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1. Introduction

The rich and beautiful theory of harmonic analysis on R and T = (R /Z) has become
a powerful tool, widely used in other branches of mathematics, in physics, engineer-
ing etc. From our point of view all the basic questions are completely and explicitly
solved: The Fourier transform is defined, there exists a Plancherel formula and an
inversion formula for it, and (for R) there is a Paley-Wiener theorem, describing
the image of the space of smooth compactly supported functions.

There exist many generalizations of this theory. Let us mention a few of these,
based on various ways of viewing the exponential function z + e¢** on R (\ € iR)

and on T (A € 2miZ):

o On R, the exponential functions are eigenfunctions for d/dx: Spectral theory
for differential operators. Sturm-Liouville theory. Expansion in orthogonal
polynomials.

o The exponential functions are characters for the topological groups R, T:
Fourier analysis on locally compact Abelian groups. The Peter—Weyl theory
for Fourier analysis on compact groups.

o The exponential functions generate one dimensional representations of the
Lie groups R, T: The representation theory for compact Lie groups (the
Cartan—Weyl classification, Weyl’s character formula etc.). Representation
theory for general Lie groups (semisimple, reductive, nilpotent, solvable
ete.).

o The manifolds R, T are homogeneous spaces for the Lie groups R and T,
respectively (the action being translation), and the exponential functions
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are simultaneous eigenfunctions for the algebras of invariant differential op-
erators on these manifolds: Harmonic analysis on homogeneous spaces of
Lie groups.

As an example of the last point we could mention the theory of spherical harmonic
expansion on the n-sphere 5™, which is a homogeneous space for the rotation group
O(n + 1). The spherical harmonics are eigenfunctions for the Laplace operator,
which is rotation invariant.

Here we take this last mentioned viewpoint. We claim that inside the class of
smooth manifolds the class of (not necessarily Riemannian) reductive symmetric
spaces constitutes an appropriate framework for generalization of harmonic analy-
sis: On the one hand this class of manifolds is wide enough to contain very many
important spaces of relevance in other branches of mathematics and in physics.
On the other hand it is restrictive enough to make feasible a theory of harmonic
analysis, with explicit parametrizations and descriptions of representations, explicit
Plancherel formulae, etc. The irreducible members of the class of reductive symmet-
ric spaces are either one-dimensional flat, i.e. R or T, or semisimple. In this paper
we discuss the semisimple symmetric spaces. The exposition in the present paper
consists of a rewriting and updating of parts of [8], extended with a desecription of
recent developments.

2. Semisimple symmetric spaces

2.1. DEFINITION AND STRUCTURE

We define a semisimple symmetric space as follows:

Definition. A homogeneous space M = G/H is called a semisimple symmetric
space if G is a connected semisimple Lie group and H an open subgroup of the
group of fixed points for an involution o of G.

We are only going to introduce the most necessary aspects and technicalities of
the general theory of semisimple symmetric spaces. For a more complete treatment
and some of the details we refer to [33], [60], [41, Part II] and the references cited
there.

An important case is when M is a semisimple Lie group G, i.e. when G is the
product G; x GG1 and its action on (7 is the left times right action. The involution
of G is given by o(z,y) = (y,x), and H is the diagonal d(G;1). We shall call this
the group case.

Our goal in this paper is to indicate the state of the art for harmonic analysis
on semisimple symmetric spaces. From now on we assume that M = G/H is such
a space.

For simplicity of exposition we assume (which we may up to coverings of M)
that G is a closed subgroup of GL(n,R) for some n, and that G is stable under
transposition. Let K = G N SO(n), or equivalently K = G, where 0(z) = 71,
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then K is a maximal compact subgroup of G. We may choose the base point such
that 6(H) = H, or equivalently, such that 006 = fo0.

We shall distinguish between the following 3 types of irreducible semisimple sym-
metric spaces:

o M is of the compact type if G = K, or equivalently if all geodesic curves
have compact closures.

o M is of the non—compact type if H = K, or equivalently if all geodesic curves
have non—compact closures.

o M is of the non—Riemannian type if G # K and K # H, or equivalently if
there exist geodesic curves of both types.

If M is of one of the first two types we say that it is of the Riemannian type,
because it then has a natural structure as a Riemannian manifold. In the third
case the natural structure is only pseudo—Riemannian. Notice that a simple group
(G1, considered as a symmetric space, is either of the compact type or of the non—
Riemannian type.

2.2. EXAMPLES

The irreducible symmetric spaces have been classified by M. Berger [17]. Com-
pared with the list of Riemannian symmetric spaces (see [45, Ch.X]), Berger’s list
is considerably longer.

There is (up to coverings) one two—dimensional space of each of the three types:

o The compact type: The 2-sphere S? = SO(3)/SO(2).

o The non-compact type: The hyperbolic 2-space M = H?. This has several
isomorphic realizations: As SL(2,R)/SO(2), as SU(1,1)/S(U(1) x U(1)), or
as SO.(2,1)/SO(2), corresponding to, respectively, the upper half plane in
C, the unit disk in C, or a sheet of the two-sheeted hyperboloid in R3,

o The non-Riemannian type: The one-sheeted hyperboloid in R3, H'' =
SO.(2,1)/SO.(1,1), which can also be realized as SL(2,R)/SO(1,1). It has
the two—fold cover SL(2,R)/SO.(1,1).

In higher dimensions there exist several ‘families’ of symmetric spaces, many
of which have one of the spaces above as their lowest dimensional member. For
example we could mention:

The n—sphere: S™ = SO(n + 1)/ SO(n).

The space of positive definite quadratic forms in R™ M = SL(n,R)/SO(n).

The space of quadratic forms of signature (p,q) in R™, (where n = p+ ¢):

M = SL(n,R)/SO(p, q).

The hyperboloids in R™T:

M =HP?! = {z ¢ R"| xf—l—- . -—|—:1;]23—:1;]23+1—- . -—:1;]23+q+1 = —1} where p+¢=n
(if ¢ = 0 one must take a connected component). Here M = SO.(p,¢+1)/SO(p, q).

Similarly, one can take the corresponding spaces over the complex numbers or
over the quaternions.



4 E. van den Ban et al.

2.3. SOME BASIC NOTATION

Let G,H,K,o and 6 be as above. Let g be the (real) Lie algebra of GG, and let §
and £ be the subalgebras corresponding to H and K, and q and p their respective
orthocomplements with respect to the Killing form. Then

g=bdg=Etdp

is the decomposition of g into the +1 eigenspaces for ¢ and 8 respectively. Since 6
and o commute we also have the joint decomposition

g=hneEd hNp & gnNtd gnp. (1)

Notice that there is a natural identification of q with the tangent space T, (M) at
the base point =, = eH. We denote by g, hr ete. the complexifications of g, h etc.

A Cartan subspace b for G/H is a maximal Abelian subspace of g, consisting of
semisimple elements. (If we assume, as we may in the following, that b is §—invariant,
then all its elements are automatically semisimple, once b is maximal Abelian). All
Cartan subspaces have the same dimension, which we call the rank of M. The
number of H—conjugacy classes of Cartan subspaces is finite. Geometrically, a
Cartan subspace is the tangent space of a maximally flat regular subsymmetric
space.

We say that a Cartan subspace b is fundamental if the intersection b N € is
maximal Abelian in g N &, and that it is maezimal split if the intersection b N p
is maximal Abelian in g N p. There is, up to conjugation by K N H, a unique
fundamental and a unique maximal split Cartan subspace. If the fundamental
Cartan subspace is contained in £ it is called a compact Cartan subspace. The
dimension of the p—part of a maximal split Cartan subspace is called the split rank
of M.

