. Accordingly, we define the function || - [|: G — ]0, co [
by

lxexp H| = |Ad(0)llop €™, (11.1)
for x € °G and H € cp; here || - [|op denotes the operator norm on End(g).

Let a, be a maximal abelian subspace of p containing ag, and let X(ayp) be
the root system of a, in g. Then one readily checks that

lkiaks || = max a”, (11.2)
aex(ap)
for ki, k; € K and a € Ay, N °G. In particular, it follows that || - || > 1

on G. Note that it follows from (11.1) and (11.2) that
Ixll = 1Ix"' - (e G). (11.3)

We recall from [29], 11.5.1, that a smooth representation 7 of G in a Fréchet
space V is said to be of moderate growth if for each continuous seminorm
s on V there exists a continuous seminorm p; on V and a constant d; € R

such that

() < [Ix[I1* py(v),

forallve Vand x € G.

Theorem 11.1 (The automatic continuity theorem) Let (r;, V;), for j =
1,2, be smooth Fréchet representations of G of moderate growth, such
that the associated (g, K)-modules (V) are finitely generated. Then every
(g, K)-equivariant linear map (V1)x — (V) extends (uniquely) to a con-
tinuous linear G-equivariant map Vi — V,. Moreover, the image of the
extension is a closed topological summand of V,.
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Remark 11.2 A proof of this theorem, due to W. Casselman and N.R. Wal-
lach, is given in [18], Cor. 10.5 and in [29], Thm. 11.6.7, but for a somewhat
different class of real reductive groups. In [19], § 1, it is shown that the
result is valid for groups of Harish-Chandra’s class.

For any function f: G — C and any non-negative real number » > 0
we define

Ifllr:= sup Il 101 (11.4)

Moreover, we define C, (G) to be the space of continuous functions f:G — C
with || f|l, < oo. Then C,(G), equipped with the norm || - ||, is a Banach
space.

Lemma 11.3 For every g € G, both the left regular action L, and the right
regular action R, leave the space C.(G) invariant; their restrictions to the
mentioned Banach space have operator norm at most || g||".

Proof: For any function f:G — C, we define fV:G — C by fY(x) =
f(x~1). It follows from (11.3) and (11.4) that f > fV is an isometry from
the Banach space C,(G) onto itself, intertwining R, with L. Therefore, it
suffices to prove the assertions for the left action.

In view of (11.1) it follows from the multiplicative property of the
operator norm that ||gx| > |lg~'||"'|lx] for all x, g € G. Applying this
inequality to the definition of ||L, f1|,, for f € C,(G) and g € G, we see
that L, acts on C,(G) with operator norm at most || ¢~ '|I". The lemma now
follows by application of (11.3). O

We note that the left regular representation L of G in C,(G) is not
continuous if G is not compact. In fact, in that case there exists a function
f € C.(G) such that L, f has no limit for g — e. However, L does induce
a continuous representation in a subspace that we shall now introduce.

We define C;°(G) to be the space of smooth functions f: G — C with
L,f eC.(G)forallu € U(g). If F C U(g) is a finite subset, we define the
seminorm Vg, on C:°(G) by

vF,r(f): = max ”Luf”r
ueF

We equip C°(G) with the locally convex topology induced by the collection
of seminorms vg,, for F C U(g) finite. It is readily seen that the space
C°(G), thus topologized, is a Fréchet space.

Remark 11.4 The space C>°(G) has been introduced in [18], p. 424, where
it was denoted by Aymg (G). In the mentioned paper it is asserted that this
space is a continuous G-module of moderate growth for the left action. The
following result expresses that in fact this G-module is smooth.
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Proposition 11.5 Let r > 0. The space C:°(G) is left G-invariant. More-
over, the left regular representation L of G in C;°(G) is a smooth Fréchet
representation of moderate growth.

Proof: In [15], § 1, the space Ay(G/H), for N € N, is defined as the
analogue of C>(G), with respect to the norm function g +— |go(g)~'||
on G/H, in place of the norm function || - || on G. Proposition 11.5 is the
analogue of [15], Lemma 1. The proof of the mentioned lemma may be
transferred to the present situation with obvious modifications. m|

Corollary 11.6 Letr > 0. Every closed G-submodule of C2° (G) is a smooth
Fréchet module of moderate growth.

