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Chapter 1

Introduction

The material collected and developed in this thesis is motivated by the following
question:

Given that certain centrally extended loop groups and their positive
energy representations give rise to conformal nets, does there exist
a generalisation of the theory of loop groups which allows one to
analogously construct defects between conformal nets?

We focus exclusively on a special class of loop groups, namely the torus loop
groups which give rise to lattice conformal nets, and manage to make progress
towards answering the above question. Our results can be summarised by the
claim

Torus loop groups generalise to so called bicoloured torus loop
groups. The latter enjoy many properties one expects them to have
for constructing defects between lattice conformal nets.

Our first aim in this Introduction will be to explain the various terms used
in the above question. We begin with a short review of von Neumann algebras
in Section 1.1 because these feature prominently in the definition of conformal
nets that follows next in Section 1.2. In that section we list some (mathematical)
motivations for the theory of conformal nets and basic examples of these objects.
We notably give an overview of the construction of certain conformal nets from
central extensions of loop groups.

We then turn to introducing the notion of a defect between two conformal
nets in Section 1.3 of which we present elementary examples. The scarcity of
these examples will immediately spark the question of finding other methods
of constructing defects. To answer this question we formulate in Section 1.4 a
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2 INTRODUCTION

loose, hypothetical notion of a bicoloured loop group as a method of producing
conformal net defects. Our proposal starts properly in Section 1.5, where we
make precise the special case of a definition of a bicoloured torus loop group
and summarise the results we obtain in this thesis on this new notion.

We refer to Section 1.7 and Appendix A for various notations, conventions
and definitions used in this Introduction.

Remark 1.0.1 (Advice to the reader). The question posed above and the material
on von Neumann algebras, conformal nets and defects treated in Sections 1.1
to 1.3 has been included only to explain the context of our studies, and it will not
make a relevant reappearance until Section 4.1. The bulk of our investigations
in Chapters 2 and 3 does not strictly require knowledge of these matters. The
reader may therefore safely skip Sections 1.1 to 1.3 without missing technical
background needed for the rest of the thesis.

1.1 Von Neumann algebras

Von Neumann algebras were introduced by F. Murray and J. von Neumann in a
series of papers in the 1930s and 40s with applications to representation theory
and physics in mind. Their relevance to this Introduction is their appearance in
the definitions of conformal nets and defects we give in Sections 1.2 and 1.3,
respectively, and they will make a brief reappearance in Chapter 4. We assume
a passing familiarity with the weak, the strong operator and ultraweak topology
on the algebra of bounded operators on a Hilbert space from the reader, as
treated in for example [Con90, Chapters IV and IX].

Let H be a Hilbert space and denote by B(H ) its algebra of bounded
operators. For a subset S ⊆ B(H ), its commutant S′ is defined as the set of
bounded operators onH which commute with all operators of S. We list some
algebraic properties of taking commutants. It reverses inclusions of subsets,
and we have S ⊆ S′′ and S′′′ = S′. This means that the operation of taking the
commutant does not continue indefinitely. It is always true that S′ is a unital
subalgebra ofB(H ) and if S is self-adjoint, meaning that S∗ = S, then S′ is a
unital ∗-subalgebra.

A topological property of forming the commutant is that S′, and hence also
S′′ is weakly closed inB(H ). The following important result strengthens this
fact dramatically when S is a unital ∗-algebra.

Theorem 1.1.1 (Von Neumann’s Bicommutant Theorem). The double commu-
tant A′′ of a unital ∗-subalgebra A ofB(H ) is equal to both the closure of A in
the weak, and in the strong operator topology.
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That is, the algebraic operation of taking the double commutant of a unital
∗-subalgebra ofB(H ) can be expressed in two, equivalent topological terms.
It implies that the following definition is unambiguous.

Definition 1.1.2 ((Concrete) von Neumann algebras). A (concrete) von Neu-
mann algebra is a unital ∗-subalgebra A of the algebra B(H ) of bounded
operators on a Hilbert spaceH which equivalently

• is closed in the weak operator topology onB(H ),

• is closed in the strong operator topology onB(H ), or

• satisfies A′′ = A.

One can furthermore use the Bicommutant Theorem to prove

Corollary 1.1.3. The smallest von Neumann algebra vN(S) containing a subset
S ⊆ B(H ) equals both (S ∪ S∗)′′ and the closure of the unital ∗-subalgebra
generated by S in either the weak or strong operator topology.

So elements of vN(S) can be thought of as limits (in the weak or strong
operator topology) of polynomials with (non-commuting) variables in S ∪ S∗.

We give some examples of von Neumann algebras. The most obvious one
is of courseB(H ) itself. Slightly more interesting are

Example 1.1.4 (Algebras of essentially bounded functions). Let (X ,Σ,µ) be
a σ-finite measure space and L2(X ) := L2(X ,Σ,µ) the Hilbert space of all
measurable functions f : X → C which are square integrable, modulo functions
that are zero almost everywhere. Define next L∞(X ) := L∞(X ,Σ,µ) to be
the set of measurable functions f : X → C which are essentially bounded,
divided out by the same equivalence relation as for L2(X ). With the pointwise
multiplication, the ∗-operation f ∗ := f and the essential supremum norm this
is a C∗-algebra. There is a unital, isometric ∗-homomorphism

L∞(X ) ,→B
�

L2(X )
�

, f 7→ m f ,

where m f is left multiplication by f . It can then be proved that L∞(X )′ =
L∞(X ) (see [Con90, Theorem 6.6]), which implies that L∞(X ) is a von Neu-
mann subalgebra ofB(L2(X )).

The above are examples of abelian von Neumann algebras. It can in fact be
shown that all abelian von Neumann algebras on a separable Hilbert space are
of this form (see [Con90, Theorem 7.8]). This is the reason why the general
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theory of von Neumann algebras is sometimes referred to as ‘non-commutative
measure theory’.

The von Neumann algebras that are relevant to us in this Introduction are
far from abelian, though. Their construction will instead be more similar in
spirit to that of

Example 1.1.5 (Group von Neumann algebras). Let Q : G→ U(H ) be a unitary
representation of a topological group G. Then Q(G)′ and Q(G)′′ are both von
Neumann algebras. When G is locally compact and QL and QR are the left,
respectively, right regular representation with respect to Haar measures on
G we call QL(G)′′ and QR(G)′′ the left and right group von Neumann algebras
of G. They have the special feature that they are each others commutant
[Tak03, Proposition VII.3.1]. An elementary example showing that a group
von Neumann algebra reflects properties of G is the fact that if G is countable
then it is amenable if and only if the algebra QL(G)′′ is the weak closure of an
ascending sequence of finite-dimensional ∗-subalgebras.

In order to define homomorphisms of von Neumann algebras it is useful
to introduce a fourth, ‘coordinate-free’ definition of the latter, which can be
shown to be equivalent to the ones listed in Definition 1.1.2:

Definition 1.1.6 ((Abstract) von Neumann algebras). (Taken from [BDH14a,
Definition A.1].) An (abstract) von Neumann algebra is a topological, unital
∗-algebra A (we do not require the multiplication to be continuous) for which
there exists an injective unital ∗-homomorphism A ,→B(H ) for some Hilbert
spaceH that is a homeomorphism onto the image of A and such that the image
of A is closed with respect to the ultraweak topology onB(H ).

A homomorphism between two (abstract) von Neumann algebras is a unital,
continuous ∗-homomorphism.

We close this section with a brief discussion of the standard form of a von
Neumann algebra. Recall that, given a C∗-algebra A and a positive state f on
it, the so called GNS-construction allows one to build a Hilbert space L2(A, f )
and a left action Q of A on L2(A, f ) such that Q is cyclic for some cyclic vector
Ω and f (a) = 〈Q(a)Ω,Ω〉 for all a ∈ A. This construction is unique in the sense
that it only depends on f .

However, when A is a von Neumann algebra and f a faithful, continuous
state, remarkably, the GNS-construction is endowed with extra structures suffi-
cient to characterise L2(A, f ) even independently from f . We call it the standard
form of A and denote it by L2A. We refer to [BDH14a, p. 46] and [Haa76] for
a listing of these characterising structures and we only point out one of them
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here, namely that L2A is an A–A-bimodule. In general, A might not have any
faithful, continuous states, so that the GNS-construction can not be used as a
model for the standard form. A different, more widely applicable model can be
found in [Tak03, Section IX.1].

1.2 Conformal nets

The notion of a conformal net has its origins in the field of algebraic quantum field
theory (AQFT)—a topic initiated in the 1960s by R. Haag and D. Kastler which
seeks to describe and study quantum field theories (QFT’s) in a mathematically
rigourous way through operator algebraic methods. More specifically, conformal
nets are one possible mathematical model, based on general axioms formulated
by Haag and Kastler, of a class of QFT’s called chiral conformal field theories
(chiral CFT’s). We refer to [Ara99] for general background material on AQFT

and to [KR09] for a physical motivation of the study of conformal nets, and we
continue by giving their definition.

Consider the topological group

SU(1, 1) :=

��

α β

β α

� �

�

�

�

α,β ∈ C, |α|2 − |β |2 = 1

�

.

It acts by orientation-preserving diffeomorphisms on S1 by setting for g ∈
SU(1,1) and1 z ∈ S1,

g · z :=
αz + β

βz +α
.

Clearly, the central subgroup {±I} ⊆ SU(1, 1) then acts trivially and we therefore
get a well-defined action of the quotient group PSU(1, 1) := SU(1, 1)/{±I}. We
call PSU(1, 1) the Möbius group and abbreviate its notation to Möb. The group
Rot(S1) of counterclockwise rotations of S1 embeds into Möb via

ϕθ 7→
�

eπiθ 0
0 e−πiθ

�

,

where ϕθ is the rotation along an angle θ ∈ [0, 1].
All representations considered here are strongly continuous and unitary,

and some elementary notions regarding them are presented in Appendix A.3.
In this Introduction we will also have use for projective representations.

1This is the sole exception we make in this thesis on our convention of denoting points on
S1 as θ , p or q.
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Definition 1.2.1. A projective representation of a topological group G on a
Hilbert spaceH is a continuous homomorphism of G into the quotient group
PU(H ) := U(H )/U(1). Here, we give PU(H ) the quotient topology inherited
from the strong operator topology on U(H ).

Denote by INTS1 the poset of subintervals of S1 and for a Hilbert spaceH
by VNH the poset of von Neumann subalgebras of B(H ), both ordered by
inclusion.

Definition 1.2.2. A (concrete, positive energy) conformal net consists of a Hilbert
spaceH called the vacuum sector, a unit vector Ω ∈H called the vacuum vector,
a map of posets

A: INTS1 → VNH , I 7→ A(I) (1.1)

and a representation U of Möb onH satisfying the following properties:

(i) (Locality) if I , J ∈ INTS1 are intervals with disjoint interiors, then the
algebras A(I) and A(J) commute,

(ii) (Diffeomorphism covariance) U extends to a projective representation
(which we will still denote by U) of Diff+(S1) onH such that2

U(ϕ)A(I)U(ϕ)∗ = A
�

ϕ(I)
�

for all ϕ ∈ Diff+(S1) and I ∈ INTS1 , and, moreover, if ϕ has support in I
then U(ϕ) commutes with A(I ′),

(iii) (Positivity of energy) the restriction of U to the subgroup Rot(S1) of Möb
is of positive energy in the sense of Definition A.3.13,

(iv) (Vacuum axiom) the vector Ω is invariant under the action U of Möb and
cyclic for the von Neumann algebra vN(∪I⊆S1A(I)).

When I ⊆ J is an inclusion of intervals the corresponding inclusion A(I) ,→ A(J)
of von Neumann algebras is called an isotony homomorphism.

An isomorphism from A to another conformal net A′ is an isomorphism of
Hilbert spaces H →H ′ which sends Ω to Ω′ and intertwines the respective
poset maps.

When referring to a conformal net we will often omit the dataH , Ω and U
and simply write A, as we already did in the definition of an isomorphism of
nets.

2Even though U(ϕ) for ϕ ∈ Diff+(S1) might not be a well-defined operator onH , the two
demands that we ask of U(ϕ) in this axiom remain unambiguous.
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Remark 1.2.3. We do not include the extension of U to Diff+(S1) as a datum
because it is shown in [CW05, Theorem 5.5] that, under an additional, mild
assumption, the restriction to Möb and the listed other properties already
determine this extension uniquely. Those authors even speculate that that
assumption is not necessary.

Remark 1.2.4. For the definition of an isomorphism of conformal nets we do not
require the isomorphism of Hilbert spaces to also intertwine the representations
of Möb because it is a (highly non-trivial) fact that this holds automatically (see
[KL04, p. 499]).

Remark 1.2.5. The usage of the word ‘net’ is slightly strange because a conformal
net is not a net in the point-set topological sense. The poset INTS1 namely
does not form a directed set because two intervals that cover S1 do not have an
upper bound in INTS1 . The alternative term conformal pre-cosheaf that some
authors use might be more suitable.

The definition of a conformal net involves by definition a Hilbert space on
which the von Neumann algebras are represented. When the algebras can be
made to act on a different Hilbert space as well, this is given its own name.

Definition 1.2.6. Let A be a conformal net. A sector3 Q of conformal net A
consists of a Hilbert space K and a family of von Neumann algebra homo-
morphisms Q I : A(I)→B(K ) for all I ∈ INTS1 which is compatible with the
isotony homomorphisms of A, meaning that Q I |A(J) =QJ if J ⊆ I . A morphism
from Q to another sector Q′ with underlying Hilbert space K ′ is a bounded
linear map K →K ′ which intertwines the homomorphisms Q I and Q′I for all
I ∈ INTS1 .

Remark 1.2.7. One may ask why the definition of a sector does not include an
action of Möb which, just like for the vacuum sector, intertwines covariantly with
the algebra homomorphisms Q I and restricts to a positive energy representation
of Rot(S1). The answer is that this has been shown to hold automatically by
[DFK04, Theorem 5] and [Wei06, Theorem 3.8], with the subtlety added that
on a general sector usually only the universal covering group of Möb acts.

1.2.1 Examples of conformal nets

Let us present some basic examples of families of conformal nets. Our discus-
sions will be deliberately cursory. We start with a family that does not have

3The literature often uses this term for an isomorphism class of what we call sectors. We
follow the terminology of [BDH14a] instead.
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the focus of this thesis, but whose relatively simple construction will serve to
illustrate features common to the constructions of the other, more complicated
families.

Example 1.2.8 (Heisenberg nets). For every finite-dimensional real vector
space F with a non-degenerate, symmetric, positive definite bilinear form
〈·, ·〉: F × F → R on it there exists an associated Heisenberg conformal net AF .
We outline its construction and we refer to [DX06] and [Bis12] for details.

One first forms the loop group LF := C∞(S1, F) of all smooth maps from
S1 to F , equipped with the point-wise multiplication. It admits a canonical
decomposition LF

∼
−→ F ⊕ V F , where V F is the real vector space of all loops in

LF whose average over S1 is zero. We will explain in Section 2.5.1 how the
form 〈·, ·〉 together with the holomorphic structure on the unit disc can be used
to turn V F into a complex pre-Hilbert space—hence making LF a topological
group.

Next, the form 〈·, ·〉 is used to construct a central extension eLF of LF by
the group U(1) through an explicit continuous 2-cocycle on LF . The extension
satisfies the so called disjoint-commutativity property: if eLI F denotes for an
interval I ⊆ S1 the pre-image in eLF of those loops in LF with support in I , then
eLI F and eLJ F are commuting subgroups of eLF whenever I and J have disjoint
interiors. The left action of Diff+(S1) on LF given by precomposition with
inverses of circle diffeomorphisms lifts to eLF in such a way that if ϕ ∈ Diff+(S1)
then ϕ · eLI F = eLϕ(I)F and if ϕ has support in I then it acts trivially on eLI ′F .

In particular, Rot(S1) acts on eLF and it therefore makes sense to discuss
its positive energy representations. For every α ∈ F there exists a particular
irreducible such representation Wα with underlying Hilbert spaceSα and it turns
out that every irreducible, positive energy representation of eLF is isomorphic to
one of this form up to the character by which the central subgroup U(1) ⊆ eLF
acts. A general positive energy representation is hence a direct sum of these
Wα’s.

The representation S0, which we call the vacuum representation of eLF in
anticipation, carries even more structure than the action R of Rot(S1) that is
part of the positive energy property. There exists a projective representation U
of Diff+(S1) on S0 whose interaction with W0 is described by the intertwining
relation

U(ϕ)W0

�

eLI F
�

U(ϕ)∗ =W0

�

eLϕ(I)F
�

for all I ∈ INTS1 . It restricts to an honest representation of Möb fixing a
certain unit vector Ω ∈ S0 and extends R. (See [Seg81, Section 5] and [Vro13,
Subsection 5.3.2] for these facts.)
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We now create for every interval I ∈ INTS1 the von Neumann algebra

AF (I) := vN
�

W0

�

eLI F
�

�

acting on the Hilbert space S0. That is, we take the ∗-closed set W0(eLI F) of
unitary operators and then form its von Neumann-algebraic completion inside
B(S0). This obviously defines a map of posets AF as in (1.1). We claim that this
is a conformal net. The locality axiom is deduced from the disjoint-commutative
property of eLF . Given the cited results, diffeomorphism covariance, positivity
of energy and invariance of Ω of course also follow. Finally, the cyclicity of Ω
holds because Ω is cyclic for eLF and this group is generated by its subgroups
eLI F . This construction of AF only makes use of the representation W0. The
role of the other positive energy representations of eLF is that each of them can
be equipped with the structure of a sector of the net AF .

Heisenberg nets derive their name from the fact that the restriction of eLF
to V F is a Heisenberg group in the sense of Definition A.4.1.

Example 1.2.9 (Lattice nets). The contents of this thesis are exclusively moti-
vated by the class of lattice nets. The rough idea behind creating one of them
is to replace the real vector space F in Example 1.2.8 by a different real Lie
group, namely a torus T . Furthermore, the role of the R-valued form 〈·, ·〉 on F
is taken over by the structure of an even, positive definite lattice on the free,
finite rank Z-module ker(exp), where exp: t→ T is the exponential map on
the Lie algebra t of T . (See Appendix A.1 for an introduction to lattices.) The
construction of the lattice net then proceeds very similar to that of a Heisenberg
net, except that the fact that a torus is not simply-connected introduces many
new complications. (Essentially, the construction of a lattice net breaks up
into two steps: first forging the Heisenberg net At and, next, enlarging At

appropriately to form the lattice net. We will not emphasise this viewpoint,
though.) Note that we might as well take an even lattice Λ as the primary
datum and then define T := Λ⊗Z U(1).

We begin again by forming the loop group LT := C∞(S1, T ), which can be
made into a topological group. It is not connected: each connected component
is labelled by an element of Λ which signifies how (many times, when T
is 1-dimensional) a loop winds around T . The bi-additive form on Λ is then,
together with some minor extra data, used to construct a U(1)-central extension
eLT through a 2-cocycle on LT that is continuous on its identity component
and similar to, but more complex than the one on LF . Up to non-canonical
isomorphism, the extension is independent of the aforementioned extra data.
It is disjoint-commutative and admits an action of Diff+(S1) with identical
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properties as for eLF . A major difference of eLT with eLF is that the former
possesses only finitely many isomorphism classes of irreducible, positive energy
representations after fixing the character by which U(1) ⊆ eLT acts. These
classes are namely labelled by the discriminant group DΛ := Λ∨/Λ of Λ.

We single out a particular representation denoted by Ind W0 of eLT of the
type just mentioned, representing the class corresponding to 0 ∈ DΛ, and name
it the vacuum representation. It carries a projective representation of Diff+(S1),
intertwining with Ind W0 and satisying the same properties as mentioned in
Example 1.2.8. One then constructs a conformal net AΛ via the same method
as for a Heisenberg net. (We conjecture that this procedure works for an odd
lattice as well, but that this will lead to a Z/2Z-graded net in the sense of [DH,
Definition 3.7].) The other positive energy representations of eLT carry the
structure of a sector of AΛ (see [DX06, Proposition 3.15]).

Chapter 2 of this thesis is devoted to explaining the details on eLT and its
representation theory. For example, the crucial formula for the cocycle defining
it is stated in (2.7). We refer to [Seg81], [PS86], [BMT88] [Sta95], [DX06] and
[Bis12] for further material. (We warn that the statement of [PS86, Proposition
(9.5.14)] is likely wrong for representations that are not irreducible because the
direct sum of two projective representations is in general not again a projective
representation.) Some of these listed authors do not explicitly state that their
constructions are valid for an arbitrary even, positive definite lattice, instead of
only for one of ADE-type.

Example 1.2.10 (Affine Kac–Moody nets). An affine Kac–Moody net AG,k is
associated to a pair of a compact, connected, simple, simply-connected Lie
group G and a choice of a multiple of a certain normalisation of the Killing
form on the Lie algebra of G by a positive integer k called a level. The literature
sometimes refers to this as a loop group net, but we believe this to be slightly
confusing since a Heisenberg or lattice net deserves that name as well.

The construction of this net starts again with the loop group LG, that is,
C∞(S1, G). The level k then determines a U(1)-central extension eLG. Unlike in
the situations of Examples 1.2.8 and 1.2.9, eLG is not topologically trivialisable
as a U(1)-bundle over LG. It is therefore not possible to build eLG by prescribing
a globally continuous 2-cocycle on (LG)×2—continuity in a neighbourhood
around (1, 1) ∈ (LG)×2 is the best one can hope for. Instead, [PS86, Sections 4.4
and 4.5], [GF93, Section III.3] and [Wal16, Example 2.6] present means to build
eLG in a more geometric manner. Again, eLG satisfies disjoint-commutativity
and it carries a Diff+(S1)-action with desirable properties regarding supports
of loops.
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Depending on the group G, there exist various methods for constructing
the irreducible, positive energy representations of eLG and their intertwining
projective Diff+(S1)-actions. A uniform procedure is explained in [BDH14a,
Section 4.C] which involves building representations of a dense subalgebra
of the complexified Lie algebra of eLG first and integrating these next using
the techniques in [Tol99]. Up to isomorphism, eLG has only finitely many
irreducible, positive energy representations after fixing the character by which
U(1) ⊆ eLG acts (see [PS86, Theorem (9.3.5)]). (We again warn about the
absence of the irreducibility assumption in [PS86, Theorems (9.3.1)(v) and
(13.4.2)].)

The further construction of the affine Kac–Moody net AG,k using a vacuum
representation of eLG is formally similar to that of Heisenberg and lattice nets
and we refer for its details to [BDH14a, Section 4.C]. It is worth mentioning
that there exists a precise relationship between affine Kac–Moody and lattice
nets: when G is simply-laced AG,1 is isomorphic to a net associated to a lattice
of ADE-type (see [Bis12, Proposition 3.19]).

We named affine Kac–Moody nets so because the dense subalgebra of the
complexified Lie algebra of eLG mentioned earlier is a Kac–Moody algebra of
affine type.

Remark 1.2.11. The positive (definite) assumptions in Examples 1.2.8 to 1.2.10
are not needed for the constructions of the central extensions of the respective
loop groups. They are, however, necessary and sufficient for the natural bilinear
forms on their representation spaces to be positive definite, so that the latter
can be completed into Hilbert spaces.

Loop groups are not the only source of conformal nets:

Example 1.2.12 (Virasoro nets). For certain real numbers c one can define a
so called Virasoro net AVir,c . The range of admissible values of c is the union of
the closed half-line [1,∞) with a particular infinite discrete set in the interval
[0,1), namely

§

1−
6

m(m+ 1)

�

�

�

�

m= 2,3, 4, . . .
ª

.

The general idea of constructing Virasoro nets is to replace the loop groups
in Examples 1.2.8 to 1.2.10 with Diff+(S1). There exists a particular non-trivial
U(1)-central extension, named the Virasoro–Bott group, of Diff+(S1) which is
characterised by the fact that its restriction over the subgroup PSU(1,1) of
Diff+(S1) is trivial. Because it is topologically trivialisable as a U(1)-bundle
over Diff+(S1) it can be defined by a continuous 2-cocycle on Diff+(S1) called
the Thurston–Bott cocycle (see [KW09, Section II.2]).
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One way to build irreducible, positive energy representations of the Virasoro–
Bott group is similar to the method mentioned in Example 1.2.10: the integra-
tion of certain representations of a dense subalgebra of its complexified Lie
algebra using the results of, for example, [Tol99]. The peculiar restrictions on
the values of c are the result of investigating when these Lie algebra represen-
tations are unitary. We refer to [Car04] and [Wei05, Section 3.3] for further
information on the construction of Virasoro nets. A proof that Diff+(S1) is
generated by its subgroups of diffeomorphisms supported in an interval can
be found in [Lok94, Proposition 1.2]. The irreducible representations of AVir,c
have been classified in [Wei06, Corollary 3.9] and [Wei16].

Virasoro nets play a special role in the general theory of conformal nets
because it can be shown that every net, thanks to the axiom of diffeomorphism
covariance and the Haag duality theorem, contains some Virasoro net. In turn,
Virasoro nets cannot contain subnets strictly themselves [Car98]. This is why
(at least for c < 1) they are sometimes named minimal models in the physics
literature.

The examples we listed above by no means exhaust all conformal nets. They
have in common that they are constructed in terms of ‘external’ data, such as a
loop group or the group Diff+(S1) and a choice of level. There exist, however,
also plenty of constructions one can perform ‘internally’ to the category of
conformal nets, meaning that they take one or more nets as input to produce
another. Examples of such constructions are direct sums, tensor products,
extensions, orbifolds, mirror extensions and coset constructions. Using these
one can construct many more examples of nets. We will not discuss these
techniques further.

A final method of producing conformal nets we mention is the recent work
[Car+15] in which those authors show how to construct nets from different
mathematical models of chiral CFT’s: the unitary vertex algebras.

The technique of orbifolding shows that a naive classification of all con-
formal nets is as infeasible as that of all finite groups. Nevertheless, successes
have been booked on the ‘relative’ problem of classifying nets that contain a
fixed one when the inclusion satisfies a certain finiteness condition. See for
example [KL04] for a tabulation of all nets for which the embedded Virasoro
net AVir,c satisfies c < 1.

1.2.2 Mathematical applications of conformal nets

While the early literature on conformal nets has a large focus on answering
questions motivated by physical considerations, their theory found relevance
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to areas closer to pure mathematics also. We mention three of these.

Sporadic groups and Moonshine Even though the original definition of a
vertex algebra in [Bor86] heavily used notions inspired by the physics
literature, R. Borcherds was at the time not motivated by the question
of giving a mathematical formalisation of a chiral CFT [Bor11]. He
instead attempted to axiomatise, and exhibit further structure on certain
constructions made by I. Frenkel, V. Kac, J. Lepowsky and A. Meurman
in order to define and study the so called Monster vertex algebra. It is a
vertex algebra of which the automorphism group is precisely the Monster
group—the largest of the 26 sporadic finite simple groups—and it played
an important role in Borcherds’ eventual proof in [Bor92] of J.H. Conway
and S.P. Norton’s main Monstrous Moonshine conjecture.

Because (unitary) vertex algebras and conformal nets are both roughly
mathematical models of the same physical notion, it is reasonable to
expect that the Monster vertex algebra has a conformal net counterpart.
Such a net has indeed been constructed in [KL06] by taking an orbifold
subnet of the conformal net associated to the Leech lattice followed by a
net extension. A different construction has been given in [Car+15], in
which its authors also construct a conformal net analogue of G. Höhn’s
Baby Monster vertex algebra of which the automorphism group is the Baby
Monster—the second largest of the sporadic finite simple groups.

Modelling topological field theories The category SectA of sectors of a con-
formal net A carries far more structure than we indicated in this Intro-
duction. Most significantly, there is a way of taking the tensor product of
two sectors which makes SectA into a tensor category. That this tensor
product is very different from the naive one already follows from the
facts that it is in general not symmetric, but braided, and that the vacuum
sector of A is a monoidal unit object.

When A satisfies a certain finiteness condition SectA is of an even more
special type: it is a modular tensor category (MTC) (see [KLM01, Corollary
37] and [BDH14b, Theorem 3.9]). Modular tensor categories are ‘rare’
mathematical objects (in the words of [MNS12]) in the sense that few
methods are known for producing them. One motivation for studying
them is that each MTC gives rise to a 3-dimensional topological quantum
field theory (3d TQFT) and hence to an invariant of knots and smooth
3-manifolds. The objects of the MTC then correspond to the bulk line
operators of the TQFT and the morphisms can be interpreted as local
operators sitting at the junction between two bulk line operators.
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Lattice nets are known to satisfy this finiteness criterion [DX06, Corollary
3.19] and the same is conjectured to hold for affine Kac–Moody nets,
even though this has only been shown in particular cases (see for ex-
ample [BDH14a, Theorem 4.18] and the references cited therein). The
TQFTs arising from lattice and affine Kac–Moody nets are expected to
equal the abelian Chern–Simons, and (ordinary) Chern–Simons theories,
respectively. (Because these theories are not defined mathematically, this
claim contains ample room for interpretation.)

This relation between finite conformal nets and 3d TQFTs is in general
many-to-one, though: there might exist non-isomorphic conformal nets
of which their categories of sectors are equivalent as MTCs and hence
produce the same TQFTs. For example, we conjecture following the work
of [Höh03] that this occurs for nets associated to lattices that lie in the
same genus.

Defining elliptic cohomology geometrically In the last quarter of the 20th
century a new family of generalised cohomology theories was discov-
ered in the field of algebraic topology—the so called elliptic cohomology
theories. There is in general no reason for an arbitrary generalised co-
homology theory to have an interpretation in terms of the geometry of
the spaces one evaluates it on in the same way that, for example, topo-
logical K-theory can be defined using vector bundles over the spaces.
However, a web of conjectures has gradually been formed suggesting that
the elliptic cohomology theories could have a quantum field-theoretic,
geometric definition. Based on joint work with A. Bartels, C. Douglas
and A. Henriques have started a project investigating whether a certain
‘universal’ elliptic cohomology theory, named TMF, can be modelled via
conformal nets (see [DH11] for a survey of some of their results). An
early success they and B. Janssens achieved in unpublished work is a
definition in terms of conformal nets of the String groups. These groups
are related to TMF in a way that is similar to the relation between the
Spin groups and real topological K-theory.

1.3 Defects between conformal nets

Up to this point we have mostly been discussing the theory of conformal nets
as it is described in the more traditional literature. We now turn our focus
to recent work of A. Bartels, C. Douglas and A. Henriques which revolves
around their new notion of a defect between conformal nets. Before giving its
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definition, we first introduce an alternative definition of a conformal net devised
by those authors which simultaneously is a ‘coordinate-free’ formulation of
Definition 1.2.2 and mildly generalises it.

Denote by INT the category of which the objects are intervals4 and the
morphisms are smooth embeddings and write VN for the category of which
the objects are (abstract) von Neumann algebras and the morphisms are either
von Neumann algebra homomorphisms or antihomomorphisms. If I ∈ INT is
an interval, Diff+(I) stands for the group of its orientation-preserving diffeo-
morphisms.

Definition 1.3.1. (Taken from [BDH14a, Definition 1.1].) An (abstract) con-
formal net is a continuous covariant functor A: INT→ VN sending orientation-
preserving and reversing embeddings to injective algebra homomorphisms and
antihomomorphisms, respectively, which satifies the following properties:

(i) (Locality) if I ,→ K and J ,→ K are embeddings of intervals of which
the images have disjoint interiors, then the images of the corresponding
homomorphisms or antihomomorphisms A(I) ,→ A(K) and A(J) ,→
A(K) commute inside A(K),

(ii) (Inner covariance) if ϕ ∈ Diff+(I) is the identity in a neighbourhood of
the endpoints of I , then there exists a unitary operator U ∈ A(I) such
that Ad(U) = A(ϕ),

(iii) (Existence of a vacuum sector) assume that I ( K is a pair of an interval
and a properly included subinterval such that I contains a boundary point
p of K and write Ī for the same manifold as I , but equipped with the
reversed orientation. Then A(I) and A( Ī) both act on the left of the
standard form L2A(K)—the former via the homomorphism A(I) ,→ A(I)
and the latter through the homomorphism A( Ī)

∼
−→ A(I)op ,→ A(K)op.

We then demand that the left action of the algebraic tensor product
A(I) ⊗ A( Ī) on L2A(K) extends to an action of the algebra A(I ∪p Ī)
along the homomorphism A(I)⊗A( Ī)→ A(I ∪p Ī). Here, we mean by
I ∪p Ī any interval obtained by gluing I and Ī along p with a smooth
structure that extends those of I and Ī and such that the involution which
swaps I and Ī is smooth.

A morphism between two abstract conformal nets is defined to be a natural
transformation.

4See Section 1.7 for our definition of an interval.
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The meaning of the term continuous in the above definition can be found in
[BDH14a].

Remark 1.3.2. The authors of [BDH14a] include two additional axioms in their
definition of an abstract conformal net, namely those of strong additivity and
splitness. We did not do so both to simplify the definition for the uninitiated
reader and because one would otherwise be excluding some natural, non-
pathological examples of conformal nets. For example, we did not include
strong additivity since this property is not satisfied by Virasoro nets AVir,c when
c > 1 [BS90]. However, we warn that many structural results in [BDH14a] do
rely on these two axioms.

It is at first sight far from clear in what way the Definition 1.3.1 of an
abstract conformal net is a generalisation of that of a concrete, positive energy
net in Definition 1.2.2. Three features in which they differ immediately stand
out:

• for an abstract net one no longer posits the existence of an ambient Hilbert
space on which the von Neumann algebras associated to intervals act.
The reason for this is that the Reeh–Schlieder and Bisognano–Wichmann
theorem imply that the axioms of a concrete, positive energy net A are
sufficiently strong to reconstruct the vacuum sector as the standard form
L2A(K) for any interval K ⊆ S1. Conversely, the purpose of the vacuum
sector axiom for an abstract net A is to ensure that, given an interval
K ⊆ S1, the standard form L2A(K) not only carries actions of A(K) and
A(K ′) via its A(K)–A(K)-bimodule structure, but also of all algebras A(I)
with I ⊆ S1,

• an abstract net assigns algebras to all intervals, instead of only to those
that are embedded in S1. This is not a stronger demand, though, since,
given a concrete, positive energy net, one can assign algebras to any
interval I by choosing embeddings of I in S1. Using the diffeomorphism
covariance, these algebras can then be glued together into a single algebra
which is independent of the choice of embedding,

• there is no assumption of positivity of energy in the definition of an
abstract net, and it is in this direction that such a net is a genuine gen-
eralisation of a concrete, positive energy net. The motivation given in
[BDH14a] for dropping this requirement is to assemble conformal nets
into a symmetric monoidal category with duals, and the natural dual of
a positive energy net is of negative energy.
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Even though some axioms were left out in Definitions 1.2.2 and 1.3.1 for
the sake of exposition, we approximately cite

Theorem 1.3.3. (See [BDH14a, Proposition 4.9] for the precise statement.) Every
concrete, positive energy conformal net can be extended to an abstract conformal
net.

From this point onwards, whenever we will speak of a conformal net, we
will mean an abstract conformal net in the sense of Definition 1.3.1.

Physically, a defect between two field theories or condensed-matter systems
can be thought of as a ‘2-sided’ boundary condition, designating a submanifold
at the junction between the domains of the theories where the fields of one
theory experience a discontinuity and transition to those of the other theory.
Defects have also been named domain walls or surface operators in the literature
and studies of them (for theories we do not treat in this thesis) can be found in
for example [Frö+07], [KS11b] and [Guk16].

The formulation of a defect between two conformal nets introduced by
[BDH15] is a straightforward translation of their Definition 1.3.1 when the
category INT of intervals is enhanced to the category INT◦• of bicoloured
intervals. An object of this category is an interval equipped with a covering of
two subintervals, one of which is seen as being coloured white, the other one
as being coloured black. The subintervals are required to overlap in one point,
at which the colour changes. We allow that a bicoloured interval is coloured
entirely white or entirely black, meaning that the other subinterval is empty, but
we rule out that one of the two subintervals is a singleton. Morphisms between
bicoloured intervals are smooth embeddings that preserve bicolourings. The
full subcategories of entirely white and entirely black intervals are denoted
by INT◦ and INT•, respectively, and we call a bicoloured interval which is not
contained in either of them genuinely bicoloured.

After these preliminaries5 we are ready for

Definition 1.3.4. (Taken from [BDH15, Definition 1.7].) If A and B are two
conformal nets, then an A–B-defect D is a covariant functor D : INT◦•→ VN
sending orientation-preserving and reversing morphisms to algebra homomor-
phisms and antihomomorphisms, respectively, whose restrictions to INT◦ and
INT• are equal to A and B, respectively, and which satisfies the following
properties:

5The authors of [BDH15] require one more piece of structure of bicoloured intervals which we
left out for brevity, namely a local coordinate around the colour-changing point, and morphisms
are required to respect this.
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• (Isotony) if I ,→ K is a morphism of genuinely bicoloured intervals, then
the corresponding homomorphism or antihomomorphism D(I)→ D(K)
is injective,

• (Locality) if I ,→ K and J ,→ K are morphisms of bicoloured intervals of
which the images have disjoint interiors, then the images of D(I) and
D(J) in D(K) commute,

• (Existence of a vacuum sector) let K be a genuinely bicoloured interval
and I ∈ INT◦ ∪ INT• a subinterval of K containing a boundary point p of
K. Write Ī for the same manifold as I , but equipped with the reversed
orientation. Then D(I) and D( Ī) both act on the left of the standard form
L2D(K)—the former via the homomorphism D(I)→ D(K) and the latter
through the homomorphism D( Ī)

∼
−→ D(I)op→ D(K)op.