Let D(G/H) denote the algebra of G—invariant differential operators on G/H.
There is a natural isomorphism (the Harish—Chandra isomorphism) x of this algebra
with the algebra S(b)" of W-invariant elements in the symmetric algebra of any
Cartan subspace bc. Here W is the reflection group of the root system of b¢ in
gc. In particular, D(G/H) is commutative, and its characters are parametrized up
to W—conjugation by D — (D) = x(D)(A) € C. It is known (see [2]) that the
symmetric elements of D(G / H ) have self-adjoint closures as operators on L*(G/H ).

3. Basic harmonic analysis

3.1. HARMONIC ANALYSIS ON R"™

We want to generalize the basic notions and results from harmonic analysis on R".
These are:

The Fourier transform: f — fAN(A) = (2r)~"/? S f(te= Mt dt, f € C=(R™).
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The inversion formula: If f € C(R™) then

flay = my [ gean

The Plancherel theorem: f — f" extends to an isometry of L*(R"™) onto L*(R").
The Paley-Wiener theorem: f +— f is a bijection of C°(R™) onto PW(R™),
where PW(R") is the space of rapidly decreasing entire functions of exponential
type. More precisely, a complex function ¢ on R™ belongs to PW(R™) if and only
if it extends to an entire function on C" for which there exists R > 0 such that the

following holds for all N € N:

sup (1+ AV e RImA ()] < oo, )
Aer
The aim of the basic harmonic analysis on G/H is to obtain analogues of these
notions and results.

3.2. THE ‘ABSTRACT’ HARMONIC ANALYSIS ON A SEMISIMPLE SYMMETRIC SPACE

Let G and H be as above, then M = GG/ H has an invariant measure, and the action
of G by translations gives a unitary representation £ in the associated Hilbert space
L?*(G/H). From general representation theory it is known (since G is ‘type 17) that
this representation can be decomposed as a direct integral of irreducible unitary

representations:
S

L~ mgmdp(r), (3)
G/\
where the measure dy (whose class is uniquely determined) is called the Plancherel
measure, and m, (which is unique almost everywhere) the multiplicity of 7. More-
over, only the so—called H-spherical representations can occur in this decomposi-
tion. By definition, an irreducible unitary representation (7, Hr ) of G is H—spherical
if the space (HZ°)H of its H-fixed distribution vectors is non-trivial. Here we de-
note by Hy® and H_>°, respectively the C'* and the distribution vectors for Hn,
such that H>® C Hr C H;>°. We write

It is known (see [2]) that m, < dimV,; < 400, in particular, all multiplicities are
finite. Denote by G the set of (equivalence classes) of H—spherical representations,
then it follows that the Plancherel measure dy is carried by G7;.

The ‘abstract’ Fourier transform f +— f"(7w) for G/H is now defined by

A ) =7(fim = o fla)m(x)n de € H
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for m € Gfy,n € Vyand f € CX(G/H). Thus
fA(7) € Homo(Va, HYY) ~ HE @ V7

(notice that the integral over G/H only makes sense because 1 is H—-invariant). One
can prove (using [57] and [62]) that there exists for almost all 7 € G}y a subspace V2
(of dimension my) of Vr, equipped with the structure of a Hilbert space, such that
if f(r) is restricted to V2 for almost all 7, then f — f” extends to an isometry of

L*(G/H) onto f(?A Homc(V2, Hr)du(m). Here the norm on Homc(V2, Hr) is given
H
by

lellz = Z lewll*, ¢ € Homo(V7, Hr),

where ¢* is the adjoint of ¢ and {v;}i=1,..  m, is an orthonormal basis in V2.
We thus have the Plancherel formula

9B = [ 1P dutr), S € G/

Similarly, there is the inversion formula (for suitably nice functions f)

o= [ Sl dutr). )

H 1=1

(Here (-|-) denotes the inner product on Hr, as well as the naturally associated
pairing Hs° x H;> — C.) Consequently we also have, for suitable f

/GA Z )il (2)o;) du().

H 1=1

The basic problems are now

(a) Describe (parametrize) G7y, or at least p—almost all of it.

(b) For p—almost all 7 € G describe (parametrize) V2 and its Hilbert space
structure.

(¢) Determine du explicitly.

A Paley—Wriener theorem would amount to an intrinsic description of the Fourier

image of C°(G/H) in terms of G7y. We add this as a fourth basic problem:

(d) Describe C°(G/H)" in terms of the parametrizations and possible holo-
morphic extensions.
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For each m € G7; we have that V. is a D(G/H )-module in a natural way. Us-
ing that the symmetric elements of D(G/H) are essentially selfadjoint operators on
L?*(G/H) one can show (with the arguments in [62]) that V2 can be chosen to be
invariant and diagonalizable for this action. Thus V? is spanned by its joint eigen-
vectors for D(G/H). Let b C g be a Cartan subspace. Then such an eigenvector
satisfies

7(D)v = xa(D)v, D eD(G/H),

for some A € bf. We say that v is a spherical vector of type A, and that the
orthonormal basis {v;}i=1,.m, In V2 is spherical if its members are spherical.

The maps &x;: f — (fN(7)vi|vi) in (4) are H-invariant distributions on G/H.
As distributions on G they are positive definite and extreme (see [62]). With a
spherical basis {v; } each &, ; is also a spherical distribution, that is, an H—invariant
eigendistribution for D(G/H). The solution of Problem (b) is then closely related
to the study of the spherical distributions.

3.3. RESULTS FOR SPECIFIC CLASSES OF SYMMETRIC SPACES

Here we give some brief remarks concerning the above problems for some specific
classes of semisimple symmetric spaces.

3.3.1. The compact type. For a homogeneous space G/H with a compact group G
the abstract formulation above follows easily from the Peter—Weyl theorem and the
Schur orthogonality relations. In particular, V2 = V, = HH and if we give V2 the
subspace norm from H,, we have du(r) = dim(x). For the symmetric spaces of
compact type we then have the following explicit solutions to the above problems

(see [26], [46, § V.4]):

(a) G7y is parametrized by a subset of the set of dominant weights.

(b) dimV2 =1 for 7 € G;.

(¢) dp is given by Weyl’s dimension formula.

(d) The smooth functions are determined by a certain growth condition on the
Fourier transforms (see [61]).

3.3.2. The non-compact type. We write M as G/K. The four questions were settled
beautifully by the work of Harish-Chandra, Helgason and others. See [46, § IV.7]
and [47, Ch. III]. Let a be a maximal Abelian subspace of p.

(a) A sufficient subset of G%- is parametrized (up to conjugacy by the Weyl
group) by means of the spherical functions ¢, A € 1a* and the corresponding
spherical principal series representations (wy, Hx).

(b) For m = 7y € G} we have V2 = Hﬁ‘ and dim(V?2) = 1. We can then use the
subspace norm from Hy.

(¢) The Plancherel measure is given by du(my) = |c(\)|72d\ on ia*/W. Here
c(A) is Harish-Chandra’s c—function, which is explicitly given in terms of
the structure of G/K by the formula of Gindikin-Karpelevic.
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(d) We have C(K\G/K)" = PW(a)"”. Here PW(a)" is the space of W—

invariant functions in the image space PW(a) for the Fourier transform

fo PR = / FX)eMOIX, A e at f € C(a), (5)

that is, the space of rapidly decreasing entire functions of exponential type
on af-(see Section 3.1, but note that since the imaginary unit ¢ is not present
in the exponent in (5), one has to replace Im A by Re A in (2)). Helgason
has extended the Paley—Wiener theorem to the space C°(K;G/K) of K-
finite functions in C°(G/K), and also to the full space C°(G/K). See [47,
Ch. ITI, Thms. 5.1, 5.11].

3.3.3. The group case, M = (1. This case is settled by the work of Harish—Chandra
([39]) and others (for expositions, see e. g. [48], [64]).