Proof: Immediate. See also [29], Lemma 11.5.2. |

Proposition 11.7 Let (7, V) be a smooth Fréchet representation of G of
moderate growth, such that Vi is finitely generated. Let r > 0 and let
T:Vg — CX(G) be a (g, K)-equivariant linear map. The map T has
a unique extension to a continuous linear G-equivariant map V. — C°(G).
The image of this extension is closed.

Proof: Let W be the closure of the image of T in C°(G). Then W is
a closed G-submodule of C:°(G), hence a smooth Fréchet module of
moderate growth. Moreover, Wx = T(Vk) is finitely generated. By Theo-
rem 11.1, T has a unique extension to a continuous linear G-equivariant map
T:V — W. The image of this extension is closed and contains a dense sub-
space of W, hence equals W. O

Lemma 11.8 Let r > 0. Then the space CX°(G) is right G-invariant.
Moreover, if y € G, then the right regular action R, restricts to a continuous
linear operator of C2°(G).

Proof: Itfollows from Lemma 11.3 that R, is a continuous linear endomor-
phism of C,(G) with operator norm at most || y||". Since the action of R, on
C*°(G) commutes with that of L,, for every u € U(g), it readily follows
that R, leaves the space C;°(G) invariant and restricts to a continuous linear
endomorphism of it. m|

Let r > 0. We define
CX(X):=CX(G)NC(G/H),
the space of right H-invariant functions in C°(G).

Lemma 11.9 Let r € R. The space C°(X) is a closed G-submodule of
C°(G). In particular, it is a smooth Fréchet G-module of moderate growth.

Proof: For every h € H, the map R;, — [ restricts to a continuous linear
operator of C;°(G), by Lemma 11.8. The space C;.°(X) equals the intersec-
tion in C2°(G) of the kernels of the operators R, — I, for h € H. Therefore,
C°(X) is closed. The remaining assertion follows by application of Corol-
lary 11.6. O
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Remark 11.10 1t follows from [4], Cor. 12.2, that the space C2°(X) equals
the space Ay (G/H), with N = 2r, defined in [15], § 1; the definition in
the last mentioned paper is given for N € N, but makes sense for arbitrary
real N > 0. Accordingly, Lemma 11.9 is due to [15]; see loc. cit. Lemma 1.

If V is alocally convex space, we denote its continuous linear dual by V'.
Unless otherwise specified, we equip it with the strong dual topology.

Corollary 11.11 Let (7, V) be a smooth Fréchet representation of G of

moderate growth, such that Vi is finitely generated. Let r € R and let

T:Vk = CX(X) be a (g, K)-equivariant linear map.

(@) Themap T has a unique extension to a continuous linear G-equivariant
map T:V — Cr(X).

(b) The linear functional ev,-T:v +— Tv(e) has a unique extension to
a continuous linear functional np € V'.

(¢c) The functional nr is H-invariant and T may be represented as the
generalized matrix coefficient map given by

T(v)(x) = nr(w(x)"'v), (x € G/H).

Proof: From Proposition 11.7 it follows that 7" has a unique extension to
a continuous linear G-equivariant map 7:V — C>°(G). The image of
T is a closed subspace W of C>°(G) which contains the image of T as
a dense subspace. In view of Lemma 11.9 it follows that W C C°(X). The
extended functional is given by 77 = ev,oT:v > Tu(e). The assertions
of (c) readily follow by G-equivariance. O

Using the above result we shall be able to express our Eisenstein integrals
as matrix coefficients of principal series representations. As a preparation
we need to relate the function || - ||, defined in (11.1), to the G = KA H-
decomposition. Following [12], Eqn. (10.1), we define the distance function
Ix: G — [0, 00 by

Ix(kah) = |logal,

fork € K,a € Ajandh € H.
Lemma 11.12 There exists a constant s > 0 such that
X < x|, (x € G).