We then demand that the left action of the algebraic tensor product
D(I) ⊗ D( Ī) on L2D(K) extends to an action of the algebra D(I ∪p Ī)
along the homomorphism D(I)⊗ D( Ī)→ D(I ∪p Ī).6

When I ,→ K is a morphism of bicoloured intervals the corresponding algebra
homomorphism D(I)→ D(K) is called an isotony homomorphism.

A morphism between two A–B-defects is defined to be a natural transfor-
mation.

Remark 1.3.5. The reason the above Definition 1.3.4 does not include require-
ments of continuity and inner covariance analogous to those in Definition 1.3.1
is that these can be shown to hold automatically (see [BDH15, Proposition
1.21] and [BDH15, Proposition 1.10], respectively) when a strong additivity
axiom of the nets and the defect is assumed. We removed the latter axiom for
brevity.

We stress that the non-trivial information contained in an A–B defect
consists of the algebras assigned to genuinely bicoloured intervals and the
isotony homomorphisms associated to inclusions of white, black or genuinely
bicoloured into genuinely bicoloured ones. The rest of the data is already
determined by the nets A and B.

The notion of a defect between two conformal nets bears a formal similarity
to that of a bimodule between two rings. This is not meant to suggest that,
just like for a bimodule one can forget the action of one ring and obtain an
ordinary module for the other ring, also a net defect possesses an underlying
sector structure for both nets. Instead, it is more fruitful to think of defects

6See Definition 1.3.1 for the definition of the unicoloured interval I ∪p Ī .
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as a generalisation of morphisms of conformal nets. Indeed, we will see in
Example 1.3.8 that suitable morphisms give rise to defects.

The analogy between defects and ring bimodules runs deeper still in that
both admit a form of composition. Recall that when M is a Q–R-bimodule and
N is an R–S-bimodule for rings Q, R and S the tensor product M ⊗R N is a
Q–S-bimodule. This operation is weakly associative and weakly unital. Taking
bimodules as 1-morphisms and equivariant bimodule maps as 2-morphisms,
rings become in this way a symmetric monoidal bicategory.

Similarly, it is shown in [BDH15; BDH16] that defects (under certain condi-
tions) can be composed and that a restricted class of conformal nets becomes a
particular kind of symmetric monoidal 3-category when defects are taken as
the 1-morphisms. The 2-morphisms used in this 3-category are not the ordinary
morphisms between defects as stated in Definition 1.3.4, though. They are
rather a natural generalisation of the notion of sectors as defined in Defini-
tion 1.2.6, which explains the increase in the categorical level compared to the
situation of rings.

The study of this 3-category has the potential to reveal a richer structure on
the family of conformal nets—one that is not easily visible at the level of objects
and ordinary morphisms. Unfortunately, there is very little known about it so
far. For example, it is very simple to point out for every two nets A and B some
A–B-defect D. As explained in [BDH14a, Proposition 1.23], one namely always
has an A–C- and a C–B-defect and D can then be defined as their composition
over the net C. However, this defect is ‘large’ in the sense that it is not dualisable
(in the higher categorical sense), and no necessary conditions are known to
impose on a pair of nets for a dualisable defect to exist between them.

Remark 1.3.6 (Alternative definitions of defects). Definition 1.3.4 is not the
only notion of a conformal net defect put forward in the literature: in indepen-
dent work the authors of [Bis+16] offer an alternative, but more restrictive,
formulation. (Their definition applies to 1-dimensional defects between 2d
full CFT’s as well.) At the moment of this writing the precise relation between
their theory and that of [BDH15] is not entirely clear, but we refer to [BDH15,
Remark 1.28] and [Bis+16, Remark 3.4] for interesting discussions on this
matter.

1.3.1 Examples of defects

A few elementary examples of defects between conformal nets were obtained
in [DH] and [BDH15, Section 1.C]. We summarise a selection of those here.
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Example 1.3.7 ((Twisted) identity defects). For every conformal net A there is
an identity A–A-defect denoted by 1A. It is defined by simply setting 1A(I) :=
A(I) for every bicoloured interval I , where we make sense of the evaluation A(I)
by ignoring the bicolouring of I . Furthermore, the isotony homomorphisms
induced by inclusions of white, black and genuinely bicoloured intervals into
genuinely bicoloured ones are also defined to be those we get from A by
forgetting bicolourings. This defect serves as the identity 1-morphism in the
3-category of conformal nets.

This example can be tweaked as follows. Let g be an automorphism of A.
Then define an A–A-defect Dg again by Dg(I) := A(I) for every bicoloured
interval I , except that we ‘twist’ the isotony homomorphisms on, say, the black
side by g. More precisely: if I is a black interval, J is genuinely bicoloured and
f : I ,→ J is an embedding then the homomorphism Dg( f ): Dg(I)→ Dg(J) is
set to be A( f )◦gI , where gI is the automorphism of A(I) given by conjugation by
g. All other types of isotony homomorphisms are inherited from A, unaffected
by g.

The construction of such a twisted identity defect can be compared to
the situation when we consider a ring R as an R–R-bimodule. Twisting the
right action by an automorphism of R then namely also produces a new R–R-
bimodule.

Example 1.3.8 (Defects from conformal embeddings). Continuing the analogy
of defects with ring bimodules, we note that if R is a subring of a ring S, then S
is an R–S-, S–R- and an R–R-bimodule. The counterpart of this observation for
defects is as follows.

A morphism τ: A→ B between two conformal nets is called a conformal
embedding in [BDH14a, Definition 1.45] if it respects unitary operators that
implement algebra automorphisms induced by interval diffeomorphisms. That
is, we demand of τ that Ad(U) = A(ϕ) implies that Ad(τ(U))) = B(ϕ) for
every interval I , diffeomorphismϕ of I which is the identity near ∂ I and unitary
operator U ∈ A(I). It is then shown in [BDH15, Proposition 1.24] that there
exists an A–B-defect7 which evaluates genuinely bicoloured intervals like B

does after forgetting bicolourings and of which the isotony homomorphisms
are the obvious ones induced by τ. Similarly, τ gives rise to a B–A- and an
A–A-defect.

Example 1.3.9 (Defects from Q-systems). Let us return to the construction in
Example 1.3.8 of an A–A-defect from a conformal embedding τ: A→ B of

7Those authors actually only need the morphism τ to be a conformal embedding to prove
the strong additivity property of the resulting defect.
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nets. A closer inspection of the locality axiom of a defect teaches us that it is
not necessary for the net B to be local as well—it is sufficient for B to be local
relative to A, meaning that if I ,→ K and J ,→ K are embeddings of intervals
of which the images have disjoint interiors, then the images of τ(A(I)) and
B(J) in B(K) commute. It is known that, upon imposing a certain finiteness
condition on τ, such relatively local extensions B of A can be classified in terms
of certain algebra objects called Q-systems in the category of sectors of A. In
[BDH15, pp. 15–17] those authors demonstrate how to produce an A–A-defect
from a Q-system directly, without first needing to build the corresponding net
extension.

Example 1.3.10 (Defects realising invertibility of nets). The authors of [DH]
call a conformal net A invertible if there exist another net A−1 and an invertible
defect D from A⊗A−1 toC, whereC is the trivial conformal net that is constantly
C and of which all isotony homomorphisms are idC. (Here, the invertibility of
a defect should be interpreted in the higher categorical sense.) Together with
the result [BDH14a, Corollary 3.26] they proved that A is invertible if and only
if all its algebras have trivial centre and its representation theory is trivial. This
was done by exhibiting for the ‘if’ direction an explicit defect implementing the
invertibility.

Lastly, just like conformal nets, there is also a direct sum operation for
defects (see [BDH14a, Lemma 1.29]), which can be used to produce more
defects from a set of given ones.

1.4 Bicoloured loop groups

The examples of defects presented in the previous Section are fairly formal in
nature. They are built ‘internally’ to the relevant categories, as opposed to the
examples of conformal nets presented in Section 1.2.1 that were constructed in
terms of ‘external’ data. In order to gain a greater understanding of defects it
is natural to ask for a larger source of richer examples of them.

We now outline a proposal suggesting that the construction of conformal
nets from loop groups in Examples 1.2.8 to 1.2.10 might admit a generalisation
that allows one to build defects between these loop group nets. Let us repeat
the essential features of those loop groups:

If G is a real vector space, a real torus or a compact, connected,
simple, simply-connected Lie group, then its associated loop group
LG := C∞(S1, G) admits certain disjoint-commutative U(1)-central
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extensions eLG. Such an extension carries an action of Diff+(S1)
which lifts the natural one on LG and is compatible with respect
to supports of loops and circle diffeomorphisms. One is able to
classify and explicitly construct the irreducible, positive energy
representations of eLG.

We use the notations , , p and q as they are explained in Section 1.7. That
is, and are the closed left and right halves of S1, respectively, and p and q
denote the two points i and −i on S1. We shall think of as being coloured
white and as having the colour black. An interval on S1 which either does not
contain the points p and q, or contains exactly one of them, not on its boundary,
is then a bicoloured interval.

For every two real Lie groups G◦ and G•, we propose that there should
exist a list of matching conditions. (In this generality, when G◦ and G• are not
necessarily tori, we will remain deliberately vague on their precise nature.)
To every such matching condition M there should be associated a bicoloured
loop group L(G◦, M , G•). The data of an element of this group consists (at
least) of two smooth maps γ◦ : → G◦ and γ• : → G•. The endpoints of these
two paths are not placed arbitrarily, though, and this is where the matching
condition comes in: the two points γ◦(p) and γ•(p) are constrained with respect
to each other as dictated by M , and the same holds for γ◦(q) and γ•(q). This
constraint need not necessarily be a property satisfied by the pair (γ◦,γ•)—it
might also be expressed in terms of a matching datum γm, which is an additional
piece of information attached to (γ◦,γ•). In that case we denote an element of
L(G◦, M , G•) as a triple (γ◦,γm,γ•).

We call elements of L(G◦, M , G•) bicoloured loops and we refer to the ele-
ments of an ordinary loop group LG as being unicoloured to make the distinction
with our new notion.

With an eye towards the axioms in Definition 1.3.4 for conformal net defects,
we postulate that bicoloured loop groups should satisfy the following properties:

• for every real Lie group G there should exist a particular matching condi-
tion MG from G to itself such that L(G, MG , G) is isomorphic to the loop
group LG. This is the first property allowing one to consider bicoloured
loop groups as generalisations of unicoloured ones. It is inspired by
the demand that, for every loop group from which one can construct
a Heisenberg, lattice or loop group conformal net, there should be a
bicoloured loop group which reproduces the identity defect from this net
to itself,
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• if we write L G◦ for those loops in LG◦ which have support in and
define L G• similarly, then there should exist two injective group homo-
morphisms

L G◦ ,→ L(G◦, M , G•)←- L G•.

This corresponds to the axiom that a defect between two conformal nets
restricts to each of the nets on the full subcategories of white and black
intervals respectively,

• elements of L(G◦, M , G•) should have a notion of support in a bicoloured
interval that is embedded in S1 (see Definition 3.2.9 for the meaning we
will assign to the latter term). The support of a bicoloured loop in the
image of the homomorphisms LG

∼
−→ L(G, MG , G), L G◦ ,→ L(G◦, M , G•)

or L G• ,→ L(G◦, M , G•) should coincide with that of its unicoloured
pre-image, and

• the group L(G◦, M , G•) should carry an action of the group of orientation
preserving circle diffeomorphisms which fix the points p and q. Moreover,
there should exist an action of Rot(S1) or a cover thereof as well.

Adding to these properties, we require that a bicoloured loop group admits
a certain privileged list of U(1)-central extensions eL(G◦, M , G•) such that

• when G is a real vector space, a real torus or a compact, connected,
simple, simply-connected Lie group and eLG is a central extension of
LG of the type discussed in Examples 1.2.8 to 1.2.10, then the central
extension eL(G, MG , G) that is pulled back from eLG under the isomorphism
L(G, MG , G)∼= LG is present on the aforementioned list,

• let eLG◦ and eLG• be centrally extended unicoloured loop groups of the
types in Examples 1.2.8 to 1.2.10. Then there should exist a central ex-
tension eL(G◦, M , G•) which admits lifted injective group homomorphisms
into it:

eL G◦ ,→ eL(G◦, M , G•)←- eL G•,

• suppose that two elements of the central extension eL(G◦, M , G•) are such
that the supports of their images in L(G◦, M , G•) are contained in two
disjoint bicoloured intervals on S1, respectively. Then we require that
these two elements commute,

• the action of the group of orientation preserving circle diffeomorphisms
which fix the points p and q we expect to exist on L(G◦, M , G•) should
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lift to eL(G◦, M , G•). The same should hold for the action of (some cover
of) Rot(S1) on L(G◦, M , G•), and

• having the action of (some cover of) Rot(S1) on eL(G◦, M , G•) at our
disposal, we are able to speak about positive energy representations of
the latter group. One should be able to classify and explicitly construct
the irreducible such representations up to isomorphism.

Having these properties in hand one can attempt to mimic the constructions
in Examples 1.2.8 to 1.2.10 to produce a defect between the nets associated to
eLG◦ and eLG•. We will elaborate on this further in a special case in Section 4.1.

Remark 1.4.1. We give a motivation for requiring eL(G◦, M , G•) to be disjoint-
commutative that is unrelated to the axioms of conformal net defects.

For every real Lie group G there exists a procedure, named transgression,
which produces U(1)-central extensions of LG from certain geometric objects,
namely multiplicative bundle gerbes (with connection), that are situated over
G. For example, the central extensions that are discussed in Example 1.2.10
can be obtained in this way. It is shown in [Wal16] that transgression always
results in a disjoint-commutative central extension. Hence, we require disjoint-
commutativity also in the bicoloured situation as a prerequisite for a possible
interpretation of eL(G◦, M , G•) in terms of finite-dimensional, ‘higher’ geometry.

1.5 Main results

The goal of this thesis is to test whether our speculative idea of bicoloured loop
groups explained in Section 1.4 can be made sense of when G◦ and G• are
tori T◦ := Λ◦ ⊗Z U(1) and T• := Λ• ⊗Z U(1), where Λ◦ and Λ• are two even,
positive definite lattices of the same rank. One reason for specialising to this
case is that the central extensions of unicoloured torus loop groups discussed
in Example 1.2.9 can be specified through explicit 2-cocycles, as opposed to the
geometric methods that are needed in the non-abelian case. A second reason
is that also their representations can be built through simple, explicit means
without requiring, for example, involved results on integration of Lie algebra
representations. Both these reasons therefore lower the barrier of attempting
to generalise these constructions. A third reason is that the wealth of examples
of lattices and the breadth of their theory makes it plausible that interesting
defects between lattice nets can be found as well.

Our proposal for a definition of a matching condition in this situation is as
follows. We present it in a slightly simplified form and we give more details in
Chapter 3.
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Let Γ be an even, positive definite lattice of the same rank as Λ◦ and Λ• and
let π◦ and π• be two lattice morphisms as in

Λ◦
π◦←−- Γ

π•
,−→ Λ•.

If H is the torus Γ ⊗Z U(1), then π◦ and π• induce two surjective torus homo-
morphisms

T◦ H T•←�

U(1)π◦ ← �
U(1)π• .

We now define the bicoloured torus loop group L(T◦, H, T•) to be the abelian
group of all triples (γ◦,γm,γ•) of smooth maps fitting in a commutative diagram

T◦ H T•

←→γ◦

←-→

←→ γm

←- →

←→ γ•

←�

U(1)π◦

← �
U(1)π•

,

where is the subset {p, q} of S1. That is, γm is a matching datum for the pair
(γ◦,γ•) dictating the placements of each of the pairs of points (γ◦(p),γ•(p))
and (γ◦(q),γ•(q)) relative to each other. We call (γ◦,γm,γ•) a bicoloured (torus)
loop.

Our inspiration for this definition has several origins:

Surface operators between Chern–Simons theories We briefly commented
in Section 1.2.2 on a method by which lattice conformal nets can be used
to model a class of 3d TQFT’s that are conjecturally the abelian Chern–
Simons theories. Each such theory is determined by an even, positive
definite lattice as well. The study of defects between abelian Chern–
Simons theories was initiated in [KS11b], where these are named surface
operators, and its authors argue that, at least at the classical level, surface
operators between two theories associated to Λ◦ and Λ• are classified by
Lagrangian subgroups of the pseudo-Riemannian torus T◦⊕ T •. Here, T •
is the torus Λ• ⊗Z U(1) and Λ• is the negative definite lattice obtained
from Λ• by negating its bi-additive form. We then note that in the case
when Γ is not just contained in the intersection of Λ◦ and Λ• but equal to
it, the homomorphism

�

U(1)π◦,U(1)π•
�

: H → T◦ ⊕ T •

is injective with a Lagrangian image. Our definition of a bicoloured torus
loop group is an attempt to translate aspects of the study done in [KS11b]
to the language of loop groups.
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A number-theoretical motivation With the analogy between bimodules and
defects in mind, the question emerges naturally whether there exist
examples of pairs of conformal nets that are ‘Morita-equivalent’, meaning
that there exists an invertible defect between them. We suspect that such
a defect induces a braided monoidal equivalence between the categories
of sectors of the respective nets (see [GPS95, Proposition 8.6]), and
hence one must only consider those nets for which these categories are
(conjectured to be) braided equivalent. As we stated earlier, we expect
this to be true for two lattice nets A◦ and A• associated to Λ◦ and Λ•
when these lattices are in the same genus. (See [Höh03] for similar
thoughts in the context of vertex algebras.) This is to say that they both
have the same signature (which we already assumed to be true) and they
become isomorphic after tensoring over Z with the p-adic integers for all
prime numbers p. An equivalent definition is to require that they become
isomorphic after summing onto them a single copy of the indefinite
hyperbolic plane lattice from Example A.1.8. This second formulation
is indeed used in [KS11b] to construct an invertible surface operator
between the abelian Chern–Simons theories associated to Λ◦ and Λ•.
However, their method also makes use of the theory assigned to the
hyperbolic plane lattice. Because its conformal net counterpart does not
exist it remains unclear how their proof can be translated to the language
of conformal nets.

We abandon our hope of finding Morita-equivalent lattice nets and ask
more generally whether there exists a not-necessarily invertible defect
between A◦ and A• when Λ◦ and Λ• satisfy the weaker demand of becom-
ing isomorphic after tensoring with the p-adic rational numbers for all
p. By the Hasse–Minkowski theorem this is equivalent to the existence of
an isomorphism Λ◦ ⊗ZQ∼= Λ• ⊗ZQ, which is in turn the same as saying
that Λ◦ and Λ• share a common sublattice Γ of finite index.

Moduli spaces of flat connections over quilted surfaces A third influence on
our definition of L(T◦, H, T•) is the work of [LŠ15] on the study of so
called moduli spaces of flat connections over quilted surfaces. Such sur-
faces are divided into regions which are each ‘coloured’ by different
structure groups equipped with invariant quadratic forms on their Lie
algebras. A flat connection over a quilted surface is then supposed to
break down to a co-isotropic relation at the edges where the regions meet.
The relevance of that work to loop groups is that the representations of
centrally extended loop groups discussed in Examples 1.2.8 to 1.2.10
can be considered as geometric quantisations of moduli spaces of flat
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connections over the unit disc. It is hence reasonable to ask whether
there exists some bicoloured generalisation of these moduli spaces of
which the group of gauge transformations gives rise to a conformal net
defect. The group L(T◦, H, T•) is an attempt at defining such a group of
gauge transformations directly.

The work of [FSV14] on defects between certain types of 3d TQFT’s, using
notions of relative principal bundles over relative manifolds, looks to be
highly related as well.

Our study of L(T◦, H, T•) depends on the auxiliary abelian group P(H, (Λ◦−
Λ•)/Γ ) of all smooth paths γ: [0, 1]→ H such that

γ(1)− γ(0) ∈
Λ◦ −Λ•
Γ

⊆ H.

Here, we consider Λ◦ and Λ• as submodules of the Lie algebra of H and we
define

Λ◦ −Λ• := {λ◦ −λ• | λ◦ ∈ Λ◦,λ• ∈ Λ•}.

(A more precise description of Λ◦−Λ• can be found at the start of Section 3.1.)
Many results on the unicoloured torus loop group LH easily generalise to this
larger group P(H, (Λ◦ −Λ•)/Γ ). These can be transported next to L(T◦, H, T•)
via a surjective homomorphism

Pth: L(T◦, H, T•)� P
�

H, (Λ◦ −Λ•)/Γ
�

(1.2)

with a finite kernel, which is constructed in Section 3.1.1. Among other material,
we show in Section 3.1 that our definition of a bicoloured torus loop group
satisfies the first list of demands in Section 1.4, namely

• (Section 3.1.3) when Λ◦ = Λ• = Γ and the morphisms π◦ and π• are
the identity, the group L(H, H, H) is canonically isomorphic to the uni-
coloured torus loop group LH,

• (Sections 3.1.2 and 3.1.5) there exist natural injective homomorphisms
of abelian groups

L T◦ ,→ L(T◦, H, T•)←- L T•, (1.3)

and a notion of support for bicoloured loops that is compatible with these
injections, and
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• (Section 3.1.7) there exists an action of a certain covering group Diff(n)+ (S
1)

on L(T◦, H, T•). In particular, the orientation preserving circle diffeomor-
phisms which fix the points p and q and the elements of Rot(n)(S1) act
on L(T◦, H, T•).

In Section 3.2 we are able to adapt the 2-cocycles on unicoloured torus loop
groups discussed in Example 1.2.9 to P(H, (Λ◦ −Λ•)/Γ ) in such a way that the
pullback of such a cocycle along the homomorphism Pth in (1.2) results in a
U(1)-central extension eL(T◦, H, T•) which satisfies the second list of demands
in Section 1.4. That is, we show in Sections 3.2 to 3.4 that

• (Section 3.2.1) when Λ◦ = Λ• = Γ and the morphisms π◦ and π• are
the identity the isomorphism LH ∼= L(H, H, H) lifts to an isomorphism of
non-abelian groups eLH ∼= eL(H, H, H),

• (Section 3.2.3) the injections (1.3) lift to homomorphisms of non-abelian
groups as well,

• (Section 3.3) the action of Diff(n)+ (S
1) on L(T◦, H, T•) can be extended to

one on eL(T◦, H, T•), and

• (Section 3.4) we are able to classify and explicitly construct the irre-
ducible, positive energy representations of eL(T◦, H, T•). We find that, up
to isomorphism, there exist only finitely many of these.

Let us state the last of these points more precisely as our chief result:

Main theorem (Theorem 3.4.11). Every irreducible, positive energy representa-
tion of eL(T◦, H, T•) such that the central subgroup U(1) acts as z 7→ z is (unitarily)
isomorphic to a certain such representation Ind Wχ,l for some characters χ and l of
(Λ◦ ∩Λ•)/Γ and H, respectively. The isomorphism classes of such representations
are therefore labelled by two parameters: one is an element of the dual group
of the finite abelian group (Λ◦ ∩Λ•)/Γ and the other is an element of the finite
abelian group Γ∨/(Λ◦ −Λ•).

We finally outline in Section 4.1 how the construction of a defect from such
a central extension eL(T◦, H, T•) might proceed.

1.6 Organisation of the text

The rest of this thesis is organised as follows.
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We repeat that our discussion of conformal nets and their defects in this
Introduction has solely been used as a motivation for the study of bicoloured
loop groups. They will hence not play any role in Chapters 2 and 3, which treat
the theories of uni- and bicoloured torus loop groups, respectively. Chapter 2 is
mainly expository in nature. It is intended to elaborate on some claims made
in Example 1.2.9 and to collect and setup results from the literature in a way
that eases the step of generalisation to Chapter 3. This latter chapter starts
the investigation of bicoloured torus loop groups properly and contains the
proofs of the claims made in Section 1.5. It cannot be read without knowledge
of Chapter 2. Both chapters assume familiarity with the notions and results in
Appendix A. Finally, we make some remarks in Chapter 4 on possible further
steps that can be taken in the study of bicoloured torus loop groups.

Appendices A.1 to A.3 stand alone from each other and can also be read
independently from the rest of the thesis. Appendix A.4, though, on Heisenberg
groups, does depend on Appendices A.2 and A.3.

1.7 Notations and conventions

Distinguishing S1, U(1) and Rot(S1) The notation S1 will be used for the
unit circle, considered as the smooth manifold embedded in the complex plane.
Its role in this thesis is that of the domain of loops (which will be valued in
certain Lie groups—tori, specifically). A generic point on it is denoted by θ .
We will often make use of some parametrisation of S1 by the interval [0,1].
This will always be done at unit speed and counterclockwise, but the starting
point of the parametrisation will not necessarily be 1 ∈ S1. Instead, it will be
some point denoted by q which is either arbitrary, or a specific one, depending
on the context.

When we want to consider S1 as an abelian topological group we will write
it as U(1) instead. It will show up as the group of ‘phases’ other groups we will
be studying will be centrally extended by. Elements of U(1) will be denoted as
z or w.

The topological group of counterclockwise rotations of the manifold S1 will
be named Rot(S1). This group (or finite covers of it) will turn out to act on the
loop groups and the representations of them that we will be considering. A
typical element will be written as ϕθ , where θ ∈ [0, 1] is an angle.

Intervals and points An interval is defined to be an oriented, smooth mani-
fold that is diffeomorphic to [0, 1]. This means in particular that it is closed, as
opposed to the more common convention in the literature on conformal nets of
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being open. For a subinterval I ⊆ S1, we denote by I ′ the subinterval that is
the closure of S1\I .

The symbols and will be used for the closed left and right half of S1,
respectively. When we want to emphasise the orientations they inherit if S1

is oriented counterclockwise, we will add arrows as follows: and . In
Chapter 3 the two points i and −i, whose union forms the intersection of
and , will be respectively called p and q.

Hilbert spaces, actions and representations Our convention is that a Her-
mitian inner product on a complex vector space is linear in its first variable and
antilinear in the second one, and all group actions will be left actions.

Whenever we will speak of a group representation we will follow the con-
vention stated in Appendix A.3, which is that the group is topological, the
underlying vector space is a complex Hilbert space and that the representation
is strongly continuous and unitary, unless stated otherwise.



Chapter 2

Unicoloured torus loop groups

Let Λ be an even, positive definite lattice and T the torus Λ⊗Z U(1). In this
Chapter we study a certain U(1)-central extension eLT of the torus loop group
LT := C∞(S1, T) and its positive energy representations. The title of this
Chapter and its sections refer to LT as being unicoloured, but we do not use this
adjective in the text of the current Chapter. Much of this material is already
covered in some form in the literature, but our aim is to provide a level of detail
sufficient for the needs of Chapter 3 where results and notions in this Chapter
will be used and generalised. References to the literature will be given per
section and we make extensive use of material collected in Appendix A.

The study of the representation theory of the central extension eLT will
require knowledge of certain subgroups and a direct sum decomposition of
LT . This is treated in Section 2.1, where it is not yet necessary to assume
the presence of a bi-additive form on Λ. We treat LT as an abstract group
until Section 2.5, but we will refer to certain of its subsets earlier already
as ‘connected components’, in anticipation. Next, the construction of eLT is
described in Section 2.2 which also includes a proof of its important disjoint-
commutativity property.

Sections 2.3 and 2.4 each have dual purposes. They are firstly intended to
clarify to what extent eLT depends on certain extra data needed to perform its
construction. One namely requires a choice of a point on S1 and the fact shown
in Section 2.3 that Diff+(S1) acts on eLT implies that this choice is irrelevant.
On the other hand, we also need to pick a certain {±1}-central extension Λ̃ of
Λ. We prove in Section 2.4 that it is the automorphism group of Λ̃ which acts
on eLT and not that of Λ. This choice is therefore not immaterial.

A further goal of Section 2.3 is that we learn that eLT admits in particular
an action of the group Rot(S1), so that we may speak of its positive energy

31
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representations. The second aim of Section 2.4, which admittedly lies outside
the scope of this thesis, is that it exhibits automorphisms of the conformal net
associated to Λ.

This chapter culminates with the classification and construction of the
irreducible, positive energy representations (up to isomorphism) of eLT in
Section 2.5.

Modest novelties of our exposition are that we lay out in what way eLT is
a topological group, we occasionally explain how the various constructions
can be made to work for odd lattices as well, and that we show how the
automorphisms of Λ̃ are symmetries of the collection of irreducible, positive
energy representations of eLT . We will not return to the latter two topics in
Chapter 3, though.

2.1 Unicoloured torus loop groups and their structure

Let Λ be a free Z-module of finite rank. Associated to it is a torus T := Λ⊗ZU(1)
whose Lie algebra Λ ⊗Z R we denote by t. In this section we explain the
structure of the torus loop group LT := C∞(S1, T ) of T . We will show that it
can be decomposed (non-canonically) as a direct sum of T , a certain infinite-
dimensional vector space V t and Λ.

References. The structure of torus loop groups was found in [Seg81, Section 4].
We elaborate on it further by emphasising Diff+(S1)-equivariance.

We first observe that, given a choice of a privileged point q on S1, LT has an
alternative description in terms of paths in the Lie algebra t, namely as follows:

LT ∼=
¦

ξ ∈ C∞
�

[0,1], t
�

�

�

� ξ(1)− ξ(0) ∈ Λ, ξ(k)(1) = ξ(k)(0) for all k ≥ 1
©À

Λ.

(2.1)
Here we used the unit speed parametrisation of S1 by [0,1], starting at q.

This description allows us to define for a loop γ ∈ LT its winding element as

∆γ := ξ(1)− ξ(0) ∈ Λ

for any path ξ ∈ C∞([0, 1], t) which represents γ. This is not only independent
of the choice of representative, but also of our choice of point q. The winding
element is therefore a canonical homomorphism ∆: LT → Λ of abelian groups.
It is surjective because if λ ∈ Λ, the loop γλ ∈ LT , defined as the projection
on T of the path [0,1]→ t, θ 7→ θλ, has winding element λ. The connected
components of LT are the fibres of ∆.
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Write (LT)0 for the identity component of LT . It consists of all loops of
winding element zero and it fits into a short exact sequence

0 (LT )0 LT Λ 0.←→ ←→ ←→ ←→

(As an aside, any loop of (LT )0 can be lifted to a map S1→ t, without needing
to break S1 at a point.) A choice of q splits this sequence. With it, we are
namely able to define our standard choices of loops γλ with winding element
λ. We then get an isomorphism

LT
∼
−→ (LT )0 ⊕Λ, (2.2)

given by γ 7→ (γ−γ∆γ ,∆γ) with inverse map (γ,λ) 7→ γ+γλ. This isomorphism
is not ‘natural’, though, which can be made precise as follows.

The group Diff+(S1) of orientation preserving circle diffeomorphisms acts1

on LT by ϕ · γ := ϕ∗γ, where ϕ ∈ Diff+(S1), γ ∈ LT and ϕ∗γ ∈ LT is the loop
defined by

(ϕ∗γ)(θ ) := γ
�

ϕ−1(θ )
�

, θ ∈ S1.

Because this action preserves the winding element of any loop, it restricts to
each connected component of LT—in particular to (LT )0. If we let Diff+(S1) act
on Λ trivially, then the isomorphism (2.2) is not Diff+(S1)-equivariant because
in general ϕ∗γλ 6= γλ.

Let us now study the structure of (LT )0 further. Define the real vector space

V t :=
§

ξ ∈ C∞(S1, t)

�

�

�

�

∫

S1

ξ(θ )dθ = 0
ª

. (2.3)

It carries a (left) action of Rot(S1), defined similarly as for LT . The groups V t

and (LT )0 are related via a canonical isomorphism of abelian groups

(LT )0
∼
−→ T ⊕ V t, (2.4)

given by γ 7→ (avgγ,ξ− avgξ), where

avgγ := expavgξ, avgξ :=

∫

S1

ξ(θ )dθ

for a choice ξ: S1 → t of lift of γ. Its inverse is given by (x ,ξ) 7→ x + expξ
for x ∈ T and ξ ∈ V t. It is important to note that the isomorphism (2.4)

1Recall that by our convention all group actions are left actions.
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is Rot(S1)-equivariant if we let Rot(S1) act on T ⊕ V t by only affecting the
V t-summand.

Putting (2.2) and (2.4) together, we conclude with a decomposition

LT ∼= T ⊕ V t⊕Λ (2.5)

that depends on a choice of q ∈ S1. Despite LT being infinite-dimensional
its structure therefore resembles that of a class of finite-dimensional groups,
namely the compactly generated, locally compact, Hausdorff, abelian ones.
Those admit a decomposition into a compact abelian group, a vector space and
a free Z-module of finite rank as well (see for example [HR79, Theorem 9.8]).

2.2 Central extensions associated to lattices

In this section we will explain how, to the data of an even lattice Λ together
with a choice of a particular kind of {±1}-central extension of it and a 2-cocycle
for this extension, we can construct a certain U(1)-central extension of the loop
group LT .

References. The formula for the 2-cocycle (2.7) on LT and the study of the
resulting central extension originates in [Seg81]. See also [PS86, Proposition
4.8.3] for a variant of the formula, which we do not use in this thesis. However,
these sources are not explicit in noting that the construction makes sense just
as well for an arbitrary even lattice Λ instead of only one of ADE-type. To our
knowledge, that generalisation was first applied in [DX06, Section 3].

Theorem 2.2.3 was stated, respectively proven, in [PS86, Proposition 13.1.3]
and [DX06, Proposition 3.4] for variants of the central extensions we consider.
The term disjoint-commutativity is due to [Wal16, Theorem 3.3.1].

Our solution to the problem of constructing central extensions associated
to odd lattices in Remark 2.2.4 is inspired by the literature on vertex algebras,
namely [Kac98, Corollary 5.5]. Central extensions of loop groups that are
graded by Z/2Z appeared before in [FHT11].

So let Λ be a lattice with bi-additive form 〈·, ·〉 and let Λ̃ be a central exten-
sion of the underlying abelian group of Λ by the group {±1} with commutator
map (λ,µ) 7→ (−1)〈λ,µ〉. This determines Λ̃ up to non-unique isomorphism,
as discussed in Appendix A.2.1. The assumption that this is a commutator
map forces Λ to be even. A second piece of data we will need is a choice of a
2-cocycle ε : Λ×Λ→ {±1} for Λ̃. Finally, choose a privileged point q on S1 so
that we can make use of the description (2.1) of LT .
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Construction 2.2.1 (Central extensions of LT). We will construct the U(1)-
central extension eLT of LT by letting its underlying set be LT×U(1) and writing
down an explicit cocycle. Let γ,ρ ∈ LT , z, w ∈ U(1) and pick lifts ξ and η as
in (2.1) of γ and ρ respectively. We define the multiplication on eLT by

(γ, z) · (ρ, w) :=
�

γ+ρ, zw · c(γ,ρ)
�

(2.6)

where c is the 2-cocycle on LT defined by

c(γ,ρ) := ε(∆γ,∆ρ)e
2πiS(ξ,η)

S(ξ,η) :=
1
2

∫ 1

0




ξ′(θ ),η(θ )
�

dθ +
1
2




∆γ,η(0)
�

.
(2.7)

Here, 〈·, ·〉 stands for the bilinear extension of the form 〈·, ·〉 on Λ to t. Notice
that S is bi-additive.

We need to check that this multiplication does not depend on the choices
of lifts ξ and η. If we replace ξ by ξ+λ for a λ ∈ Λ, then obviously the value
of S does not change. If we perturb η by λ, however, the following term gets
added to S(ξ,η):

S(ξ,λ) =
1
2

∫ 1

0




ξ′(θ ),λ
�

dθ +
1
2




∆γ,λ
�

=
1
2




∆γ,λ
�

+
1
2




∆γ,λ
�

=



∆γ,λ
�

.

Since this is an integer, we have e2πiS(ξ,λ) = 1. This shows that c is a well-
defined function on LT×LT . Lastly, it is a 2-cocycle since ε is and S is bi-additive.
It is a normalised 2-cocycle if and only if ε is.

Ingredients 2.2.2. We summarise the ingredients used in the construction of
the central extension eLT for clarity:

• an even lattice (Λ, 〈·, ·〉),

• a choice of a {±1}-central extension Λ̃ of Λ such that it has commutator
map (λ,µ) 7→ (−1)〈λ,µ〉,

• a choice of a 2-cocycle ε : Λ×Λ→ {±1} for Λ̃ (although not needed for
the construction itself, we will always choose ε to be normalised to make
calculations easier),
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• a choice of a privileged point q on S1.

Perhaps confusingly, the notation eLT omits references to any of these ingre-
dients. We promise that whenever we will use this notation we will always
explain in the surrounding context which choices were made.

This constructed central extension satisfies the following important prop-
erty:

Theorem 2.2.3 (Disjoint-commutativity of central extensions). Let (γ, z) and
(ρ, w) be two elements of eLT such that the supports of γ and ρ are contained in
two disjoint intervals on S1 respectively. Then (γ, z) and (ρ, w) commute.

Proof. This amounts to showing that c(γ,ρ)c(ρ,γ)−1 = 1. Let us first write out
c(γ,ρ)c(ρ,γ)−1 without making any assumptions about supports. We have

c(γ,ρ)c(ρ,γ)−1 = ε(∆γ,∆ρ)ε(∆ρ,∆γ)
−1e2πi

�

S(ξ,η)−S(η,ξ)
�

,

where ξ and η are lifts of γ and ρ respectively as in (2.1) and

S(ξ,η)− S(η,ξ) =
1
2

∫ 1

0




ξ′(θ ),η(θ )
�

dθ −
1
2

∫ 1

0




η′(θ ),ξ(θ )
�

dθ +

1
2




∆γ,η(0)
�

−
1
2




∆ρ,ξ(0)
�

.

(2.8)

Let us now make the assumptions about the supports as in the statement
of the Theorem and write I for the interval containg the support of γ and J
for the one corresponding to ρ. We distinguish two cases: either I does not
contain the point q ∈ S1, or J does not.