(a) The map 71 — 71 @ 7] is a bijective correspondence from the unitary dual
G7 onto G7y. A sufficient subset of G7' is described by the discrete series
and different families of (cuspidal) principal series.

(b) For m; € G7 and 7 = 7 @ 7} we have V, = (H7;>°)" = C1,,, where 1,
is the identity operator on H,,. Notice however that in this case V. ¢ H,
since the latter space can be identified with the space of Hilbert—Schmidt
operators on Hr, . We take V2 = V., and use on it the Hilbert space
structure obtained from the identification with C in which 1, = 1.

(¢) With the above choice one can give dy explicitly in terms of the formal
degrees of discrete series and certain c—functions.

(d) A Paley—Wiener theorem for the Kfinite functions on G; has been estab-
lished in [22] (in split rank one) and [1] (in general). In particular, the
Paley—Wiener space is determined by the minimal principal series only. The
extension of the Paley—Wiener theorem to the full space C°(G1) is still an
open problem.

3.3.4. The non—Riemannian type, rank one. There is an extensive literature dealing
with the questions (a)—(c) on specific classes of rank one symmetric spaces of the
non—Riemannian type. See for example [31], [62], [52]. Common for all these
spaces is that the decomposition of L*(G/H) contains a discrete series as well as a
continuous part.

3.3.5. Type G¢/Gp. When G is complex and H is a real form of it, precise solutions
to questions (a)—(c) have been given by P. Harinck. See [20], [34], [35], [36].
3.4. RESULTS FOR GENERAL SEMISIMPLE SYMMETRIC SPACES

The listed basic problems have been solved in a general setting for semisimple
symmetric spaces. In the following sections we outline the solution, with precise
references to the literature.
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By analogy with the group case one expects in general that the left regular rep-
resentation £ on L?(G/H) can be decomposed in several ‘series’ of representations,
one series for each H—conjugacy class of Cartan subspaces for q. The most extreme
of these would then be the ‘most continuous’ part, corresponding to the conju-
gacy class of Cartan subspaces with maximal p—part (the maximal split Cartan
subspaces) and the ‘most discrete’ part (sometimes called the fundamental series),
corresponding to the conjugacy class of Cartan subspaces with maximal -part (the
fundamental Cartan subspaces). The series corresponding to the remaining conju-
gacy classes of Cartan subspaces would then be called ‘the intermediate series’. If
the fundamental Cartan subspaces are compact, then the ‘most discrete’ part is in
fact the discrete series, that is, the irreducible subrepresentations of L.

In fact, this analogy with the group case holds rather precisely, as we shall explain
below. In Section 4 we discuss discrete series and in Section 5 the most continuous
series. In Sections 6-7 we then discuss the Plancherel and Paley—Wiener theorems

for G/H.

4. The discrete series

The basic existence theorem is the following, where we preserve the notions from
above. Let L%(G/H) C L*(G/H) be the closed linear span of the irreducible sub-

representations of L.

Theorem 1, [32], [55]. Let G/H be a semisimple symmetric space. Then the
discrete series space L3(G/H) is non—zero if and only if

rank(G/H) = rank(K/K N H). (6)

The condition (6) means that G/H has a compact Cartan subspace. An equiv-
alent more geometric formulation is that it has a compact maximally flat subsym-
metric space.

In the group case this result reduces to Harish-Chandra’s theorem, that the exis-
tence of discrete series is equivalent to the existence of a compact Cartan subgroup,
cf. [38]. In fact the proof in [32] of the existence part of the theorem is different
from Harish-Chandra’s proof for the group case, see also [48], where the symmetric
space viewpoint has been adapted in the proof for the group case.

We shall now discuss Problems (a), (b) and (¢) for the discrete series. Assume
(as we may by the above theorem) that (6) holds, and let t be a compact Cartan
subspace of q. Let ¥ be the root system of t¢ in g¢ and ¥, the subsystem of {¢ in
Ec. Let W and W, be the corresponding reflection groups.

A rough classification of the discrete series is obtained by means of the commu-
tative algebra D(G/H). Recall that the characters of D(G/H ) are parametrized by
t&~/W via the Harish-Chandra isomorphism y: D(G/H) — S(t)V. Let EX(G/H)
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denote the joint eigenspace for D(G/H) in C*°(G/H) corresponding to the charac-
ter xa, where A € tf. Then E,\(G/H) = Ex(G/H) for all w € W. Since D(G/H)
is commutative and its symmetric elements act as essentially selfadjoint operators
on L?*(G/H), there is a joint spectral resolution of L*(G/H) for this algebra. The
resulting decomposition is G—invariant because of the invariance of the elements
in D(G/H). Tt follows (see [2]) that L%(G/H) admits an orthogonal G-invariant

decomposition

I3(G/H) = @Li(a/m,

where L3(G/H) is the closure in L*(G/H) of L*(G/H) N Ex(G/H), and where the
sum extends over the W-orbits in the set of those A € tf for which L3(G/H) is
non-trivial. In order to parametrize the discrete series we must then determine this
set of \’s, and for each A therein the irreducible subrepresentations of L3 (G/H).

Let A C ot* denote the set of elements A € it* satisfying the following conditions
(1)—(iii).

(i) (A\,a) # 0 for all o € X.

Given that (i) holds, let

St ={ac 2|\ a) >0}, (7)

then this is a positive system for ¥. Put ©F = TN, and let p, resp. p., be defined
as half the sum of the % -roots, resp. ¥ F-roots, counted with multiplicities.

(ii) A+ p is a weight for Ty, i.e. e is well defined on Tyy. Here Ty denotes the
torus in G/ H corresponding to t (that is, Ty = T/(TNH) where T = exp t).
(iii) (A — p, 3) > 0 for each compact simple root 3 in L.

(that  is compact means that the root space ggj is contained in £c). Notice that
(ii) implies that A is a discrete subset of «t*.

Under the assumption that A € A there is a rather simple construction (which we
shall outline below) of a g-invariant subspace Uy i of C*°(K;G/H) (the space of
K-finite functions in C°°(G/H)), which can be shown to be contained in L3 (G/H).
Let Uy denote the closure of Uy j in L*(G/H), then U) is a subrepresentation of
L3(G/H). Let my denote this subrepresentation.

For ‘large’ A € A, or more precisely if (A + p — 2p., ) > 0 for all « € =F it can
be shown by elementary methods that Uy # {0}. For the remaining A’s one has to
add a more technical assumption in order to ensure that Uy # {0}. We shall not
state this condition here (the condition is stated in [50] together with a proof of its
necessity for the non—vanishing of ¢f. The sufficiency is claimed but not proven in
the paper).

Theorem 2, [55], [63]. The discrete series space L3(G/H) is spanned by the Uy’s
with A € A. Moreover for each A € A either the representation wy is irreducible
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or Uy is zero, and if \,\' € A we have Uy, = Uy if and only if \' = w\ for some
w € W,.

It follows that if A € tf then L3(G/H) is the sum of those Uy, for which w € W
and wA € A. In particular it has at most as many components as the order of the
quotient W/W.,.

With this result, Problem (a) is almost solved as regards to the discrete series.
It is conjectured that 7/ is unitarily equivalent to wy if and only if Uy = Uy, or
equivalently in view of the above, that the discrete series have multiplicity one in
the Plancherel formula. The conjecture is proved for all classical groups G, and is
only open for a few exceptional cases for very special values of A (see [19]).

Evaluation at the base point in G/H gives rise to an H—fixed distribution vector
na for Uy, for which it is easily seen that we have

) =Paf,  feCX(G/H),

where P) is the orthogonal projection of L*(G/H) onto Uy. Tt follows that if we take
Vo, = Cny and use on it the Hilbert space structure obtained from the identification
with C in which ny = 1, then du(wx) = 1. In other words, the Plancherel measure
restricts to the counting measure on the discrete series. This provides the solution
to Problems (b) and (¢) for the discrete series.