Proof: One readily sees that it suffices to prove this in case G = °G.
Moreover, since the functions of x on both sides of the equality are left
K-invariant, we may reduce to the case that G is connected and semisimple,
with finite center. From [6], Lemma 14.4, we deduce, using the equality
x|l = |lx~1||, that ||la|| < ||lah|| for all a € Aq and h € H. Hence, by the
G = KAy H decomposition, it suffices to prove the estimate

el < al®, (a € Ay, (1L.5)
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for some s > 0 independent of a. Let m be the minimal value of the
continuous function max{« | « € ¥(ay)} on the unit sphere in a4. Then
m > 0. Using (11.2) we see that the estimate (11.5) holds for s > m~!. O

Let Q € #,and € € X@’*’ 4 be fixed throughout the rest of this section.

Lemma 11.13 Let ¢ C K be a finite subset, let y € A, o(ty)e and let
Vo € Apgc be a regular point for the Eisenstein integral E°(Q: ¥ : v).
There exist an open neighborhood U of vy and a constant r > O such that
v E°(Q: ¥ v)isabounded function on U with values in C°(X) ® V.

Proof: 1t follows from [12], Prop. 13.14, combined with Lemma 11.12,
that there exist an open neighborhood €2 of vy and a polynomial function
p € Hzr(Q)(a*Qq), such that the function v — p(v) E°(Q : v) is holomorphic
on €2 as a function with values in C7°(X) ® Hom(A o (), V) and such
that for every continuous seminorm p on the latter tensor product space, the
function v — u(p(V)E°(Q : v)) is bounded on 2.

Select an open neighborhood U of vy with compact closure contained in
Q such that E°(Q: ¥ : -) is holomorphic on an open neighborhood of U.
Then it follows by a straightforward application of Cauchy’s integral for-
mula in the variable v, see, e.g., [4], proof of Lemma 6.1, that for every con-
tinuous seminorm i’ on C°(X) ® Vy the function v = p/'(E°(Q: ¥ : v))
is bounded on U. O

Lemma 11.14 Let v € aj.. The representation 7g ¢, of G in C*(K : §)
is a smooth Fréchet representation of moderate growth. Moreover, the as-
sociated (g, K)-module C*(K : &) is finitely generated.

Proof: 1t follows from Remark 4.2 that V:= C*(K : &), equipped with
0.0, 18 the space of C*-vectors for the Hilbert representation Indg ¢ét®
v ® 1). It now follows from [29], Lemma 11.5.1, that V is a smooth Fréchet
G-module of moderate growth. The last assertion is well known, see also
Proposition 5.1 for a stronger assertion. O

Proposition 11.15 Let v € aj, . \ UH(Q, §).

(a) There exists aconstantr € Rsuchthat Jg ¢, maps V(Q,8QC®(K: &)k
into the space C°(X).

(b) Letr € R be a constant as in (a). The map Jo ¢, has a unique extension
to a continuous linear map from V(Q, £) @ C*(K : £) into C>X(X). The
extension intertwines the G-representations 1 ® mwgp ¢, and L.

Proof: Fix v as above. By Lemma 11.14, there exists a finite subset ¢ C K
such that C*(K : &), generates C®(K : &)k as the (g, K)-module associ-
ated with mp ¢ _,. Letr € R be associated with ¢ as in Lemma 11.13. Then
it follows from (4.20) that Jg ¢ , maps V(0,8 QC®(K: &)y into CX(X).
The map Jg ¢, is (g, K)-equivariant, by Theorem 4.6. Since C*°(K : §)»
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generates C°(K : &)k, whereas C2°(X) is (g, K)-invariant, assertion (a)
follows.