In the first case, we perform a partial integration on the second integral
in (2.8) to get:

∫ 1

0




η′(θ ),ξ(θ )
�

dθ =
�




η(θ ),ξ(θ )
�

�1

0
−
∫ 1

0




η(θ ),ξ′(θ )
�

dθ

=



η(1),ξ(1)
�

−



η(0),ξ(0)
�

−
∫ 1

0




η(θ ),ξ′(θ )
�

dθ .

After substituting η(1) =∆ρ+η(0) and ξ(1) =∆γ+ξ(0), these first two terms
become




η(1),ξ(1)
�

−



η(0),ξ(0)
�

= 〈∆ρ,∆γ〉+



∆ρ,ξ(0)
�

+



η(0),∆γ
�

.
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Putting all of this back into (2.8) gives

S(ξ,η)− S(η,ξ) =

∫ 1

0




ξ′(θ ),η(θ )
�

dθ −
1
2
〈∆ρ,∆γ〉 −




∆ρ,ξ(0)
�

. (2.9)

Because outside of I , ξ is constant, the above integral is actually only taken
over I instead of over all of [0,1]. Since J is disjoint from I and q /∈ I , η is
constant with value, say, λ, in Λ on I . Therefore we may write

S(ξ,η)− S(η,ξ) =



ξ(end of I)− ξ(start of I),λ
�

−
1
2
〈∆ρ,∆γ〉 −




∆ρ,ξ(0)
�

.

Our assumption that q /∈ I also implies that

ξ(end of I) = ξ(1) and ξ(start of I) = ξ(0),

so ξ(end of I)− ξ(start of I) = ∆γ ∈ Λ, and that ξ(0) ∈ Λ. We now see that
thanks to the integrality of Λ,




ξ(end of I)− ξ(start of I),λ
�

−



∆ρ,ξ(0)
�

∈ Z

and so

e2πi
�

S(ξ,η)−S(η,ξ)
�

= e−2πi· 12 〈∆ρ ,∆γ〉 = (−1)〈∆γ,∆ρ〉.

Together with the fact that, by definition of the 2-cocycle ε,

ε(∆γ,∆ρ)ε(∆ρ,∆γ)
−1 = (−1)〈∆γ,∆ρ〉,

this shows that c(γ,ρ)c(ρ,γ)−1 = 1.
In the second case where J does not contain q, we can perform a calculation

similar to the one above by partially integrating the first integral in (2.8)
instead.

Remark 2.2.4 (Central extensions associated to odd lattices). Observe that
the choice of a double cover Λ̃ with commutator map (λ,µ) 7→ (−1)〈λ,µ〉 is
exactly what makes the disjoint-commutativity work. If Λ is odd, then (λ,µ) 7→
(−1)〈λ,µ〉 is not a commutator map. However, (λ,µ) 7→ (−1)〈λ,µ〉+〈λ,λ〉〈µ,µ〉 is.
So if we let Λ̃ be a double cover with this commutator map instead, pick a
cocycle ε for it and replace it in the definition (2.7) of the cocycle c, then the
calculation in the proof of Theorem 2.2.3 shows that

(γ, z) · (ρ, w) = (−1)p(γ)p(ρ)(ρ, w) · (γ, z)
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if γ and ρ have support in disjoint intervals, where p : LT � {0, 1} is the parity
homomorphism of abelian groups given by p(γ) := 〈∆γ,∆γ〉mod 2Z. So eLT
is a graded central extension of a graded abelian group which satisfies a form
of disjoint graded commutativity. If we write eLT (i) ⊆ eLT for i ∈ {0,1} for the
pre-images of p−1(i) ⊆ LT , then eLT (0) is a subgroup and

eLT (i) · eLT ( j) ⊆ eLT (i + j),

where the indices are read modulo 2. We call the elements of eLT (0) even and
those of eLT (1) odd.

2.2.1 The groups (eLT )0 and eV t

In our study of the structure of LT in Section 2.1 two of its subgroups were
singled out: its identity component (LT )0 and a real vector space V t. We spell
out what the restriction of the central extension eLT to these subgroups looks
like.

Consider first the restriction (eLT )0 to (LT )0. It is the identity component of
eLT and its underlying set is (LT )0 ×U(1), meaning that (γ, z) ∈ (eLT )0 if and
only if γ has winding element zero. Moreover, recall that such a loop γ can
be lifted to a map S1→ t without needing to break S1 at a point. These facts
imply that the cocycle c on eLT simplifies to

c(γ,ρ) := e2πiS(ξ,η), S(ξ,η) :=
1
2

∫

S1

〈dξ,η〉 (2.10)

when restricted to (eLT)0, where γ,ρ ∈ (LT)0 and ξ,η: S1→ t are choices of
respective lifts.

Now define a U(1)-central extension eV t of the underlying abelian group of
V t via the 2-cocycle2

c : V t× V t→ U(1), c(ξ,η) := e2πiS(ξ,η).

So this group has as its underlying set V t×U(1) and its multiplication is given
by

(ξ, z) · (η, w) :=
�

ξ+η, zw · c(ξ,η)
�

,

for ξ,η ∈ V t and z, w ∈ U(1). It is then easily checked, using the fact that
S(ξ − avgξ,η − avgη) = S(ξ,η) for all ξ,η ∈ V t, that the isomorphism of
abelian groups (2.4) lifts to an isomorphism of groups

(eLT )0
∼
−→ T × eV t (2.11)

2The usage of the same symbol c for the cocycles on both LT and V t might cause momentary
confusion, but this will clear up in a moment.
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which is the identity on the central subgroup U(1).
We close this section by making an important observation about the group

eV t. Note that the function S in (2.10) is an R-valued bilinear form on the real
vector space of all smooth maps S1→ t.

Proposition 2.2.5. The bilinear form S in (2.10) is skew and, when the lattice
Λ is definite, non-degenerate upon restriction to V t.

Proof. To see that S is skew we return to parametrising S1 at unit speed by
[0,1] starting at the privileged point q ∈ S1 so that we can write

S(ξ,η) =
1
2

∫ 1

0




ξ′(θ ),η(θ )
�

dθ .

Applying partial integration, we get

S(ξ,η) =
1
2




ξ(1),η(1)
�

−
1
2




ξ(0),η(0)
�

−
1
2

∫ 1

0




ξ(θ ),η′(θ )
�

dθ ,

and since ξ(1) = ξ(0) and η(1) = η(0) there indeed holds S(ξ,η) = −S(η,ξ).
Turning to the second claim, suppose ξ ∈ V t is such that S(ξ,η) = 0 for

all η ∈ V t. Because V t is closed under the operation of taking derivatives
we have ξ′ ∈ V t, so in particular S(ξ,ξ′) = 0. By continuity of ξ′ we must
have 〈ξ′(θ),ξ′(θ)〉 = 0 for all θ ∈ [0,1]. The definiteness of the form 〈·, ·〉
on t implies that ξ′(θ) = 0 for all θ ∈ [0,1] and so ξ is constant. Since
∫

S1 ξ(θ )dθ = 0, it follows that ξ is identically zero.

This Proposition implies that when Λ is a definite lattice, eV t is the Heisen-
berg group associated to the pair (V t,−S) as in Definition A.4.1 (without yet
satisfying the topological requirements).

2.3 Actions of Diff+(S1) on central extensions

We assume the setup of Section 2.2. That is, Λ, Λ̃, ε and q are as in Ingredi-
ents 2.2.2, T is the torus Λ⊗ZU(1) and, finally, eLT is the U(1)-central extension
of LT := C∞(S1, T ) defined by the 2-cocycle c in (2.7) on LT constructed from
all this data. In this section we show that there is an action of the group
Diff+(S1) of orientation preserving diffeomorphisms of the circle on eLT .

References. The observation that, in the case of an even lattice, there exists
such a Diff+(S1)-action and the formula (2.19) which achieves it are stated in
[Seg81, p. 325] (as a right action).
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Recall from Section 2.1 that the non-centrally extended loop group LT
carries an obvious (left) action of Diff+(S1). A naive guess for an action on eLT
would be to set

ϕ · (γ, z) := (ϕ∗γ, z), (γ, z) ∈ eLT. (2.12)

for ϕ ∈ Diff+(S1). While this does define an action on the underlying set, it
respects the multiplication on eLT if and only if c(ϕ∗γ,ϕ∗ρ) = c(γ,ρ) for all
γ,ρ ∈ LT . We will see in Proposition 2.3.1 that this does not hold, which means
that (2.12) is not the correct action to consider. This misbehaviour is to be
expected if we recall that the definition of c involves the choice of a privileged
point q on S1 in order to define lifts [0,1]→ t of elements of LT which have
non-zero winding element.

To find a correct formula for the action we adjust the guess (2.12) as follows.
We propose that Diff+(S1) should act on eLT in a way that lifts the action on LT
and fixes the embedding U(1) ,→ eLT . It is easily checked that the most general
such action is of the form3

ϕ · (γ, z) :=
�

ϕ∗γ, d(ϕ,γ) · z
�

(2.13)

for some d(ϕ,γ) ∈ U(1). In order for this to be an action on the underlying set
of eLT , that is,

(ψ ◦ϕ) · (γ, z) =ψ ·
�

ϕ · (γ, z)
�

for all ϕ,ψ ∈ Diff+(S1), d should satisfy

d(ψ ◦ϕ,γ) = d(ψ,ϕ∗γ)d(ϕ,γ). (2.14)

If (2.13) respects the multiplication on eLT we see from (2.6) that we should
additionally have the following compatibility with the cocycle c:

d(ϕ,γ+ρ)c(γ,ρ) = d(ϕ,γ)d(ϕ,ρ)c(ϕ∗γ,ϕ∗ρ). (2.15)

In other words, the 1-cochain d(ϕ, ·): LT → U(1) should exhibit the 2-cocycle
(γ,ρ) 7→ c(ϕ∗γ,ϕ∗ρ)c(γ,ρ)−1 as a 2-coboundary.

To find such a function d : Diff+(S1) × LT → U(1) we will calculate the
difference between c(ϕ∗γ,ϕ∗ρ) and c(γ,ρ), that is, the failure for Diff+(S1) to
preserve c.

Whereas in Sections 2.1 and 2.2 we represented a loop γ ∈ LT as a smooth
map ξ: [0, 1]→ t such that ξ(1)−ξ(0) ∈ Λ, we will now work instead with the

3That is, if we consider eLT � LT as a principal U(1)-bundle, then we are proposing that
Diff+(S1) should act by U(1)-bundle automorphisms over the existing action on the base, but
not in a ‘parallel’ way. This suggests that our construction of eLT as having its underlying bundle
the trivial one, instead of merely a trivialisable one, is somewhat artificial.
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quasi-periodic extension Ξ: R→ t to all of R of the latter. That is, Ξ is defined
as Ξ(θ) = ξ(θ) for θ ∈ [0,1] and Ξ(θ + 1) = Ξ(θ) +∆γ for all θ ∈ R. The
definition (2.7) of the cocycle c remains unchanged if the maps ξ and η are
replaced by their quasi-periodic extensions Ξ and H everywhere.

Let Diff(∞)+ (S1) be the universal covering group of Diff+(S1). It fits in the
following short exact sequence:

0 Z Diff(∞)+ (S1) Diff+(S1) 1.←→ ←→ ←→ ←→

An explicit model for Diff(∞)+ (S1) is given by

Diff(∞)+ (S1)∼=
�

Φ: R
∼
−→ R

�

� Φ an orientation preserving diffeomorphism,

Φ(θ + 1) = Φ(θ ) + 1 for all θ ∈ R
	

,
(2.16)

and then the homomorphism Z→ Diff(∞)+ (S1) sends 1 ∈ Z to the shift diffeo-
morphism θ 7→ θ + 1. Using this model, it is easy to check that Diff(∞)+ (S1)
acts on the abelian group of smooth maps Ξ: R → t with the property that
Ξ(θ + 1)−Ξ(θ ) is a constant element in Λ, via Φ ·Ξ := Φ∗Ξ, where

(Φ∗Ξ)(θ ) := Ξ
�

Φ−1(θ )
�

, θ ∈ R.

With these preliminaries in place, we can start the calculation.

Proposition 2.3.1. Let γ,ρ ∈ LT and Ξ, H: R → t be the quasi-periodic ex-
tensions to R of choices of lifts ξ,η: [0,1] → t of γ and ρ respectively. Take
ϕ ∈ Diff+(S1) and make a choice of lift Φ ∈ Diff(∞)+ (S1) of ϕ. Then

c(ϕ∗γ,ϕ∗ρ) = ε(∆γ,∆ρ)e
2πiS(Φ∗Ξ,Φ∗H)

and

S(Φ∗Ξ,Φ∗H) = S(Ξ, H) +
1
2

¬

∆γ, H
�

Φ−1(0)
�

−H(0)
¶

+

1
2

¬

Ξ
�

Φ−1(0)
�

−Ξ(0),∆ρ
¶

.

Proof. The winding element of a torus loop does not change after precomposi-
tion with an orientation preserving circle diffeomorphism, so

ε(∆ϕ∗γ,∆ϕ∗ρ) = ε(∆γ,∆ρ).
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Using the chain rule for differentiation and again the fact that ∆ϕ∗γ =∆γ,
we can write

S(Φ∗Ξ,Φ∗H) =
1
2

∫ 1

0

¬

Ξ′
�

Φ−1(θ )
�

· (Φ−1)′(θ ),H
�

Φ−1(θ )
�

¶

dθ +

1
2

¬

∆γ, H
�

Φ−1(0)
�

¶

.

(2.17)

By substitution, the first term in the above can be rewritten as

1
2

∫ Φ−1(1)

Φ−1(0)




Ξ′(θ ),H(θ )
�

dθ .

In turn, this integral can be broken up as

1
2

∫ 1

0




Ξ′(θ ), H(θ )
�

dθ −
1
2

∫ Φ−1(0)

0




Ξ′(θ ),H(θ )
�

dθ +

1
2

∫ Φ−1(1)

1




Ξ′(θ ),H(θ )
�

dθ ,

and we can replace this first term by

S(Ξ,H)−
1
2




∆γ, H(0)
�

.

Putting everything back into (2.17) gives

S(Φ∗Ξ,Φ∗H) = S(Ξ,H) +
1
2

¬

∆γ, H
�

Φ−1(0)
�

−H(0)
¶

−

1
2

∫ Φ−1(0)

0




Ξ′(θ ),H(θ )
�

dθ +
1
2

∫ Φ−1(1)

1




Ξ′(θ ), H(θ )
�

dθ .

(2.18)

We now focus on the second integral in (2.18). Its upper limit Φ−1(1)
is equal to Φ−1(0) + 1, so, using substitution first, the fourth term in (2.18)
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becomes

1
2

∫ Φ−1(0)

0




Ξ′(θ + 1),H(θ + 1)
�

dθ

=
1
2

∫ Φ−1(0)

0




Ξ′(θ ),H(θ ) +∆ρ
�

dθ

=
1
2

∫ Φ−1(0)

0




Ξ′(θ ),H(θ )
�

dθ +
1
2

∫ Φ−1(0)

0




Ξ′(θ ),∆ρ
�

dθ

=
1
2

∫ Φ−1(0)

0




Ξ′(θ ),H(θ )
�

dθ +
1
2

¬

Ξ
�

Φ−1(0)
�

−Ξ(0),∆ρ
¶

.

Putting this back into (2.18) now gives the desired formula for S(Φ∗Ξ,Φ∗H).

From the result of this computation we see that (2.15) will be satisfied if
we define

d(ϕ,γ) := eπi



Ξ(Φ−1(0))−Ξ(0),∆γ
�

∈ U(1). (2.19)

Thanks to the presence of the minus sign, this definition does not depend on
the choice of Ξ. It also does not depend on the choice of the lift Φ of ϕ. A
different choice would namely be of the form Φ + k for some k ∈ Z. Since
(Φ+ k)−1 = Φ−1 − k, we calculate

¬

Ξ
�

Φ−1(0)− k
�

−Ξ(0),∆γ
¶

=
¬

Ξ
�

Φ−1(0)
�

− k∆γ −Ξ(0),∆γ
¶

=
¬

Ξ
�

Φ−1(0)
�

−Ξ(0),∆γ
¶

− k〈∆γ,∆γ〉.

Because ∆γ ∈ Λ and Λ is even, k〈∆γ,∆γ〉 ∈ 2Z. This shows what we wanted.
It can furthermore be checked that d satisfies the requirement (2.14):

d(ψ ◦ϕ,γ) = eπi



Ξ(Φ−1Ψ−1(0))−Ξ(0),∆γ
�

= eπi



Ξ(Φ−1Ψ−1(0))−Ξ(Φ−1(0))+Ξ(Φ−1(0))−Ξ(0),∆γ
�

= eπi



(Ξ◦Φ−1)(Ψ−1(0))−(Ξ◦Φ−1)(0),∆γ
�

eπi



Ξ(Φ−1(0))−Ξ(0),∆γ
�

= d(ψ,ϕ∗γ)d(ϕ,γ),

where Ψ ∈ Diff(∞)+ (S1) is a choice of a lift of ψ ∈ Diff+(S1). So this d defines
via (2.13) an action of Diff+(S1) on eLT .
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Remark 2.3.2 (A Diff(2)+ (S
1)-action in the case of an odd lattice). In our above

proof that the Diff(∞)+ (S1)-action descends to one of Diff+(S1) we explicitly
used that Λ is even. Recall from Remark 2.2.4 that if Λ is odd it also gives rise to
a central extension eLT , which is a Z/2Z-graded group. The Diff(∞)+ (S1)-action
then only descends to one of Diff(2)+ (S

1), a group that fits into a short exact
sequence

0 Z/2Z Diff(2)+ (S
1) Diff+(S1) 1←→ ←→ ←→ ←→

and which can be modelled by Diff(∞)+ (S1)/2Z. This action obviously respects
the Z/2Z-grading on eLT .

Remark 2.3.3. If we denote for an interval I ⊆ S1 by eLI T the normal subgroup
of eLT of those elements (γ, z) for which suppγ ⊆ I , then

ϕ · LI T = Lϕ(I)T and ϕ · eLI T = eLϕ(I)T.

The following Proposition explains the relation between the notion of
support for elements of Diff+(S1) with that for elements of ÝLT .

Proposition 2.3.4. If ϕ ∈ Diff+(S1) has support in an interval I ⊆ S1, then ϕ
acts trivially on eLI ′T, where I ′ is the subinterval that is the closure of S1\I .

Proof. Let γ ∈ LI ′T . We first claim that ϕ∗γ = γ. Indeed, if θ ∈ I ′, then
ϕ−1(θ) = θ and so γ(ϕ−1(θ)) = γ(θ). Suppose on the other hand that θ ∈ I ,
then ϕ−1(θ ) ∈ I , and so γ(ϕ−1(θ )) = 0T = γ(θ ).

Our second claim is that d(ϕ,γ) = 1 ∈ U(1). We distinguish two (not
mutually exclusive) cases depending on the privileged point q along which we
cut S1: either q ∈ I ′, or q ∈ I . If q ∈ I ′ holds, then ϕ−1(q) = q and so for a
lift Φ ∈ Diff(∞)+ (S1) of ϕ we must have Φ−1(0R) ∈ Z. This means that for a lift
Ξ: R→ t,

Ξ
�

Φ−1(0R)
�

−Ξ(0R) = Φ−1(0R) ·∆γ,

implying that d(ϕ,γ) = 1 because Φ−1(0R) · 〈∆γ,∆γ〉 ∈ 2Z since Λ is even.
Suppose now that q ∈ I . Consider the covering map R� [0,1]� S1 that

sends 0R to q, which we have been using all the time in this section, and the
subintervals of R that are the pre-images of I under this map. The assumption
that q ∈ I means that 0R lies in such a subinterval of R. Let us call that one
J . Because ϕ−1 has support in I we must have that Φ−1(J) = J + k for some
k ∈ Z. Therefore,

Ξ
�

Φ−1(J)
�

= Ξ(J + k) = Ξ(J) + k ·∆γ.
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Since γ is identically 0T on I this implies that Ξ is constant (with value an
element of Λ ⊆ t) on J . This shows that

Ξ
�

Φ−1(0R)
�

−Ξ(0R) = k ·∆γ,

and so d(ϕ,γ) = 1 holds once more.

2.3.1 Actions of Rot(S1) on (eLT )0 and eV t

Notice from the formula (2.19) that, because ∆γ = 0 when γ ∈ (LT)0, the
subtle Diff+(S1)-action we constructed on eLT restricts to the obvious one on
(eLT )0. Remember furthermore the remark made in Section 2.1 that the vector
space V t carries a Rot(S1)-action. The cocycle defining the central extension eV t

from Section 2.2.1 is Rot(S1)-invariant, which is easily seen from an application
of the chain rule followed by a substitution, and therefore the Rot(S1)-action
on V t lifts in the obvious way to eV t. It is now immediate that the group
isomorphism (2.11) is Rot(S1)-equivariant.

2.4 Actions of lifts of lattice automorphisms on
central extensions

Take again the input data for the construction of a torus loop group central
extension eLT in Section 2.2, as summarised in the first paragraph of Section 2.3,
as given. In Section 2.3 we learned that a torus loop S1→ T can be precom-
posed with an orientation preserving circle diffeomorphism, and that this lifts
to an action of Diff+(S1) on eLT . One can ask with what kind of automorphism
of the torus loops can be postcomposed to obtain a group automorphism of eLT
also. In this section we show that this can be done for torus automorphisms
induced by automorphisms of a certain {±1}-central extension of the lattice Λ.

References. Our idea that such an action on eLT should exist comes from the
vertex algebra literature, namely the claim in [Bor92, Section 12] that in the
case when Λ is the Leech lattice Λ24 the group Aut(Λ̃ε; 〈·, ·〉) acts on the Leech
lattice vertex algebra. This fact is further elaborated upon for general positive
definite, even lattices in for example [DN99, Section 2.4]. The current section is
simultaneously intended to clarify the first paragraph of [DX06, Section 4]. The
details regarding the group Aut(Λ̃ε; 〈·, ·〉) are taken from the start of [FLM88,
Section 6.4].

An automorphism g of Λ is, as discussed in Appendix A.1, a Z-module
automorphism of Λ which preserves the form 〈·, ·〉 on Λ. There is an obvious
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action of Aut(Λ; 〈·, ·〉) on the non-centrally extended loop group LT given by
g · γ := g∗γ, where γ ∈ LT , g∗γ ∈ LT is the loop defined by

(g∗γ)(θ ) := gT

�

γ(θ )
�

, θ ∈ S1,

and gT is the induced automorphism of T := Λ ⊗Z U(1) by g. Just like in
Section 2.3, a naive attempt at defining an action on eLT would be

g · (γ, z) := (g∗γ, z), z ∈ U(1).

Again, this respects the group multiplication on eLT if and only if for the 2-
cocycle c in (2.7) defining eLT there holds c(g∗γ, g∗ρ) = c(γ,ρ) for all γ,ρ ∈ LT .
Let us check whether this is true.

Recall that c is defined in terms of choices of lifts ξ,η: [0, 1]→ t of γ and
ρ respectively. We have

∆g∗γ = (Rg ◦ ξ)(1)− (Rg ◦ ξ)(0) = Rg
�

ξ(1)− ξ(0)
�

= g∆γ,

where Rg denotes the linear extension of g to t. Similarly, ∆g∗ρ = g∆ρ.
Therefore,

c(g∗γ, g∗ρ) = ε(g∆γ, g∆ρ)e
2πiS(Rg◦ξ,Rg◦η)

S(Rg ◦ ξ,Rg ◦η) =
1
2

∫ 1

0




(Rg ◦ ξ)′(θ ), (Rg ◦η)(θ )
�

dθ +
1
2




g∆γ, (g ◦η)(0)
�

.

Since (Rg ◦ ξ)′(θ ) = Rg(ξ′(θ )) and Rg preserves the form 〈·, ·〉, we find that

S(Rg ◦ ξ,Rg ◦η) = S(ξ,η).

However, it is not necessarily true that ε(g∆γ, g∆ρ) = ε(∆γ,∆ρ). Explicit
counterexamples can be found. We conclude that in general c(g∗γ, g∗ρ) 6=
c(γ,ρ) and that the blame lies on the extra piece of data that is the 2-cocycle ε,
which is not invariant under automorphisms of Λ.

In our next attempt we will try not to let Aut(Λ; 〈·, ·〉) act on eLT , but a
certain bigger group instead.

Let Λ̃ε be the {±1}-central extension of Λ associated to ε. Its underlying
set is Λ× {±1} and its group multiplication is defined by

(λ, z) · (µ, w) :=
�

λ+µ, zw · ε(λ,µ)
�

,

where λ,µ ∈ Λ and z, w ∈ {±1}. An automorphism g̃ of the group Λ̃ε induces
an automorphism g of the underlying abelian group of Λ by picking for λ ∈ Λ
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an arbitrary lift λ̃ ∈ Λ̃ε and defining gλ to be the image in Λ of g̃λ̃. This is
independent of the choice of λ̃. Write Aut(Λ̃ε; 〈·, ·〉) for the group of those
automorphisms g̃ of Λ̃ such that g lies in Aut(Λ; 〈·, ·〉), that is, g preserves the
form 〈·, ·〉. Notice that such a g̃ fixes the embedding {±1} ,→ Λ̃ε, because its
image {(0,±1)} consists of the only elements of Λ̃ε of finite order.

This group of automorphisms of Λ̃ lies in the following short exact sequence
of groups:

1 HomAb

�

Λ, {±1}
�

Aut
�

Λ̃ε; 〈·, ·〉
�

Aut
�

Λ; 〈·, ·〉
�

1.←→ ←→ ←→ ←→

The second arrow sends f ∈ HomAb(Λ, {±1}) to the automorphism λ̃ 7→ λ̃· f (λ),
where λ̃ ∈ Λ̃ε and λ is its image in Λ. The third arrow sends g̃ ∈ Aut(Λ̃ε; 〈·, ·〉)
to the induced automorphism g ∈ Aut(Λ, 〈·, ·〉). Note that a choice of a basis
for Λ gives an isomorphism

HomAb

�

Λ, {±1}
�∼= {±1}rankΛ,

so Aut(Λ̃ε; 〈·, ·〉) has order 2rankΛ times that of Aut(Λ; 〈·, ·〉).
In Section 2.1 we learned that, given a choice of a privileged point q on

S1 (which we already made to construct eLT), there are standard choices of
loops γλ with winding element λ ∈ Λ. This gave an injective homomorphism
of abelian groups Λ ,→ LT , λ 7→ γλ. It lifts to a homomorphism Λ̃ε ,→ eLT ,
(λ, z) 7→ (γλ, z) of non-abelian groups. We would like to find an action of
Aut(Λ̃ε; 〈·, ·〉) on eLT which restricts to the one on Λ̃ε.

Let us therefore begin by describing the elements of Aut(Λ̃ε; 〈·, ·〉) a bit more
explicitly. If g̃ is such an automorphism and (λ, z) ∈ Λ̃ε, then

g̃ · (λ, z) =
�

gλ, e( g̃,λ) · z
�

for some g ∈ Aut(Λ; 〈·, ·〉) and e( g̃,λ) ∈ {±1}, which does not depend on z. If
we namely assume that ε is a normalised cocycle, then we can write

(λ, z) =
�

λ, z · ε(λ, 0)
�

= (λ, 1) · (0, z).

So therefore

g̃(λ, z) = g̃(λ, 1) · g̃(0, z)

=
�

gλ, e( g̃,λ)
�

· (0, z)

=
�

gλ, e( g̃,λ) · z · ε(gλ, 0)
�

=
�

gλ, e( g̃,λ) · z
�

.
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Here we used in the second equality that g̃ fixes the embedding {±1} ,→ Λ̃ε,
and in the fourth equality it was used again that ε is normalised.

This e satisfies the following two identities:

e( g̃ ◦ h̃,λ) = e( g̃, hλ)e(h̃,λ)

e( g̃,λ+µ)ε(λ,µ) = e( g̃,λ)e( g̃,µ)ε(gλ, gµ).

The latter should be read as e( g̃, ·): Λ→ {±1} being a 1-cochain which exhibits
the 2-cocycle (λ,µ) 7→ ε(gλ, gµ)ε(λ,µ)−1 as a 2-coboundary.

Let us now define an action of Aut(Λ̃ε; 〈·, ·〉) on eLT by setting

g̃ · (γ, z) :=
�

g∗γ, e( g̃,∆γ) · z
�

(2.20)

for g̃ ∈ Aut(Λ̃ε; 〈·, ·〉) and (γ, z) ∈ eLT . One can check that, thanks to the two
identities satisfied by e above, this does respect the multiplication on eLT and
that it defines a group action.

Proposition 2.4.1. The action of Diff+(S1) on eLT given by (2.13) and (2.19)
commutes with the action of Aut(Λ̃ε; 〈·, ·〉) given in (2.20).

Proof. Let (γ, z) ∈ eLT , ϕ ∈ Diff+(S1) and g̃ ∈ Aut(Λ̃ε; 〈·, ·〉). We have to show
that the equality

ϕ ·
�

g̃ · (γ, z)
�

= g̃ ·
�

ϕ · (γ, z)
�

holds true. The left hand side is

ϕ ·
�

g∗γ, e( g̃,∆γ) · z
�

=
�

ϕ∗g∗γ, d(ϕ, g∗γ) · e( g̃,∆γ) · z
�

,

while the right hand side is

g̃ ·
�

ϕ∗γ, d(ϕ,γ) · z
�

=
�

g∗ϕ
∗γ, e( g̃,∆ϕ∗γ) · d(ϕ,γ) · z

�

.

We obviously have that ϕ∗g∗γ = g∗ϕ
∗γ, since pre- and postcompositions

commute. There furthermore holds that ∆ϕ∗γ =∆γ, and

d(ϕ, g∗γ) = eπi



(Rg◦Ξ)(Φ−10)−(Rg◦Ξ)(0),g∆γ
�

= eπi



Ξ(Φ−10)−Ξ(0),∆γ
�

= d(ϕ,γ).

This shows what we wanted.

Remark 2.4.2. It is easy to see that an element g̃ ∈ Aut(Λ̃ε; 〈·, ·〉) restricts to an
automorphism of the normal subgroup eLI T for every interval I ⊆ S1. We say
that Aut(Λ̃ε; 〈·, ·〉) acts locally.
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2.4.1 Actions of related groups on (eLT )0 and eV t

The failure for the group Aut(Λ; 〈·, ·〉) to act on eLT can, instead of being blamed
on the unnatural choice of the 2-cocycle ε, alternatively be pinned on the
presence of non-zero winding elements of loops. Hence, this group of lattice
isomorphisms does act on the identity component (eLT )0.

Write Aut(t; 〈·, ·〉) for the compact group of automorphisms of the Lie algebra
t that preserve the bilinear extension of the form 〈·, ·〉 on Λ to t. It acts through
post-composition of loops via R-linear automorphisms on V t. Let O∗ be such
an automorphism for O ∈ Aut(t; 〈·, ·〉). Then O∗ preserves the skew form S
in (2.10) on V t since d(O ◦ ξ) = O ◦ dξ for all ξ ∈ V t. Therefore, the action of
Aut(t; 〈·, ·〉) lifts in the obvious way to eV t.

We summarise these findings in the following figure:

eV t (eLT )0 eLT

Aut
�

t; 〈·, ·〉
�

Aut
�

Λ; 〈·, ·〉
�

Aut
�

Λ̃ε; 〈·, ·〉
�

Rg g g̃

←- → ←- →

�

←-→

�

←�

�

7→→ 7→→

.

2.5 Irreducible, positive energy representations

Assume once more the input data for the construction of a torus loop group
central extension eLT in Section 2.2 summarised in the first paragraph of Sec-
tion 2.3. For the purpose of the discussion that is about to follow we add the
extra condition of being positive definite on the lattice Λ. This will be neces-
sary for certain vector spaces we will consider to be equipped with positive
definite inner products. Their Hilbert space completions will then carry group
representations.4

In this section we will construct and classify a certain type of irreducible
representations of eLT , namely the positive energy ones (see Definition A.3.13).

References. The construction and classification we perform here is due to
[Seg81]. See also [PS86, Section 9.5] for an alternative exposition. The out-
comes of the calculation of the characters of these representations were learned
from [FLM88, Remark 7.1.2], [Sta95, Section 4.2.1] and [Mas14, p. 356].

We saw in Section 2.3 that the group eLT carries an action of the group
Diff+(S1) and hence also of the subgroup Rot(S1). It therefore indeed makes

4Recall our convention that representations are always meant to be strongly continuous and
unitary.
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sense to talk about positive energy representations5 of eLT , once we make eLT
into a topological group. The decomposition (2.11) will be the key to the
construction and classification of such representations because it allows us to
do so for the identity component (eLT )0 first. We will later transfer these results
to eLT .

2.5.1 Irreducible representations of eV t

Recall from Section 2.2.1 the definition of the subgroup eV t of eLT , made in
terms of the skew form S in (2.10). Because we are assuming Λ to be positive
definite, the observation at the end of Section 2.2.1 applies. That is, eV t is the
Heisenberg group associated to the pair (V t,−S), in the non-topological sense.
Our first step towards studying its representation theory will be to define a
specific complex structure on V t that is compatible with the skew form S, so as
to turn eV t into a topological group. This complex structure will then also be
used to construct a Weyl representation of eV t.

A complex structure on V t

Because each loop ξ: S1→ t of V t is smooth, it admits a Fourier decomposition

ξ(θ ) =
∑

k∈Z\{0}

ξke2πikθ ,

where the Fourier coefficient ξk is a vector of the complexification Ct := t⊗RC.
(The condition k 6= 0 is there because

∫

S1 ξ(θ)dθ = 0 and so ξ0 = 0.) We
therefore see that the complexified vector space C(V t) := V t⊗RC, which can be
identified with the space of smooth loops ξ: S1→ Ct such that

∫

S1 ξ(θ )dθ = 0,
can be decomposed as a direct sum of two C-linear subspaces

C(V t) = V t+ ⊕ V t−, (2.21)

where V t+ is the subspace consisting of the loops whose negative Fourier
coefficients are zero and V t− is defined similarly. Equivalently, V t+ is the
subspace of loops which admit an extension to the closed unit disc in the
complex plane such that the restriction to the open unit disc is holomorphic,
and a similar condition holds for the loops of V t− with respect to the other half
of the Riemann sphere.

The standard complex conjugation ξ⊗ z := ξ⊗ z on C(V t) interchanges
V t+ and V t−. The image of the canonical R-linear injection V t ,→ C(V t) given

5We are taking the central extension eLT for the group N in Definition A.3.13, not LT .
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by ξ 7→ ξ⊗ 1 therefore equals {ξ+ + ξ+ | ξ+ ∈ V t+} and so the compositions
of this injection with the two C-linear projections C(V t)� V t± are R-linear
isomorphisms.

Now we define a complex structure J : V t→ V t by setting V t+ to be the
+i-eigenspace of the C-linear extension CJ of J to C(V t) and V t− the −i-
eigenspace, meaning that CJ multiplies a vector of C(V t) of the form ξke2πikθ

with sgn(k) · i. In other words, J is determined by

(CJ)(ξ⊗ 1) := J(ξ)⊗ 1 := iξ+ − iξ+,

where ξ+ ∈ V t+ is the image of ξ under V t
∼
−→ V t+. It is then clear that J squares

to − idV t. This makes (V t)J
∼
−→ V t+ a C-linear isomorphism by definition.

Compatibility of the complex structure with the skew form

Let us extend the form 〈·, ·〉 on t complex bilinearly to Ct. Note that this
extended form is still symmetric and not conjugate symmetric. In turn, this
then defines a complex bilinear extension of S to C(V t). This extension of S is
again skew. We denote these extensions to Ct and C(V t), respectively, by 〈·, ·〉
and S as well. If ξ and η are vectors in V t, then it can be checked by expanding
them into their Fourier series that

S(ξ,η) = πi
∑

k∈Z\{0}

k〈ξk,η−k〉.

This expression shows that the subspaces V t+ and V t− are isotropic for S and
that

S(ξ,η) = S(ξ+,η−) + S(ξ−,η+),

where ξ= ξ+ + ξ− and η= η+ +η− are their decompositions along (2.21).
The complex bilinearity and skewness of S can now be used to calculate

S(ξ, Jξ) = S
�

ξ+, (CJ)ξ−
�

+ S
�

ξ−, (CJ)ξ+
�

= S(ξ+,−iξ−) + S(ξ−, iξ+)

= −iS(ξ+,ξ−) + iS(ξ−,ξ+)

= −2iS(ξ+,ξ−)

= 2π
∞
∑

k=1

k〈ξk,ξ−k〉.

Because ξ takes its values in the real Lie algebra t we have ξ−k = ξk. Since the
form 〈·, ·〉 on t is positive definite, there holds 〈ξk,ξ−k〉 ≥ 0. This proves that
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if ξ 6= 0, then S(ξ, Jξ) > 0. It is furthermore easily checked, again using the
complex bilinearity of S, that S(Jξ, Jη) = S(ξ,η). We conclude that J satisfies
the two properties listed in Proposition A.4.5(i).

We may now proceed with the constructions described in Appendix A.4.
The norm topology from 〈·, ·〉J makes V t a topological real vector space and
the compatibility of S with J implies that S is continuous with respect to this
topology. Hence, eV t is a Heisenberg group. Furthermore, (V t)J is a complex
pre-Hilbert space equipped with a Hermitian inner product 〈·, ·〉J . We may
therefore form a bosonic Fock space S ((V t)J). It carries an irreducible Weyl
representation WJ of the Heisenberg group eV t. The central subgroup U(1)
of eV t acts under WJ as z 7→ z. We will abbreviate this representation and
its underlying Fock space by W and S , respectively, that is, we suppress the
reference to the specific complex structure J .