At this point it is however interesting to note the following. Though the discrete
series has been parametrized as above, it seems to be an open problem to determine
an explicit expression for the spherical distribution £x: f — (f"(7x)nalna) on G/H
associated to ny (or equivalently, for the projection operator Py, which is given by
convolution with £,). In the group case one knows that £y is given by dx©,, where
dy is the formal degree and O, the character of 7y (see [37, §5]), but there is no
obvious generalization of this formula.

We shall not try to describe the proofs of the above theorems. However as the
construction of Uy i can be described by quite elementary methods we would like
to indicate 1t.

Let the notation be as above, and recall the decomposition (1) of g. Let g¢ be
the real form of gc given by

g'=hntaihnp) @i(qnE) @ qnp,

where ¢ is the imaginary unit. Assume (again for simplicity of exposition) that G
is a real form of a linear complex Lie group G, and let G¢ be the real form of G
whose Lie algebra is g?. Then the subgroup K¢ = G% N He is a maximal compact
subgroup. The Riemannian symmetric space G¢/K? is called the non-compact
Riemannian form of G/H. The subgroup H? = G4 N K¢ of G is a (in general
non-compact) real form of Kc. Let (G N G?), denote the identity component of
G NG Then both G and G¢ are contained in the set Ko(G N G Hc. The K-
finite functions on G/H extend naturally to left K¢-finite and right Hg-invariant
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functions on this set (and so do the H¢ finite functions on G¢/K?, provided the
H? action admits a holomorphic extension to Kc). We call this partial holomorphic
extension. Let C°°(K;G/H) and C*°(H?%;GY/K?) be the spaces of K-finite, resp.
H¢ finite smooth functions on G/H, resp. GY/K?. There is a natural action of g
on both of these spaces.

Theorem 3, [32]. Partial holomorphic extension defines a grc-equivariant linear
injection f — f" of C°(K;G/H) into C*°(H?*; G/ K?), the image of which is the
set of functions in C*°(H?%; G¢/K?) for which the H action extends holomorphi-
cally to K¢. Moreover, f is a joint eigenfunction for D(G/H) if and only if 7 is a
joint eigenfunction for D(G®/K?).

As an example it is quite easily seen in the group case that G¢ = (Gy)c, H? =
(I1)c and K? = Uy, where K; is a maximal compact subgroup in Gy and U; a
compact real form of (G1)c containing K.

The construction of G?/K? and Theorem 3 hold independent of assumption (6).
However, the latter assumption is crucial for the following construction.

Since G¢/K? is a Riemannian symmetric space the joint eigenfunctions for the
algebra D(G?/K?) can be described by means of the so-called generalized Poisson
transform. This is defined as follows. It follows from the fact that t is a maximal
Abelian subspace of q, that t" = it is a maximal Abelian split subspace for g?.
Hence there is an Iwasawa decomposition

G = K'T"N*? (8)

of G with T" = expt”, which corresponds to a given ©t. Let P = MIT"N?
be the corresponding minimal parabolic subgroup in G%, and for A € tfx let D} =
D)\ (G?/P?) be the space of (A — p)-homogeneous distributions on G?/P?, that is
the space of generalized functions f on G¢ satisfying

flgman) =a*""f(g)., g€G' meM* acT necN.

The group G acts from the left on this space. The Poisson transform Py: Dy —
C>(G?/H?) is defined by

Prf(z) = f(zk)dk :/ palz, k) f(k)dk, =€ G
K4 K4

Here the ‘Poisson kernel’ py € C°(G? x K?) is defined by px(z,k) = a=*~*, where
a € T" is the T"—part of 27 'k in the decomposition (8). It is known that P, is
a G%-equivariant injective transformation into a joint eigenspace for D(G4/K?) in
C>(G?/K?) if ©7 is given by (7), see e.g. [47, §11.3.4].

The non-vanishing of Uy for ‘large’ A € A follows by a simple construction of an
element ¢ in Uy g involving the following formula and Theorem 3:

() = / (e k) dk, @€ G
KnH
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see [32] or [33].

Let D\ ;. be the set of H% finite elements in DY, and let DY Hd(Hde) denote
the subset of elements supported on the H¢-orbit H?P? in G?/P? (which is closed,
cf. [49] or [60, Prop. 7.1.8]). Let now A € A. Then condition (ii) implies that the
H? finite action on D', Hd(Hde) extends to a holomorphic Kc—action. The space

Uy, i 1s now defined by’
Uk ={f € C¥(K;G/H) | f* € PA(D ya(H'P))}.
The proof that Uy x C L3(G/H) can be found in [55] (see also [9, Thm. 19.1]).

5. The most continuous part of L*(G/H)

In this section we discuss Problems (a), (b) and (¢) for the ‘most continuous part’

of L*(G/H) (to be defined below). The main references are [11] and [13].

5.1. THE FOURIER TRANSFORM

Let notation be as in Section 2. In [11], [13] the assumptions on G/H are some-
what more general, but for the sake of exposition we shall not discuss this further.
The representations 7¢ ) that occur in the most continuous part of L?*(G/H) are
constructed as follows. Let P = MAN be a parabolic subgroup of G, with the
indicated Langlands decomposition, satisfying 0¢8P = P and being minimal with
respect to this condition. Then M and A are o-stable. Let aq = a N ¢, where a is
the Lie algebra of A, then it follows that a, is a maximal Abelian subspace of pN g,
and that the Levi part M A of P is the centralizer of a4 in G. Let (£, He) € M{, the

set of (equivalence classes of ) finite dimensional irreducible unitary representations
of M, and let A € ia*. We require that A € iag, that is that A vanishes on a Np.

Then by definition m¢ x is the induced representation mp¢ x = Indg:MAN (el
(the ‘principal series’ for G/H), that is, the representation space He x consists of
(classes of ) H¢—valued measurable functions f on G, square integrable on K and
satisfying

flgman) = a_A_pg(m)_lf(g), (e Gym e M,ae A;neN), (9)

and G acts from the left. Here p = %Tr Ad, € aj. (The convention in (9) differs
from the above cited references: The induction takes place on the opposite side.)
The representations ¢ \ are irreducible for almost all A € zaj by Bruhat’s theorem
(see [6, Thm. 2.6]).

The Plancherel decomposition for the most continuous part of L?*(G/H) is ob-
tained by realizing the abstract Fourier transform explicitly for the principal series.
This realization is then a partial isometry of L*(G/H) onto the direct integral

@

)T du(&, A). (10)
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The multiplicities m¢ (which happen to be independent of A) and the measure
du(é, ) are explicitly described below. The most continuous part of L*(G/H),
denoted L2 (G/H), is then by definition the orthocomplement of the kernel of this
partial isometry. Its Plancherel decomposition is exactly given by (10).

In order to realize the Fourier transform we must first discuss the space V¢ x =

(Hgio)H Let W C Ng(aq) be a fixed set of elements such that w — HwP

parametrizes the open H x P orbits on G (it is known (see [59] or [49]) that any
set of representatives for the double quotient Ngnp(aq)\Nx(aq)/Zk(ay) can be
used as W — in particular, W is finite). Viewing an element f & Hgio as an He—
valued distribution on G, satisfying appropriate conditions of homogeneity for the
right action of P, it is easily seen that if f is H—invariant then f must restrict to
a smooth function on each open H x P orbit. Hence it makes sense to evaluate
f in the elements of W, and in fact its restriction to the open orbit HwP will be
uniquely determined from the value at w. We denote this value by ev,(f). It is

-1
easily seen that ev,, maps V¢ » into the space H? (MH)w ¢ w1 (M N H)wfixed

elements in H¢ (note that w™'Mw = M, but w ' Hw may differ from H). Let
V(€) denote the formal direct sum

Vie)= @ Hy (Mo (11)
weW

provided with the direct sum inner product (thus, by definition the summands are
mutually orthogonal, even though this may not be the case in H¢). Furthermore,
let

ev: Ve — V(€)

denote the direct sum of the maps ev,,. The construction of the induced represen-
tations ¢ x and of the map ev makes sense for A € aj¢, the complex linear dual
of aq (though the representations need not be unitary for A outside 2a). We now
have

Theorem 4, [3]. The map ev is bijective for generic A € al¢.