Assume that r is a constant as in (a). Then it follows from Theorem 4.6
that the map Jp ¢, is (g, K)-equivariant. In view of Lemma 11.14 and
assertion (a), we may apply Corollary 11.11 with T = Jg ¢ ,. Assertion (b)
follows. O

Ifve aQ \ UH(Q, &), we denote the continuous linear extension of
J £, by the same symbol. We denote the conjugate of the topological linear
dual of C*°(K : &) by C™°(K : &). The G-representation on the latter space,
induced by dualization of m¢ , = mg ¢ ,, is denoted by JTS =,

The sesquilinear pairing C*(K : §) x C*°(K : §) — C, glven by 4.5)
induces a continuous linear embedding C*°(K : §) — C~ (K : &), inter-
twining the representations g _y and T, . o°. The latter may therefore be
viewed as the continuous linear extension of e, —p. Accordmgly, we shall
sometimes use the notation ¢ _; for the representation 7, °.

We denote by V(Q, £) the conjugate space of V(Q, &), and define the
linear map j°(Q: &: ): V(Q,&) — C*°(K: &) by

(@ j°(Q:&: D)) = Joen(n @ @)(e). (11.6)

Then by Proposition 11.15 and Corollary 11.11, the image of j°(Q: &: V) is
contained in the subspace of C~>°(K : &) consisting of H-invariants for the
representation s ;; we agree to denote this subspace by C~°(Q: & : 1)f.

We may now represent the Eisenstein integral as a matrix coefficient. The
following formula generalizes the similar formula for Q minimal, see [7],
Eqn. (53).

Lemma 11.16 Letv € a*QqC \UH(Q, &), let ¥ C K be a finite subset and
letT=n®¢e V(Q,& Q C°(K : £)y. Then

ES(Q: Yr: () (k) = (¢ |moenkx)j°(Q: §: V1)) (x € X, ke K).

Proof: This follows from (4.20) and (11.6), by application of Corollary
11.11 (¢). O

To identify our Eisenstein integral with the one introduced by P. Delorme
in [19], we recall some results from [16], § 2.4.

For each v € 2'W, we denote by V(Q, &, v) the space of My N vHY -
fixed elements in F, °°, the conjugate of the topological linear dual of #°.
The space V(Q, &, v) is finite dimensional by [1], Lemma 3.3. We introduce
the formal direct sum

V(Q’ %-) = 69UEQ'W V(Q’ S’ "U).

If u € C~°(Q: &:v)f, then on an open neighborhood of any v € W
in K, the functional # may be represented by a unique continuous function
with values in J(’S_Oo, via the sesquilinear pairing (4.5). Its value ev,(u) in v



622 E.P. van den Ban, H. Schlichtkrull

is therefore a well defined element of V(Q, &, v). See [16], § 3.3, for details.
The direct sum of the maps ev,, for v € ¢'W, is denoted by

ev = @,cow evy: CX(Q: &: )" - V(0Q,§).
We have the following result, due to [3] for minimal Q and to [16] in general.

Theorem 11.17 There exists a unique meromorphic function j(Q, &, -) on

a*QqC with values in Hom(V(Q, &), C~°°(K : &)) such that the following two

conditions are fulfilled.

(a) For regular values of v, the image of j(Q: &:v) is contained in
C~>(Q: &: v,

(b) For regular values of v, we have evo j(Q: & :v) = Iygg.

There exists a locally finite collection H = H(j, Q, &) of hyperplanes

in a*QqC such that each v € a*QqC \ UH is a regular value for j(Q:&: -)

and the associated map j(Q:&:v) is surjective from V(Q,§) onto

C—>(Q: &: v,

Finally, each v € aj,. with Rev + pg strictly X,(Q)-anti-dominant is
aregularvalue for j(Q: &: ). Moreover, for suchv andeveryn € V(Q, &),
the element j(Q: &:v)n € C~™(K : &) is representable by a continuous
function u: K — Jt’goo, in the sense that

(plj(Q:&:v)n) = f (p(k) [ u(k)) dk, (p € CP(K: ).
K
Proof: This follows from [16], Prop. 2, Thm. 1 and Thm. 3. O

The Eisenstein integrals of Delorme are built in terms of matrix coeffi-
cients coming from a subspace V,(Q, &) of V(Q, &), which is defined as
follows, see [19], § 8.3. Let v € 2'W. An element n € V(Q, &, v) natural-
ly determines the Mp-equivariant embedding ¢,: #Z° — C*(Mo/Mg N
vHv™!), given by

Ly (u)(m) = (E(m)~"u|n), (m € Mp).