Positivity of energy

As already noted in Section 2.3.1, the Rot(S1)-action on V t byR-linear operators
preserves the skew form S. Moreover, the C-linear extension of the Rot(S1)-
action to C(V t) preserves the decomposition (2.21) of C(V t) because it is given
on each vector of the form ξke2πikθ simply by

(Cϕ∗θ ′)(ξke2πikθ ) = ξke2πik(θ−θ ′), (2.22)

where we write Cϕ∗
θ ′

for the C-linear extension of the rotation operator ϕθ ′
along the angle θ ′. Therefore, the Rot(S1)-action on V t commutes with the
complex structure J .

This Rot(S1)-action is strongly continuous with respect to the norm topology
on V t induced by 〈·, ·〉J . Hence, we may apply Proposition A.4.11 to conclude
that the action of Rot(S1) on eV t is strongly continuous, and that there is a
representation R of Rot(S1) on S which extends the action on the subspace
(V t)J = Sym1((V t)J ) ⊆ S and such that the intertwining property

R(ϕθ )W (ξ, z)R(ϕθ )
∗ =W

�

ϕθ · (ξ, z)
�

(2.23)

is satisfied for all ϕθ ∈ Rot(S1) and (ξ, z) ∈ eV t.
Let us calculate the character of R (see Definition A.3.20). For this purpose

we might as well temporarily redefine S to be S (V t+) instead of S ((V t)J)
because the C-linear isomorphism (V t)J

∼
−→ V t+ intertwines the respective

Rot(S1)-actions. Recall that V t+ is the complex vector space of smooth loops
S1→ Ct that are of the form

∞
∑

k=1

ξke2πikθ , θ ∈ S1.
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We then learn from the expression (2.22) for the rotation action on V t+, together
with the fact that R is defined in the proof of Proposition A.4.11 by extending
the rotation action on V t+ to monomials factor-wise, that the k-th energy
eigenspace S (k) is spanned by monomials of the form

ξ1r e2πik1θξ2r e2πik2θ · · ·ξr r e2πikrθ ,

where r ≥ 0, ξir ∈ Ct, ki ≥ 1 and k1 + · · ·+ kr = k. Hence, S contains no
vectors of negative energy:

Proposition 2.5.1. The intertwining Rot(S1)-action R on the Weyl representation
W of eV t is of positive energy.

By picking a basis for the Lie algebra Ct we see that the dimension of S (k)
equals the coefficient of qk in the power series

�∞
∑

k=0

p(k)qk
�dim t

,

where p(k) is the Euler partition function, that is, p(k) for k ≥ 1 denotes the
number of ways to write k as the sum of positive integers, and p(0) := 1 by
convention. (This coefficient can also be understood as the number of (dim t)-
coloured partitions of k.) In turn, L. Euler found that the generating function
of the partition function named after him admits an expression as an infinite
product:

∞
∑

k=0

p(k)qk =
∞
∏

j=1

(1− q j)−1,

so if we set

η(q) := q1/24
∞
∏

j=1

(1− q j),

then we obtain the formula

chR(q) = qdim t/24η(q)−dim t.

Our reason for writing chR(q) in this way is that if the formal variable q is
substituted by e2πiz for z ∈ C with Im z > 0, then η(q) is known as Dedekind’s
eta function. It is a holomorphic modular form for the full group SL(2,Z) of
weight 1/2 (with a highly non-trivial multiplier) (see [Apo90, Theorem 3.4]).
While chR(q) does not satisfy the necessary transformation behaviour to be a
modular form as well, the normalised character

ZW (q) := q−dim t/24 chR(q) = η(q)
−dim t (2.24)
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does.
Having confirmed that W is of positive energy, the unicity result Theo-

rem A.4.13 now tells us that

Theorem 2.5.2. Every irreducible, positive energy representation of eV t such that
the central subgroup U(1) ⊆ eV t acts as z 7→ z is isomorphic to W.

The intertwining action of Lie algebra isometries

We exhibit, on top of the representations of eV t and Rot(S1), a third piece of
structure that the Hilbert space S possesses.

Recall from Section 2.4.1 that the group Aut(t; 〈·, ·〉) acts through R-linear
automorphisms on V t in a way that preserves the skew form S in (2.10).
Furthermore, if O ∈ Aut(t; 〈·, ·〉) and O∗ is the corresponding operator on V t,
then theC-linear extensionC(O∗) of O∗ toC(V t) preserves each of the subspaces
V t± because it is given on each vector of the form ξke2πikθ by

C(O∗)(ξke2πikθ ) = (CO)(ξk)e
2πikθ ,

where CO is the C-linear extension of O to Ct. Therefore, O∗ commutes with
the complex structure J on V t.

It is strongly continuous with respect to the norm topology on V t induced
by 〈·, ·〉J . Hence the demands of Proposition A.4.11 are met and Aut(t; 〈·, ·〉)
acts strongly continuously on eV t (we denote the translate of (ξ, z) ∈ eV t by O as
O · (ξ, z)) and there is a representation U of Aut(t; 〈·, ·〉) on S which extends
the action on (V t)J such that the intertwining property

U(O)W (ξ, z)U(O)∗ =W
�

O · (ξ, z)
�

(2.25)

is satisfied. This action fixes the vacuum vector.
It is obvious from looking at their actions onC(V t) that the actions of Rot(S1)

and Aut(t; 〈·, ·〉) on V t commute. The same then holds for their respective
extensions R and U to S , given the way they are defined in the proof of
Proposition A.4.11.

2.5.2 Irreducible representations of (eLT )0
In Section 2.5.1 we made V t and eV t into topological groups. By giving T ⊕ V t

and T × eV t the product topologies, (LT )0 and (eLT )0 become topological groups
as well through the decompositions (2.4) and (2.11), respectively.

The representation W of eV t now allows us to easily build irreducible, posi-
tive energy representations of (eLT )0. We namely construct for every character
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l ∈ HomLie(T,U(1)) a representation Wl of (eLT)0 on the Hilbert space ten-
sor product Sl := Cl ⊗ S , where Cl denotes a copy of C, as follows. Let
(γ, z) ∈ (eLT )0 and consider its image

�

avgγ, (ξ− avgξ, z)
�

∈ T × eV t

under the isomorphism (2.11). Here, ξ: S1→ t is any choice of lift of γ. Then
make avgγ act on Cl via l, and let (ξ − avgξ, z) act on S via W . In other
words, Wl is the tensor product representation of l and W . It is irreducible
because l and W are.

Remark 2.5.3 (Characters of T as elements of the dual lattice of Λ). We will
often use the isomorphism of Z-modules

HomLie

�

T,U(1)
� ∼
−→ Λ∨ := HomAb(Λ,Z).

It is given by first differentiating a character l : T → U(1) and then restricting
to Λ ⊆ t := Λ⊗Z R. The inverse isomorphism takes the tensor product of a
homomorphism f : Λ→ Z with U(1). We will use this identification to give
meaning to expressions like 〈l, l〉, or 〈l,α〉 if α ∈ t.

Next, we equip such a representation Wl of (eLT)0 with an intertwining
rotation action. Unlike what we did for S , we will not let Rot(S1) itself act on
Sl , but a certain finite cover of Rot(S1) instead.6 Let m be the smallest positive
integer such that m〈l, l〉 ∈ 2Z. We define a representation Rl of Rot(m)(S1) on
Sl through the character [Φθ ] 7→ eπi〈l,l〉θ on Cl and the action R of Rot(S1)
on S via the covering homomorphism Rot(m)(S1) � Rot(S1). That is, Rl is
the tensor product representation of this character with R. Then, because R
intertwines in the manner (2.23) with W , it can be checked that also Rl does
so with Wl . To prove this one uses that if ξ: S1→ t is a lift of γ ∈ (LT )0, then
[Φθ ]∗ξ is a lift of [Φθ ]∗γ.

There is a Hilbert space isomorphism

fl : Sl
∼
−→S , 1⊗ v 7→ v,

which obviously intertwines the representations Wl |eV t and W of eV t, but does
not do so for Rl and R. Instead, for Φθ ∈ Rot(∞)(S1) the following square

6See the beginning of Appendix A.3.2 for the models and corresponding notations we use
for the covering groups of Rot(S1).
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commutes:7

Sl S

Sl S .

← →
fl

∼

←→Rl[Φθ ]

←→ R[Φθ ]

← →
e−πi〈l,l〉θ fl

∼

Therefore, fl restricts for each a ∈ (1/m)Z on the energy eigenspace S (a) to
an isomorphism

fl |Sl (a) : Sl(a)
∼
−→S

�

a− 〈l, l〉/2
�

of finite-dimensional Hilbert spaces. That is, the energy of Sl is shifted from
that of S by a fractional value. Because S (a− 〈l, l〉/2) = {0} for a < 〈l, l〉/2
and there holds 〈l, l〉 ≥ 0 by the positive definiteness of Λ, this shows

Proposition 2.5.4. The intertwining Rot(m)(S1)-action Rl on the representation
Wl of (eLT )0 is of positive energy.

Using the isomorphisms fl |Sl (a) we can even calculate the character of Rl
knowing that of R:

chRl
(q) =

∑

a∈(1/m)Z

dim
�

Sl(a)
�

qa

=
∑

a∈〈l,l〉/2+Z≥0

dim
�

S
�

a− 〈l, l〉/2
�

�

qa

=
∞
∑

k=0

dim
�

S (k)
�

qk+〈l,l〉/2

= q〈l,l〉/2 chR(q)

= qdim T/24q〈l,l〉/2η(q)−dim T .

Just as we did for the triple (W,S , R) in (2.24), this result becomes nicer if we
shift the energy downwards a bit:

ZWl
(q) := q−dim T/24 chRl

(q) = q〈l,l〉/2η(q)−dim T .

These representations Wl are clearly mutually non-isomorphic since this
holds for their restrictions to T . What is more, all irreducible representations
of (eLT )0 of the type we are concerned with are of this form. More precisely,

7In writing R[Φθ ], the notation [Φθ ] stands for the image of Φθ in Rot(S1), while [Φθ ] in
Rl[Φθ ] means its image in Rot(m)(S1).



2.5 Irreducible, positive energy representations 57

Theorem 2.5.5. Every irreducible, positive energy representation of (eLT )0 such
that the central subgroup U(1) acts as z 7→ z is isomorphic to Wl for some character
l of T .

Proof. Let Q be such a representation on a Hilbert spaceH and consider it as
a representation of T × eV t via the isomorphism (2.11). Because Q|T commutes
with Q, Q|T is a character, say, l, by Schur’s lemma. This implies that Q|

eV t is
irreducible. A closed linear subspace ofH which is stable under eV t then namely
is stable also under T × eV t. Furthermore, Q|

eV t is again of positive energy. Let
R′ namely be a positive energy representation of Rot(n)(S1), for some n, which
intertwines in the manner (A.8) with Q, now considered as a representation of
(eLT )0 again. As we already noted in Section 2.3.1, the isomorphism (2.11) is
Rot(S1)-equivariant. Hence R′ also intertwines with Q|

eV t. By the unicity result
Theorem 2.5.2 for eV t, this proves that Q|

eV t is isomorphic to W .

Having discussed these representations of (eLT )0 and Rot(m)(S1) on Sl , we
finally demonstrate a third piece of structure on the collection of all these
Hilbert spaces.

Recall from Section 2.5.1 that there is a representation U of the group
Aut(t; 〈·, ·〉) of Lie algebra isometries on S which intertwines in a certain
way with W . Because we learned in Section 2.4.1 that the smaller group
Aut(Λ; 〈·, ·〉) of lattice automorphisms acts on (eLT )0, one might intially expect
a representation of Aut(Λ; 〈·, ·〉) on Sl to exist which similarly intertwines with
Wl . However, this turns out not to be the case since Aut(Λ; 〈·, ·〉) translates the
parameter l also, as noted in Appendix A.1.1. The situation is instead described
by

Proposition 2.5.6. Let l be a character of T and g a lattice automorphism of Λ.
Then the Hilbert space isomorphism

Ul(g): Sl
∼
−→Sg·l , 1⊗ v 7→ 1⊗ U(Rg)(v).

satisfies the intertwining properties

Ul(g)Wl(γ, z)Ul(g)
∗ =Wg·l

�

g · (γ, z)
�

(2.26)

for all (γ, z) ∈ (eLT )0, and

Ul(g)Rl[Φθ ]Ul(g)
∗ = Rg·l[Φθ ] (2.27)

for all [Φθ ] ∈ Rot(m)(S1).
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Note that the smallest positive integer m such that m〈l, l〉 ∈ 2Z is also
the smallest positive integer m such that m〈g · l, g · l〉 ∈ 2Z because 〈g · l, g ·
l〉 = 〈l, l〉. Hence, Rl and Rg·l are both representations of the same covering
group Rot(m)(S1). Moreover, they act by the same character [Φθ ] 7→ eπi〈l,l〉θ =
eπi〈g·l,g·l〉θ on the tensor factors Cl and Cg·l of Sl and Sg·l , respectively.

Proof. On the one hand, there holds

Ul(g)Wl(γ, z)Ul(g)
∗(1⊗ v) = Ul(g)Wl(γ, z)

�

1⊗ U(Rg)∗(v)
�

= Ul(g)
�

l(avgγ)⊗W (ξ− avgξ, z)U(Rg)∗(v)
�

= l(avgγ)⊗ U(Rg)W (ξ− avgξ, z)U(Rg)∗(v),

and thanks to the intertwining property (2.25) of U with W we can write

U(Rg)W (ξ− avgξ, z)U(Rg)∗ =W
�

(Rg) · (ξ− avgξ, z)
�

=W
�

(Rg)∗ξ− avg(Rg)∗ξ, z
�

.

On the other hand,

Wg·l
�

g · (γ, z)
�

(1⊗ v) =Wg·l(g∗γ, z)(1⊗ v)

= (g · l)(avg g∗γ)⊗W
�

(Rg)∗ξ− avg(Rg)∗ξ, z
�

,

because if ξ: S1 → t is a lift of γ ∈ (eLT)0, then (Rg)∗ξ is a lift of g∗γ. Now
observe that (g · l)(avg g∗γ) = l(avgγ). This proves (2.26).

The intertwining property (2.27) is now easily seen to be equivalent to U
commuting with R. This is, in turn, a fact we already noted in Section 2.5.1.

2.5.3 Irreducible representations of eLT

Having given (LT )0 the structure of a topological group in Section 2.5.2, the
full group LT now acquires by Lemma A.2.4 a unique structure of a topological
group such that (LT )0 is open in LT .

Proposition 2.5.7. There exists a unique structure of a topological group on the
central extension eLT such that (eLT )0 is open in eLT.

Proof. We employ Corollary A.2.5 with G := LT , A := U(1) and G0 := (LT)0.
What needs to be checked is whether for every fixed loop γ ∈ LT the map
(LT )0→ U(1) given by ρ 7→ c(γ,ρ)c(γ+ρ,−γ) is continuous.
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Because of the way the topology on (LT )0 is defined (namely as a product
topology) it is convenient to work with elements of LT via the right hand side
of (2.5). That is, we write γ as a triple

�

[ξ0],ξ,∆γ
�

∈ T ⊕ V t⊕Λ.

Here, [ξ0] ∈ T ∼= t/Λ is the equivalence class of an element ξ0 ∈ t. Similarly,
we will work with a triple ([η0],η, 0) in the place of ρ. Lifts [0, 1]→ t of γ and
ρ are then given by θ 7→ ξ(θ ) + ξ0 +∆γθ and θ 7→ η(θ ) +η0, respectively.

Filling in these lifts into c(γ,ρ)c(γ + ρ,−γ) and using that ∆ρ = 0, we
quickly realise that we need to verify whether the real number

1
2

∫ 1

0




ξ′(θ ) +∆γ,η(θ ) +η0

�

dθ +
1
2




∆γ,η(0) +η0

�

−

1
2

∫ 1

0




ξ′(θ ) +η′(θ ) +∆γ,ξ(θ ) + ξ0 +∆γθ
�

dθ −
1
2
〈∆γ,∆γ〉

(2.28)

depends continuously on η and η0. The first term in (2.28) is equal to

1
2

∫ 1

0




ξ′(θ ),η(θ )
�

dθ +
1
2
〈∆γ,η0〉= S(ξ,η) +

1
2
〈∆γ,η0〉

and we already noted in Section 2.5.1 that the restriction of S to V t is continuous.
The third term in (2.28) can be expanded to

1
2

∫ 1

0




ξ′(θ ) +∆γ,ξ(θ ) + ξ0 +∆γθ
�

dθ +

1
2

∫ 1

0




η′(θ ),ξ(θ )
�

dθ +
1
2

�




η(θ ),∆γθ
�

�1

0

(2.29)

using partial integration. Now note that the third term in (2.29) is equal to
1
2〈η(0),∆γ〉 and hence cancels against the same term in (2.28). This concludes
the proof.

With the irreducible, positive energy representations Wl of the identity
component (eLT )0 in hand, we will be able to construct and classify the same
class of representations of the full group eLT , starting as follows. Let us take
such a Wl for a character l of T and consider the induced representation

IndeLT
(eLT )0

Wl
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of eLT , which we will shorten to Ind Wl .
We refer to Appendix A.3.1 for generalities regarding induced group repre-

sentations, and content ourselves here with spelling out some details of this
particular one. The underlying Hilbert space of Ind Wl is the completion of an
algebraic direct sum indexed over the left cosets σ of (eLT )0 in eLT :

IndeLT
(eLT )0

Sl :=
⊕

σ∈eLT/(eLT )0

S σ
l . (2.30)

We will abbreviate it as IndSl . Here, the summand S σ
l is the Hilbert space

S σ
l := σ×(eLT )0

Sl .

A vector of S σ
l is an equivalence class [(γ, z), v] of pairs ((γ, z), v) with (γ, z) ∈

σ and v ∈ Sl , and the relations are given by
�

(γ, z) · (ρ, w), v
�

∼
�

(γ, z), Wl(ρ, w)(v)
�

for (ρ, w) ∈ (eLT )0. A general vector of IndSl is an infinite tuple of vectors
�

�

(γσ, zσ), vσ
�

�

σ∈eLT/(eLT )0
, (2.31)

where [(γσ, zσ), vσ] ∈ S σ
l , satisfying a square-integrability condition. The

action Ind Wl of eLT on IndSl is given by setting for an element (γ, z) ∈ eLT

(Ind Wl)(γ, z) ·
�

�

(γσ, zσ), vσ
�

�

σ
:=
��

(γ, z) ·
�

γ(γ,z)−1σ, z(γ,z)−1σ
�

, v(γ,z)−1σ

��

σ
.

If we again let m be the smallest positive integer such that m〈l, l〉 ∈ 2Z,
then there is an action, which we denote by Ind Rl , of Rot(m)(S1) on IndSl
affecting each summand S σ

l individually. Namely, if Φθ ∈ Rot(∞)(S1) and
[(γ, z), v] ∈ S σ

l , then we set

(Ind Rl)[Φθ ] ·
�

(γ, z), v
�

:=
�

[Φθ ] · (γ, z), Rl[Φθ ](v)
�

.

It can be checked that Ind Rl is well-defined, linear, unitary and that it satisfies
the intertwining property (A.8) with respect to Ind Wl because Rl does so with
Wl . The reason why this Rot(m)(S1)-action on IndSl is the correct one to take,
given the one we already defined on Sl , is that it is the one which appears
when we consider Ind Wl as a representation induced up from the semidirect
product (eLT )0 oRot(m)(S1) to eLT oRot(m)(S1).

Note that the pre-image in eLT of any subgroup of LT is a normal subgroup.
In particular, (eLT )0 is normal in eLT , being the pre-image of the identity com-
ponent (LT )0 of LT . Therefore, the representations conjugate to Wl are again
representations of (eLT)0. We start our study of Ind Wl by calculating these
conjugate representations:
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Lemma 2.5.8. Let (γ, z) be an element of eLT that is not contained in the (normal)
subgroup (eLT )0 and consider the representation W (γ,z)

l of (eLT )0 conjugate to Wl ,
defined by

W (γ,z)
l (ρ, w) :=Wl

�

(γ, z)−1(ρ, w)(γ, z)
�

for (ρ, w) ∈ (eLT)0. Then W (γ,z)
l is the tensor product representation of Wl and

the character

(eLT )0� (LT )0→ U(1), (ρ, w) 7→ ρ 7→ c(ρ,γ)c(γ,ρ)−1, (2.32)

where U(1) acts on C as z 7→ z. In turn, for any lifts ξ,η: [0, 1]→ t of γ and ρ,
respectively, there holds

c(ρ,γ)c(γ,ρ)−1 = e2πi
�

S(η,ξ)−S(ξ,η)
�

, (2.33)

where

S(η,ξ)− S(ξ,η) = −
∫ 1

0




ξ′(θ ),η(θ )
�

dθ . (2.34)

Proof. Using the definition of the multiplication in eLT in terms of the cocycle
c and the standing assumption that c is normalised, the conjugated element
(γ, z)−1(ρ, w)(γ, z) can be simplified and the first claim follows easily.

Since ρ ∈ (LT)0, we have ∆ρ = 0 ∈ Λ and because the cocycle ε for Λ̃
is assumed to be normalised there holds ε(∆γ,∆ρ) = ε(∆ρ,∆γ) = 1. The
equations (2.33) and (2.34) now follow from the expression (2.9) for S(η,ξ)−
S(ξ,η).

Proposition 2.5.9. The induced representation Ind Wl of eLT is irreducible.

Proof. Since Wl is irreducible and (eLT)0 is a normal subgroup of eLT , it is by
Mackey’s irreducibility criterion Theorem A.3.12 sufficient to show that all
the conjugate representations W (γ,z)

l as in Lemma 2.5.8 are not isomorphic to

Wl . To do this, we will examine the restriction of W (γ,z)
l to the subgroup of

(eLT )0 consisting of the elements of the form (ρ, 1) where ρ is a constant loop.
Because this subgroup is canonically isomorphic to T , we will denote it as such.
Say that ρ = expα for some α ∈ t. According to (2.34) we then have

S(η,ξ)− S(ξ,η) = −〈∆γ,α〉.

So (2.32) has T acting by the character −∆γ, which implies that W (γ,z)
l is letting

T act by l −∆γ. Because ∆γ 6= 0, we have l −∆γ 6= l and therefore W (γ,z)
l and

Wl are not isomorphic.
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So we constructed a countably infinite family of irreducible representations
of eLT ; one for every element l of HomLie(T,U(1)) ∼= Λ∨. These are far from
mutually non-isomorphic, though. It will turn out that they are partitioned into
finitely many isomorphism classes. In order to prove this we will first deter-
mine the restriction of an induced representation Ind Wl back to the identity
component (eLT )0.

Recall that Sl and Sl ′ , where l and l ′ are characters of T , carry different
representations of (eLT )0 but are identical as Hilbert spaces. We may therefore
speak of the identity map of Hilbert spaces Sl

∼
−→Sl ′ , given by v 7→ v. Note fur-

thermore that (eLT )0 being a normal subgroup of eLT implies that the restriction
of Ind Wl to (eLT )0 restricts to each subspace S σ

l for all σ.

Theorem 2.5.10 (Restriction of Ind Wl from eLT to (eLT )0). Fix a character l of
T , a lattice element λ ∈ Λ and let σ be the (left) coset of (eLT )0 in eLT consisting of
all elements (γ, z) such that γ has winding element λ. Then the composite unitary
map8

f σl : S σ
l
∼
−→Sl

∼
−→Sl−λ,

�

(γλ, 1), v
�

7→ v 7→ v

intertwines the representations (Res Ind Wl)|S σl and Wl−λ of (eLT )0 and the rep-

resentations Ind Rl |S σl and Rl−λ of Rot(m)(S1).

We defined an action of Rot(m)(S1) on Sl and it might not be immediately
clear which action is meant, for this same integer m, on Sl−λ. We will explain
this in the proof of this Theorem.

Proof. To show the first claim of the Theorem, we start by using Lemma A.3.11
to observe that the first map in the composition f σl is an isomorphism from the

restriction of Res Ind Wl to S σ
l to the conjugate representation W (γλ,1)

l . The
latter was calculated partially in Lemma 2.5.8. To obtain a more precise result
we substitute the lift θ 7→ θλ of γλ into (2.34), where (ρ, w) ∈ (eLT)0 and
η: S1→ t is a lift of ρ. This gives

S(η,ξ)− S(ξ,η) = −〈λ, avgη〉

and therefore,

c(ρ,γλ)c(γλ,ρ)−1 = e−2πi〈λ,avgη〉.

8The loop γλ was defined in Section 2.1. It is the standard choice of representative of σ
given by the projection on T of the path [0,1]→ t, θ 7→ θλ.
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The crucial observation now is that9

e2πi〈−λ,avgη〉 ·Wl(ρ, w)(v) =Wl−λ(ρ, w)(v)

for all v. We conclude that the second map in the composition f σl is an isomor-

phism from W (γλ,1)
l to Wl−λ.

For the second claim of the Theorem, observe that because 〈l,λ〉 ∈ Z and
〈λ,λ〉 ∈ 2Z, the smallest positive integer m such that m〈l, l〉 ∈ 2Z is also the
smallest positive integer m such that m〈l−λ, l−λ〉 ∈ 2Z. Therefore, Rot(m)(S1)
acts on both Sl and Sl−λ. However, the two characters [Φθ ] 7→ eπi〈l,l〉θ and
[Φθ ] 7→ eπi〈l−λ,l−λ〉θ by which we defined it to act on their respective tensor
factorsCl andCl−λ are different: they differ by the character e2πi〈l,λ〉θ e−πi〈λ,λ〉θ .

For [Φθ ] ∈ Rot(m)(S1) and [(γλ, 1), v] ∈ S σ
l we have

f σl
�

(Ind Rl)[Φθ ] ·
�

(γλ, 1), v
�

�

= f σl
�

[Φθ ] · (γλ, 1), Rl[Φθ ](v)
�

= f σl

�

�

[Φθ ]
∗γλ, d

�

[Φθ ],γλ
�

�

, Rl[Φθ ](v)
�

.

(2.35)

Because by definition γλ(θ ′) = exp(λθ ′) for all θ ′ ∈ [0, 1], there holds [Φθ ]∗γλ =
γλ+exp(−λθ ). That is, [Φθ ] shifts γλ by the constant loop exp(−λθ ) ∈ T . Fur-
thermore, we can calculate from the definition of d in (2.19) that d([Φθ ],γλ) =
e−πi〈λ,λ〉θ . Hence,

�

[Φθ ]
∗γλ, d

�

[Φθ ],γλ
�

�

=
�

γλ + exp(−λθ ), e−πi〈λ,λ〉θ �.

In turn, because we can compute that c(γλ, exp(−λθ )) = e−2πi〈λ,λ〉θ , the above
can be written as a product

�

γλ + exp(−λθ ), e−πi〈λ,λ〉θ �= (γλ, 1) ·
�

exp(−λθ ), eπi〈λ,λ〉θ �.

Filling this back into (2.35) gives

f σl
�

(Ind Rl)[Φθ ] ·
�

(γλ, 1), v
�

�

= f σl
�

(γλ, 1) ·
�

exp(−λθ ), eπi〈λ,λ〉θ �, Rl[Φθ ](v)
�

= f σl
�

(γλ, 1), Wl

�

exp(−λθ ), eπi〈λ,λ〉θ � · Rl[Φθ ](v)
�

=Wl

�

exp(−λθ ), eπi〈λ,λ〉θ � · Rl[Φθ ](v).

9On a pedantic note: on the left hand side of this equation we are considering v as a vector
in Sl , while on the right hand side we see it as lying in Sl−λ again.
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Now on the one hand, Wl(exp(−λθ), eπi〈λ,λ〉θ ) acts as multiplication by the
scalar

e−2πi〈l,λ〉θ eπi〈λ,λ〉θ ,

while, on the other hand, our earlier argument in this proof claimed that10

Rl[Φθ ](v) = e2πi〈l,λ〉θ e−πi〈λ,λ〉θRl−λ[Φθ ](v).

We therefore see that all scalar factors cancel against each other and we conclude
that

f σl
�

(Ind Rl)[Φθ ] ·
�

(γλ, 1), v
�

�

= Rl−λ[Φθ ](v).

Summarising, Theorem 2.5.10, together with the winding element isomor-
phism eLT/(eLT)0

∼
−→ Λ describes how Ind Wl combined with the intertwining

Rot(m)(S1)-action breaks up into irreducible subrepresentations after restriction
to (eLT )0 oRot(m)(S1). We namely have a unitary isomorphism

⊕

λ∈Λ
f σλl : Res(

eLT )0
eLT

IndeLT
(eLT )0

Wl
∼
−→
⊕

λ∈Λ
Wl−λ

of representations11 of (eLT )0 oRot(m)(S1), where σλ is the coset associated to
λ as in the statement of Theorem 2.5.10.

It is now purely formal to prove

Theorem 2.5.11. Two representations Ind Wl and Ind Wl ′ of eLT, where l and l ′

are characters of T , are (unitarily) isomorphic if and only if l ′ = l −λ for some
λ ∈ Λ.

Proof. For the ‘if’ claim, write σ for the coset of (eLT)0 in eLT corresponding
to λ and let us postcompose the unitary (eLT )0-intertwiner ( f σl )

−1 from Theo-
rem 2.5.10 with the isometric (eLT )0-intertwining inclusion S σ

l ,→ IndSl . By
imitating the proof of Proposition A.3.8 it can be shown that IndSl is large
enough for this composition to lift to a unique isometric eLT -intertwiner from
IndSl−λ to IndSl . It is obviously non-zero and must therefore be a unitary iso-
morphism by Schur’s lemma after we learned in Proposition 2.5.9 that Ind Wl−λ
and Ind Wl are irreducible.

Conversely, assume that for two characters characters l and l ′ of T there
is an isomorphism f : IndSl ′

∼
−→ IndSl . Let σ0 := (eLT)0—in other words:

the coset in eLT consisting of all elements (ρ, w) for which ρ has winding

10See Footnote 9 for a similar remark on notation.
11As usual, this direct sum of representations has by definition as underlying Hilbert space

the completion of an algebraic direct sum of Hilbert spaces.
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element 0 ∈ Λ. Then the restriction f |S σ0
l′

: S σ0
l ′ ,→ IndSl is a non-zero (eLT )0-

intertwiner. Because we learned from Theorem 2.5.10 that all the subspaces
S σ

l of IndSl for different cosetsσ are mutually non-isomorphic and irreducible
as representations of (eLT )0, by Schur’s lemma we must have an isomorphism
f |S σ0

l′
: S σ0

l ′
∼
−→S σ

l for some coset σ. Say that σ consists of the elements (γ, z)
for which γ has winding element some λ ∈ Λ. What is more, we learned that
S σ0

l ′ and S σ
l are isomorphic to Sl ′ and Sl−λ, respectively. Restriction to the

subgroup T of (eLT )0 now shows that l ′ = l −λ.

Because Ind Rl preserves each of the subspaces S σ
l ⊆ IndSl , it makes sense

to talk about their energy eigenspaces S σ
l (a) for a ∈ (1/m)Z. They sum to the

energy eigenspaces of IndSl (see (A.10)):

(IndSl)(a) =
⊕

σ∈eLT/(eLT )0

Sl
σ(a). (2.36)

We are now able to calculate the character of Ind Rl . Let namely a fixed
element λ ∈ Λ and its corresponding coset σ ⊆ eLT be as in Theorem 2.5.10.
Then that Theorem gives us the character of the restriction of Ind Rl to S σ

l
because we learned about that of Rl−λ already in Section 2.5.2:12

chS σl (q) = chRl−λ
(q) = qrankΛ/24q〈l−λ,l−λ〉/2η(q)− rankΛ,

since rankΛ = dim T . Next, we allow our fixed λ and so also its corresponding
coset σ to vary in order to calculate the character of Ind Rl on all of IndSl .
Using the decomposition (2.36), we get

chInd Rl
(q) =

∑

λ∈Λ

chS σl (q)

= qrankΛ/24
∑

λ∈Λ

q〈l−λ,l−λ〉/2η(q)− rankΛ

= qrankΛ/24θl+Λ(q) ·η(q)− rankΛ,

where θl+Λ(q) is the theta series of the translated lattice l +Λ that is the coset
of l in Λ∨ (see Appendix A.1.4). This also proves

Proposition 2.5.12. The intertwining Rot(m)(S1)-action Ind Rl on the represen-
tation Ind Wl of eLT is of positive energy.

12In the first following equation we put a Hilbert space as a subscript in chS σl , contrary to
the usual notation, to emphasise that we are only considering the restriction of Ind Rl to S σ

l .
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Finally, it is again appropriate to apply a small energy correction by defining

ZInd Wl
(q) := q− rankΛ/24 chInd Rl

(q) = θl+Λ(q) ·η(q)− rankΛ.

Upon substituting q by e2πiz, for z ∈ C with Im z > 0, this is a meromorphic
modular form of weight 0 for some congruence subgroup of SL(2,Z) (the full
group SL(2,Z) if Λ is unimodular) [MT10, Exercise 8.12].

Theorem 2.5.13. Every irreducible, positive energy representation of eLT such
that the central subgroup U(1) acts as z 7→ z is (unitarily) isomorphic to Ind Wl
for some character l of T .

Proof. Let Q be such a representation on a Hilbert spaceH and restrict it to
(eLT )0. Combining Proposition A.3.18 and Lemma A.3.17 tells us that Q|(eLT )0
contains an irreducible, positive energy subrepresentation of (eLT)0. By the
classification result Theorem 2.5.5 the latter must be isomorphic to Wl for some
character l of T . Suppose we can show that the (eLT )0-intertwining inclusion
i : Wl ,→Q|(eLT )0

lifts to a unique morphism Ind Wl →Q of eLT -representations.
Because we learned in Proposition 2.5.9 that Ind Wl is irreducible and we
assumed the same for Q, this morphism is then an isomorphism by Schur’s
lemma.

As explained in Appendix A.3.1, the question of whether the lift of i to
Ind Wl exists comes down to asking whether for every vector of the form (2.31)
of IndSl the series

∑

σ∈eLT/(eLT )0

Q
�

(γσ, zσ)
�

i(vσ)

converges inH . Note that the representation Q|(eLT )0
on the subspace

Q
�

(γσ, zσ)
��

i(Sl)
�

of H is isomorphic to the conjugate representation W (γσ,zσ)
l of (eLT)0. We

learned in Theorem 2.5.10 that for different cosets σ these conjugate repre-
sentations are mutually non-isomorphic and hence orthogonal. The squared
norm of the above series is therefore equal to

∑

σ‖v
σ‖2Sl

and this converges by
assumption.

We conclude from Theorems 2.5.11 and 2.5.13 that eLT possesses only
finitely many irreducible, positive energy representations up to isomorphism if
we fix the character by which U(1) acts. The isomorphism classes are labelled
by the elements of the finite abelian discriminant group DΛ := Λ∨/Λ of the
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lattice Λ. There is exactly one isomorphism class, represented by Ind W0, if and
only if Λ is unimodular.

Moreover, Proposition A.3.19 tells us that arbitrary positive energy repre-
sentations of eLT are now understood as well. They are the direct sums of the
irreducible ones we constructed in this section.

Remark 2.5.14 (The representation theory in the case of an odd lattice). If Λ
is an odd lattice, the construction of the representations Ind Wl is identical to
the one above in the case that Λ is even. Recall, however, from Section 2.3.1
and Remark 2.3.2 that if Λ is odd, then Diff+(S1) does act on (eLT)0 because
the cocycle defining this central extension is preserved by Diff+(S1), but only
Diff(2)+ (S

1) acts on eLT . In particular, there is only a Rot(2)(S1)-action on eLT
which intertwines with a Rot(m)(S1)-action Ind Rl on the Hilbert space IndSl .
Here, m is the smallest integer such that both m〈l, l〉 ∈ 2Z and m ≥ 2. The
calculation of its graded character and its outcome is identical to the case in
which Λ is even, which therefore shows that this Rot(m)(S1)-action Ind Rl is of
positive energy. Unlike in the odd case, chInd R0

(q) is now a series in half-integral
powers of q.

The grading (2.30) on IndSl over the cosets σ of (eLT )0 in eLT now refines
to a further Z/2Z-grading

IndSl =
⊕

σ even
S σ

l ⊕
⊕

σ odd

S σ
l ,

where we call a coset σ even if σ ⊆ eLT(0) and odd if σ ⊆ eLT(1). (See
Remark 2.2.4 for the definitions of the eLT(i).) Every coset is either even or
odd. We denote the two subspaces in the above by (IndSl)0 and (IndSl)1 and
call their vectors even and odd, respectively. By the definition of Ind Wl it is
clear that even elements of eLT preserve the parity of vectors, while odd ones
reverse them.

We close this chapter by lifting the structure on the Hilbert spaces Sl
described in Proposition 2.5.6 to the induced spaces IndSl .

The winding element isomorphism eLT/(eLT )0
∼
−→ Λ implies that the group

Aut(Λ; 〈·, ·〉) of automorphisms of the lattice Λ acts on eLT/(eLT)0 also. The
translate gσ of a coset σ by an element g ∈ Aut(Λ; 〈·, ·〉) consists, by definition,
of all elements (γ, z) such that γ has winding element gλ if σ corresponds
similarly to λ.