(In this context ‘generic’ means outside a countable union of complex hyper-
planes). For generic A, let

JEN) V() = Ve

be the inverse of ev, then by definition we have for n € V(&) that the restriction
of the distribution j(&, A)(n) to the open H x P orbit HwP, w € W, is the smooth
H¢—valued function given by

(&N ) (hwman) = a™*=7E(m ™ .. (12)

(Here 1, denotes the w—component of 7, viewed as an element of He.) Notice that
if G/H is a Riemannian symmetric space, so that H = K, then we have G = HP by
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the Iwasawa decomposition. Hence we can take W = {e}, and since M C K = H
we have V(&) = {0} unless ¢ is the trivial representation 1, in which case V(1) = C.
Then j(1,)) is completely determined by (12); in fact we have

JA ) (@) = e”MOHE,

where H: G — a is the Iwasawa projection (since V(1) = C we can omit 7). Thus
the kernel py(z,k) = j(1,\) (27 k) on G/K x K is the generalized Poisson kernel.
For general G/H we can supplement (12) as follows: If Re(A + p,a) < 0 for all
« in the set 1 of positive roots (the a-roots of n = Lie(N)), then j(£,\)(n) is
the continuous function on G given by (12) on HwP for all w € W and vanishing
on the complement of these sets (the condition on A ensures the continuity). For
elements A outside the above region the distribution j(£,\) can be obtained from
the above by meromorphic continuation. (See [56], [53], [3]. These results have been
generalized to other principal series representations in [21], [24].)

Having constructed the H-invariant distribution vectors j(&, A\)n as above we
can now attempt to write down a Fourier transform for the principal series. For

f € C(G/H) we consider the map

(&, A) = [ (men)i(€,A) = meal(£) (6, A) € HEN @ V(€)™ (13)

In the Riemannian case this is exactly the Fourier transform, as defined by Helgason
(see [42]). However when G/H is not Riemannian a new phenomenon may occur:
by the above definitions (13) is a meromorphic function in A, which may have
singularities on the set iay of interest for the Plancherel decomposition, and thus it
may not make sense for some singular A € za3. This unpleasantness is overcome by a
suitable normalization of j(&, A), which removes the singularities. The normalization
is carried out by means of the standard intertwining operators A(P, P,£,\) from
Tpea to mp ), where P is the parabolic subgroup opposite to P. Let

J(EA) = AP, P.EN)T(PLEN),

where j(P,£,)\) is constructed as j(£,\) above, but with P replaced by P. Since
the intertwining operator A(P, P, £, \) is bijective for generic )\, it follows that

76N V() = Ve
1s again a bijection, for generic A. Moreover, we now have

Theorem 5, [11]. The meromorphic function A — j°(¢, ) is regular on iay.

We can now define the Fourier transform f +— f” for the principal series properly
by (13), but with j replaced by j°

FAEN) = mealf)I°(60) € HE @ V(€)™
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Notice that when G/H is Riemannian the normalization makes our Fourier trans-
form different from that of Helgason — in this case the normalization amounts to a
division by Harish-Chandra’s e-function c(\). See [10] for the determination of j°
in the group case.

We can now give the solution to Problem (b) for this part of L?(G/H): We take
V¢ = Ve, and give it the Hilbert space structure that makes J%(€, \) an isometry.
The solution to Problem (c) is as follows. Let H be the Hilbert space given by

©®
H= o\ Hea @ V()" du(é, N), (14)

with the measure du(§, \) = dim(§) d\, where d) is Lebesgue measure on zay (suit-
ably normalized). Here £ runs over M{ (notice however that some of them may
disappear because V(§) is trivial), and A runs over an open chamber ia;"' in zay for

the Weyl group Wy = N (aq)/Zr(aq).

Theorem 6, [13]. Let f € C*(G/H). Then f* € H and ||| < ||f|lz. Moreover,
the map f — f" extends to an equivariant partial isometry § of L*(G/H) onto H.
In particular, the multiplicity of m¢ » is me = dim V() for almost all .

We define the most continuous part L2 (G/H) of L*(G/H) as the orthocomple-
ment of the kernel of §. Then § restricts to an isometry of this space onto H. In [13]
it is shown that L2 (G/H) is ‘large’ in L*(G/H) in a certain sense — in particular
its orthocomplement (the kernel of §) has trivial intersection with C2°(G/H) (thus
f — f" is injective, even though the extension § need not be). Moreover, if G/H
has split rank one, that is if dimaq = 1, then there are at most two conjugacy classes
of Cartan subspaces, and hence one expects from the analogy with the group case as
mentioned earlier that only the corresponding two ‘series’ of representations will be
present. Indeed this is the case; it is shown in [13] that the kernel of § decomposes
discretely when the split rank is one. Thus, in this case the Plancherel decomposi-
tion of L*(G/H) can be determined from Theorem 6 together with the description
of the discrete series (see Section 4 above), except for the explicit determination of
the Hilbert space structure on V2 for the discrete series representations .

On the other hand, when G/H is Riemannian then § is injective and Theorem
6 gives the complete Plancherel decomposition of L*(G/H) (in the formulation of
Harish—Chandra and Helgason the Plancherel measure is |c(\)| ™2 dA, but here the
factor |c(\)|7% disappears because of the normalization of j°).

A further discussion of the multiplicities m, can be found in [10].

5.2. THE SPHERICAL FOURIER TRANSFORM

The isomorphism of (14) onto L2 .(G/H) (the ‘inverse Fourier transform’) can be
given more explicitly when one restricts to K-finite functions. In this subsection we
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shall discuss this restriction, which happens to be crucial in the proofs of Theorems

5 and 6.

5.2.1. Eusenstein integrals. Let (1, V), ) be a fixed, irreducible unitary representation
of K. Taking g—components in (14) we have

©®
R A CCRY (15)

Moreover, by Frobenius reciprocity we have
ng’)\ ~ HOIHMQI((VN,Hg) ® Vu (16)

as K—modules (where K acts on the second component in the tensor product), for all
Ee M, e a’c- Note that since each representation { € M{} is trivial on the non—
compact part of M, we have that |snx is irreducible, and that Hom psqx (Vy, He)
is non-trivial if and only if this restriction occurs as a subrepresentation of p|prnx-
We use the notation ¢ T p to indicate this occurrence; it happens only for finitely
many £. Thus by taking K—types the integral over £ in (15) becomes a finite sum,
hence more manageable. In analogy with the earlier definition of the space V(&) we

now define the space V(u) to be the formal direct sum

w N (KNnMnH)w
V(p)= @ v rnnie
weWw

It is easily seen from the above that

V(M) ~ STB HomMmK(Hg, VN) ® V(f) (17)

Hence in view of (16) we have

V()" @V~ ? Hen @ V) (18)

for all A € alc. From (15) and (18) we finally obtain

©®
H / V(u)* @V, dh = L(ia**) @ V() © V. (19)
A

This isomorphism indicates that the Fourier transform, when restricted to K-finite
functions of type p, can be considered as a map into the V(u)* @V, —valued functions
on .