We denote by V4 (Q, &, v) the subspace of n € V(Q, &) with the property
that ¢, maps into L>(Mo /M N vHv~")*. Note that for such n the map ¢,
extends to a continuous linear map Hz — Lz(XQ,v); see [17], Lemma 1.
Moreover, the map n > ¢, defines a linear isomorphism from V4 (Q, &, v)
onto V(Q, &, v), via which we shall identify.

We define the subspace V4 (Q, &) of V(Q, &) as the direct sum of
the spaces Vg (Q, £, v), for v € ¢W. Via the direct sum of the above
isomorphisms, we obtain the natural isomorphism

Vas(Q.8) = V(Q. §).

Accordingly, the map j° introduced in (11.6) may be viewed as a linear map
JQ: g ) V(0,8 — CT2(Q: &),
defined for v € a*QqC \UH(Q, &).
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To relate this map with the map j(Q: &:v) of Theorem 11.17 we
need standard intertwining operators. We recall from [29] and [16] that
for a parabolic subgroup P € £, with split component equal to Ay, the
standard intertwining operator A(Q : P : & : v) between the representations
Tpeyand wg g, on C°(K : &) is given by an absolutely convergent integral

for v € af. with (Rev — pg , @) > 0 for every @ € Z,(P) N >,(0), and
allows a meromorphic continuation in v. Its adjoint is a continuous linear
endomorphism of C~*°(K : &), intertwining the representations néf’;v and
n;@f’u. It extends the standard intertwining operator A(P: Q: &: —V), and
is therefore denoted by the same symbol. Thus,

AQ: P E:v)*=AP: Q:&: —D). (11.7)
We also recall that

AP: Q:5: ) A(Q: P:&:v)=n(Q: P:&:v) Icoik.g
with n(Q: P: &: -) a non-zero scalar meromorphic function on aj;qc =
Upqc- In particular, it follows that the standard intertwining operator is
invertible for v in an open dense subset of a,..

Lemma 11.18 Let v € a*QqC be such that Rev — p¢ is strictly X,.(Q)-
dominant. Then, for every n € V(Q, &) and ¢ € C*°(K : &), and for each
ve W, allm e Mg and all X € aJQFq,

. —V+p
lima, "? {
[—00

@175, (magv) (O €: D))
= (A(Q: Q: &: —v)p(e) |Em)n,),
where a; = exptX.
Proof: The result is equivalent to Lemma 16 in [19]. We refer to the proof
given there. m|

Theorem 11.19 Letn € V45(Q, &). Then j°(Q: &: -)n is holomorphic as
a function on a*Qq(C \ UH(Q, &) with values in C~*°(K : &). Moreover,

Qg vn=AQ: Q:§: 1) j(Q: & v,
as an identity of meromorphic C~°°(K : &)-valued functions in v €

a*QqC \ UH(Q, &). In particular, j°(Q: &: -)n extends to a meromorphic
C™(K : §)-valued function on ay,.

For the proof of this result we need the following lemma.
Lemma 11.20 Let 9 C K be a finite subset. There exists an open dense
subset 2 of the set of points v € ap. with Rev strictly ,(Q)-dominant,

such that the following holds. Let Y € A o(ts), v € W, m € Xg.u+,
X e aJQFq and put a, = exptX, (t € R). Then, for every v € Q,

lim a, " E(Q: yr: v)(mayv) = () (m).
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Proof: Let w be the set of regular points for E°(Q : -), and w, the subset
of v € w with Re v strictly X, (Q)-dominant.

Fix a minimal parabolic group P from J#,, contained in Q. Then, by [12],
Prop. 13.15, the family f: (v, x) — E°(Q: v: x)¥ belongs to Sthp(X: 7).
Moreover, for each u € Ng(ag), the set of exponents Exp (P, u | f,) is
contained in the collection WF'2(v + A(P|Q)) — pp — NA(P), forv € w.