Proposition 2.5.15. (Compare with [Shi06, Lemma 1.5(2)].) Let l be a character
of T and g̃ ∈ Aut(Λ̃ε; 〈·, ·〉). Then the function

(Ind Ul)( g̃): IndSl
∼
−→ IndSg·l
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given by

(Ind Ul)( g̃) ·
�

�

(γσ, zσ), vσ
�

�

σ
:=
��

g̃ ·
�

γg−1σ, zg−1σ
�

, Ul(g)
�

vg−1σ
�

��

σ
(2.37)

is well-defined, linear, unitary and satisfies the intertwining properties

(Ind Ul)( g̃)(Ind Wl)(γ, z)(Ind Ul)( g̃)
∗ = (Ind Wg·l)

�

g̃ · (γ, z)
�

(2.38)

for all (γ, z) ∈ eLT, and

(Ind Ul)( g̃)(Ind Rl)[Φθ ](Ind Ul)( g̃)
∗ = (Ind Rg·l)[Φθ ] (2.39)

for all [Φθ ] ∈ Rot(m)(S1).

We refer to the proof of Proposition 2.5.6 for an explanation of why Ind Rg·l
is a representation of the same covering group Rot(m)(S1) as Ind Rl is.

Proof. Verifying well-definedness comes down to checking whether, if we choose
for every coset σ of (eLT)0 in eLT an arbitrary element (ρσ, wσ) ∈ (eLT)0,
implying that

�

�

(γσ, zσ), vσ
�

�

σ
=
�

�

(γσ, zσ) · (ρσ, wσ)−1, Wl(ρ
σ, wσ)(vσ)

�

�

σ
,

then the left hand side of (2.37) equals

(Ind Ul)( g̃) ·
�

�

(γσ, zσ) · (ρσ, wσ)−1, Wl(ρ
σ, wσ)(vσ)

�

�

σ
. (2.40)

If we fill in the definition of (Ind Ul)( g̃) in (2.40) this gives

��

g̃ ·
�

γg−1σ, zg−1σ
�

· g ·
�

ρg−1σ, wg−1σ
�−1

, Ul(g)Wl

�

ρg−1σ, wg−1σ
��

vg−1σ
�

��

σ

=
��

g̃ ·
�

γg−1σ, zg−1σ
�

,

Wg·l
�

g ·
�

ρg−1σ, wg−1σ
��∗

Ul(g)Wl

�

ρg−1σ, wg−1σ
��

vg−1σ
�

��

σ
,

and there indeed holds

Wg·l

�

g ·
�

ρg−1σ, wg−1σ
�

�∗
Ul(g)Wl

�

ρg−1σ, wg−1σ
�

= Ul(g)

thanks to the intertwining property (2.26) of Ul , which settles the question.
Showing linearity and unitarity can similarly be reduced to an application of

the intertwining property of Ul . We therefore turn to proving the intertwining
relation (2.38) for Ind Ul .
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Applying the left hand side of (2.38) to a vector ([(γσ, zσ), vσ])σ ∈ IndSl
gives

(Ind Ul)( g̃)(Ind Wl)(γ, z) ·
�

�

g̃−1 · (γgσ, zgσ), Ul(g)
∗(vgσ)

�

�

σ

= (Ind Ul)( g̃) ·
��

(γ, z) · g̃−1 ·
�

γg(γ,z)−1σ, zg(γ,z)−1σ
�

, Ul(g)
∗�vg(γ,z)−1σ

�

��

σ

=
��

g̃ · (γ, z) · g̃−1 ·
�

γg(γ,z)−1 g−1σ, zg(γ,z)−1 g−1σ
�

, vg(γ,z)−1 g−1σ
��

σ

=
��

�

g̃ · (γ, z)
�

·
�

γg(γ,z)−1 g−1σ, zg(γ,z)−1 g−1σ
�

, vg(γ,z)−1 g−1σ
��

σ
.

The crucial insight is now that the coset g(γ, z)−1 g−1σ of (eLT)0 in eLT can
equivalently be written as ( g̃ · (γ, z))−1σ. If σ is namely the coset associated
to a lattice element λ ∈ Λ, then g(γ, z)−1 g−1σ is associated to g(g−1λ−∆γ),
which can be simplified to λ− g∆γ. And, indeed, the image of ( g̃ · (γ, z))−1 in
LT has winding element −g∆γ.

The intertwining property (2.39) has an analogous, but easier proof which
uses Proposition 2.4.1 and the fact stated in Proposition 2.5.6 that Ul intertwines
Rl and Rg·l .

This result implies in particular that Aut(Λ̃ε; 〈·, ·〉) acts on the Hilbert space
IndS0, intertwining with the representation Ind W0 in the same way as Ind R0
and commuting with Ind R0. This has been proved at the beginning of [DX06,
Section 4] for a projective action of the larger group Diff+(S1) instead of only
for the honest action of Rot(S1) that we studied here.





Chapter 3

Bicoloured torus loop groups

In this Chapter we introduce and study our new notion of a bicoloured torus
loop group. Since this is a generalisation of a unicoloured torus loop group as
studied in Chapter 2, the format of this Chapter will largely mirror that of the
previous one. We assume that the reader is familiar with the notations from
Section 1.5 for the next two paragraphs.

We start by laying out the structure of a bicoloured torus loop group
L(T◦, H, T•) in Section 3.1 and comparing it to various related unicoloured
torus loop groups. We do not regard it as a topological group until Section 3.4,
but we will nevertheless speak freely in advance of its connected components.
Two differences between that section and Section 2.1 are that we introduce
another group P(H, (Λ◦ −Λ•)/Γ ) as an auxiliary tool to analyse the group of
actual interest L(T◦, H, T•), and that certain constructions, such as our descrip-
tion of an action of a covering group of Diff+(S1) on L(T◦, H, T•), are much
more involved than in the unicoloured situation. All this material does not yet
require Λ◦, Λ• and Γ to be endowed with bi-additive forms.

Next, we construct in Section 3.2 from the data of the lattices Λ◦, Λ• and Γ a
U(1)-central extension eL(T◦, H, T•) of L(T◦, H, T•)which we show to be disjoint-
commutative. We also again relate it to the central extensions of unicoloured
torus loop groups defined in Chapter 2. The action of a covering group of
Diff+(S1) on L(T◦, H, T•) is proved to lift to eL(T◦, H, T•) in Section 3.3, opening
the door to the study of its positive energy representations. The irreducible
such representations are finally classified and constructed in Section 3.4.

71
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3.1 Bicoloured torus loop groups and their structure

Consider the following setup. Let

Λ◦
π◦←−- Γ

π•
,−→ Λ• (3.1)

be a span of free Z-modules, by which we mean that Λ◦, Λ• and Γ share the
same finite rank, and that the π◦/• are injective module homomorphisms.1 Write
T◦/• := Λ◦/•⊗ZU(1) and H := Γ ⊗ZU(1) for the three associated tori and t◦/• :=
Λ◦/•⊗ZR and h := Γ ⊗ZR for their respective Lie algebras. The homomorphisms
π◦/• induce surjective Lie group homomorphisms U(1)π◦/• : H � T◦/• and Lie

algebra isomorphisms Rπ◦/• : h
∼
−→ t◦/•. Denote the closed left half of S1 by ,

the closed right half by and their intersection {i,−i} as . From now on we
will call the points i and −i, p and q respectively.2

We record the following notations for later use:3

Λ◦ ∩Λ• := (Rπ◦)−1(Λ◦)∩ (Rπ•)−1(Λ•)

Λ◦ −Λ• := (Rπ◦)−1(Λ◦)− (Rπ•)−1(Λ•)

:=
�

(Rπ◦)−1(λ◦)− (Rπ•)−1(λ•) ∈ h
�

� λ◦ ∈ Λ◦,λ• ∈ Λ•
	

.

These are both free Z-submodules of h, of the same rank as Λ◦/• and Γ . There
are inclusions

(Rπ◦)−1(Λ◦)

Γ Λ◦ ∩Λ• Λ◦ −Λ• Γ∨.

(Rπ•)−1(Λ•)

⊆

⊆

⊆

⊆
←-→

⊆

Associated to the span (3.1), we define n to be the smallest positive integer
such that n(Λ◦ −Λ•) ⊆ Γ .

Definition 3.1.1. The bicoloured torus loop group L(T◦, H, T•) associated to the
quintuple

(Λ◦, Γ ,Λ•,π◦,π•)

1A statement containing the subscript ◦/• should be read as being valid when this symbol is
replaced everywhere in the sentence with either ◦ or •.

2This alludes to the fact that the particular cutting of S1 into two arcs we use is not important.
3The reason why we write Λ◦−Λ• instead of Λ◦+Λ• is that this notation suggests the correct

way to map Λ◦ ⊕Λ• into Λ◦ −Λ•, as we will see in Proposition 3.1.9.
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is the abelian group of all triples (γ◦,γm,γ•), where γ◦ : → T◦ and γ• : → T•
are smooth maps and γm : → H is a function4 such that the following diagram
commutes:

T◦ H T•

←→γ◦

←-→

←→ γm

←- →

←→ γ•

←�

U(1)π◦

← �
U(1)π•

, (3.2)

and such that for all k ≥ 1 the left and right derivatives of γ◦ and γ• respectively
at p and q agree:

(Rπ◦)−1
�

γ(k)◦ (p)
�

= (Rπ•)−1
�

γ(k)• (p)
�

,

(Rπ◦)−1
�

γ(k)◦ (q)
�

= (Rπ•)−1
�

γ(k)• (q)
�

.
(3.3)

(In this notation we silently identify tangent spaces of the tori T◦/• with the
Lie algebras t◦/• via the translation homomorphisms, so that we can say that

γ
(k)
◦/• (p),γ

(k)
◦/• (q) ∈ t◦/•.) Such triples (γ◦,γm,γ•) are called bicoloured (torus)

loops.

In order to reduce clutter, the notation L(T◦, H, T•) does not mention the
homomorphisms π◦/•, although they are part of the data needed to construct
the group.

Paralleling the above terminology, we will often refer to the elements of an
ordinary torus loop group LT as unicoloured (torus) loops.

3.1.1 Bicoloured loops as unicoloured loops with a discontinuity

We now offer an alternative point of view on the group L(T◦, H, T•). Let γ =
(γ◦,γm,γ•) be a bicoloured loop. There is a unique lift γ̂◦/• to H of γ◦/• along
U(1)π◦/• such that γ̂◦/•(p) = γm(p). Glue these two lifts together at p by defining
a smooth map Pth(γ): [0, 1]→ H as

Pth(γ)(θ ) :=

¨

γ̂◦(θ ) if θ ∈ [1/2, 1],
γ̂•(θ ) if θ ∈ [0, 1/2],

where we used the unit speed parametrisations of and by [0,1/2] and
[1/2, 1] respectively. Then, because Pth(γ)(1) and Pth(γ)(0) differ from γm(q)

4The subscript ‘m’ stands for ‘matching datum’ or ‘middle’.
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by an element of the subgroups (Rπ◦)−1(Λ◦)/Γ and (Rπ•)−1(Λ•)/Γ of H re-
spectively, Pth(γ) lies in the following group of paths on H:

P
�

H, (Λ◦ −Λ•)/Γ
�

:=
§

γ ∈ C∞
�

[0,1], H
�

�

�

�

�

γ(1)− γ(0) ∈
Λ◦ −Λ•
Γ

,

γ(k)(1) = γ(k)(0) for all k ≥ 1
ª

.

(3.4)

This gives a homomorphism

Pth: L(T◦, H, T•)→ P
�

H, (Λ◦ −Λ•)/Γ
�

, γ 7→ Pth(γ)

of abelian groups. It is surjective because if, conversely, a path γ lies in (3.4),
then (γ◦,γm,γ•) is in L(T◦, H, T•), where γ◦ is defined as the composition
U(1)π◦ ◦ γ|[1/2,1], γ• is U(1)π• ◦ γ|[0,1/2], γm(p) := γ(1/2) and γm(q) is an
arbitrary element constructed as follows. Choose a decomposition γ(1)−γ(0)≡
λ◦ − λ• mod Γ for some λ◦/• ∈ (Rπ◦/•)−1(Λ◦/•) ⊆ h. Then γ(1)− λ◦ ≡ γ(0)−
λ• mod Γ , so setting γm(q) := γ(1)−λ◦ mod Γ makes γm fit into a commutative
diagram (3.2).

Note that the datum γm(q) is not used by Pth and, moreover, that this is the
only information about γ that is thrown away. Said more precisely, the kernel
of Pth is the finite abelian group consisting of triples (γ◦,γm,γ•) where the γ◦/•
are identically 0T◦/• , γm(p) = 0H and γm(q) ∈ (Λ◦ ∩Λ•)/Γ . We conclude that
L(T◦, H, T•) is part of a short exact sequence of abelian groups

0
Λ◦ ∩Λ•
Γ

L(T◦, H, T•) P
�

H, (Λ◦ −Λ•)/Γ
�

0.←→ ←→ ←→Pth ←→ (3.5)

In other words, bicoloured loops are almost ordinary, unicoloured loops
S1→ H, except for two differences. First, a bicoloured loop has a specific kind
of discontinuity at the point q ∈ S1, namely one which takes values in the finite
abelian group (Λ◦ −Λ•)/Γ ⊆ H. Second, there is a small piece of extra data
consisting of a ‘reference point’ in (Λ◦ ∩Λ•)/Γ ⊆ H with respect to which the
two loose ends of the loop at the discontinuity jump.

3.1.2 Support of a bicoloured loop

Bicoloured loops have the following natural notion of support:

Definition 3.1.2. The support of a bicoloured loop γ = (γ◦,γm,γ•) ∈ L(T◦, H, T•)
is the closed subset of S1 given by

suppγ := suppγ◦ ∪ suppγ•.
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Note that a path γ in P(H, (Λ◦−Λ•)/Γ ) has a notion of support also, namely
the closure of the points on S1 where it is not 0H . If such a path γ has support
in an interval, then any bicoloured loop in its pre-image under Pth has sup-
port there as well in the sense of Definition 3.1.2, but the converse does not
necessarily hold. It will be crucial in Section 3.2.4 that, even if Γ = Λ◦ ∩Λ• in
which case Pth is an isomorphism, we use the Definition 3.1.2 of support for
bicoloured loops.

3.1.3 Unicoloured loop groups are a special case

Consider the case where Λ◦ = Λ• = Γ and the homomorphisms π◦/• : Γ ,→
Λ◦/• are the identity. Then of course T◦ = T• = H and the homomorphisms
U(1)π◦/• : H � H are the identity. We claim that the bicoloured torus loop group
L(H, H, H) is then merely a complicated way to describe the unicoloured torus
loop group LH. Indeed, in this case (Λ◦∩Λ•)/Γ = 0, so the homomorphism Pth
in (3.5) is an isomorphism, and we furthermore now have P(H, (Λ◦−Λ•)/Γ )∼=
LH.

Let us describe the identification more directly. There is a homomorphism
of abelian groups Bi: LH → L(H, H, H) given by γ 7→ (γ| ,γ|{p,q},γ| ). It can
be thought of as ‘bicolourising’ unicoloured loops in a canonical way. Its inverse
Pth sends a bicoloured loop γ= (γ◦,γm,γ•) to Pth(γ), where for θ ∈ S1

Pth(γ)(θ ) :=

¨

γ◦(θ ) if θ ∈ ,

γ•(θ ) if θ ∈ .

This unicoloured loop Pth(γ) is well-defined at the points θ = p and θ = q
because of the commutativity of the diagram (3.2). Smoothness at those two
points is satisfied thanks to the conditions (3.3) on the (higher) derivatives of
γ◦ and γ•.

3.1.4 The inclusion of LH

Generalising the observation made in Section 3.1.3, we may see unicoloured
loops with values in H as certain bicoloured loops in L(T◦, H, T•). Indeed, there
is a homomorphism Bi: LH → L(T◦, H, T•) given by γ 7→ (γ◦,γ|{p,q},γ•), where
γ◦ is the composition U(1)π◦ ◦ γ| and γ• is U(1)π• ◦ γ| . This homomorphism
is injective.

Suppose namely that Bi(γ) = (0T◦ , 0H , 0T•). This means that the image of
γ| is in the kernel (Rπ◦)−1(Λ◦)/Γ ⊆ H of U(1)π◦ and the image of γ| is in the
kernel (Rπ•)−1(Λ•)/Γ ⊆ H of U(1)π•. Since these kernels are finite abelian
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groups, γ| and γ| must both be constant. However, we also assumed that
γ|{p,q} vanishes. So γ| and γ| are identically 0H as well, proving our claim.

The image of Bi consists of those bicoloured loops (γ◦,γm,γ•) for which
the unique lifts γ̂◦/• to H of the γ◦/• that match at p also match with each other,
and with γm, at q.

3.1.5 Isotony with respect to unicoloured loop groups

Write L T◦ for those loops in LT◦ which have support in and define L T•
similarly. Then there are injective homomorphisms of abelian groups

L T◦ ,→ L(T◦, H, T•)←- L T•, (3.6)

where the homomorphism from L T◦ is given by γ◦ 7→ (γ◦, 0H , 0T•) and the one
from L T• by γ• 7→ (0T◦ , 0H ,γ•). These triples indeed make the diagram (3.2)
commute, since γ◦/•(p) = γ◦/•(q) = 0T◦/• .

3.1.6 The special case when Γ = Λ◦ ∩Λ•
Write H∩ for the torus (Λ◦ ∩Λ•)⊗Z U(1) associated to the Z-module Λ◦ ∩Λ•.
The two obvious injections Λ◦∩Λ• ,→ Λ◦/•, which we will denote by π∩◦/•, allow
us to define in particular a bicoloured torus loop group L(T◦, H∩, T•). By the
short exact sequence (3.5) it is isomorphic to the group of paths

P
�

H∩, (Λ◦ −Λ•)/(Λ◦ ∩Λ•)
�

.

An equivalent way to formulate this special feature in this case is to observe
that the homomorphism

�

U(1)π∩◦ ,U(1)π∩•
�

: H∩→ T◦ ⊕ T•

is injective. This implies that for maps γ◦ : → T◦ and γ• : → T• the existence
of a function γm : → H∩ making the diagram (3.2) (with H∩ in place of H)
commute determines γm uniquely. That is, γm is not genuine extra data. Its ex-
istence is merely a property of the pair (γ◦,γ•).5 The definition of L(T◦, H∩, T•)
therefore simplifies to

L(T◦, H∩, T•) =
¦

(γ◦,γ•) ∈ C∞( , T◦)× C∞( , T•)
�

�

�

�

γ◦(p),γ•(p)
�

,
�

γ◦(q),γ•(q)
�

∈
�

U(1)π∩◦ , U(1)π∩•
�

(H∩)
©

.

5This fact was already used in Section 3.1.3, where we considered a special case of the
situation we are in now.
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(Here we omitted the conditions on the derivatives of γ◦ and γ• at p and q for
brevity.)

If we return to the general case considered at the beginning of Section 3.1
when Γ is a possibly-properly included submodule of Λ◦∩Λ•, then its associated
bicoloured torus loop group L(T◦, H, T•) is related to L(T◦, H∩, T•) via a short
exact sequence of abelian groups

0
�

Λ◦ ∩Λ•
Γ

�⊕2

L(T◦, H, T•) L(T◦, H∩, T•) 0.←→ ←→ ←→ ←→

The second arrow sends ([νp], [νq]) to (0,γm, 0), where γm(p) := [νp] and
γm(q) := [νq]. The third arrow is given by (γ◦,γm,γ•) 7→ (γ◦,γ•). This ‘forget-
ting’ of γm can also be seen as postcomposing γm with the surjective homomor-
phism H � H∩ induced by the inclusion Γ ⊆ Λ◦ ∩Λ•.

3.1.7 Actions of covers of Diff+(S1)

Recall from Section 2.1 that a unicoloured torus loop group has an obvious
(left) action of Diff+(S1) on it. Similarly, L(T◦, H, T•) is naturally acted upon by
the circle diffeomorphisms which fix the points p and q and preserve and .
However, using (3.5) we can prove something more. Denote for any integer
m ≥ 1 by Diff(m)+ (S

1) the m-fold covering group of Diff+(S1). It fits in a short
exact sequence

0 Z/mZ Diff(m)+ (S
1) Diff+(S1) 1←→ ←→ ←→ ←→

and can be modelled by the quotient group Diff(∞)+ (S1)/mZ, where in turn we
use the model (2.16) for the universal covering group Diff(∞)+ (S1).

Remember the definition of the integer n on Page 72.

Proposition 3.1.3. There is a (left) action of Diff(n)+ (S
1) on P(H, (Λ◦ −Λ•)/Γ )

which lifts to one on L(T◦, H, T•) in a way that fixes the subgroup (Λ◦ ∩Λ•)/Γ of
L(T◦, H, T•).

Proof. We start by explaining how Diff(n)+ (S
1) acts on P(H, (Λ◦−Λ•)/Γ ). If Φ ∈

Diff(∞)+ (S1) and a path γ lies in P(H, (Λ◦−Λ•)/Γ ), then the path Φ∗γ: [0, 1]→
H is again in P(H, (Λ◦ − Λ•)/Γ ). Here, Φ∗γ is defined by first extending γ
quasi-periodically to all of R, precomposing this extension (which we will also
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denote by γ) with Φ−1 next and finally restricting to [0, 1] again. Indeed, there
holds

(Φ∗γ)(1)− (Φ∗γ)(0) = γ
�

Φ−1(1)
�

− γ
�

Φ−1(0)
�

= γ
�

Φ−1(0) + 1
�

− γ
�

Φ−1(0)
�

= γ
�

Φ−1(0)
�

+ γ(1)− γ(0)− γ
�

Φ−1(0)
�

= γ(1)− γ(0) ∈ (Λ◦ −Λ•)/Γ .

This defines a left action Φ · γ := Φ∗γ of Diff(∞)+ (S1) on P(H, (Λ◦ − Λ•)/Γ ).
The shift diffeomorphism θ 7→ θ + n then acts trivially, though. Therefore,
this action of Diff(∞)+ (S1) descends to Diff(∞)+ (S1)/nZ, where Z is the central
subgroup of Diff(∞)+ (S1) generated by θ 7→ θ + 1. This quotient group is a
model for Diff(n)+ (S

1).
Let us now construct the lift of this Diff(n)+ (S

1)-action to L(T◦, H, T•). Take
Φ ∈ Diff(∞)+ (S1) and a bicoloured loop γ = (γ◦,γm,γ•) ∈ L(T◦, H, T•). We
already just defined the translate Φ · (Pthγ) for the path Pth(γ), so in order to
define Φ · γ in the discrete pre-image under Pth over Φ · (Pthγ) all we need to
do is prescribe (Φ ·γ)m(q). That is, we partially define Φ ·γ by the demand that
Pth(Φ · γ) = Φ · (Pthγ). We set

(Φ · γ)m(q) := γm(q)− (Pthγ)(0) +
�

Φ∗(Pthγ)
�

(0).

Since by definition of the homomorphism Pth we already know that

γm(q)− (Pthγ)(1) ∈ (Rπ◦)−1(Λ◦)/Γ ,

γm(q)− (Pthγ)(0) ∈ (Rπ•)−1(Λ•)/Γ ,

it follows that again (Φ · γ)m(q)− (Φ∗(Pthγ))(0) ∈ (Rπ•)−1(Λ•)/Γ and that

(Φ · γ)m(q)− (Φ∗(Pthγ))(1) = γm(q)− (Pthγ)(0)− (Pthγ)(1) + (Pthγ)(0)

= γm(q)− (Pthγ)(1) ∈ (Rπ◦)−1(Λ◦)/Γ

since
�

Φ∗(Pthγ)
�

(0)−
�

Φ∗(Pthγ)
�

(1) = −(Pthγ)(1) + (Pthγ)(0).

This shows that Φ · γ ∈ L(T◦, H, T•).
Using the fact that Pth is a homomorphism and Φ acts as an automorphism

on P(H, (Λ◦ −Λ•)/Γ ) it is easily checked that Φ also acts as an automorphism
on L(T◦, H, T•). Furthermore, it can be shown that this is compatible with
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the composition of the elements of Diff(∞)+ (S1). Therefore the Diff(∞)+ (S1)-
action on P(H, (Λ◦ − Λ•)/Γ ) lifts to one on L(T◦, H, T•). It also descends to
Diff(n)+ (S

1) because (n · γ)m(q) = γm(q). By definition of this Diff(n)+ (S
1)-action,

the homomorphism Pth is Diff(n)+ (S
1)-equivariant.

Remark 3.1.4. The action of Diff(n)+ (S
1) on P(H, (Λ◦ −Λ•)/Γ ) can alternatively

be understood by seeing elements of the latter group as a certain type of maps
to the torus H from an n-fold cover of S1.

Remark 3.1.5 (Diff(n)+ (S
1)-equivariance with respect to LH). Note that the

isomorphism Bi: LH
∼
−→ L(H, H, H) defined in Section 3.1.3 is equivariant with

respect to the Diff+(S1)-actions on both groups.
Regarding the inclusion Bi: LH ,→ L(T◦, H, T•) from Section 3.1.4; breaking

S1 at the point q allows us to embed LH into P(H, (Λ◦ −Λ•)/Γ ) as well. We
can then namely identify LH with

¦

γ ∈ C∞
�

[0, 1], H
�

�

�

� γ(1) = γ(0), γ(k)(1) = γ(k)(0) for all k ≥ 1
©

. (3.7)

This inclusion homomorphism ι is equivariant with respect to the standard
Diff+(S1)-action on LH described in Section 2.1 and the Diff(n)+ (S

1)-action on
P(H, (Λ◦ −Λ•)/Γ ) constructed in the proof of Proposition 3.1.3. The following
triangle commutes:

L(T◦, H, T•) P
�

H, (Λ◦ −Λ•)/Γ
�

LH

← →Pth

→←- ι
←-

→

Bi
. (3.8)

Together with the equivariance of Pth this makes it clear that

Pth
�

[Φ] · Bi(γ)
�

= Pth
�

Bi
�

[Φ]∗γ
�

�

,

where γ ∈ LH and Φ ∈ Diff(∞)+ (S1). It is then easily checked that also
�

[Φ] · Bi(γ)
�

m(q) = Bi
�

[Φ]∗γ
�

m(q)

and therefore [Φ] · Bi(γ) = Bi([Φ]∗γ). In other words, Bi is equivariant with
respect to the Diff+(S1)-action on LH and the Diff(n)+ (S

1)-action on L(T◦, H, T•).

Remark 3.1.6. It might seem unnatural to consider the action of the full group
Diff(n)+ (S

1) on L(T◦, H, T•), instead of for example the smaller group of equiva-
lence classes of elements of Diff(∞)+ (S1) that preserve the intervals [k, k+ 1/2]
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for all k ∈ Z. The former group is namely not compatible with the notion
of support of bicoloured loops in a way similar to Remark 2.3.3 about the
unicoloured situation. Instead, Diff(n)+ (S

1) ‘mixes’ the left and right halves of
S1 together.

The reason for our interest in Diff(n)+ (S
1) is that it contains the subgroup

Rot(n)(S1), and the action of the latter will allow us to speak about positive
energy representations of (central extensions of) L(T◦, H, T•).

3.1.8 The connected components of L(T◦, H, T•)

Recall from (2.1) how a choice of a privileged point on S1 made it possible
to alternatively describe the elements of a unicoloured torus loop group as
Lie algebra valued paths. It allowed us to define the winding element of a
unicoloured loop and, eventually, to understand the structure of the group.
The definition of a bicoloured torus loop group already carries two privileged
points p and q. We will choose the point q and carry out in this and the coming
sections similar steps as in the unicoloured case.

The following Lemma explains that, given a triple γ = (γ◦,γm,γ•) in
L(T◦, H, T•), which are torus valued maps, we may lift them to Lie algebra
valued maps which ‘glue’ to a map that is continuous at the point p. This is
essentially done by first applying Pth to γ, then taking a lift [0, 1]→ h of Pth(γ),
writing this as a pair of maps → t◦ and → t• and finally putting the datum
of a lift of γm back in. We will write the proof in a ‘bicoloured fashion’, though,
without referring to the homomorphism P.

We first observe that the group P(H, (Λ◦ − Λ•)/Γ ) has an alternative de-
scription in terms of paths in the Lie algebra t, namely as follows:

P
�

H, (Λ◦ −Λ•)/Γ
�∼=

¦

ξ̂ ∈ C∞
�

[0,1],h
�

�

�

�

�

ξ̂(1)− ξ̂(0) ∈ Λ◦ −Λ•,

ξ̂(k)(1) = ξ̂(k)(0) for all k ≥ 1
©À

Γ .

(3.9)

Lemma 3.1.7. Let γ= (γ◦,γm,γ•) ∈ L(T◦, H, T•) be a bicoloured loop. Then

(i) there exists a triple ξ= (ξ◦,ξm,ξ•) of smooth maps

ξ◦ : → t◦, ξm : → h and ξ• : → t•

such that
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(a) ξ◦/• is a lift of γ◦/• and ξm is a lift of γm, that is, exp◦/• ◦ ξ◦/• = γ◦/•
and expH ◦ ξm = γm, where exp◦/• : t◦/•� T◦/• and expH : h� H,

(b) (Rπ◦)−1(ξ◦(p)) = ξm(p) = (Rπ•)−1(ξ•(p)),

(ii) if η = (η◦,ηm,η•) is another triple of maps satisfying (i)(a) and (i)(b)
above, then

η= ξ+
�

π◦(µp), (p, q)→ (µp,µq),π•(µp)
�

for some µp,µq ∈ Γ ,

(iii) the map ξ̂: [0,1]→ h defined by

ξ̂(θ ) :=

¨

(Rπ◦)−1
�

ξ◦(θ )
�

if θ ∈ [1/2, 1],
(Rπ•)−1

�

ξ•(θ )
�

if θ ∈ [0, 1/2],

where we used the unit speed parametrisations of and by [0, 1/2] and
[1/2,1] respectively again, is a lift of P(γ) as in (3.9).

Proof. (i): Pick an arbitrary triple (ξ◦,ξm,ξ•) which satisfies (i)(a). Then the
diagram

t◦ h t•

←→ξ◦

←-→

←→ ξm

←- →

←→ ξ•
←→Rπ◦
∼ ←→Rπ•

∼

does not necessarily commute. Instead, we have
�

ξ◦(p),ξ•(p)
�

= (λ◦,λ•) + (Rπ◦,Rπ•)
�

ξm(p)
�

�

ξ◦(q),ξ•(q)
�

= (λ′◦,λ
′
•) + (Rπ◦,Rπ•)

�

ξm(q)
�

for some λ◦/•,λ
′
◦/• ∈ Λ◦/•. It follows that the triple (ξ◦ − λ◦,ξm,ξ• − λ•) now

satisfies both (i)(a) and (i)(b).
(ii): Since η also satisfies (i)(a), we have

η= ξ+
�

λ◦, (p, q)→ (µp,µq),λ•
�

for some λ◦/• ∈ Λ◦/• and µp,µq ∈ Γ . In particular, η◦/•(p) = ξ◦/•(p) +λ◦/•. But
using property (i)(b) for both η and ξ,

(Rπ◦/•)−1
�

η◦/•(p)− ξ◦/•(p)
�

= ηm(p)− ξm(p) = µp,

so λ◦/• = π◦/•(µp).
(iii): This claim is obvious given the definition of the homomorphism P.
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Because we will use the Lie algebra valued lifts constructed in the previous
Lemma often, we give them their own name:

Definition 3.1.8. For a bicoloured loop γ= (γ◦,γm,γ•) ∈ L(T◦, H, T•) a triple
of maps ξ= (ξ◦,ξm,ξ•) as in Lemma 3.1.7(i) is called a glued lift of γ.

We will denote the quotient of the direct sum Λ◦ ⊕Λ• by the image of Γ
under the homomorphism (π◦,π•) as (Λ◦ ⊕Λ•)/Γ .

Proposition 3.1.9. There are surjective homomorphisms

∆′ : P
�

H, (Λ◦ −Λ•)/Γ
�

� Λ◦ −Λ•,

∆: L(T◦, H, T•)�
Λ◦ ⊕Λ•
Γ

(3.10)

of abelian groups which make the following diagram commute:

0
Λ◦ ∩Λ•
Γ

L(T◦, H, T•) P
�

H, (Λ◦ −Λ•)/Γ
�

0

0
Λ◦ ∩Λ•
Γ

Λ◦ ⊕Λ•
Γ

Λ◦ −Λ• 0,

←→ ←→

←→ −1

← →Pth

←� ∆

←→
←

� ∆
′

←→ ←→ ← →
(Rπ◦)−1−(Rπ•)−1

← →

(3.11)

where the top row is the short exact sequence (3.5) and the bottom row is exact
as well.

Proof. The homomorphism ∆′ is defined in exactly the same way as in the
unicoloured case, namely by picking for a path γ ∈ P(H, (Λ◦ − Λ•)/Γ ) a lift
ξ̂: [0,1] → h as in (3.9). The element ∆′γ := ξ̂(1)− ξ̂(0) ∈ Λ◦ − Λ• is then

independent of the choice of ξ̂ and this clearly defines a homomorphism. It is
surjective because λ◦−λ• ∈ Λ◦−Λ• has as pre-image for example the element
of P(H, (Λ◦ −Λ•)/Γ ) defined as the projection on H of the Lie algebra-valued
path [0, 1]→ h, θ 7→ θ (λ◦ −λ•).

To define the homomorphism ∆, let γ = (γ◦,γm,γ•) ∈ L(T◦, H, T•) be a
bicoloured loop and pick a glued lift ξ= (ξ◦,ξm,ξ•) of it. As explained in the
proof of Lemma 3.1.7(i), there are then elements λ◦/• ∈ Λ◦/• such that

�

ξ◦(q),ξ•(q)
�

= (λ◦,λ•) + (Rπ◦,Rπ•)
�

ξm(q)
�

.

If η= (η◦,ηm,η•) is another such lift, then by Lemma 3.1.7(ii),
�

η◦(q),η•(q)
�

= (λ◦,λ•) +
�

π◦(µ),π•(µ)
�

+ (Rπ◦,Rπ•)
�

ηm(q)
�
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for some µ ∈ Γ . Therefore, setting ∆γ to be the equivalence class [λ◦,λ•] of
(λ◦,λ•) gives a well-defined map (3.10). We show that ∆ is surjective. Let
(λ◦,λ•) be an element in Λ◦ ⊕Λ•. Choose ξ◦ : → t◦ to be any map satisfying
ξ◦(p) = 0t◦

and ξ◦(q) = λ◦, pick ξ• : → t• to be any map with ξ•(p) = 0t•
and ξ•(q) = λ• and define ξm : → h as ξm(p) = ξm(q) = 0h. Then the triple
(ξ◦,ξm,ξ•) is a glued lift of a bicoloured loop in L(T◦, H, T•) and one has

�

ξ◦(q),ξ•(q)
�

= (λ◦,λ•) + (Rπ◦,Rπ•)(0),

which shows what we wanted.
The second map in the bottom row of (3.11) is given by the obvious inclusion

if we identify (Λ◦ ∩Λ•)/Γ with the quotient group
¦

�

Rπ◦(ν),Rπ•(ν)
�

�

�

� ν ∈ Λ◦ ∩Λ•
©

¦

�

π◦(µ),π•(µ)
�

�

�

� µ ∈ Γ
©

, (3.12)

and the third map stands for

[λ◦,λ•] 7→ (Rπ◦)−1(λ◦)− (Rπ•)−1(λ•),

where [λ◦,λ•] is the equivalence class of (λ◦,λ•) in (Λ◦ ⊕Λ•)/Γ . This third
map indeed has (3.12) as its kernel.

To explain the commutativity of the first square in (3.11), let [ν] ∈ (Λ◦ ∩
Λ•)/Γ . Then its image in (Λ◦ ⊕ Λ•)/Γ when travelling along the lower left
corner of the square is the equivalence class −[(Rπ◦,Rπ•)(ν)]. On the other
hand, if we travel along the upper right corner, recall that the image of [ν] in
L(T◦, H, T•) is the bicoloured loop γ = (γ◦,γm,γ•), where the γ◦/• are identically
0T◦/• , γm(p) = 0H and γm(q) = [ν]. A possible glued lift ξ = (ξ◦,ξm,ξ•) of γ
has the maps ξ◦/• identically 0t◦/•

, ξm(p) = 0h and ξm(q) = ν. This satisfies

�

ξ◦(q),ξ•(q)
�

= (0, 0) = −(Rπ◦,Rπ•)(ν) + (Rπ◦,Rπ•)(ν),

as desired, given the way we defined ∆.
The commutativity of the second square in (3.11) follows from the claim

of Lemma 3.1.7(iii).

The homomorphism ∆ serves the same role in our bicoloured situation as
the winding element homomorphism LT � Λ does in the unicoloured case in
the sense that its fibres are exactly the connected components of the group.
The exactness of the bottom row in (3.11) implies that the group of connected
components (Λ◦⊕Λ•)/Γ of L(T◦, H, T•) is torsion-free if and only if Γ = Λ◦∩Λ•.
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Remark 3.1.10. It follows from Lemma 3.1.7(iii) that for a bicoloured loop
γ ∈ L(T◦, H, T•) we have

∆′Pthγ = (Rπ◦)
−1
�

ξ◦(q)
�

− (Rπ•)−1
�

ξ•(q)
�

for any glued lift (ξ◦,ξm,ξ•) of γ.

3.1.9 The structure of L(T◦, H, T•)

Since we learned in Section 3.1.4 that L(T◦, H, T•) contains a canonical copy
of LH via an injective ‘bicolouring’ homomorphism Bi, there is in particular an
inclusion of the identity component (LH)0 of the latter group.

Proposition 3.1.11. The subgroup Bi((LH)0) of L(T◦, H, T•) is the kernel of
the homomorphism ∆, and it therefore also equals the identity component of
L(T◦, H, T•).