Instead of working with K —finite scalar—valued functions on G/ H, it is convenient
to consider ‘p—spherical’ functions f on G/H, that is, V,—valued functions satisfying

flka) = p(k)f(x), ke K,z € G/H.
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Let L*(G/H; i) denote the space of square integrable such functions, then by con-
traction we have a K—equivariant isomorphism

Yo LAG/H; )@V, = L*(G/H)". (20)

(Again K acts on the second component in the tensor product. The map dim(s )y,
is an isometry.) Notice that when passing from K—finite functions to spherical func-
tions one must also pass from pu to its contragradient . Since V(u)* = V(") we
are led to the search, for each p, of a Fourier transform, which is a partial isometry
of L*(G/H; i) onto L*(ia’" )@ V(u). Going through the above isomorphisms in de-
tail, we are led to the following construction culminating in (26), which essentially
is the ‘projection’ of the construction of f — f” to functions of type p.

For ¢» € V(pu) and X € a;jc with Re(\ + p,a) < 0 for all « € =T, let ¥ be the
Vy—valued function on G defined by

J (2) = a= P u(m ™ iy, if © = hwman € Ho(M N K)AN,w € W,
M o if 2 ¢ UpeywHuwP,

where 1, denotes the w-component of 1. (It is to be noted that M = w™ (M N
H)w(M N K), and hence Hw(M N K)AN = HwMAN.) It can be shown that

Yy 1s continuous as a function of x, and has a distribution—valued meromorphic
continuation in A € ajc. Let E, (¢, A) be the p—spherical function on G/H defined
by
B0 M) = [ ukyin( ) dk,
K

It can be seen that the vector components of E,(1, \) are linear combinations of
generalized matrix coefficients formed by the j(&, \)n, (n € V(), £ T ), with
Kfinite vectors of type p; in particular, E,(i, A) is a smooth function on G/H,
even when ) is only a distribution. We call these functions Eusenstein integrals for
G/H. When G/H is Riemannian and g is the trivial K-type 1, the construction
produces the spherical functions

@A(w):/ e—(A+p)H(x—1k)dk7 (21)
K

and for other K-types we get the generalized spherical functions of [44]. In the
group case the Fisenstein integrals defined in this manner coincide, up to nor-
malization, with Harish—Chandra’s Eisenstein integrals associated to the minimal
parabolic subgroup.

The spherical functions are eigenfunctions for the invariant differential operators
on G/K —in analogy we have

DE, (1. 3) = Eu(xu(D, A, ) (22)
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for all D € D(G/H). Here y,(D) is an End(V(u))-valued polynomial in A. Just
as 1t is the case for the spherical functions, one can derive an asymptotic expansion
from this ‘eigenequation’. Here we have to recall the ‘K A H'—decomposition of G,

G=c |J KATw™'H, (23)
wew

where A(j' is the exponential of the positive chamber in a, corresponding to =T,
and where the union inside the closure operator cl is disjoint. Since the Eisenstein
integrals are A —spherical, we have to consider their behavior on A('fw_l, for all w €
W. Notice that when G/H is Riemannian there is only one ‘direction’ to control,
since the K AH—-decomposition then specializes to the Cartan decomposition G =
cl KAT K. The expansion is essentially as follows (see [4]):

E, (b, N)(aw™) = Z a*P[C(5, \)Y]w + lower order terms in a, (24)
seWy
for a € A(j', w € W, where Wy is as defined above Theorem 6, and the ‘c—function’

A+ C(s,A) is a meromorphic function on a’¢ with values in End(V(y)) (it follows

easily from the p—sphericality that we have E, (¢, \)(aw™!) € Vuw_l(I(OMﬁH)w for

a € Aq). The expansion converges for a € A(j'

powers of the form a where v is a sum of positive roots.
The expression (24) is analyzed in [12], where it is shown that it takes the form

; the ‘lower order terms’ involve
SA—p—r

Eu (. M(aw™") = Y @ulsh a)[Cls, Mlw (25)

seWy

for each w € W, where ®,(\, -) € End(Vuw_l(KmHmM)w) is given on A(j' by a

converging power series with a*~* as its leading term.

5.2.2. The Fourier transform. It would now be natural to define the Fourier trans-

form F,f of a function f € C>*(G/H; i), the space of compactly supported and

]somooth p—spherical functions on G/H, as the V(p)-valued function ¢ on a;gc given
y

(o) = / PN, =M@ de, € V(n),

G/H
where the inner products (:|-) are the sesquilinear Hilbert space inner products
on V() and V,, respectively. Via the isomorphisms in (19) and (20) this would
essentially correspond to the Fourier transform in (13). However, as with j(£, \) we
have the problem that E, (¢, A), which is meromorphic in A, may have singularities
on iay. Again we have to carry out a normalization: the normalized Eisenstein

integral is defined by
E;(¢7 /\) = EH(C(]'? /\)_177Z)7 /\)
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In other words, the Eisenstein integral is normalized by its asymptotics, so that we

have EZ(;/},/\)(aw_l) ~ a* P, for a € A('f, w € W and Re X strictly dominant.
It can be shown that this normalization corresponds to the one on j(&,\), in the
sense that the vector components of F; (1, \) are linear combinations of matrix
coefficients formed by the jo&E ANy, (n € V(E), € T pY), with K-finite vectors of
type p. Moreover, it can be shown that the statement of Theorem 5 is equivalent

with the following ‘K —finite version’:

Theorem 7, [11]. The meromorphic function A — E; (1), A) is regular on iay, for
every ;1 € K™ and ¢ € V(p).

A proof of Theorem 7, different from the original proof in [11] and valid for the
generalized principal series as well, is given in [7]. With the result of Theorem 7
in mind we define the p-spherical Fourier transform F,f as above, but with E,
replaced by E7, that is, by

Fuf ) = [ (F@IE N @) de eV (20

G/H

Then F, f corresponds to f" via the isomorphisms in (18) and (20).

When G/H is Riemannian and @ = 1, the normalization again amounts to divi-
sion by ¢(A), and thus F,.f is in this case related to the spherical Fourier transform
of f as follows:

Fuf ) =07 [ et
G/K
where @) is the elementary spherical function in (21). If G/H is Riemannian and

¢ is non—trivial there is a similar relation, also involving c(A)~!, to the Fourier
transform in [44].

Let C°(s,\) = C(s,\)C(1,\)~!, then we have from (24)-(25)

B (v, M(aw™) = Z a*P[C°(s, \)]w + lower order terms in a
seWy

= Y Bu(sA @)[C%(s, Ml (27)

seWy

The following theorem generalizes results of Helgason and Harish—Chandra for the
Riemannian case and the group case, respectively (see [43, Thm. 6.6], [39, Lemma

17.6], the Maass—Selberg relations).

Theorem 8, [4], [5]. For every s € W, we have the following identity of meromor-
phic functions:

O, \)C(s, =N = Iy (A€ alo).
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In particular, for A € ia, the endomorphism C°(s, \) of V() is unitary.

Notice that by Riemann’s boundedness theorem it follows from the above result
that the meromorphic function A = C(s, A) has no singularities on ia?. Therefore
the possible singularities of E (1), \) must occur in the lower order terms of (27).
This observation plays a crucial role in the proof of Theorem 7.

On G/ K the spherical functions satisfy the functional equation @5y = ¢y, for all
s € Wy. The analog for the normalized Eisenstein integral on G/H 1is
BS(C7(s, by sA) = ES (6, 3) (28)

I

(see [4, Prop. 16.4]. For the group case, see also [39, Lemma 17.2]).
Though E; (3, A) by Theorem 7 is regular on :aj, it will in general have singu-
larities elsewhere on afc. It is remarkable, though, that in a certain direction only

finitely many singularities occur. To be more precise, one has the following. Let
(aic)+ = {A € alc| Re(A,a) >0, a € 7},

and put (a(j@)_ = —(a(j@)_|_.
Theorem 9, [4]. There exists a polynomial ©' on @, which is a product of linear

factors of the form A +— (A, a)+constant, with « a root, such that ' (\)E} (3, \) is
holomorphic on a neighborhood of (a}¢)+.