Fix v € w, and let £ be an exponent in Exp (Q, v | f,). Then it follows
by application of [11], Thm. 3.5, that § = w(v + A)|a,, — po — i, for
certain w € WFI2, A € A(P|Q) and u € NA,(Q). It follows from
the definitions preceding [12], Prop. 13.15, that wA € —RTA(P). Hence
Re&(X) + po(X) < wRev(X), with equality if and only if wAlq,, = 0
and © = 0. Now Rev is strictly X, (Q)-dominant and X € aJQFq. Hence, by
a well known result on root systems, Re v(X) > Resv(X), for eachs € W,
with equality if and only if s centralizes ap,. Since W” 12N Wy = {e}, we
conclude that

Re§(X) < (Rev — pp)(X)
for every exponent & € Exp (Q, v | f,), different from v — py. It follows
that

lim a, """ f,(ma,v) = lim q,—py (Q, v | fo, X)(m), (11.8)
11— 11— 00

for every v € w, for which the limit on the right-hand side exists. It follows
from [12], Def. 13.7 and Prop. 13.6, that there exists a non-empty open
subset 2 of a*QqC such that

Gv—po(Q> v | fo, X)(m) = ¥, (m) (11.9)

forall v e Qo ve W, me Xg,+ and X € agq. On the other hand,
by [11], Thm. 7.7, there exists an open dense subset 2; of a*QqC such that
the expression on the left-hand side of (11.9) depends holomorphically on
v € Q, for all v, m, X as above. By analytic continuation it follows that
(11.9) is valid for v € ;. This implies that the limit on the right-hand side
of (11.8) has the value ,(m), for every v € w; N Q. |

Proof of Theorem 11.19: Fix ¢ € C*(K: &)k with ¢(e) # 0 and put
T = 1n ® . Select a finite subset ¥ C K such that ¢ € C*(K: §)y.
Then, in the notation of (4.13), Y7 € Az o(1y). Fix v € 2W. Then the
preimage Mg , 4 of X¢ , 4+ under the canonical map My — Xy , is open
dense in M. Fix m € Mg and X € aJQFq. We agree to write a, = exptX.
Let + be the open dense subset of aj,,. \ UH(Q, §) consisting of points v
where both intertwining operators v — A(Q: Q: &: —v)* are regular. By
Lemma 11.16 we may write, for v € A,

ES(Q: Yr: v)(ma,v)(e)
= (p|mges(mav)j°(Q: §: 1))
= (A(Q: 0:§: ) 9|y (ma)AQ: Q: £:D)j°(Q: E: D)),
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Replacing # if necessary, we may in addition assume that the conjugate A
of 4 has empty intersection with the set U#, where # = F#(j, Q, £) is as

in Theorem 11.17, with Q in place of Q. By the mentioned theorem it then
follows, for v € A, that

AQ: Q:E:9)j(Q: € D= j(Q: &: D)), (11.10)

for n(v) € V(Q,&) given by n(®) = evoA(Q: Q: &:0)j°(Q: &: D)n.
Using Lemma 11.18 we now conclude that, for v € A with Rev — pg
strictly X, (Q)-dominant,

lima, "¢ E5(Q: yr : v)(mayv)(e)

= (p(e) | E(m)ev, 0 A(Q: Q: £:1)j°(Q: &: D))
= (p(e) |Em)n(V),). (11.11)

In particular, this holds for v contained in the non-empty open set A N €2,
with  as in Lemma 11.20. For such v it follows by the mentioned lemma
that the limitin (11.11) also equals (¥7),(m) = (¢(e) | E(m)n,). We deduce

that, for v € 4 N Q, where the bar denotes conjugation,

{p(e) [ &£(m) n(v)y) = {(p(e) [ E(m)ny), (11.12)

for all m € My , 4. By continuity and density it follows that the identity
(11.12) holds for all m € Mgy. Since g(e) € Jt’go \ {0}, it follows by
irreducibility of the G-module J(’go that n(v), = n,, forall v € AN . This
identity holds for every v € W, since the sets 4 and Q are independent
of the element v € ¢'W. Combining this with (11.10) we deduce that, for
every v € ANQ,