Proof. Recall first that (LH)0 can be canonically identified with the group of all
smooth maps S1→ h, modulo Γ . Now suppose that γ is a bicoloured loop in the
kernel of ∆. According to the definition of ∆ in the proof of Proposition 3.1.9
this means that if ξ= (ξ◦,ξm,ξ•) is a glued lift of γ, then there exists a µ ∈ Γ
such that

�

ξ◦(q),ξ•(q)
�

=
�

π◦(µ),π•(µ)
�

+ (Rπ◦,Rπ•)
�

ξm(q)
�

.

Therefore,
(Rπ◦)−1

�

ξ◦(q)
�

= (Rπ•)−1
�

ξ•(q)
�

,

which together with Lemma 3.1.7(i)(b) implies that the two maps (Rπ◦/•)−1 ◦
ξ◦/• glue together to a smooth map S1→ h. Its value at q differs from that of
ξm by µ. By the characterisation of the image of Bi mentioned at the end of
Section 3.1.4 we see that γ lies in Bi((LH)0).

We are now able to understand the structure of L(T◦, H, T•) by showing
that the short exact sequence

0 (LH)0 L(T◦, H, T•)
Λ◦ ⊕Λ•
Γ

0.←→ ←→Bi ←→∆ ←→ (3.13)

admits a splitting, which we construct as follows. Let (λ◦,λ•) ∈ Λ◦⊕Λ•. Define
the h-valued straight line segment

ξ̂: [0, 1]→ h, θ 7→ (Rπ•)−1(λ•) + θ
�

(Rπ◦)−1(λ◦)− (Rπ•)−1(λ•)
�
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from (Rπ•)−1(λ•) to (Rπ◦)−1(λ◦), and use it to define three Lie algebra valued
maps ξ◦, ξm and ξ• in turn by restricting to the relevant parts of the interval
[0,1]:

ξ◦ := Rπ◦ ◦ ξ̂|[1/2,1] : → t◦

ξm(p) := ξ̂(1/2) =
1
2

�

(Rπ◦)−1(λ◦) + (Rπ•)−1(λ•)
�

∈ h

ξm(q) := 0h ∈ h

ξ• := Rπ• ◦ ξ̂|[0,1/2] : → t•.

Because a different choice of representative from the equivalence class [λ◦,λ•]
in (Λ◦⊕Λ•)/Γ of (λ◦,λ•) would merely translate ξ̂ by an element of Γ ⊆ h, the
following torus valued maps γ◦, γm and γ• only depend on [λ◦,λ•]:

γ◦ := exp◦ ◦ ξ◦ : → T◦
γm(p) := expH

�

ξm(p)
�

∈ H

γm(q) := expH

�

ξm(q)
�

= 0H ∈ H

γ• := exp• ◦ ξ• : → T•.

This triple γ[λ◦,λ•] := (γ◦,γm,γ•) forms a bicoloured loop. The triple (ξ◦,ξm,ξ•)
is then a glued lift of γ[λ◦,λ•] and

�

ξ◦(q),ξ•(q)
�

=
�

Rπ◦
�

ξ̂(1)
�

,Rπ•
�

ξ̂(0)
�

�

= (λ◦,λ•) + (Rπ◦,Rπ•)
�

ξm(q)
�

shows that ∆γ[λ◦ ,λ•] = [λ◦,λ•]. In other words, the homomorphism

Λ◦ ⊕Λ•
Γ

→ L(T◦, H, T•), [λ◦,λ•] 7→ γ[λ◦,λ•] (3.14)

that we just constructed is a section of ∆. This in particular implies that (3.14)
is injective. The splitting (3.14) gives an isomorphism

L(T◦, H, T•)
∼
−→ (LH)0 ⊕

�

Λ◦ ⊕Λ•
Γ

�

sending a bicoloured loop γ = (γ◦,γm,γ•) to (γ− γ∆γ ,∆γ). Its inverse takes
a pair (γ, [λ◦,λ•]) to the bicoloured loop γ + γ[λ◦,λ•]. Recalling the isomor-
phism (2.4) we conclude with a decomposition

L(T◦, H, T•)∼= H ⊕ Vh⊕
�

Λ◦ ⊕Λ•
Γ

�

,

which explains the structure of L(T◦, H, T•).
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Remark 3.1.12. In the proof of Proposition 3.1.9 it was shown that the homo-
morphism ∆ is surjective by sketching how to find some bicoloured loop in the
pre-image of every element [λ◦,λ•] of (Λ◦ ⊕Λ•)/Γ . One could ask whether
that construction could be made more precise so as to obtain a simpler splitting
of ∆ than the more complicated one we built in the current section. However,
the former construction does depend on the choice of representative (λ◦,λ•)
from [λ◦,λ•], so this plan seems unreasonable.

3.2 Central extensions associated to spans of lattices

The bicoloured torus loop group L(T◦, H, T•) and the group P(H, (Λ◦ −Λ•)/Γ )
defined in Section 3.1 can in particular be defined if the Z-modules Λ◦/• and
Γ come with the extra structure of bi-additive forms that make them even
lattices. In this section we give, using these lattice structures, constructions
of central extensions eL(T◦, H, T•) and eP(H, (Λ◦ − Λ•)/Γ ) of L(T◦, H, T•) and
P(H, (Λ◦ −Λ•)/Γ ) that are analogous to the central extensions of unicoloured
torus loop groups described in Section 2.2. As we will see in Section 3.2.1, they
will in fact reduce exactly to those unicoloured extensions in the special case
that Λ◦ = Λ• = Γ and the homomorphisms π◦/• : Γ ,→ Λ◦/• are the identity. We
will construct eP(H, (Λ◦−Λ•)/Γ ) through an explicit 2-cocycle. The formula for
it will be nearly identical to the one for unicoloured torus loop groups. The
central extension of L(T◦, H, T•) will then simply be defined as the pullback of
eP(H, (Λ◦ −Λ•)/Γ ) along the homomorphism Pth. That is, it will be trivial on
the kernel of Pth.

So let Λ◦/• and Γ be as in Section 3.1 but assume additionally that they are
even lattices, denoting their forms by 〈·, ·〉◦/• and 〈·, ·〉Γ respectively, and that
the π◦/• are lattice morphisms. We will use the same notation for the forms
that are extended bilinearly to the Lie algebras t◦/• and h.

Remark 3.2.1. Special cases of spans of lattices have been considered before
in the literature. If namely Γ = Λ◦ ∩Λ• and [Λ◦ : Γ ] = p = [Λ• : Γ ] for some
prime number p, then Λ◦ and Λ• have been called p-neighbours (see [Kne02,
Section (28.2)]).

If one has the freedom to choose the middle even lattice Γ beforehand,
then it is easy to construct and classify spans of lattices via the technique of
discriminant groups. The even lattices Λ◦/• namely correspond to the q-isotropic
subgroups of the finite abelian discriminant group DΓ := Γ∨/Γ of Γ , as explained
in Appendix A.1.2.

Remark 3.2.2. The restriction of the R-valued form 〈·, ·〉Γ on h to Λ◦ ∩Λ• ⊆ h is
Z-valued, making Λ◦ ∩Λ• an even lattice, while the restriction to Λ◦ −Λ• ⊆ h
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is in general Q-valued, making this a rational lattice.

Just like in the unicoloured case, the construction of central extensions of
L(T◦, H, T•) and P(H, (Λ◦ −Λ•)/Γ ) will require a little bit more data than just
the lattices Λ◦/• and Γ and the two embeddings π◦/• between them. We will
namely need a certain central extension of the underlying abelian group of the
rational lattice Λ◦ −Λ• to ensure that the central extension of L(T◦, H, T•) will
be disjoint-commutative.

Construction 3.2.3 (A central extension of Λ◦−Λ•). Let us define a function6

b : (Λ◦ −Λ•)× (Λ◦ −Λ•)→ U(1),

b(λ,µ) := e2πi b0(λ,µ), b0(λ,µ) :=
1
2
〈µ,λ〉Γ + 〈µ,λ•〉Γ ∈Q,

(3.15)

where λ,µ ∈ Λ◦−Λ• and λ• is defined via a choice of decomposition λ = λ◦−λ•,
with λ◦/• ∈ (Rπ◦/•)−1(Λ◦/•). Notice that b0(λ,µ) = −1

2〈µ,λ〉Γ + 〈µ,λ◦〉Γ also,
since we can add −〈µ,λ〉Γ + 〈µ,λ〉Γ to b0(λ,µ), so we can use this as an
alternative expression for b0 if we so please.

The definition of b is independent of the choice of decomposition of λ used.
Suppose namely that also λ = λ′◦−λ

′
•. Then λ′• = λ• +ν for some ν ∈ Λ◦ ∩Λ•.

This implies that

1
2
〈µ,λ〉Γ + 〈µ,λ′•〉Γ = b0(λ,µ) + 〈µ,ν〉Γ ≡ b0(λ,µ)mod Z.

It is clear that b is bi-additive and we furthermore have that b(λ,λ) = 1
for all λ ∈ Λ◦ −Λ• since

b0(λ,λ) =
1
2
〈λ◦ −λ•,λ◦ −λ•〉Γ + 〈λ◦ −λ•,λ•〉Γ =

1
2
〈λ◦,λ◦〉Γ −

1
2
〈λ•,λ•〉Γ ,

and 〈λ◦/•,λ◦/•〉Γ/2 ∈ Z because the lattices Λ◦/• are even. Together with the
bi-additivity, this property of b implies by the discussion in Appendix A.2.1 that
there exists a U(1)-central extension (Λ◦ −Λ•)e of Λ◦ −Λ• which has b as a
commutator map. It is determined up to non-unique isomorphism.

We repeat that the formula (3.15) for the commutator map b, which looks
somewhat ad hoc, is designed specifically to make Theorem 3.2.10 true.

6More precisely, b takes values only in the finite cyclic subgroup of U(1) of order

2 · [Λ◦ −Λ• : Λ◦ ∩Λ•].
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Construction 3.2.4 (Central extensions of P(H, (Λ◦ − Λ•)/Γ )). We will con-
struct a U(1)-central extension eP(H, (Λ◦−Λ•)/Γ ) of P(H, (Λ◦−Λ•)/Γ ) by letting
its underlying set be P(H, (Λ◦ −Λ•)/Γ )×U(1) and writing down an explicit
2-cocycle. We fix a choice of a U(1)-central extension (Λ◦ −Λ•)e of Λ◦ −Λ•
with the commutator map (3.15) and a choice of a 2-cocycle

ε : (Λ◦ −Λ•)× (Λ◦ −Λ•)→ U(1)

for it. Let γ,ρ ∈ P(H, (Λ◦−Λ•)/Γ ), z, w ∈ U(1) and pick lifts ξ,η: [0, 1]→ h of
γ and ρ respectively using the isomorphism (3.9). We define the multiplication
on eP(H, (Λ◦ −Λ•)/Γ ) by

(γ, z) · (ρ, w) :=
�

γ+ρ, zw · c′(γ,ρ)
�

where c′ is the 2-cocycle on P(H, (Λ◦ −Λ•)/Γ ) given by

c′(γ,ρ) := ε(∆′γ,∆
′
ρ)e

2πiS′(ξ,η),

S′(ξ,η) :=
1
2

∫ 1

0




ξ′(θ ),η(θ )
�

Γ
dθ +

1
2




∆′γ,η(0)
�

Γ
.

(3.16)

Notice that S′ is bi-additive.
Since ξ and η are well-defined up to an element of Γ and 〈∆′γ,µ〉Γ ∈ Z for

all µ ∈ Γ the proof of the well-definedness of c′ is identical to the one in the
unicoloured case.

Remark 3.2.5 (Failure of disjoint-commutativity for eP(H, (Λ◦ −Λ•)/Γ )). One
could try to imitate for the central extension eP(H, (Λ◦ −Λ•)/Γ ) we just con-
structed the calculation in the proof of Theorem 2.2.3 which shows disjoint-
commutativity for central extensions of unicoloured torus loop groups. A possi-
ble adjustment, needed to even make sense of the statement of that Theorem,
would be to consider subintervals of [0, 1] which are allowed to contain the end-
points {0, 1} and to use the notion of support for elements of P(H, (Λ◦−Λ•)/Γ )
already mentioned in Section 3.1.2. The intermediate result would then be that

e2πi
�

S′(ξ,η)−S′(η,ξ)
�

= e−πi〈∆′ρ ,∆′γ〉Γ . (3.17)

On the other hand, we have that

ε(∆′γ,∆
′
ρ)ε(∆

′
ρ,∆′γ)

−1 = b(∆′γ,∆
′
ρ) = eπi〈∆′ρ ,∆′γ〉Γ e2πi〈∆′ρ ,λ•〉Γ ,

where∆′γ = λ◦−λ• with λ◦/• ∈ (Rπ◦/•)−1(Λ◦/•). If λ• ∈ Λ◦∩Λ•, which happens
for example if suppγ does not contain 1 ∈ [0,1], then 〈∆′ρ,λ•〉Γ ∈ Z and so
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ε(∆′γ,∆
′
ρ)ε(∆

′
ρ,∆′γ)

−1 would absorb (3.17). Therefore (γ, z) and (ρ, w) would
indeed commute. However, it need not be true in general that λ• ∈ Λ◦∩Λ• when
1 ∈ suppγ. We conclude that with the definitions we made eP(H, (Λ◦ −Λ•)/Γ )
is not disjoint-commutative.

We do not know how to adjust the group eP(H, (Λ◦ −Λ•)/Γ ) in such a way
that it becomes disjoint-commutative also for intervals that do contain the
point 1, except by inheriting via the homomorphism Pth the notion of support
from L(T◦, H, T•) as in Definition 3.1.2. The central extension of L(T◦, H, T•)
that we will construct in a moment namely will turn out to have the desired
disjoint-commutativity property.

Construction 3.2.6 (Central extensions of L(T◦, H, T•)). Given the central
extension eP(H, (Λ◦ −Λ•)/Γ ) from Construction 3.2.4, we define a U(1)-central
extension eL(T◦, H, T•) of L(T◦, H, T•) as the pullback of eP(H, (Λ◦−Λ•)/Γ ) along
the homomorphism Pth. That is, the 2-cocycle c defining eL(T◦, H, T•) is set to
be

c(γ,ρ) := c′(Pthγ, Pthρ) (3.18)

for two bicoloured loops γ,ρ ∈ L(T◦, H, T•).

By construction there is a short exact sequence of groups

0
Λ◦ ∩Λ•
Γ

eL(T◦, H, T•) eP
�

H, (Λ◦ −Λ•)/Γ
�

1,←→ ←→ ←→
ÝPth ←→

where ÝPth is the obvious lift of the homomorphism of abelian groups Pth,
sending (γ, z) ∈ eL(T◦, H, T•) to (Pthγ, z). The second arrow in this sequence
sends an equivalence class [ν] ∈ (Λ◦ ∩Λ•)/Γ to the element

�

�

0T◦ , (p, q)→
�

0H , [ν]
�

, 0T•

�

, 1
�

∈ eL(T◦, H, T•).

Having defined ÝPth, we can now state that we have a pullback diagram in the
category of groups:

eL(T◦, H, T•) eP
�

H, (Λ◦ −Λ•)/Γ
�

L(T◦, H, T•) P
�

H, (Λ◦ −Λ•)/Γ
�

.

←�
ÝPth

←� ù ←�

←�
Pth

(3.19)

The cocycle c can also be written in a ‘bicoloured fashion’ without directly
using the group eP(H, (Λ◦−Λ•)/Γ ), namely by picking glued lifts ξ = (ξ◦,ξm,ξ•)
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and η = (η◦,ηm,η•) of γ and ρ respectively. If we then split the integral
in (3.16) in the middle, appeal to Lemma 3.1.7(iii), which relates ξ and η to
lifts of Pth(γ) and Pth(ρ), and finally use the unit speed parametrisations of
and by [0, 1/2] and [1/2, 1], we get

c(γ,ρ) := ε(∆′Pthγ,∆
′
Pthρ)e

2πiS(ξ,η),

S(ξ,η) :=
1
2

�

∫

〈dξ◦,η◦〉◦ +
∫

〈dξ•,η•〉• +
¬

∆′Pthγ, (Rπ•)
−1
�

η•(q)
�

¶

Γ

�

.

(3.20)
Using this description of c instead, its well-definedness can alternatively be
checked via Lemma 3.1.7(ii) that explains the ambiguity in the choices of the
glued lifts ξ and η.

Ingredients 3.2.7. We summarise the ingredients used in the construction of
the central extensions eP(H, (Λ◦ −Λ•)/Γ ) and eL(T◦, H, T•) for clarity:

• three even lattices (Λ◦, 〈·, ·〉◦), (Λ•, 〈·, ·〉•) and (Γ , 〈·, ·〉Γ ) of the same rank,

• two lattice morphisms π◦/• : Γ ,→ Λ◦/•,

• a choice of a U(1)-central extension (Λ◦ −Λ•)e of Λ◦ −Λ• such that it
has commutator map (3.15),

• a choice of a 2-cocycle ε for (Λ◦ −Λ•)e (we will always choose ε to be
normalised to make calculations easier),

• (for the central extension eL(T◦, H, T•)) a choice of one of the two points
p or q on S1 as being privileged.

Just like for a unicoloured central extension ÝLT , also the notations eP(H, (Λ◦ −
Λ•)/Γ ) and eL(T◦, H, T•) do not refer to these ingredients, so it will be important
in the sequel to explain this separately when necessary.

3.2.1 Unicoloured central extensions are a special case

Recall from Section 3.1.3 that if Λ◦ = Λ• = Γ and the morphisms π◦/• : Γ ,→ Λ◦/•
are the identity, there exists an isomorphism of abelian groups Bi: LH

∼
−→

L(H, H, H) given by γ 7→ (γ| ,γ|{p,q},γ| ). In this case the Z-module Λ◦−Λ• ⊆ h

equals Γ , and the commutator map b on Λ◦−Λ• = Γ defined in (3.15) is nothing
but the commutator map (λ,µ) 7→ (−1)〈λ,µ〉Γ since Γ is an integral lattice. Now
note that a choice of a {±1}-central extension Γ̃ of Γ with this as commutator
map, a choice of 2-cocycle ε : Γ × Γ → {±1} for it and the choice of the point q
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among p and q, as needed in Construction 3.2.6, is also exactly the data we
needed in Section 2.2 to construct a U(1)-central extension eLH of LH. We now
claim that the obvious lift to the underlying sets

eLH
∼
−→ eL(H, H, H), (γ, z) 7→

�

Bi(γ), z
�

(3.21)

of Bi is an isomorphism of (non-abelian) groups. It amounts to showing that
for all γ,ρ ∈ LH,

c
�

Bi(γ), Bi(ρ)
�

= cH(γ,ρ), (3.22)

where we write the cocycle defining eLH as cH and still write c for the one
defining eL(H, H, H). We will also denote by SH the map in the definition of cH
that takes two h-valued maps as input.

The first observation to make is that if ξ: [0, 1]→ h is a lift of γ as in (2.1),
made by cutting S1 at the privileged point q, then we may choose the triple of
maps

(ξ◦,ξm,ξ•) :=
�

ξ|[1/2,1], (p, q)→
�

ξ(1/2),ξ(0)
�

,ξ|[0,1/2]

�

as a glued lift of Bi(γ). Knowing this, we see that7

∆′Pth(Biγ) = ξ◦(q)− ξ•(q) = ξ(1)− ξ(0) =∆γ.

One chooses a glued lift (η◦,ηm,η•) for Bi(ρ) similarly using a lift η: [0, 1]→ h

of ρ. This gives us

ε(∆′Pth(Biγ),∆
′
Pth(Biρ)) = ε(∆γ,∆ρ). (3.23)

Next, using again that η•(q) = η(0) by our definition of η•, we observe that
the second line in the definition (3.20) of the bicoloured cocycle now reads

S
�

(ξ◦,ξm,ξ•), (η◦,ηm,η•)
�

=
1
2

�

∫

〈dξ◦,η◦〉Γ +
∫

〈dξ•,η•〉Γ +



∆′Pth(Biγ),η•(q)
�

Γ

�

=
1
2

�

∫ 1

1
2




ξ′(θ ),η(θ )
�

Γ
dθ +

∫
1
2

0




ξ′(θ ),η(θ )
�

Γ
dθ +




∆γ,η(0)
�

Γ

�

.

This is exactly the formula for SH(ξ,η) in (2.7), which together with (3.23)
proves the claim (3.22).

7Here, ∆γ refers to the winding element homomorphism for LH as defined in Section 2.1.
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3.2.2 The inclusion of eLH

We return to the general setup assumed at the beginning of Section 3.2. Re-
call from Section 3.1.4 that there is a canonical inclusion of abelian groups
Bi: LH ,→ L(T◦, H, T•) given by γ 7→ (γ◦,γ|{p,q},γ•), where γ◦ := U(1)π◦ ◦ γ|
and γ• := U(1)π•◦γ| . Define a central extension eLH of LH via the construction
in Section 2.2 using the following input data:

• the even lattice (Γ , 〈·, ·〉Γ ),

• the restriction Γ̃ of the chosen U(1)-central extension (Λ◦−Λ•)e ofΛ◦−Λ•
to Γ ,

• the restriction εΓ to Γ of the chosen 2-cocycle ε on Λ◦−Λ• for (Λ◦−Λ•)e,

• the point q as a choice of privileged point on S1.

The use of Γ̃ is permitted, meaning that it indeed has commutator map (µ,µ′) 7→
(−1)〈µ,µ′〉Γ . The function b0 in (3.15), when restricted to Γ , namely becomes
1
2〈µ

′,µ〉Γ modulo Z since the restriction of the form 〈·, ·〉Γ on Λ◦ −Λ• to Γ is
integral, and so for µ,µ′ ∈ Γ we have

b(µ,µ′) = e2πi b0(µ,µ′) = (−1)〈µ,µ′〉Γ .

We claim that the obvious lift to the underlying sets

eBi: eLH ,→ eL(T◦, H, T•), (γ, z) 7→
�

Bi(γ), z
�

(3.24)

of Bi is a homomorphism of (non-abelian) groups, meaning that for all γ,ρ ∈
LH,

c
�

Bi(γ), Bi(ρ)
�

= cH(γ,ρ). (3.25)

(We will use the same notations cH and SH as we did in Section 3.2.1.)
Indeed, if ξ: [0,1]→ h is a lift of γ as in (2.1), made by cutting S1 at q,

then we may choose as a glued lift (ξ◦,ξm,ξ•) of Bi(γ) the triple of maps

ξ◦ := Rπ◦ ◦ ξ|[1/2,1] : → t◦

ξm(p) := ξ(1/2), ξm(q) := ξ(0)

ξ• := Rπ• ◦ ξ|[0,1/2] : → t•.

Knowing this, we see that8,9

∆′Pth(Biγ) = (Rπ◦)
−1
�

ξ◦(q)
�

− (Rπ•)−1
�

ξ•(q)
�

= ξ(1)− ξ(0) =∆γ ∈ Γ .
8See Footnote 7.
9This equality of winding elements also follows from the commutative triangle (3.8).
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One chooses a glued lift (η◦,ηm,η•) for Bi(ρ) similarly using a lift η: [0, 1]→ h

of ρ. This gives us

ε(∆′Pth(Biγ),∆
′
Pth(Biρ)) = εΓ (∆γ,∆ρ). (3.26)

Next, using again that (Rπ•)−1(η•(q)) = η(0), the second line in (3.20) reads

S
�

(ξ◦,ξm,ξ•), (η◦,ηm,η•)
�

=
1
2

�

∫

〈dξ◦,η◦〉◦ +
∫

〈dξ•,η•〉• +
¬

∆′Pth(Biγ), (Rπ•)
−1
�

η•(q)
�

¶

Γ

�

=
1
2

�

∫ 1

1
2




ξ′(θ ),η(θ )
�

Γ
dθ +

∫
1
2

0




ξ′(θ ),η(θ )
�

Γ
dθ +




∆γ,η(0)
�

Γ

�

.

This equals the formula for SH(ξ,η) in (2.7), which together with (3.26)
proves (3.25).

Remark 3.2.8. The existence of the homomorphisms (3.21) and (3.24) of
central extensions can be understood in a more conceptual, but less explicit
way, namely via the pullback diagram (3.19).

For the lifting (3.21) of the isomorphism Bi we can observe that in the
situation of Section 3.2.1 we have P(H, (Λ◦ −Λ•)/Γ )∼= LH and Pth= (Bi)−1,
if we identify and with [1/2,1] and [0,1/2] respectively. So because
Pth is an isomorphism, the same holds for its lift ÝPth. That the cocycle c′ for
eP(H, (Λ◦ −Λ•)/Γ ) is identical to the one defining eLH then shows that ÝPth

−1
is

the desired lift of Bi.
For the lifting (3.24) of the inclusion Bi, we can think of the cocycle c′ as

generalising the one defining eLH to a bigger group if we consider LH as a
subgroup of P(H, (Λ◦−Λ•)/Γ ) through (3.7). Together with the commutativity
of the triangle (3.8) we therefore get a commutative diagram

eLH eP
�

H, (Λ◦ −Λ•)/Γ
�

LH L(T◦, H, T•) P
�

H, (Λ◦ −Λ•)/Γ
�

.

←- →ι̃

←� ←�

←- →
Bi

←�
Pth

The universal property of the pullback (3.19) now gives us the lift of Bi.

3.2.3 Isotony with respect to unicoloured central extensions

Recall the inclusions (3.6) of the non-centrally extended groups L T◦ and
L T• of unicoloured loops into L(T◦, H, T•) given by γ◦ 7→ (γ◦, 0H , 0T•) and
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γ• 7→ (0T◦ , 0H ,γ•) respectively. Define central extensions eLT◦/• of LT◦/• via the
construction in Section 2.2 using the following input data:

• the even lattice (Λ◦/•, 〈·, ·〉◦/•) (or, more precisely, its pre-image in h under
the isometry Rπ◦/•),

• the restriction Λ̃◦/• of the chosen U(1)-central extension (Λ◦ −Λ•)e of
Λ◦ −Λ• to (Rπ◦/•)−1(Λ◦/•),

• the restriction ε◦/• to (Rπ◦/•)−1(Λ◦/•) of the chosen 2-cocycle ε on Λ◦−Λ•
for (Λ◦ −Λ•)e,

• the point q as a choice of privileged point on S1.

Indeed, the commutator map of Λ̃◦/• is (λ◦/•,µ◦/•) 7→ (−1)〈λ◦/•,µ◦/•〉◦/• . The func-
tion b0 when restricted to Λ◦/• namely becomes 1

2〈µ◦/•,λ◦/•〉◦/• modulo Z since
the restriction 〈·, ·〉◦/• of the form 〈·, ·〉Γ on Λ◦−Λ• to (Rπ◦/•)−1(Λ◦/•) is integral.

Write eL T◦ for the restriction of eLT◦ to L T◦ and define eL T• similarly. We
claim that the obvious lifts to the underlying sets

eL T◦ ,→ eL(T◦, H, T•)←- eL T•

of the inclusions of L T◦ and L T•, namely the ones that are the identity on the
central subgroups U(1), are group homomorphisms. That is, for all γ◦,ρ◦ ∈
L T◦,

c
�

(γ◦, 0H , 0T•), (ρ◦, 0H , 0T•)
�

= c◦(γ◦,ρ◦), (3.27)

where c◦ is the 2-cocycle defining eL T◦. We will also denote by S◦ the map in
the definition of c◦ that takes two t◦-valued maps as input. Similarly, we claim
that

c
�

(0T◦ , 0H ,γ•), (0T◦ , 0H ,ρ•)
�

= c•(γ•,ρ•) (3.28)

for all γ•,ρ• ∈ L T•, where c• is the 2-cocycle defining eL T•.
We will prove (3.27)—the proof of (3.28) is similar. If ξ: [0,1]→ t◦ is a

lift of γ◦ as in (2.1), made by cutting S1 at q, then we may choose the triple of
maps

(ξ◦,ξm,ξ•) :=
�

ξ|[1/2,1] − ξ(1/2), 0h, 0t•

�

as a glued lift of (γ◦, 0, 0). Indeed, ξ(1/2) ∈ Λ◦. What is more, ξ is constant
on [0,1/2]. Therefore,

∆′Pth(γ◦,0,0) = (Rπ◦)
−1
�

ξ◦(q)
�

− (Rπ•)−1
�

ξ•(q)
�

= (Rπ◦)−1
�

ξ(1)− ξ(1/2)
�

− 0h

= (Rπ◦)−1
�

ξ(1)− ξ(0)
�

= (Rπ◦)−1(∆γ◦).
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One chooses a glued lift (η◦,ηm,η•) for (ρ◦, 0, 0) similarly using a liftη: [0, 1]→
t◦ of ρ◦. The result is

ε(∆′Pth(γ◦,0,0),∆
′
Pth(ρ◦,0,0)) = ε◦

�

(Rπ◦)−1(∆γ◦), (Rπ◦)
−1(∆ρ◦)

�

. (3.29)

Filling in these glued lifts in the second line in the definition (3.20) of the
bicoloured cocycle results in

S
�

(ξ◦,ξm,ξ•), (η◦,ηm,η•)
�

=
1
2

�

∫

〈dξ◦,η◦〉◦ +
∫

〈dξ•,η•〉• +
¬

∆′Pth(γ◦,0,0), (Rπ•)
−1
�

η•(q)
�

¶

Γ

�

=
1
2

∫

〈dξ◦,η◦〉◦

=
1
2

∫ 1

1
2




ξ′(θ ),η(θ )−η(1/2)
�

◦ dθ

=
1
2

∫ 1

1
2




ξ′(θ ),η(θ )
�

◦ dθ −
1
2




∆γ◦ ,η(0)
�

◦

=
1
2

∫ 1

1
2




ξ′(θ ),η(θ )
�

◦ dθ +
1
2




∆γ◦ ,η(0)
�

◦ −



∆γ◦ ,η(0)
�

◦.

Because η(0) ∈ Λ◦ and so 〈∆γ◦ ,η(0)〉 ∈ Z, this is modulo Z the same formula
as for S◦(ξ,η) in (2.7). Together with (3.29) this proves the claim (3.27).

3.2.4 Disjoint-commutativity of central extensions

We will prove a disjoint-commutativity property for eL(T◦, H, T•) similar to the
one in Theorem 2.2.3 for unicoloured torus loop groups. For this we will need
a more restrictive notion of interval than we used in the unicoloured case:

Definition 3.2.9. (After [BDH15, Section 1.A].10) A bicoloured interval on S1

is an interval on S1 which does not contain both points p and q, and if it does
contain one of them it does so in its interior.

A bicoloured interval is therefore either contained in the interior of or ,
or it is split into two (non-singleton) subintervals along the point from {p, q} it
contains.

The precise statement we will show is as follows:
10Our definition does not agree exactly with that of [BDH15] because those authors addi-

tionally require the datum of a local coordinate around the colour-changing point.
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Theorem 3.2.10. Let (γ, z) and (ρ, w) be two elements of the central extension
eL(T◦, H, T•) such that the supports of γ and ρ are contained in two disjoint
bicoloured intervals on S1, respectively. Then (γ, z) and (ρ, w) commute.

Remember that here we are using the notion of support of Definition 3.1.2.
As preparation for the proof of Theorem 3.2.10 we will first simplify the

commutator map of eL(T◦, H, T•) without assuming anything about supports of
loops:

Proposition 3.2.11. Let γ = (γ◦,γm,γ•) and ρ = (ρ◦,ρm,ρ•) be in L(T◦, H, T•)
and let the 2-cocycle c and the function S be as in (3.20) defined in terms of glued
lifts ξ= (ξ◦,ξm,ξ•) and η= (η◦,ηm,η•) of γ and ρ, respectively. Then

c(γ,ρ)c(ρ,γ)−1 = b(∆′Pthγ,∆
′
Pthρ)e

2πi
�

S(ξ,η)−S(η,ξ)
�

, (3.30)

where

S(ξ,η)− S(η,ξ) =

∫

〈dξ◦,η◦〉◦ +
∫

〈dξ•,η•〉• −

1
2
〈∆′Pthρ,∆′Pthγ〉Γ −

¬

∆′Pthρ, (Rπ•)−1
�

ξ•(q)
�

¶

Γ
.

(3.31)

The above Proposition can be proven via the definition (3.18) by taking
the result (2.9) about unicoloured central extensions and rewriting it in a
bicoloured fashion using Lemma 3.1.7(iii). A different method is to imitate
the steps in the proof of Theorem 2.2.3 for the bicoloured expression (3.20)
instead, using Lemma 3.1.7(i)(b) once.

With this calculation in hand we are ready for

Proof of Theorem 3.2.10. We must show that the commutator (3.30) vanishes.
Write I for the bicoloured interval containing the support of γ and J for the
one corresponding to ρ. After possibly enlarging them we may assume that
either I contains p and J contains q, or the other way around. Suppose we are
in the first situation, as for example in the picture

J

I

p

q
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Consider the first term in (3.31). Since ξ◦ is constant with value ξ◦(q) ∈ Λ◦
outside of I ∩ , this integral is actually only taken over I ∩ . Since I and J are
disjoint, η◦ is constant with value η◦(p) ∈ Λ◦ on I ∩ . We may therefore write

∫

〈dξ◦,η◦〉◦ =



ξ◦(q)− ξ◦(p),η◦(p)
�

◦. (3.32)

Similarly, the second term in (3.31) is
∫

〈dξ•,η•〉• =



ξ•(p)− ξ•(q),η•(p)
�

•, (3.33)

where η•(p) ∈ Λ•. Next, apply (Rπ◦)−1 to all entries in the right hand side
of (3.32) and (Rπ•)−1 to all entries in the right hand side of (3.33). We then
recall from Lemma 3.1.7(i)(b) that (Rπ◦)−1(η◦(p)) and (Rπ•)−1(η•(p)) are
equal, and moreover, that they are equal to an element ν ∈ Λ◦ ∩ Λ• since
(Rπ◦/•)−1(η◦/•(p)) ∈ (Rπ◦/•)−1(Λ◦/•). So we can now write the sum of the first
two terms of (3.31) as

¬

(Rπ◦)−1
�

ξ◦(q)
�

− (Rπ•)−1
�

ξ•(q)
�

,ν
¶

Γ
= 〈∆′Pthγ,ν〉Γ .

This lies in Z since ∆′Pthγ ∈ Λ◦ −Λ• and ν ∈ Λ◦ ∩Λ•. We may therefore ignore
these first two terms of (3.31).

We will now focus on the last two terms of (3.31). Because of our as-
sumption on the support of γ, if we want to write ∆′Pthγ = λ◦ − λ• with

λ◦/• ∈ (Rπ◦/•)−1(Λ◦/•), we may choose λ◦/• := (Rπ◦/•)−1(ξ◦/•(q)). Hence we
have

b0(∆
′
Pthγ,∆

′
Pthρ) =

1
2
〈∆′Pthρ,∆′Pthγ〉Γ +

¬

∆′Pthρ, (Rπ•)−1
�

ξ•(q)
�

¶

Γ
.

We therefore see that b(∆′Pthγ,∆
′
Pthρ) cancels out the contribution of the expo-

nential of the last two terms of (3.31). We conclude that in this case indeed
c(γ,ρ)c(ρ,γ)−1 = 1 and that (γ, z) and (ρ, w) commute.

Suppose that instead the interval I contains q and J contains p. A similar
reasoning as in the first situation shows that we can then write the sum of the
first two terms of (3.31) as

¬

(Rπ◦)−1
�

ξ◦(q)
�

− (Rπ◦)−1
�

ξ◦(p)
�

, (Rπ◦)−1
�

η◦(q)
�

¶

Γ
+

¬

(Rπ•)−1
�

ξ•(p)
�

− (Rπ•)−1
�

ξ•(q)
�

, (Rπ•)−1
�

η•(q)
�

¶

Γ
.
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If we substitute (Rπ◦)−1(η◦(q)) by ∆′Pthρ + (Rπ•)
−1(η•(q)) in the above and

use that (Rπ◦)−1(ξ◦(p)) = (Rπ•)−1(ξ•(p)), this becomes
¬

(Rπ◦)−1
�

ξ◦(q)
�

− (Rπ◦)−1
�

ξ◦(p)
�

,∆′Pthρ

¶

Γ
+

¬

(Rπ◦)−1
�

ξ◦(q)
�

− (Rπ•)−1
�

ξ•(q)
�

, (Rπ•)−1
�

η•(q)
�

¶

Γ
.

Note that what is in the first slot in this second term is ∆′Pthγ.
Having rewritten these first two terms of (3.31), we fill it back in there so

as to get

S(ξ,η)− S(η,ξ) =
1
2
〈∆′Pthρ,∆′Pthγ〉Γ −

¬

(Rπ◦)−1
�

ξ◦(p)
�

,∆′Pthρ

¶

Γ
+

¬

∆′Pthγ, (Rπ•)
−1
�

η•(q)
�

¶

Γ
.

Because (Rπ◦)−1(ξ◦(p)) and (Rπ•)−1(ξ•(p)) are equal, and moreover, they
are equal to an element ν ∈ Λ◦ ∩Λ•, we see that the second term in the above
lies in Z. We may therefore ignore it from now on.

It follows from the definition of b0 and the integrality of the lattices Λ◦/•
that

b0(∆
′
Pthγ,∆

′
Pthρ) = −

1
2
〈∆′Pthρ,∆′Pthγ〉Γ + 〈∆

′
Pthρ,λ◦〉Γ

≡ −
1
2
〈∆′Pthρ,∆′Pthγ〉Γ − 〈∆

′
Pthγ,µ•〉Γ mod Z,

where have written ∆′Pthγ = λ◦ −λ• and ∆′Pthρ = µ◦ −µ• for some λ◦/•,µ◦/• ∈
(Rπ◦/•)−1(Λ◦/•). Because of our assumptions on the support of J , we may choose
µ◦/• := (Rπ◦/•)−1(η◦/•(q)). Therefore, b(∆′Pthγ,∆

′
Pthρ) cancels against

e2πi
�

S(ξ,η)−S(η,ξ)
�

in (3.30). We conclude that also in this case c(γ,ρ)c(ρ,γ)−1 = 1.