Notice that «' depends on the K-type p. Notice also that when G/H is Rie-
mannian we actually have that E; (¢, ) itself is holomorphic on (a(j@)_|_. Indeed,
the spherical functions are everywhere holomorphic, and the normalizing divisor

c(A) has no zeros on this set. Thus, for this case one can take 7' = 1.
It follows from Theorem 9 and (26) that if we put

T(A) =7'(=)) (29)
then A — 7(A)F, f(A) is holomorphic on a neighborhood of (a¢)-.

5.2.3. Wave packets. For the p—spherical Fourier transform a ‘partial inversion
formula’ is given in [13] as follows. For a V(u)-valued function ¢ on ia of suit-
able decay one can form a ‘wave packet’, which is the superposition of normalized
Eisenstein integrals, with amplitudes given by ¢, that is

Tpple) = / CEup(N), M)(@)dr - (2 € G/H). (30)

It is easily seen that the transform 7, is the transpose of F,. For Euclidean Fourier
transform (and more generally for the spherical Fourier transform on a Riemannian
symmetric space) this transform is also the inverse of F,; the inversion formula
states that J,F, is the identity operator (when measures are suitably normalized).
In the non-Riemannian generality of G/H this cannot be expected, because of the
possible presence of discrete series. However we do have
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Theorem 10, [13]. There exists an invariant differential operator D (depending
on u) on G/H satisfying the following:

(i) As an operator on C°(G/H), D is injective and symmetric.

() JuFuf = f for all f € D(CF(G/H; p)).

From (22) one can derive that J,F,D = Juxu(D)F, = DI, F,. Hence it follows
from (ii) that D(J,F.f—f)=0forall f € C(G/H; ). Nevertheless, one cannot
then conclude from (i) that in fact J,F,f = f because J,F,[f is not compactly
supported in general. The presence of D is important, for example it annihilates all
the discrete series in L*(G/H; ).

The proof of Theorem 10 is very much inspired by Rosenberg’s proof (see [58]
or [46, Ch. IV, §7]) of the inversion formula for the spherical Fourier transform on
G/K (in which case one can take D = 1). A key step in both proofs is the use of
a ‘shift argument’, originally used by Helgason for the proof of the Paley—Wiener
theorem, where the integration in J, (after use of (27)) is moved away from za in
the direction of (a(j@)_, using Cauchy’s theorem. It can be seen that one only meets
a finite number of singular hyperplanes in this shift. The purpose of the operator D
is to remove these singularities (among other things this means that = should be a
divisor in x,(D)), so that no residues are present. The shift allows one to conclude
that J,F,Df is compactly supported whenever f is, which is an important step in
the proof of the theorem.

Theorem 10 is crucial in the proof of Theorem 6. Via the isomorphism (20) one
obtains with J,v an explicit formula for the restriction to H* of the isomorphism

of H onto L2 (G/H).

6. The Plancherel formula for L*(G/H). The intermediate series

In a more recent development than what was described above, both the Planche-
rel formula for the full space L*(G/H) and the Paley-Wiener theorem have been
obtained. Both of these results were announced in the seminar at the Mittag—Leffler
Institute in November, 1995.

The Plancherel theorem was announced by Delorme; the proof has appeared in
[29]. (In 1986 Oshima announced that he had obtained a Plancherel formula, see
[54, p. 604], but the details have not appeared).

The Paley—Wiener theorem was announced by the first and last named author
of the present paper. They also announced that their proof implies the Plancherel
formula for spaces with one conjugacy class of Cartan subspaces, and that in general
their proof implies the Plancherel formula under the hypothesis that the identity
of Theorem 8 (the Maass—Selberg relations) is valid for generalized Eisenstein inte-
grals (see below). The validity of this hypothesis, which also plays a main role in
Delorme’s work, has been established by Carmona and Delorme in [25]. The details
of the work of van den Ban and Schlichtkrull will appear in [16].
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The theory of Eisenstein integrals that was developed in the previous section
for the most continuous part of L?(G/H) can be generalized to the intermediate
series as well. This has been done in a series of papers by Delorme and others, [21],
[24], [23], [7], [27], [28], [25]. In the above we referred already to the generaliza-
tion (in [25]) of the identity in Theorem 8 (the Maass—Selberg relations) to these
intermediate series. The proof is based on the method of truncation, which was
introduced in this context by Delorme in [28]. As a consequence of the general-
ization of Theorem 8, the regularity in Theorem 7 is extended (also in [25]) to the
(generalized) Eisenstein integrals corresponding to the intermediate series. These
results are of significant importance in both of the mentioned approaches to the
Plancherel formula. Another important ingredient in [29] (but not in [16]) is an a
priori characterization of the support of the Plancherel measure (cf [24, Appendix
C]), which in turn is derived from a result of Bernstein [18].

In [16] the Plancherel formulais derived from an inversion formula for the Fourier
transform F, that was defined on C(G/H;p) in (26). This inversion formula
is based on the ‘shift argument’ that was described after Theorem 10. Without
the presence of the operator D one obtains by this shift an expression involving
generalized residues. It is these residues that give rise to the intermediate and the
discrete series. At this point the method resembles (and was, in fact, inspired by)
that of Langlands (see [51]), Arthur [1] and of Heckman and Opdam [40]. A self-
contained theory for the involved residue calculus for root systems is developed in
[14].

To be somewhat more specific, let (G/H); C G/H be the dense open subset

(G/H)y = U KAfw™H,
weEW

(see (23)), and define a Hom(V(p), V,, )-valued function EL (A, -) on (G/H )4+ by

E_|_(/\7 kaw_l);/) = M(k)q)w(/\v a)¢w7

(see (25)) for A € a; generic, k € K, a € A('f,

w € W and ¢» € V(p). Then (27)

takes the form

Ep( \)(2) = ) Ex(\a)C%(s,M), (v € (G/H)4). (31)

seWy
We define, for f € C2°(G/H;u), € (G/H )4 and n € a generic
T Fuf(z) =Wyl Ei(A,2)Fuf(A)dr € Vy; (32)
n+ial

it can be shown that this integral converges and defines a smooth function on
(G/H)4+. The previously mentioned shift argument involves two steps. The first
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step is the identification of the wave packet J,F, f with 7JF, f for n = 0 (or, if
this is a singular value, with a certain limit). This is done simply by insertion of
(31) in the integral (30) that defines the wave packet. The second step is the actual
shift. In the integral (32) n is shifted from 0 towards infinity in the antidominant
direction. During this shift a finite number of singular hyperplanes is passed, and
some generalized residues are created. For n sufficiently antidominant all the singu-
lar hyperplanes have been passed, and 7,'F), f is then independent of n. We call it
(that is, 7,1 F, f for n sufficiently antidominant) a pseudo wave packet and denote it
by T, F,f. It is a smooth p-spherical function on (G/H )4, and it can be shown by
taking the limit n — oo that it vanishes outside a subset of (G/H )4 with compact
closure in G/H.

We can now state the inversion formula for the Fourier transform F,.

Theorem 11, [16]. Let f € C*(G/H; ). Then
Tu}—uf(x) = f(x)

for all x € (G/H)+.