JQ: g vn=AQ: Q:&:v) " j(Q: &: . (11.13)

Let f(v) denote the expression on the left-hand side and g(v) that on the
right-hand side of the above equation. Then g is a meromorphic C™>°(K : §)-
valued function on ap, ., by Theorem 11.17 and meromorphy of the inter-
twining operator. If ¢ € C*°(K : &)k, then v — (f(v) | ¢) is a holomorphic
function of v € a*Qq(C \ UFH(Q, &), by Lemma 11.16. On the other hand,
Vv — (g(v) | ¢) is a meromorphic function on a*QqC. By analytic continua-
tion we deduce that

(W @) = (W) |9), (11.14)

as anidentity of meromorphic functions in the variable v € ay,  \UH(Q, §).
From the holomorphy of the function on the left-hand side it follows that
the function on the right-hand side is actually regular on a7, . \ UH(Q, §),
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for every ¢ € C~(K : &) k. The latter space is dense in C*(K : &) and
v > g(v) is a meromorphic C~*°(K : &)-valued function. It follows that g
is regular on a*Q ac \UH(Q, &). It now follows from (11.14) that the element

fv) € CT*(K: &) equals g(v), for every v € a*QqC \ UH(Q, &). This
implies all assertions of the theorem. O

It follows from the above result that the distribution vector j°(Q: & : v)n,
defined for n € V4(Q, &), coincides with the similarly denoted distribution
vector defined in [7], (3.13).

Corollary 11.21 Let (z, V;) be a finite dimensional unitary representa-
tion of K, let P € Py and y € Ay p(v). Then the Eisenstein integral
E°(P:y: Q) forh € a’;qc, coincides with the normalized Eisenstein inte-
gral E°(P, Y, —A) defined in [17], § 5.1.

Proof: By the functorial property of Lemma 4.5, which is satisfied by both
Eisenstein integrals, it suffices to prove the result for T = 7y, with ¥ C K
a finite subset. By linearity it suffices to prove the assertion for v = v, ,
where § € X3, ;. n € Vy(P, §) and f € C®(K: &)y. The associated
normalized Eisenstein integral is denoted E°(P, ¥, v) in [17], § 5.1. It is
represented as a matrix coefficient in [17], Prop. 4. This representation
coincides with the one given in Lemma 11.16. O

It follows from the equality of the normalized Eisenstein integrals stated
above, that the Plancherel theorems formulated in [12], § 23, and Sect. 10,
coincide with the ones of P. Delorme formulated in [21], Sects. 3.3 and 3.4.
However, the chosen normalizations of measures are different, resulting
in different constants. We shall finish this section by relating the various
constants. The normalization of measures for the present paper is described
in [12], § 5. The normalization given in [21], § 0, follows essentially the
same conventions of interdependence, with one crucial difference. A choice
of invariant measure dx for X determines the same choice of Haar measure
da for Aq in both papers. In our paper we fix the Lebesgue measure dA on iag
that makes the Euclidean Fourier transform an isometry from L2(Aq, da)
onto L*(ia*, |W|dA). On the other hand, in [21], § O, the convention is to
fix the measure dA': = |W| dA instead.

If Q € #,, the same convention applies to the normalizations of invari-
ant measures dxg , on Xg ,, forv € 2w, versus a choice of normalization
of dagp on the group *Apq, which is ‘the Aq of (Mg, Mg N vHv~"). This
determines a normalization dA¢ of Lebesgue measure on i *aj, . The cor-
responding measure of [21] is given by dA’Q = |Wy|dAg. In both papers,
one chooses the measure on iajp,, to be the quotient of the chosen measures
on iag and i*ap,. This results in a choice of Lebesgue measure dip on

iy, in the present paper. The similar measure dpy in [21] is then given by
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dwy,

= [W: Wyldug. For the constants in the Plancherel formula, see e.g.

[12], Thm. 23.1 (d), this means that [W: Wa] should be replaced by

[W: Wl [W:W5] = [Wh: Wo] ' = [Wagg)l ™"

The latter is indeed the constant occurring in, e.g., [21], Thm. 3 (iii).
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