3.3 Actions of covers of Diff+(S1) on central
extensions

We assume the setup of Section 3.2. That is, we take the input data from
Ingredients 3.2.7 as a given and use the notations T◦/•, H, t◦/• and h from
Section 3.1 for the tori and Lie algebras associated to the lattices Λ◦/• and
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Γ . We constructed from this data central extensions eP(H, (Λ◦ − Λ•)/Γ ) and
eL(T◦, H, T•) of the group of paths P(H, (Λ◦ −Λ•)/Γ ) and the bicoloured torus
loop group L(T◦, H, T•), respectively.

Recall from Proposition 3.1.3 that P(H, (Λ◦ −Λ•)/Γ ) and L(T◦, H, T•) both
carry actions of the group Diff(n)+ (S

1), where n is the smallest positive integer
such that n(Λ◦ − Λ•) ⊆ Γ . In the proof of that Proposition the action on
L(T◦, H, T•) was built by first constructing it on P(H, (Λ◦ − Λ•)/Γ ) and then
lifting it along the homomorphism Pth (see Section 3.1.1 for the definition of
Pth). In this section we will similarly first construct a Diff(n)+ (S

1)-action on the
central extension eP(H, (Λ◦ −Λ•)/Γ ). This will be done in almost exactly the
same way as for the unicoloured case in Section 2.3. Next, we will lift this
action to eL(T◦, H, T•).

3.3.1 The action of Diff(n)+ (S
1) on eP(H, (Λ◦ −Λ•)/Γ )

The proof of Proposition 2.3.1 also calculates the failure for Diff(n)+ (S
1) to

preserve the cocycle c′ defining eP(H, (Λ◦ −Λ•)/Γ ). The result is as follows.

Proposition 3.3.1. Let γ,ρ ∈ P(H, (Λ◦ −Λ•)/Γ ) and Ξ, H: R→ h be the quasi-
periodic extensions to R of choices of lifts ξ,η: [0, 1]→ h of γ and ρ respectively.
Take [Φ] ∈ Diff(n)+ (S

1), where Φ ∈ Diff(∞)+ (S1) is a choice of representative. Then

c′
�

[Φ]∗γ, [Φ]∗ρ
�

= ε(∆′γ,∆
′
ρ)e

2πiS′(Φ∗Ξ,Φ∗H)

and

S′(Φ∗Ξ,Φ∗H) = S′(Ξ,H) +
1
2

¬

∆′γ, H
�

Φ−1(0)
�

−H(0)
¶

Γ
+

1
2

¬

Ξ
�

Φ−1(0)
�

−Ξ(0),∆′ρ
¶

Γ
.

With this precise expression for the failure in hand we can now define the
action of Diff(n)+ (S

1) on eP(H, (Λ◦ − Λ•)/Γ ). Let [Φ] ∈ Diff(n)+ (S
1) and (γ, z) ∈

eP(H, (Λ◦ −Λ•)/Γ ). Then we set

[Φ] · (γ, z) :=
�

[Φ]∗γ, d ′
�

[Φ],γ
�

· z
�

, (3.34)

where [Φ]∗γ refers to the action of Diff(n)+ (S
1) on the non-centrally extended

group P(H, (Λ◦ −Λ•)/Γ ) constructed in the proof of Proposition 3.1.3 and

d ′
�

[Φ],γ
�

:= eπi



Ξ(Φ−1(0))−Ξ(0),∆′γ
�

Γ ∈ U(1). (3.35)
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The value of d ′ does not depend on the choice of lift Ξ. We show that it
neither depends on the representative Φ of the equivalence class [Φ] in a similar,
but slightly more subtle way compared to the unicoloured case. A different
choice would namely be of the form Φ+nk for some k ∈ Z, and seeing whether
d ′([Φ + nk],γ) = d ′([Φ],γ) comes down to proving that nk〈∆′γ,∆

′
γ〉Γ ∈ 2Z.

We may assume that k = 1. Because ∆′γ ∈ Λ◦ −Λ• we can make a choice of

decomposition ∆′γ = λ◦ −λ• for some λ◦/• ∈ (Rπ◦/•)−1(Λ◦/•). Then expand as
follows:

n〈∆′γ,∆
′
γ〉Γ = n〈λ◦,λ◦〉Γ − 2n〈λ◦,λ•〉Γ + n〈λ•,λ•〉Γ .

Given that the lattices Λ◦/• are even, the two outer terms on the right hand
side are obviously in 2Z. But so is the middle term since nλ◦ ∈ Γ which gives
〈nλ◦,λ•〉Γ ∈ Z. Hence d ′ is well-defined.

The result of Proposition 3.3.1 shows that d ′ satisfies an equation similar
to (2.15), with [Φ] and c′ in place of ϕ and c respectively. That is,

d ′
�

[Φ], ·
�

: P
�

H, (Λ◦ −Λ•)/Γ
�

→ U(1)

is a 1-cochain exhibiting the 2-cocycle

(γ,ρ) 7→ c′
�

[Φ]∗γ, [Φ]∗ρ
�

c′(γ,ρ)−1

as a 2-coboundary. Therefore (3.34) defines an automorphism of eP(H, (Λ◦ −
Λ•)/Γ ). That d ′ is compatible with the composition in Diff(n)+ (S

1) is proven in
literally the same way as in the unicoloured situation. We conclude that (3.34)
is a well-defined Diff(n)+ (S

1)-action on eP(H, (Λ◦ −Λ•)/Γ ).

3.3.2 The action of Diff(n)+ (S
1) on eL(T◦, H, T•)

We are now ready to lift the Diff(n)+ (S
1)-action from eP(H, (Λ◦ − Λ•)/Γ ) to

eL(T◦, H, T•). Let [Φ] ∈ Diff(n)+ (S
1) and (γ, z) ∈ eL(T◦, H, T•). Then define

[Φ] · (γ, z) :=
�

[Φ] · γ, d ′
�

[Φ], Pthγ
�

· z
�

, (3.36)

where [Φ] · γ refers to the action of Diff(n)+ (S
1) on the non-centrally extended

group L(T◦, H, T•) constructed in the proof of Proposition 3.1.3.
It is easily checked that, using that we already confirmed it for the ac-

tion (3.34) on eP(H, (Λ◦ −Λ•)/Γ ), also (3.36) defines an action of Diff(n)+ (S
1)

on eL(T◦, H, T•). Alternatively, we can use the fact that eL(T◦, H, T•) is the pull-
back of eP(H, (Λ◦ − Λ•)/Γ ) along the Diff(n)+ (S

1)-equivariant homomorphism
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Pth, and then note that such a pullback operation is functorial. By design of the
Diff(n)+ (S

1)-actions, also the homomorphism ÝPth that we defined in Construc-
tion 3.2.6 is Diff(n)+ (S

1)-equivariant.

Proposition 3.3.2 (Diff(n)+ (S
1)-equivariance with respect to eLH). The inclusion

homomorphism eBi in (3.24) is equivariant with respect to the Diff+(S1)-action
on eLH defined in Section 2.3 and the Diff(n)+ (S

1)-action on eL(T◦, H, T•) defined
by (3.36).

Proof. We need to prove that for all γ ∈ LH, z ∈ U(1) and Φ ∈ Diff(∞)+ (S1)
there holds

[Φ] ·
�

Bi(γ), z
�

=
�

Bi
�

[Φ]∗γ
�

, d
�

[Φ],γ
�

· z
�

,

where d is the 1-cochain on LH defined by (2.19). The left hand side is by
definition

�

[Φ] · Bi(γ), d ′
�

[Φ], Pth(Biγ)
�

· z
�

,

and we already noted in Remark 3.1.5 the equivariance of Bi. Hence, what is
left to show is that

d ′
�

[Φ], Pth(Biγ)
�

= d
�

[Φ],γ
�

.

We see that this holds if we compare the expressions (3.35) and (2.19). Indeed,
a quasi-periodic lift Ξ: R → h of Pth(Biγ) is also a lift of γ thanks to the
commutativity of the triangle (3.8), and we furthermore already learned that
∆′Pth(Biγ) =∆γ in Section 3.2.2.

3.4 Irreducible, positive energy representations

Assume the setup of Section 3.2 which allowed us to construct a central exten-
sion eL(T◦, H, T•) of the bicoloured torus loop group L(T◦, H, T•). In this section
we will construct and classify the irreducible, positive energy representations
of eL(T◦, H, T•). This will be done in a way entirely similar to our work for
unicoloured central extensions eLT . The role of the normal subgroup (eLT )0 will
in the bicoloured situation be played by a certain normal subgroup denoted
by Ýker(∆′ ◦ Pth). Let us therefore define this group and try to understand its
structure.

We begin by studying the situation before taking central extensions. The
short exact sequence (3.5) involving the groups L(T◦, H, T•) and P(H, (Λ◦ −
Λ•)/H) does not split in general. However, its subsequence

0
Λ◦ ∩Λ•
Γ

(Pth)−1
�

ι(LH)
�

ι(LH) 0←→ ←→ ←→Pth ←→ (3.37)
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does split. The subgroup (Pth)−1(ι(LH)) namely consists of those bicoloured
loops (γ◦,γm,γ•) for which the unique lifts γ̂◦/• to H of γ◦/• (see Section 3.1.1
for their definitions) that match at p also match with each other at q, but need
not necessarily match with γm(q). (It might be helpful to compare this with
the characterisation of the image of Bi in Section 3.1.4.) That is, there holds
γ̂◦(p) = γm(p) = γ̂•(p) and γ̂◦(q) = γ̂•(q), but in general γm(q) is of the form

γ̂◦(q) + [ν] = γ̂•(q) + [ν]

for some [ν] ∈ (Λ◦ ∩ Λ•)/Γ ⊆ H. Therefore, if we recall the definition of
the first arrow in (3.37) from Section 3.1.1, we see that the homomorphism
(γ◦,γm,γ•) 7→ [ν] is a left splitting of (3.37). Equivalently, a right splitting
can be given by making the proof in Section 3.1.1 of the surjectivity of the
homomorphism Pth more precise: we send a path γ ∈ ι(LH) to the bicoloured
loop (γ◦,γm,γ•), where

γ◦ := U(1)π◦ ◦ γ|[1/2,1] : → T◦
γm(p) := γ(1/2) ∈ H

γm(q) := γ(0) = γ(1) ∈ H

γ• := U(1)π• ◦ γ|[0,1/2] : → T•.

These splittings now allow us to understand the structure of (Pth)−1(ι(LH)).
There is an isomorphism of abelian groups

(Pth)−1
�

ι(LH)
� ∼
−→
Λ◦ ∩Λ•
Γ

⊕ ι(LH) (3.38)

sending a bicoloured loop γ = (γ◦,γm,γ•) to the pair ([ν], Pthγ). The Diff(n)+ (S
1)-

action on the full group L(T◦, H, T•) descends to Diff+(S1)when restricted to the
subgroup (Pth)−1(ι(LH)). This is because the shift diffeomorphism θ 7→ θ + 1
of R, acting on P(H, (Λ◦ −Λ•)/Γ ), acts trivially when restricted to ι(LH). The
isomorphism (3.38) is Diff+(S1)-equivariant if we let Diff+(S1) act on the right
hand side by only affecting the ι(LH)-summand thanks to the equivariance of
the homomorphism Pth.

Now define a central extension eLH of LH using the input data listed in
Section 3.2.2. As explained in Remark 3.2.8, the homomorphism ι of abelian
groups then lifts to a homomorphism

ι̃ : eLH ,→ eP
�

H, (Λ◦ −Λ•)/Γ
�

of non-abelian groups which is the identity on the central subgroups U(1). The
isomorphism (3.38) then obviously lifts to a Diff+(S1)-equivariant isomorphism
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from the restriction of eL(T◦, H, T•) to (Pth)−1(ι(LH)) towards

Λ◦ ∩Λ•
Γ

⊕ ι̃(eLH). (3.39)

It sends an element (γ, z) to ([ν], (Pthγ, z)).
The subgroup (Pth)−1(ι(LH)0) of (Pth)−1(ι(LH)) deserves special attention

for the study of the representation theory of eL(T◦, H, T•) we are about to
commence. It is the inverse image under Pth of the identity component ι(LH)0
of P(H, (Λ◦−Λ•)/Γ ), and contains the identity component ker∆ of L(T◦, H, T•)
(strictly, unless Γ = Λ◦ ∩ Λ• so that Pth is an isomorphism). An equivalent
characterisation of (Pth)−1(ι(LH)0) is that it is the kernel of the composite
homomorphism

L(T◦, H, T•) P
�

H, (Λ◦ −Λ•)/Γ
�

Λ◦ −Λ•.

←�P ←�∆
′

We will henceforth use the notation ker(∆′ ◦ Pth) instead.
We write Ýker(∆′ ◦ Pth) for the restriction of eL(T◦, H, T•) to ker(∆′ ◦ Pth)

and observe that the restriction of the aforementioned isomorphism having
codomain (3.39) takes the form

Ýker(∆′ ◦ Pth)
∼
−→
Λ◦ ∩Λ•
Γ

× ι̃(eLH)0. (3.40)

3.4.1 Irreducible representations of Ýker(∆′ ◦ Pth)

Recall from Sections 2.5.1 and 2.5.2 that we are able to equip the abelian group
(LH)0 and its central extension (eLH)0 with structures of topological groups
using the bi-additive form on Γ . Via the isomorphisms (3.38) and (3.40) the
groups ker(∆′◦Pth) and Ýker(∆′◦Pth) then acquire topological group structures
as well if we give the finite abelian group (Λ◦ ∩Λ•)/Γ the discrete topology.

Now define for every pair of characters χ and l of the finite abelian group
(Λ◦∩Λ•)/Γ and the torus H, respectively, a representation Wχ,l of Ýker(∆′ ◦Pth)
on the Hilbert space tensor product

Sχ,l := Cχ ⊗C Sl := Cχ ⊗C Cl ⊗C S ,

where Cχ and Cl denote copies of C, as follows. Let (γ, z) ∈Ýker(∆′ ◦ Pth) and
consider its image

�

[ν], (Pthγ, z)
�

∈
Λ◦ ∩Λ•
Γ

× ι̃(eLH)0
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under the isomorphism (3.40). Then make [ν] (which can alternatively be
written as γm(q)− Pth(γ)(1)) act on Cχ via χ, and let (Pthγ, z) act on Sl via
the representation Wl of eLH defined in Section 2.5.2. That is, Wχ,l is the tensor
product representation of χ and Wl . It is irreducible because χ and Wl are.

Remark 3.4.1. To clarify how Wχ,l depends on l, we note that

Wχ,l(γ, z) = e2πi〈l,avg ξ̂〉Γ ·Wχ,0(γ, z),

where ξ̂: [0,1]→ h is any lift of Pthγ as in (3.9) and

avg ξ̂ :=

∫ 1

0

ξ̂(θ )dθ .

Let m be, as in Section 2.5.2, the smallest positive integer such that m〈l, l〉 ∈
2Z. Now define a representation Rχ,l of Rot(m)(S1) on Sχ,l by acting as the
identity on the tensor factor Cχ and as Rl on Sl . So Rχ,l can be said to be
equal to Rl and the subscript χ is actually irrelevant—it serves, just like in the
notation Sχ,l , as a reminder that Rχ,l is associated to the representation Wχ,l
and the latter does depend on χ.

Proposition 3.4.2. The Rot(m)(S1)-action Rχ,l on the Hilbert space Sχ,l inter-

twines in the manner (A.8) with the representation Wχ,l of Ýker(∆′ ◦ Pth).

Proof. Let [Φθ ] ∈ Rot(m)(S1), (γ, z) ∈Ýker(∆′ ◦ Pth) and 1⊗ v ∈ Sχ,l a vector
with v ∈ Sl . Then there holds on the one hand

Rχ,l[Φθ ]Wχ,l(γ, z)Rχ,l[Φθ ]
∗(1⊗ v)

= Rχ,l[Φθ ]Wχ,l(γ, z)
�

1⊗ Rl[Φθ ]
∗(v)

�

= Rχ,l[Φθ ]
�

χ
�

γm(q)− Pth(γ)(1)
�

⊗Wl(Pthγ, z)Rl[Φθ ]
∗(v)

�

= χ
�

γm(q)− Pth(γ)(1)
�

⊗ Rl[Φθ ]Wl(Pthγ, z)Rl[Φθ ]
∗(v),

and because of the way that Rl intertwines with Wl we can write

Rl[Φθ ]Wl(Pthγ, z)Rl[Φθ ]
∗ =Wl

�

[Φθ ] · (Pthγ, z)
�

=Wl

�

[Φθ ]
∗ Pth(γ), z

�

.

On the other hand, since also [Φθ ] · (γ, z) = ([Φθ ]∗γ, z),

Wχ,l

�

[Φθ ] · (γ, z)
�

(1⊗ v)

= χ
�

�

[Φθ ]
∗γ
�

m(q)− Pth
�

[Φθ ]
∗γ
�

(1)
�

⊗Wl

�

Pth[Φθ ]
∗γ, z

�

.
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We have by the definition of the action of Diff(n)+ (S
1) on L(T◦, H, T•) in the proof

of Proposition 3.1.3 that Pth([Φθ ]∗γ) = [Φθ ] · (Pthγ) and that

�

[Φθ ]
∗γ
�

m(q)− Pth
�

[Φθ ]
∗γ
�

(1)

= γm(q)− (Pthγ)(0) +
�

[Φθ ]
∗ Pth(γ)

�

(0)−
�

[Φθ ]
∗ Pth(γ)

�

(1).

Because both Pthγ and [Φθ ]∗ Pth(γ) lie in ι(LH)we have (Pthγ)(0) = (Pthγ)(1)
and

�

[Φθ ]
∗ Pth(γ)

�

(0) =
�

[Φθ ]
∗ Pth(γ)

�

(1).

We conclude that indeed

Rχ,l[Φθ ]Wχ,l(γ, z)Rχ,l[Φθ ]
∗ =Wχ,l

�

[Φθ ] · (γ, z)
�

.

If a ∈ (1/m)Z is an energy level, then the a-th energy eigenspace Sχ,l(a)
for Rχ,l is simply Cχ ⊗Sl(a). Since we already concluded in Proposition 2.5.4
that Sl(a) is zero for a < 0 it follows that

Proposition 3.4.3. The intertwining Rot(m)(S1)-action Rχ,l on the representation

Wχ,l of Ýker(∆′ ◦ Pth) is of positive energy.

The aforementioned observation implies more precisely that the character
of Rχ,l equals that of Rl :

chRχ,l
(q) = chRl

(q) = qdim H/24q〈l,l〉/2η(q)−dim H . (3.41)

We define the corresponding normalised character to be

ZWχ,l
(q) := q−dim H/24 chRχ,l

(q) = q〈l,l〉/2η(q)−dim H .

We have thus constructed a 2-parameter family of mutually non-isomorphic,
irreducible, positive energy representations Wχ,l of Ýker(∆′ ◦ Pth). It exhausts
the class of such representations:

Theorem 3.4.4. Every irreducible, positive energy representation of Ýker(∆′ ◦Pth)
such that the central subgroup U(1) acts as z 7→ z is isomorphic to Wχ,l for some
characters χ and l of (Λ◦ ∩Λ•)/Γ and H, respectively.

Proof. The proof is identical to that of Theorem 2.5.5. We first use the Rot(S1)-
equivariant isomorphism (3.40) to see an arbitrary such representation Q as an
irreducible, positive energy representation of eVh. Here, eVh is the Heisenberg
group sitting inside (eLH)0 as described in Section 2.2.1. An appeal to the
unicity result Theorem 2.5.2 for eVh then concludes the argument.
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3.4.2 Irreducible representations of eL(T◦, H, T•)

By Lemma A.2.4 there exists a unique topological group structure on L(T◦, H, T•)
that is naturally induced by that of its subgroup ker(∆′ ◦Pth) under the require-
ment that this subgroup is open in L(T◦, H, T•). Because for the homomorphism

∆′ : P
�

H, (Λ◦ −Λ•)/Γ
�

→ Λ◦ −Λ•

there holds ker∆′ = ι(LH)0, we similarly have a unique structure of a topolog-
ical group on P(H, (Λ◦ −Λ•)/Γ ) induced by that of (LH)0 such that ι(LH)0 is
open in the former group.

Proposition 3.4.5. There exists a unique structure of a topological group on the
central extension eL(T◦, H, T•) such that Ýker(∆′ ◦ Pth) is open in eL(T◦, H, T•).

Proof. We show this along the same lines as Proposition 2.5.7. That is, we
need to check whether for every fixed bicoloured loop γ ∈ L(T◦, H, T•) the map
ker(∆′ ◦ Pth)→ U(1) given by

ρ 7→ c(γ,ρ)c(γ+ρ,−γ) = c′(Pthγ, Pthρ)c′(Pthγ+ Pthρ,−Pthγ)

is continuous. Note that the homomorphism ∆′ admits a splitting. It is given
by defining for λ ∈ Λ◦ −Λ• a path γλ ∈ P(H, (Λ◦ −Λ•)/Γ ) as the projection on
H of the Lie algebra-valued path [0, 1]→ h, θ 7→ θλ. Therefore, there exists a
decomposition

P
�

H, (Λ◦ −Λ•)/Γ
� ∼
−→ ι(LH)0 ⊕ (Λ◦ −Λ•)

∼
−→ H ⊕ Vh⊕ (Λ◦ −Λ•)

generalising the isomorphism (2.5) in the unicoloured situation. The remainder
of the argument now proceeds as in the proof of Proposition 2.5.7.

The knowledge of the irreducible, positive energy representations Wχ,l of

the subgroup Ýker(∆′ ◦ Pth) now allows us to construct and classify the same
class of representations of the full group eL(T◦, H, T•), starting as follows. Let
us take such a Wχ,l for characters χ and l of (Λ◦ ∩Λ•)/Γ and H, respectively,
and consider the induced representation

Ind
eL(T◦,H,T•)
Ýker(∆′◦Pth)

Wχ,l

of eL(T◦, H, T•). We will shorten it and its underlying Hilbert space to Ind Wχ,l
and IndSχ,l , respectively. We refer to Appendix A.3.1 and the analogous
construction for unicoloured torus loop groups in Section 2.5.3 for details on
how this Hilbert space and its action of eL(T◦, H, T•) are defined.



3.4 Irreducible, positive energy representations 107

Now take m to be the smallest positive integer such that both m ≥ n
and m〈l, l〉 ∈ 2Z. The first condition implies according to Section 3.3.2 that
Rot(m)(S1) acts on eL(T◦, H, T•), while the second one means by Section 3.4.1
that Sχ,l carries a positive energy representation Rχ,l of Rot(m)(S1) which
intertwines with Wχ,l . Then define a representation Ind Rχ,l on IndSχ,l in
terms of Rχ,l in exactly the same way as done in Section 2.5.3. It satisfies the
intertwining property (A.8) with respect to Ind Wχ,l because Rχ,l does so with
respect to Wχ,l .

To study Ind Wχ,l we first calculate the representations of Ýker(∆′ ◦Pth) that
are conjugate to Wχ,l :

Lemma 3.4.6. (Compare with Lemma 2.5.8.) Let (γ, z) be an element of the
group eL(T◦, H, T•) that is not contained in the (normal) subgroup Ýker(∆′ ◦ Pth)
and consider the representation W (γ,z)

χ,l of Ýker(∆′ ◦ Pth) conjugate to Wχ,l , defined
by

W (γ,z)
χ,l (ρ, w) :=Wχ,l

�

(γ, z)−1(ρ, w)(γ, z)
�

for (ρ, w) ∈Ýker(∆′ ◦ Pth). Then W (γ,z)
χ,l is the tensor product representation of

Wχ,l and the character

Ýker(∆′ ◦ Pth)� ker(∆′ ◦ Pth)→ U(1), (ρ, w) 7→ ρ 7→ c(ρ,γ)c(γ,ρ)−1,
(3.42)

where U(1) acts on C as z 7→ z. In turn, for any glued lifts ξ= (ξ◦,ξm,ξ•) and
η= (η◦,ηm,η•) of γ and ρ, respectively, there holds

c(ρ,γ)c(γ,ρ)−1 = e2πi
�

S(η,ξ)−S(ξ,η)
�

, (3.43)

where

S(η,ξ)− S(ξ,η) = −
∫

〈dξ◦,η◦〉◦ −
∫

〈dξ•,η•〉•. (3.44)

The equations (3.43) and (3.44) follow from the expression for the com-
mutator map associated to c we found in Proposition 3.2.11.

Proposition 3.4.7. The induced representation Ind Wχ,l of eL(T◦, H, T•) is irre-
ducible.

Proof. It is sufficient to show that all the conjugate representations W (γ,z)
χ,l as

in Lemma 3.4.6 are not isomorphic to Wχ,l . To do this, we will examine the

restriction of W (γ,z)
χ,l to the subgroup of Ýker(∆′ ◦ Pth) consisting of the elements

of the form (ρ, 1) where ρ is a constant bicoloured loop, that is, ρ ∈ Bi(H).
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Because this subgroup is canonically isomorphic to Bi(H), we will denote it as
such and write its elements simply as ρ.

Let ρ ∈ Bi(H), meaning that there is an α ∈ h such that the maps ρ◦/• are
constant with values exp◦/•(Rπ◦/•)(α) and ρm(p) = ρm(q) = expH α. Then

η :=
�

(Rπ◦)(α),α, (Rπ•)(α)
�

is a glued lift of ρ. Plugging this into (3.44) gives

S(η,ξ)− S(ξ,η) = −



ξ◦(q)− ξ◦(p), (Rπ◦)(α)
�

◦ −



ξ•(p)− ξ•(q), (Rπ•)(α)
�

•

= −



∆′Pthγ,α
�

Γ
.

So (3.42) has ι(H) acting by the character −∆′Pthγ ∈ Λ◦ −Λ• ,→ Γ
∨, which

implies that W (γ,z)
χ,l is letting Bi(H) act by l −∆′Pthγ. Because ∆′Pthγ 6= 0, we

have l −∆′Pthγ 6= l and therefore W (γ,z)
χ,l and Wχ,l are not isomorphic.

The reason we are inducing up representations not from the identity com-
ponent of eL(T◦, H, T•), but from the larger subgroup Ýker(∆′ ◦ Pth), is precisely
to make the step in the above proof true where we note that ∆′Pthγ 6= 0.

Let us examine when these representations Ind Wχ,l are isomorphic or not.
For the next result we will make use of the bicoloured loops γ[λ◦,λ•] defined in
Section 3.1.9 associated to elements [λ◦,λ•] ∈ (Λ◦ ⊕Λ•)/Γ . Note that if

λ= (Rπ◦)−1(λ◦)− (Rπ•)−1(Λ•) ∈ Λ◦ −Λ•

andσ is the (left) coset of Ýker(∆′◦Pth) in eL(T◦, H, T•) consisting of all elements
(γ, z) such that ∆′Pthγ = λ, then the element (γ[λ◦,λ•], 1) is a representative of
σ.

We furthermore observe that because Ýker(∆′ ◦Pth) is a normal subgroup of
eL(T◦, H, T•), the restriction of Ind Wχ,l to it restricts to each subspace S σ

χ,l for
all cosets σ.

Theorem 3.4.8 (Restriction of Ind Wχ,l from eL(T◦, H, T•) to Ýker(∆′ ◦Pth)). Fix
a character l of H, an element λ ∈ Λ◦ − Λ• and let σ be the (left) coset of
Ýker(∆′ ◦ Pth) in eL(T◦, H, T•) corresponding to λ. Pick any pre-image [λ◦,λ•] of
λ under the homomorphism

(Rπ◦)−1 − (Rπ•)−1 :
Λ◦ ⊕Λ•
Γ
� Λ◦ −Λ•.

Then the composite unitary map

f σχ,l : S
σ
χ,l

∼
−→Sχ,l

∼
−→Sχ,l−λ,

�

(γ[λ◦,λ•], 1), v
�

7→ v 7→ v
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intertwines the representations (Res Ind Wχ,l)|S σ
χ,l

and Wχ,l−λ of Ýker(∆′ ◦ Pth)

and the representations Ind Rχ,l |S σ
χ,l

and Rχ,l−λ of Rot(m)(S1).

Proof. The first map in the composition f σ
χ,l is an isomorphism from the restric-

tion of Res Ind Wχ,l to S σ
χ,l to the conjugate representation W

(γ[λ◦ ,λ•],1)
χ,l . The

latter was calculated partially in Lemma 3.4.6. For a more precise result we
substitute a specific glued lift (ξ◦,ξm,ξ•) of γ[λ◦,λ•] into (3.44), namely the
one defined in Section 3.1.9. This gives11

S(η,ξ)− S(ξ,η) = −


λ◦ − (Rπ◦) ◦ (Rπ•)−1(λ•),

∫

η◦(θ )dθ
·

◦
−



(Rπ•) ◦ (Rπ◦)−1(λ◦)−λ•,
∫

η•(θ )dθ
·

•

= −


(Rπ◦)−1(λ◦)− (Rπ•)−1(λ•),

(Rπ◦)−1
�

∫

η◦(θ )dθ
�

+ (Rπ•)−1
�

∫

η•(θ )dθ
�·

Γ

= −〈λ, avg η̂〉Γ

and therefore,

c(ρ,γ[λ◦,λ•])c(γ[λ◦,λ•],ρ)
−1 = e−2πi〈λ,avg η̂〉Γ .

By Remark 3.4.1 we have

e2πi〈−λ,avg η̂〉Γ ·Wχ,l(ρ, w)(v) =Wχ,l−λ(ρ, w)(v)

for all v. We conclude that the second map in the composition f σ
χ,l is an

isomorphism from W
(γ[λ◦ ,λ•],1)
χ,l to Wχ,l−λ.

For the second claim of the Theorem, we first assert that m, which we
defined to be smallest positive integer such that both m≥ n and m〈l, l〉 ∈ 2Z, is
also the smallest positive integer m such that both m≥ n and m〈l−λ, l−λ〉 ∈ 2Z.
We namely have

m〈l −λ, l −λ〉= m〈l, l〉 − 2m〈l,λ〉+m〈λ,λ〉.

Because mλ ∈ Γ , there holds 2m〈l,λ〉 ∈ 2Z. To show that m〈λ,λ〉 ∈ 2Z we
refer to the proof of the well-definedness of d ′ in Section 3.3.1. We conclude

11See Remark 3.4.1 for the definition of avg η̂.
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that Rot(m)(S1) acts on both Sχ,l and Sχ,l−λ, although the restrictions of these
actions to their respective tensor factors Cl and Cl−λ are different.

In order to now prove that f σ
χ,l intertwines the representations Ind Rχ,l |S σ

χ,l

and Rχ,l−λ by imitating the proof of the analogous statement in Theorem 2.5.10
we require the following observations and calculations. Given the definition of
γ[λ◦,λ•], it is clear that

Pth(γ[λ◦,λ•]) = expH ◦ξ̂.

Evaluating ∆′ on Pth(γ[λ◦,λ•]) therefore gives

ξ̂(1)− ξ̂(0) = (Rπ◦)−1(λ◦)− (Rπ•)−1(λ•) = λ.

(A different proof of this last fact uses that we already learned in Section 3.1.9
that∆γ[λ◦ ,λ•] = [λ◦,λ•], together with the commutativity of the diagram (3.11).)

It then follows from the formula for d ′ in (3.35) that for [Φθ ] ∈ Rot(m)(S1)

d ′
�

[Φθ ], Pth(γ[λ◦,λ•])
�

= e−πi〈λ,λ〉Γ θ .

There furthermore holds, by the construction of the Diff(m)+ (S
1)-action on the

groups P(H, (Λ◦ −Λ•)/Γ ) and L(T◦, H, T•) described in the proof of Proposi-
tion 3.1.3, that

[Φθ ]
∗ Pth(γ[λ◦,λ•]) = Pth(γ[λ◦,λ•]) + expH(−λθ )

and
�

[Φθ ] · γ[λ◦,λ•]
�

m(q) = expH(−λθ ),

which implies

[Φθ ] · γ[λ◦,λ•] = γ[λ◦,λ•] + Bi
�

expH(−λθ )
�

.

Collecting the above calculations, we see from the definition of the lifting of
the Diff(m)+ (S

1)-action to eL(T◦, H, T•) described in Section 3.3.2 that

[Φθ ] · (γ[λ◦,λ•], 1) =
�

[Φθ ] · γ[λ◦,λ•], d ′
�

[Φθ ], Pth(γ[λ◦,λ•])
�

�

=
�

γ[λ◦,λ•] + Bi
�

expH(−λθ )
�

, e−πi〈λ,λ〉Γ θ
�

.

Next, we observe that by (3.18),

c
�

γ[λ◦,λ•], Bi
�

expH(−λθ )
�

�

= c′
�

expH ◦ξ̂, expH(−λθ )
�

and the latter 2-cocycle value is easily computed to be e−2πi〈λ,λ〉Γ θ . An imitation
of the proof of Theorem 2.5.10 now goes through without a hitch.
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Summarising, Theorem 3.4.8, together with the isomorphism

eL(T◦, H, T•)
�

Ýker(∆′ ◦ Pth)
∼
−→ Λ◦ −Λ•

induced by the homomorphisms ÝPth and ∆′, describe how Ind Wχ,l combined
with the intertwining Rot(m)(S1)-action breaks up into irreducible subrepresen-
tations after restriction to Ýker(∆′ ◦Pth)oRot(m)(S1). We namely have a unitary
isomorphism

⊕

λ∈Λ◦−Λ•

f σλ
χ,l : Res

Ýker(∆′◦Pth)
eL(T◦,H,T•)

Ind
eL(T◦,H,T•)
Ýker(∆′◦Pth)

Wχ,l
∼
−→
⊕

λ∈Λ◦−Λ•

Wχ,l−λ

of representations of Ýker(∆′◦Pth)oRot(m)(S1), whereσλ is the coset associated
to λ as in the statement of Theorem 3.4.8.

One can now copy the proof of Theorem 2.5.11 to show the following result.
The applications of Theorem 2.5.10 and Proposition 2.5.9 in that proof should
be replaced by Theorem 3.4.8 and Proposition 3.4.7, respectively, and the role
of the winding element homomorphism on a unicoloured torus loop group is
taken over by the composition ∆′ ◦ Pth.

Theorem 3.4.9. Two representations Ind Wχ,l and Ind Wχ ′,l ′ of eL(T◦, H, T•),
where χ and χ ′ are characters of (Λ◦ ∩ Λ•)/Γ and l and l ′ are characters of
H, are (unitarily) isomorphic if and only if both χ ′ = χ and l ′ = l −λ for some
λ ∈ Λ◦ −Λ•.

We can calculate the character of Ind Wχ,l in the same way as we did in the
unicoloured situation. Let us fix an element λ ∈ Λ◦ −Λ• and its corresponding
coset σ ⊆ eL(T◦, H, T•) as in the statement of Theorem 3.4.8. Then we find
via (3.41) the character of the subspace S σ

χ,l to be

chS σ
χ,l
(q) = chRχ,l−λ

(q) = qrank Γ/24q〈l−λ,l−λ〉Γ /2η(q)− rank Γ ,

since rank Γ = dim H. The character of Ind Rχ,l is then obtained by summing
over all the subspaces S σ

χ,l :

chInd Rχ,l
(q) =

∑

λ∈Λ◦−Λ•

chS σ
χ,l
(q)

= qrank Γ/24
∑

λ∈Λ◦−Λ•

q〈l−λ,l−λ〉Γ /2 ·η(q)− rank Γ

= qrank Γ/24θl+(Λ◦−Λ•)(q) ·η(q)
− rank Γ .
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Note that, even if l = 0, the character will in general be a series in non-integral
powers of q, in contrast to the unicoloured situation. We learn in particular
that

Proposition 3.4.10. The intertwining Rot(m)(S1)-action Ind Rχ,l on the repre-
sentation Ind Wχ,l of eL(T◦, H, T•) is of positive energy.

We do not know whether chInd Rχ,l
(q) satisfies a type of modular behaviour,

but we expect this not to hold in any case unless we apply an energy correction
and define

ZInd Wχ,l
(q) := q− rank Γ/24 chInd Rχ,l

(q) = θl+(Λ◦−Λ•)(q) ·η(q)
− rank Γ .

Theorem 3.4.11. Every irreducible, positive energy representation of eL(T◦, H, T•)
such that the central subgroup U(1) acts as z 7→ z is (unitarily) isomorphic to
Ind Wχ,l for some characters χ and l of (Λ◦ ∩Λ•)/Γ and H, respectively. The iso-
morphism classes of such representations are therefore labelled by two parameters:
one is an element of the dual group of the finite abelian group (Λ◦ ∩Λ•)/Γ and
the other is an element of the finite abelian group Γ∨/(Λ◦ −Λ•).

Proof. This is shown along the lines of the proof of Theorem 2.5.13. The role
of the subgroup (eLT )0 of eLT and the knowledge of the representation theory
of the former afforded by Theorem 2.5.5 is taken over by that of the subgroup
Ýker(∆′ ◦ Pth) and Theorem 3.4.4. We saw in Proposition 3.4.7 that Ind Wχ,l
is irreducible and it is seen through Theorem 3.4.8 that for different cosets σ
the subspaces S σ

χ,l of IndSχ,l are mutually non-isomorphic representations of
Ýker(∆′ ◦ Pth).

We conclude from Theorems 3.4.9 and 3.4.11 that, up to the ambiguity of the
character by which U(1) acts, eL(T◦, H, T•) has only finitely many isomorphism
classes of irreducible, positive energy representations. There exists precisely
one isomorphism class, represented by Ind W0,0, if and only if both inclusions
Γ ⊆ Λ◦∩Λ• andΛ◦−Λ• ,→ (Λ◦∩Λ•)∨ are equalities. Since (Λ◦∩Λ•)∨ = Λ∨◦−Λ

∨
• ,

the latter condition is fulfilled when Λ◦ and Λ• are both unimodular.