Theorem 11 is established by induction on dim aq. The shift argument described
carlier results in a formula expressing the difference 7, F, f — J,F, f of the pseudo
wave packet and the wave packet as a sum of integrals of generalized residues.
These residual integrals are by their construction only given as smooth functions on
(G/H)4; a crucial step is to extend them to smooth functions on G/H (in fact, the
residual integrals are not individually extended, only certain finite combinations
extend). Let us indicate how the inversion formula and the smooth extension is
obtained in the simplest case, when dima, = 1 (in this case the result in fact
follows already from the theory developed in [13]). The residual integrals, by which
the pseudo wave packet 7,F,f differs from the wave packet J,F,f, are in this
case just ordinary residues. Let D be as in Theorem 10, then the effect of D is
exactly to annihilate these residues, and hence DT, F,f = DJ,F.f = Df by
Theorem 10 (ii). Thus the difference 7,F,f — f, which is defined on (G/H )4, is
annihilated by D. Being also K-finite this difference is then an analytic function on
(G/H)4+. However, since both 7,F,f and f are compactly supported they agree
on a non-empty open set, hence everywhere. In other words, the desired inversion
formula holds. Moreover the sum of the residues, which we have now identified with
f—JuFuf, extends smoothly to G/H.

The latter conclusion is the starting point for the inductive step that gives the
proof for dima, = 2. In this case there occur two kinds of residual integrals:
those along one dimensional singular hyperplanes, and point residues, which are
taken where the singular lines meet. Using some results from [15] and the smooth
extension for dimaq = 1, the smooth extension is obtained for the sum of the
residual line integrals. The argument for the inversion formula and the smooth



Semisimple symmetric spaces 25

extension of the sum of the point residues is now similar to the argument outlined
above for dimagq = 1.

The inversion formula in Theorem 11 is the key to the Plancherel formula. More
precisely, it is the version of it, in which the pseudo wave packet 7,F, f is replaced
by the sum of the wave packet 7, F, f and the residual contributions. What remains
for the Plancherel formula is essentially to identify these residual contributions in
terms of the intermediate series and the most discrete series. The residues are taken
along the singular hyperplanes of the functions involved, and at the intersections of
these hyperplanes ‘higher order’ residues occur. The residues of the highest order
are the point residues; it is the sum of these point residues that eventually becomes
identified as the projection of f to the discrete series. (In particular, if the discrete
series is absent this means that the point residues cancel out.) First, however,
the residues of lower order are identified in terms of generalized principal series
representations induced from proper parabolic subgroups. It is here that we use
Carmona’s and Delorme’s generalization [25] of Theorem 7. In particular, it follows
that these lower dimensional residual integrals define Schwartz functions. Hence,
as a consequence of the inversion formula, the sum of the point residues is also a
Schwartz function. Since this is a finite sum of D(G/H )-finite functions, one can
conclude that it belongs to the discrete series.

7. A Paley—Wiener theorem for G/H

Let 7' be the minimal polynomial satisfying the conclusion of Theorem 9, and
as before let 7 be given by (29). We define the pre—Paley—Wiener space, M, as
the space of V(u)—valued meromorphic functions ¢ on a) ¢, satisfying the following
conditions:

(i) p(sA) = Cs,A)(A), for all s € Wy, A € ai¢.
(ii) m(A)e(A) is holomorphic on a neighborhood of (aj¢)-.
(iii) There exists a constant R > 0 and for every n € N a constant C > 0 such
that
[T < 1+ Ay eRIReA

for all \ € (aj;@)_.

It can be seen that F, maps C2°(G/H; p) into M, (properties (i) and (ii) are
straightforward consequences of (28) and Theorems 8 and 9, whereas (iii) requires
a more difficult estimate for F (1, A)). It follows from the Paley-Wiener theorem
of Helgason and Gangolli (see [46, Ch. IV, §7]), that when G/H is Riemannian and
 is the trivial K—type then F, is a surjection onto the pre-Paley-Wiener space,
as defined above for this special case. However in general one has to require further
conditions on a function ¢ € M, before it belongs to F,(C°(G/H; it)). Briefly put,
the extra condition is that any existing relation between the normalized Eisenstein
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integrals and their derivatives (with respect to A) should be reflected by a similar
condition on ¢. More precisely, we require that:

For all finite collections of 01,...,0y € S(a;) (that is, constant coefficient differ-
ential operators on a ), 11,..., 0k € V(p) and Ay, ... A € (a(’;@)_, for which the

relation
k

S0 (70 IEL (6, -] oy, = 0 (33)

holds for every ¢ € V(u), « € G/H, we also have the relation

k

S AN (e, =0 (34)

=1

The space of functions ¢ € M, satisfying this requirement is denoted PW,.
It is clear from the definition (26) of F,f that it belongs to this space for f €
C&(G/H; ).

Theorem 12, [13], [16]. The p—spherical Fourier transform F, is a bijection of
C*(G/H; ) onto the Paley—Wiener space PW .

The injectivity of F, is an immediate corollary of Theorem 10: If F,f = 0
then F,Df = x,(D)F,f = 0, hence Df = 0 by (ii), and hence f = 0 by (i).
The injectivity of f +— f” asserted earlier (below Theorem 6) is a consequence, by
density of the K—finite functions in C°(G/H).

The proof of the surjectivity is based on the residue calculus that was described
in the previous section. More precisely, given a function ¢ € M, one forms a pseudo
wave packet from it as in (32), that is

Tup(x) = [Wy| Er(Aa)p(N)dr, (e (G/H)y)

7)—|—za’c‘1

where 7 1s sufficiently antidominant. As before, one shows that 7,¢ is supported on
a subset of (G/H )4 with compact closure in G/H. The surjectivity of F, is then a
consequence of the following result.

Theorem 13, [16]. Assume that ¢ € PW,. Then the pseudo wave packet T,
extends to a smooth function on G/H, belonging to C*(G/H; ). Moreover,

FuTup = . (35)

The proof of this result is based on the same shift that was applied in the proof
of Theorem 11. By this shift one expresses the pseudo wave packet 7,¢ as the sum
of the wave packet 7, and a residual part. Let us again outline the argument for
the case when dimay = 1 (in which case it is already given in [13]). By a clever
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idea introduced by Campoli, [22], for the split rank one group case and also used
by Arthur, [1], there exists a function f € C®(G/H; 1), the Fourier transform of
which agrees with ¢ (to some specified order of derivatives) at the (finitely many)
locations where residues are taken. Hence the residual part of 7,¢ is identical with
the residual part of 7,7, f, which was shown to extend smoothly in the proof of
Theorem 11. Since also J,¢ is smooth on G/H we conclude that 7,p extends
smoothly on G/H. We already mentioned that its support is compact, hence 7, €
C(G/H; p). In particular, it makes sense to form the Fourier transform in (35).
It follows from part of the proof of Theorem 10 that (35) holds when both sides
are multiplied by the polynomial (D) (see [13, Lemma 21.10]), hence it also holds
without this polynomial in front (as an identity between meromorphic functions).

For the Riemannian symmetric spaces the surjectivity of F, (with an arbitrary
K—type 1) is a consequence of the Paley—Wiener theorem in [44], and for the group
G itself, considered as a symmetric space, it follows from [1], as mentioned earlier.
Though it was inspired by [1], the proof outlined above differs from Arthur’s treatise
in several important respects. First of all, Arthur appeals to Harish-Chandra’s
Plancherel theorem, whereas here the idea is to prove both the Plancherel theorem
and the Paley-Wiener theorem from the same kind of reasoning. In this respect
the present proof is in the same spirit as that of Helgason and Rosenberg for G/ K.
Secondly, Arthur uses in the inductive argument a lifting theorem due to Casselman
(see [1, Thm. I1.4.1]). The use of this result (the proof of which seems still to be
unpublished) is here replaced by the application of the theory of asymptotic families
in [15].

A partial Paley-Wiener theorem for G/H was earlier obtained in [30]. The result,
that a certain natural subspace of PW, is contained in the range of the Fourier
transform, was obtained by means of Theorem 3. This, as well as an application of
the Paley-Wiener theorem to construct multipliers, is explained in [§].
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