Chapter 4

Outlook

In this Chapter we offer some speculative thoughts on further directions in
which to continue the study of bicoloured torus loop groups started in this
thesis.

4.1 Defects between lattice conformal nets

Recall from Chapter 1 that our motivation for introducing and studying bi-
coloured torus loop groups is to find new examples of defects in the sense of
Definition 1.3.4 between lattice conformal nets. That is, if Λ◦/• are two even
lattices that give rise to conformal nets A◦/• as explained in Example 1.2.9, then
we would like to construct (some) A◦–A•-defects.

The results achieved in Chapter 3 suggest the following approach, which
imitates the construction in Example 1.2.9. If

Λ◦
π◦←−- Γ

π•
,−→ Λ•

is a span of even lattices, then belonging to it (and some minor extra data) there
is a centrally extended bicoloured torus loop group eL(T◦, H, T•). Here, T◦/•
and H are the tori associated to the above three lattices. When these lattices
are positive definite this group has, up to isomorphism and the character by
which the central subgroup U(1) acts, finitely many irreducible, positive energy
representations denoted by Ind Wχ,l . We single out one of them, Ind W0,0, and
dub it the vacuum representation of eL(T◦, H, T•). If I ⊆ S1 is a bicoloured
interval, where we consider as being white and as black, and eLI(T◦, H, T•)
is the subgroup of those elements (γ, z) of eL(T◦, H, T•) for which suppγ ⊆ I ,
then we may form the von Neumann algebra

DH(I) := vN
�

(Ind W0,0)
�

eLI(T◦, H, T•)
�

�

(4.1)

113
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acting on the underlying Hilbert space IndS0,0 of Ind W0,0. Let eLT◦/• be the
centrally extended unicoloured torus loop groups described in Section 3.2.3
and assume that the lattice nets A◦/• are constructed from these. We then
conjecture that there exists an A◦–A•-defect DH of which the algebras attached
to those bicoloured intervals that are embedded in S1 are defined as in (4.1).

This (candidate) family of von Neumann algebras obviously satisfies the
functoriality, isotony and locality axioms of a defect. That also the requirement
holds stating that DH restricts to A◦ and A• on and , respectively, follows
from the fact that the vacuum representations Ind W0 of eLT◦/• inject as direct
summands into Ind W0,0 in a way that is equivariant with respect to the group
homomorphisms

eL T◦ ,→ eL(T◦, H, T•)←- eL T•.

With the belief that the formalism of bicoloured torus loop groups produces
lattice net defects comes the question whether such a defect can be alternatively
constructed through other, more traditional methods. Recall namely that, even
though the central extension eL(T◦, H, T•) only contains the two unicoloured
‘halves’ eL T◦ and eL T• of eLT◦ and eLT•, respectively, there exists a Diff(n)+ (S

1)-
equivariant inclusion of the full group eLH into it as well (see Section 3.2.2
and Proposition 3.3.2). Let AΓ denote the lattice conformal net constructed
from eLH. One can then speculate that there is an inclusion AΓ (I) ,→ DH(I) of
the associated von Neumann algebras which is of so called finite index. Even
stronger: the defect DH might be a relatively local, finite index extension of
AΓ . As we already mentioned in Example 1.3.9, such extensions are known
to be classified by data internal to the net AΓ , namely via Q-systems. This
would open a different angle to constructing these defects—one that follows
operator-algebraic means.

4.2 Generalising to different tori at the two defect
points

Adding to our conjecture that a centrally extended bicoloured torus loop group
eL(T◦, H, T•) gives rise to a defect DH through the construction (4.1), we predict
that any positive energy representation Q of this group can be equipped with
the structure of a DH–DH -sector in the sense of [BDH15, Definition 2.2]:

A◦ A•

← →DH

← →
DH

⇐⇒ Q .
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This would generalise the fact that representations of this type of a centrally
extended unicoloured torus loop group correspond to representations of the
associated conformal net (see [DX06, Proposition 3.15]), and hence to self-
sectors of its identity defect.

The authors of [BDH15] define the more general notion of a sector be-
tween two different defects as well. One could try to construct such sectors
via an analogous generalisation of bicoloured loop groups as follows. In our
Definition 3.1.1 of a bicoloured torus loop group we placed identical match-
ing conditions at the two defect points p and q, defined in terms of a single,
third even lattice Γ . Suppose that we are given instead the more complicated
datum of a quadruple (Λ◦, Γp, Γq,Λ•) of even lattices, together with four lattice
homomorphisms

Γp

Λ◦ Λ•

Γq

←-→

πp,◦ ←- →

πp,•

←-→

πq,◦

←- →

πq,•

.

Tensoring this circle with U(1) over Z gives a circle of four tori T◦/•, Hp, and Hq
with four surjective torus homomorphisms U(1)πp,◦/• and U(1)πq,◦/• between
them. Define then the abelian group L(T◦, Hp, Hq, T•) to consist of all quadru-
ples (γ◦,γp,γq,γ•), where γ◦ : → T◦ and γ• : → T• are smooth maps and
γp : {p} → Hp and γq : {q} → Hq are functions, such that the following diagram
commutes:

Hp

{p}

T◦ T•

{q}

Hq

←

�

U(1)πp,◦

←

�

U(1)πp,•

←-→ ←- →

← →γp

←→

γ◦ ←→
γ•

←-→ ←- →

←→ γq

←

�

U(1)πq,◦ ←

�

U(1)πq,•

,

and such that appropriate conditions on the derivatives of γ◦/• at p and q are
satisfied.

While this definition is easily made, the only test for its usefulness is of
course whether L(T◦, Hp, Hq, T•) admits U(1)-central extensions with desirable
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properties. The positive energy representations of such a central extension
could then possibly give rise to sectors between the two defects Dp and Dq

constructed from eL(T◦, Hp, T•) and eL(T◦, Hq, T•).
Evidence that such central extensions might sometimes exist is given by the

observation that in the special case when Λ◦, Λ•, Γp and Γq are all equal to the
same lattice Γ , and the homomorphisms πp,◦/• and πq,◦ are chosen to be the
identity but πq,• is a lattice automorphism of Γ , the group L(T◦, Hp, Hq, T•) is
isomorphic to the so called twisted unicoloured torus loop group

L(g)H :=
¦

γ ∈ C∞
�

[0,1], H
�

�

�

� γ(1) = gH

�

γ(0)
�

©

,

where gH is the automorphism of the torus H := Γ ⊗Z U(1) induced by g. (In
this definition of L(g)H we again omit conditions on the derivatives at 0 and 1
for γ.) Such twisted loop groups and their central extensions have been studied
before (see [PS86, Section 3.7, 175]) in the case that g has finite order—an
assumption that is indeed fulfilled when Γ is positive definite, as explained in
Appendix A.1.

4.3 Generalising from tori to non-abelian Lie groups

Except for selected parts of the Introduction, we spent our attention in this
thesis exclusively on torus loop groups and lattice conformal nets. One may
wonder whether the notion of a bicoloured torus loop group L(T◦, H, T•) can be
adapted to the situation when the two tori T◦/• are instead compact, connected,
simple Lie groups G◦/•. Of course, the definition of this group itself does make
sense upon replacing H with an arbitrary Lie group with homomorphisms
towards T◦/•, but the difficulty lies again in finding central extensions with
desirable properties.

Motivated by the discussion in [KS11a, Section 5]we suggest that the search
for appropriate matching conditions for bicoloured loops in this non-abelian
situation could be guided slightly better by the following observation. The
authors of [Kaw+07] classify the finite index, relatively local extensions of the
affine Kac–Moody nets ASU(2),k for all levels k ≥ 1. By the comments made in
Example 1.3.9 we hence obtain a family of defects from ASU(2),k to itself. It then
seems fruitful to ask whether there exists a family of matching conditions from
SU(2) to itself, depending on a level k, with which one is able to reproduce
these defects. We leave this investigation for future research.



Appendix A

Background material

In this Appendix we supply background material on various notions used
throughout the thesis.

A.1 Lattices

This section is a brief introduction to lattices. We present some basic examples
and we attempt to give the reader a feeling for their richness by discussing
their automorphism groups and techniques on how to construct new examples
of lattices from given ones. Their role in this thesis is that a lattice is the major
ingredient for building the centrally extended unicoloured torus loop groups
studied in Chapter 2 and, similarly, a span of even lattices is the most important
input datum for the central extensions of bicoloured torus loop groups that we
construct in Chapter 3. We finish by defining theta series of lattices for their
appearance when calculating the (graded) characters of the representations of
these loop groups in Section 2.5 and Section 3.4.

References. The material in this section is largely taken from [Ebe13], [CS99]
and [Nik80, §1]. More specific references will be given in the text.

By a lattice we mean a pair of a free Z-module Λ of finite rank, together
with a non-degenerate, symmetric, bi-additive form 〈·, ·〉: Λ×Λ→ Z. We will
often omit the reference to the form and denote the lattice simply by Λ. We
call Λ even if 〈λ,λ〉 ∈ 2Z for all λ ∈ Λ, and odd otherwise. The property of
a lattice being positive definite, negative definite or indefinite is defined in the
obvious way. Morphisms of lattices are injective Z-module homomorphisms
which respect the forms.

The automorphism group of Λ is denoted by Aut(Λ; 〈·, ·〉). It is a finite
group if Λ is definite since it is a discrete group on the one hand, while on the
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other hand, it is a subgroup of the compact orthogonal group Aut(Λ⊗ZR, 〈·, ·〉),
where we extended 〈·, ·〉 bilinearly to Λ⊗Z R and used the same notation for
it. If Λ is indefinite, then Aut(Λ; 〈·, ·〉) is typically infinite as shown in [Kne02,
Satz (30.4)].

An element µ ∈ Λ is called a (long) root if 〈µ,µ〉= 2. In general, a lattice
might not contain any roots. We say that Λ is a root lattice if it is generated by
its roots. Root lattices are automatically even. They have many automorphisms,
since for every root µ the reflection

λ 7→ λ− 2
〈λ,µ〉
〈µ,µ〉

µ= λ− 〈λ,µ〉µ, λ ∈ Λ,

in the hyperplane orthogonal to µ is a lattice automorphism.

A.1.1 The dual lattice and the discriminant group

For a lattice Λ, define the Z-module Λ∨ := HomAb(Λ,Z). Then Λ∨ is also
free and finitely generated, of the same rank as Λ, and there is an injective
homomorphism of Z-modules Λ ,→ Λ∨ given by λ 7→ 〈λ, ·〉. We claim that Λ∨

carries a non-degenerate, symmetric, bi-additive form Λ∨ ×Λ∨→Q, denoted
by 〈·, ·〉 as well, which extends the form on Λ. One way to define it is to first
extend the form on Λ bilinearly to QΛ. Next, one notices that the inclusion
Λ ,→ Λ∨ induces an isomorphism of vector spaces QΛ

∼
−→Q(Λ∨). This can be

used to transport the form to Q(Λ∨) and one finally restricts it to Λ∨. We call
Λ∨ together with this form the dual lattice of Λ.

We prove that 〈λ, l〉 := 〈〈λ, ·〉, l〉= l(λ) ∈ Z for all λ ∈ Λ and l ∈ Λ∨. Since
both sides of this equality are additive in the arguments λ and l, it is sufficient to
show that 〈λi ,λ

∨
j 〉 = δi j for all i, j, where {λi}i is a basis for Λ and {λ∨j } j is the

associated dual basis for Λ∨. There is a unique λ j ∈QΛ such that λ∨j = 〈λ
j , ·〉,

so 〈λi ,λ
∨
j 〉= 〈λi ,λ

j〉= λ∨j (λi), which shows what we wanted.
The action of the group Aut(Λ; 〈·, ·〉) on Λ extends to a (left) action on Λ∨

which preserves theQ-valued form, namely by g ·l := l◦g−1 for g ∈ Aut(Λ; 〈·, ·〉)
and l ∈ Λ∨.

If the injection Λ ,→ Λ∨ is surjective, we say that Λ is unimodular.
Concrete examples of positive definite lattices are often constructed as

full rank submodules Λ of some linear subspace E of Rn for some n and the
bi-additive form is then defined to be the restriction of the Euclidean inner
product 〈·, ·〉E on E. The dual lattice can then be identified with {α ∈ E |
〈α,λ〉E ∈ Z for all λ ∈ Λ}. Indeed, this module has an obvious homomorphism
α 7→ 〈α, ·〉E |Λ to Λ∨. The inverse is given by first equating for l ∈ Λ∨ its R-linear
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extension Rl : Λ⊗Z R→ R with an R-linear map E → R, and next using the
isomorphism of the R-linear dual E∨ with E that is induced by 〈·, ·〉E .

Since Λ and its dual have the same rank, the quotient group Λ∨/Λ is a
finite abelian group which we denote by DΛ. Its order is written as discΛ and
named the discriminant of Λ. This group comes with the extra structure of the
symmetric bi-additive form

bΛ : DΛ × DΛ→Q/Z, (l +Λ, l ′ +Λ) 7→ 〈l, l ′〉+Z,

called the discriminant bi-additive form of Λ. To see that b is non-degenerate
we show that if l ∈ Λ∨ is such that 〈l, l ′〉 ∈ Z for all l ′ ∈ Λ∨, then l ∈ Λ. Such
an l defines an element 〈l, ·〉 in (Λ∨)∨ := HomAb(Λ∨,Z). By the evaluation
isomorphismΛ

∼
−→ (Λ∨)∨ of Z-modules there is a unique λ ∈ Λ such that 〈l, l ′〉 =

l ′(λ) for all l ′ ∈ Λ∨. In turn, l ′(λ) = 〈〈λ, ·〉, l ′〉, so by the non-degeneracy of the
form on Λ∨ we must have l = 〈λ, ·〉.

If Λ is even, b can be refined to the quadratic form

qΛ : DΛ→Q/2Z, l +Λ 7→ 〈l, l〉+ 2Z,

called the discriminant quadratic form of Λ. By this, we mean the following:

Definition A.1.1. A quadratic form on an abelian group D with values in another
abelian group A is a function q : D→ A such that

(i) q(−d) = q(d) for all d ∈ D, and

(ii) the symmetric form b(d, d ′) := q(d+d ′)−q(d)−q(d ′) on D is bi-additive.

We call b the bi-additive form of q and say that q is non-degenerate when b is.

The composition of the bi-additive form b of qΛ with the projection ho-
momorphism Q/2Z � Q/Z equals 2 times bΛ. Since we learned that bΛ is
non-degenerate, so is b and therefore by definition also qΛ. Together with the
form bΛ if Λ is odd, or qΛ if Λ is even, DΛ is named the discriminant group of Λ
(after [Nik80, §1.3]).

A.1.2 Gluing of lattices

An obvious method of constructing new lattices from given ones is as follows.
The direct sum of two lattices (Λ1, 〈·, ·〉) and (Λ2, 〈·, ·〉) has as its underlying Z-
module the direct sum of the underlying Z-modules of the Λi , and its bi-additive
form is set to be




(λ1,λ2), (λ
′
1,λ′2)

�

:= 〈λ1,λ′1〉1 + 〈λ2,λ′2〉2
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for λi ,λ
′
i ∈ Λi. So the form is defined in such a way that lattice elements in

different summands are orthogonal to each other. Of course, this construction
generalises to an arbitrary finite number of lattices.

It is interesting and desirable to have a method of constructing a new lattice
from a given one which does not increase the rank, as well. We discuss one
such technique known as self-gluing. It can be thought of as sliding additional
copies of the given lattice in between the points of this same lattice at certain
prescribed positions. This is explained in [CS99, Chapter 4, Section 3] for
example, but we will follow the exposition of [Nik80, §1.4] in terms of the
discriminant group instead.

Let Γ ,→ Λ be a morphism of lattices. Then there are homomorphisms

Γ ,→ Λ ,→ Λ∨→ Γ∨,

where the last map is precomposition with Γ ,→ Λ and which also respects
the (Q-valued) bi-additive forms. It is injective if Γ and Λ have the same rank.
Suppose namely that l ∈ Λ∨ and that its image in Γ∨ is zero. Then it factors as a
homomorphism Λ/Γ → Z, but Λ/Γ is a finite abelian group by our assumption.
Since Z has no torsion, Λ/Γ → Z must vanish and so the same holds for l.

For a given lattice Γ , we will use the term overlattice sometimes to refer to
a lattice Λ of the same rank as Γ together with a specified morphism of lattices
Γ ,→ Λ, and at other times to such a lattice Λ alone when the context implies a
canonical inclusion.

Lemma A.1.2. (See [Gri11, Theorem 2.3.3].) For an overlattice Γ ,→ Λ, the
discriminants are related by

disc(Γ ) = disc(Λ) · [Λ : Γ ]2.

As we will see in a moment, overlattices give rise to subgroups of the
discriminant group of a special kind:

Definition A.1.3. A subgroup U of the discriminant group DΓ of a lattice Γ is
called b-isotropic if bΓ (u, u′) = 0 ∈ Q/Z for all u, u′ ∈ U . When Γ is even U is
q-isotropic if qΓ (u) = 0 ∈Q/2Z for all u ∈ U .

A subgroup that is q-isotropic is b-isotropic as well by the polarisation
identity, but the converse does not necessarily hold.

Theorem A.1.4 (Classification of overlattices). (Taken from [Nik80, Proposition
1.4.1].) For a given lattice Γ , the map Λ 7→ UΛ := Λ/Γ is an isomorphism of posets
between the overlattices Λ of Γ contained in Γ∨, and the b-isotropic subgroups of
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DΓ . If Γ is even, even such overlattices correspond to the q-isotropic subgroups.
Unimodular such overlattices Λ correspond to the isotropic subgroups UΛ for which
|UΛ|2 = disc Γ .

There is a canonical isomorphism of abelian groups U⊥Λ /UΛ
∼= DΛ, where the

orthogonal complement is taken inside DΓ with respect to bΓ . It respects the forms
bΓ |U⊥Λ and bΛ and, if Λ is even, the forms qΓ |U⊥Λ and qΛ.

Since the overlattices of a given lattice Γ have canonical inclusions into Γ∨,
the above Theorem shows that they can be classified and constructed through
the study of the isotropic subgroups of DΓ . When an overlattice Λ of a direct
sum Γ1 ⊕ · · · ⊕ Γn has been constructed in this way from an isotropic subgroup
U of the discriminant group of Γ1 ⊕ · · · ⊕ Γn we say that the Γi are components
of Λ which have been ‘glued together’ along representatives of U in the dual
lattices Γ∨i .

All even, unimodular, positive definite lattices of rank 24 have been classified
in [Nie73] (there are 24 up to isomorphism) and one use of the technique of
gluing lattices is the construction of all but one of them (the Leech lattice) from
certain simpler lattices of lower or equal rank (see [Ebe13, Chapter 3] and
[CS99, Chapter 16] for expositions).

A.1.3 Examples of lattices

It is high time we present some basic examples of lattices.

Example A.1.5 (The An-series). One series of lattices is the so called An-series,
defined for n≥ 1. The underlying Z-module of An is the following submodule
of Zn+1:

An :=
§

(x1, . . . , xn+1) ∈ Zn+1

�

�

�

�

n+1
∑

i=1

x i = 0
ª

and it inherits a positive definite form from the Euclidean inner product on
Rn+1. One proves that An is even by noting that for (x1, . . . , xn+1) ∈ An,

n+1
∑

i=1

x2
i +

∑

i 6= j

2x i x j =
�n+1
∑

i=1

x i

�2

= 0.

Its rank is n because if ε1, . . . ,εn+1 denotes the standard basis of Rn+1, then
one possible basis for An is

{ε2 − ε1,ε3 − ε2, . . . ,εn+1 − εn}. (A.1)
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It is a root lattice of which the n(n+ 1) roots are εi − ε j , where 1≤ i, j ≤ n+ 1
and i 6= j.

For n≥ 2, the automorphism group of An is isomorphic to a product {±1}×
Sn+1, where −1 is the negation of elements and the symmetric group Sn+1
on n + 1 letters acts by permuting the n + 1 coordinates. Equivalently, the
transposition that switches the i-th and j-th coordinates can be seen as a
reflection in the hyperplane orthogonal to the root εi − ε j. If n= 1, negation
coincides with flipping the two coordinates, so Aut(A1)∼= S2.

The dual lattice A∨n is generated by An together with the single element

l :=
�

n
n+ 1

,−
1

n+ 1
, . . . ,−

1
n+ 1

�

∈Qn+1.

Therefore, DAn
is isomorphic to the cyclic group Z/(n+ 1)Z. Each overlattice,

respectively even overlattice, of An is generated by An together with an element
a · l, where 0 ≤ a ≤ n is an integer such that a2〈l, l〉 lies in Z, respectively in
2Z.

Example A.1.6 (The Dn-series). For n≥ 3, another series of positive definite
lattices can be defined as

Dn :=
§

(x1, . . . , xn) ∈ Zn

�

�

�

�

n
∑

i=1

x i ∈ 2Z
ª

.

It is clear that Dn contains An−1 and that it is generated by it together with the
element ε1 + ε2 ∈ Zn. This observation shows that Dn has rank n, and gives
via (A.1) a basis for Dn. One proves that Dn is even in the same way as one
does for An. It is a root lattice of which the 2n(n− 1) roots are ±(εi + ε j) and
εi − ε j , where 1≤ i, j ≤ n and i 6= j.

The dual lattice D∨n is generated by Zn together with the single element
l1 := 1

2(1, 1, . . . , 1) ∈Qn. If n is even the discriminant group DDn
is a direct sum

of the two groups of order 2 generated by the equivalence classes [l1] and [l2]
of l1 and l2 := (1,0, . . . , 0) ∈ Zn, while in the odd case [l2] = 2[l1], so DDn

is
generated by [l1] alone, which then has order 4. Summarising, DDn

has the
following structure:

DDn
∼=

¨

Z/2Z⊕Z/2Z if n is even,

Z/4Z if n is odd.

If n is odd, then DDn
has no non-zero b-isotropic subgroups since

bDn
([l1], [l1]) = n/4 mod Z
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and so Dn has no non-trivial overlattices. If n is even, then DDn
always has at

least one b-isotropic subgroup that is not q-isotropic, namely the one generated
by [l2] because qDn

([l2]) = 1 mod 2Z. If n ∈ 4Z, then also the two subgroups
generated by [l1] and [l1] + [l2] are b-isotropic. If moreover n ∈ 8Z, then both
are even q-isotropic.

Example A.1.7 (The E6, E7 and E8 lattices). If n ∈ 8Z, the even, positive
definite overlattice of Dn corresponding to the q-isotropic subgroup of the
discriminant group DDn

which is generated by [l1] is denoted by D+n . In simpler
words, D+n := Dn + Z · l1. Since [l1] has order 2 in DDn

and disc Dn = 4, the
discriminant group of D+n is trivial by Lemma A.1.2. That is, D+n is a unimodular
lattice. If n = 8, it is again a root lattice because D8 is and l1 is in this case
a root. We denote D+8 as E8. It is known to be the unique even, unimodular,
positive definite lattice of rank 8 up to isomorphism (see [Ebe13, Proposition
2.5]).

Take now any root µ ∈ E8 and consider the sublattice {λ ∈ E8 | 〈λ,µ〉= 0}
that is the orthogonal complement of µ in E8. It turns out that all choices of µ
give in this way an isomorphic sublattice. We denote it by E7. It is a root lattice
as well, but it is no longer unimodular. Its discriminant group has order 2 with
generator [l1] (assuming that µ was chosen orthogonal to l1).

The lattice E8 contains copies of A2. The orthogonal complements in E8 of
all of these are isomorphic and denoted by E6. This is again a root lattice and
its discriminant group has order 3.

Example A.1.8 (The hyperbolic plane). The underlying Z-module of the hy-
perbolic plane lattice is Z⊕Z and its form is given by




(λ1,λ2), (µ1,µ2)
�

:= λ1µ2 +λ2µ1.

It is even, unimodular and is an example of an indefinite lattice. One namely
has both 〈(1,1), (1,1)〉= 2 and 〈(1,−1), (1,−1)〉= −2.

Example A.1.9 (Leech lattices). Any even, unimodular, positive definite lattice
of rank 24 without roots is called a Leech lattice. There exists only one Leech
lattice up to isomorphism and many different constructions of it have been
devised. This characterisation was proven independently in [CS99, Chapter
12] and [Nie73].

Even though the Leech lattice has no roots, which means that it does
not have corresponding reflection automorphisms, its automorphism group
Aut(Λ24, 〈·, ·〉) is large and rich in structure as shown in [Con68]. It is known
as the zeroth Conway group and denoted by Co0. It has order

22239547211 · 13 · 23= 8 315553613 086720 000
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and is known not to be a simple group. Its quotient by the central subgroup
{± id} is simple, though, and is called the first Conway group Co1. It is one of
the 26 sporadic finite simple groups. Two other groups in that list, Co2 and
Co3, can be obtained as subgroups of Co0 that fix certain elements in Λ24.

A.1.4 The theta series of a lattice

For a lattice Λ, the series

θΛ(q) :=
∑

λ∈Λ

q〈λ,λ〉/2

in the formal variable q1/2 is called the theta series of Λ. Clearly, if Λ is even,
θΛ(q) contains only integral powers of q. If Λ is definite it can be seen as a
generating function for the lengths of the elements of Λ because we can rewrite
it as

θΛ(q) =
∑

k∈Z
|Λk|qk/2, Λk :=

�

λ ∈ Λ
�

� 〈λ,λ〉= k
	

,

and Λk is indeed a finite set since the closed ball of radius
p

k in Λ ⊗Z R is
compact.

In this thesis we will also have use for rational lattices. A rational lattice is
defined identically as a lattice, except that the bi-additive form may beQ-valued
instead of Z-valued. We will sometimes distinguish lattices from rational ones
by calling the former integral. Examples of rational lattics are the dual Λ∨ of an
integral lattice Λ and the sum of two integral lattices which contain a common
integral sublattice. Of course one can define the theta series of a rational lattice
also, which will then be a series in fractional powers of q.

A.2 Central extensions of groups

In this thesis central extensions of certain abelian groups are constructed. This
section is devoted to defining central extensions and explaining how the ones
we are interested in can be defined by a particular type of maps, called (group)
2-cocycles. Group cocycles of a group G are in general defined for an abelian
group A and an action of G on A, but for our purposes we merely need the case
that G acts trivially on A. That is, we will omit this action. Even though only
the situation when G is abelian matters to us, we will begin by discussing the
non-abelian case as well because doing so does not require any extra effort.

References. The material in this section can be found in [FLM88, Section 5.1–
5.2].
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We start our discussion by assuming that G and A are abstract groups, with
A abelian. We will write the addition in A multiplicatively.

Definition A.2.1. A central extension of G by A is a group G̃ together with two
homomorphisms A ,→ G̃ and G̃� G that make it fit into a short exact sequence

1 A G̃ G 1,←→ ←→ ←→ ←→

such that the image of A is a subgroup of the centre of G̃. We will often denote
the central extension simply by G̃, thereby suppressing the data of the other two
homomorphisms in our notation. A morphism between two central extensions
G̃ and G̃′ is a homomorphism G̃→ G̃′ making the following diagram commute:

G̃

1 A G 1.

G̃′

←→←
→

←→

←→

←→

←→←→

It is not hard to show that a morphism of central extensions is necessarily
an isomorphism. In other words, the category of central extensions of G by A is
a groupoid.

The algebraic study of central extensions starts with the following obser-
vation. Pick a set-theoretic section s : G → G̃ of the homomorphism G̃ � G.
Then s is usually not a homomorphism as well. Instead, s(g)s(g ′)s(g g ′)−1 lies
in (the image of) A for all g, g ′ ∈ G. The function

c : G × G→ A, (g, g ′) 7→ s(g)s(g ′)s(g g ′)−1

can be seen as a measurement for the failure of the multiplicativity of s. By
writing out both sides of the equation s((g1 g2)g3) = s(g1(g2 g3)) in two different
ways it can be checked that c satisfies

c(g1, g2)c(g1 g2, g3) = c(g1, g2 g3)c(g2, g3) (A.2)

for all g1, g2 and g3 in G. Moreover, if s(1G) = 1G̃ then

c(g, 1G) = c(1G , g) = 1A (A.3)

for all g ∈ G.
We analyse the dependence of c on s by assuming that f : G̃

∼
−→ G̃′ is an

isomorphism to another central extension. (We allow the case when G̃′ = G̃,
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the two homomorphisms to G are the same and f is the identity.) If s′ is a
section for G̃′ we can associate a function c′ to it in the same way as we did
above. Note that f ◦ s is a section of G̃′ also. Now define an auxiliary function
d : G → A as g 7→ s′(g)( f ◦ s)(g)−1 for all g ∈ G. If s′(1G) = ( f ◦ s)(1G) then
d(1G) = 1A. Finally setting

δd : G × G→ A, (g, g ′) 7→ d(g)d(g ′)d(g g ′)−1 (A.4)

for all g, g ′ ∈ G, one can prove that c′ = (δd) · c. We thus see that c is
not associated canonically to G̃. Nevertheless, we were able to express its
ill-definedness in a precise manner.

We formalise these observations by

Definition A.2.2. A 1-cochain (for the pair (G, A)) is a function d : G→ A. We
say that a 1-cochain d is normalised if d(1G) = 1A. A 1-cochain is called a
1-cocycle if it is a group homomorphism. The trivial 1-cocycle is called the
1-coboundary. Given a 1-cochain d, we define a function δd as (A.4) for all
g, g ′ ∈ G.

A 2-cochain is a function c : G × G → A. It is called a 2-cocycle if it satis-
fies (A.2) for all g1, g2 and g3 in G. We say that a 2-cocycle c is normalised
if (A.3) holds for all g ∈ G. A 2-cochain c is called a 2-coboundary if c = δd
for some 1-cochain d. Two 2-cocycles are cohomologous if they differ by a
2-coboundary.

It is easily checked that a 2-coboundary is a 2-cocycle. A 2-coboundary is
normalised if and only if it comes from a normalised 1-cochain.

Remark A.2.3. If a 2-cocycle c is normalised, then this implies by the cocycle
relation that c(g, g−1) = c(g−1, g) for all g ∈ G. Any 2-cocycle c is cohomol-
ogous to a normalised one. It namely follows from the cocycle relation that
c(g, 1) = c(1, g) = c(1,1) for all g ∈ G. So let d be the constant 1-cochain
d(g) := c(1,1) for all g ∈ G. Then (δd)−1 · c is normalised.

This procedure of associating (cohomology classes of) 2-cocycles to central
extensions can be reversed. Given a normalised 2-cocycle c the set G̃c := G × A
namely becomes a group under the multiplication

(g, a) · (g ′, a′) :=
�

g g ′, aa′ · c(g, g ′)
�

.

Its unit element is (1G , 1A) and the inverse of (g, a) is given by

�

g−1, a−1c(g, g−1)−1
�

.
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It is a central extension of G by A when equipped with the obvious inclusion of
A and projection to G.

This construction is inverse to the one we studied earlier in the sense that
if c comes from a section s of a central extension G̃ such that s(1G) = 1G̃,
then there is a canonical isomorphism of central extensions G̃c

∼
−→ G̃ given

by (g, a) 7→ s(g)a. If a normalised 2-cocycle c′ is cohomologous to c, say,
c′ = (δd) · c for some (normalised) 1-cochain d, then (g, a) 7→ (g, d(g)−1 · a) is
an isomorphism G̃c

∼
−→ G̃c′ of the corresponding central extensions.

Let us revisit our study by assuming that G and A are topological groups.
The definition of a topological central extension G̃ in Definition A.2.1 then addi-
tionally demands that the two homomorphisms are continuous. The difference
with the situation for abstract groups is that there might not exist any globally
continuous section s : G→ G̃. In general, s is continuous only on a neighbour-
hood around 1G. A discontinuous section can then result in a discontinuous
cocycle c and so the central extension G̃c is not a topological group when we
give the underlying set G × A of G̃c the product topology.

However, it turns out that under certain conditions G̃c is a topological group
anyway when s is only locally continuous (see [Nee02, Proposition 2.2 and
Remark 2.3]). We state a preparatory Lemma and then give a particular version
of such a result that is sufficient for the purposes in this thesis.

Lemma A.2.4. Let G be an abstract group, G0 a normal topological subgroup
and suppose that for every element of G the associated conjugation map on G0
is continuous. Then there exists a unique structure of a topological group on G
such that G0 is open in G. The topology is given by declaring a subset U ⊆ G to be
open when gU ∩ G0 is open in G0 for all g ∈ G.

Corollary A.2.5. Let G and A be topological groups with A abelian, G0 an open
normal topological subgroup of G and c a normalised 2-cocycle on G such that

(i) c is continuous when restricted to G0, and

(ii) for every g ∈ G the map G0 → A given by g ′ 7→ c(g, g ′)c(g g ′, g−1) is
continuous.

Then there exists a unique structure of a topological group on G̃c such that (G̃0)c is
open in G̃c . Here, (G̃0)c is the topological group of which its underlying set G0×A
carries the product topology.
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Proof. Note first that (G̃0)c is normal in G̃c . Next, let g ∈ G and (g ′, a) ∈ (G̃0)c .
Then we calculate that

(g, 1A)(g
′, a)(g, 1A)

−1 =
�

g g ′, a · c(g, g ′)
��

g−1, c(g, g−1)−1
�

=
�

g g ′g−1, a · c(g, g ′)c(g, g−1)−1c(g g ′, g−1)
�

.

Hence, conjugation by (g, 1A) is a continuous map on (G̃0)c. The result now
follows from Lemma A.2.4.

A.2.1 Central extensions of abelian groups

If Λ is an abelian group, then every central extension Λ̃ of Λ by A has a canon-
ically associated commutator map b : Λ × Λ → A. It is defined by picking a
section s : Λ→ Λ̃ and setting b(λ,µ) := s(λ)s(µ)s(λ)−1s(µ)−1 for all λ,µ ∈ Λ,
which is independent of the choice of s. It is bi-additive and satisfies b(λ,λ) = 0
for all λ ∈ Λ. (These two properties together imply that b is skew-symmetric.)
There furthermore holds

b(λ,µ) = ε(λ,µ)ε(µ,λ)−1

for any choice of 2-cocycle ε for Λ̃, so this can be used as an alternative definition
of b.

If Λ is a free Z-module of finite rank, then also conversely, every bi-additive
map b : Λ×Λ→ A which satisfies b(λ,λ) = 0 arises in this way. We can namely
pick an ordered basis {λ1, . . . ,λn} of Λ and define a function ε : Λ×Λ→ A by
first setting

ε(λi ,λ j) :=

¨

b(λi ,λ j) if i < j,

1 if i ≥ j,

and extending this bi-additively next. Since ε is bi-additive, it is a 2-cocycle
and therefore determines a central extension Λ̃. It satisfies

ε(λ,µ)ε(µ,λ)−1 = b(λ,µ)

for all λ,µ ∈ Λ, which can be checked by hand for the basis elements λi and
must then hold for arbitrary elements of Λ since both sides of this equation
are bi-additive. This shows that b is the commutator map of Λ̃. With the
assumption about Λ still in place one can furthermore show that b determines
Λ̃ up to non-unique isomorphism.
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A.3 Group representations

In Sections 2.5 and 3.4 representations are constructed and classified of central
extensions of uni- and bicoloured torus loop groups, respectively, and of related
groups. These representations are of the following kind:

Definition A.3.1. A unitary representation Q : G → U(H ) of a topological
group G on a Hilbert spaceH is called strongly continuous if Q is a continuous
map with respect to the strong operator topology on U(H ) or, equivalently, if
for all vectors v ∈H the map G→H , g 7→Q(g)(v) is continuous at g = 1.

A morphism, or intertwiner, between two strongly continuous, unitary
representations of G on Hilbert spacesH andK is a bounded linear mapH →
K which intertwines the respective actions of G. Two such representations are
called unitarily isomorphic if there exists a unitary morphism between them.

The category of strongly continuous, unitary representations of G is denoted
by Rep G and if Q and Q′ are in Rep G we write HomG(Q,Q′) for the complex
vector space HomRep G(Q,Q′).

In the rest of this section groups will always be topological and representa-
tions will always be meant to be strongly continuous and unitary, unless stated
otherwise.

Using the fact that the operator-theoretic adjoint of a morphism is again a
morphism one can show

Proposition A.3.2. (See [Kir04, p. 361] or [Sug90, Proposition I.2.6].) Two rep-
resentations of a group are isomorphic if and only if they are unitarily isomorphic.

Definition A.3.3. Let Q be a representation of a group on a Hilbert spaceH .
A subrepresentation of Q is a closed linear subspace K ofH that is invariant
under Q, equipped with the restriction of Q to K . We say that Q is irreducible
ifH is non-zero and its only subrepresentations are {0} andH itself.

The following equivalent characterisation of the invariance of a closed
subspace is often useful:

Lemma A.3.4. (See [Fol95, Proposition 3.4].) Let Q be a representation of a
group on a Hilbert spaceH . Then a closed linear subspace K ofH is invariant
under Q if and only if the orthogonal projection ofH onto K commutes with Q.

A basic fact is that if K ⊆H is a subrepresentation then the same holds
for its orthogonal complement K ⊥.

Morphisms between irreducible representations are rigid in the following
sense, as is well known from the theory of finite-dimensional representations:
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Lemma A.3.5 (Schur’s lemma). (See [Fol95, Lemma 3.5].) A non-zero represen-
tation Q of a group is irreducible if and only if every endomorphism of Q is a scalar
multiple of the identity. A morphism between two irreducible representations is
zero when the representations are non-isomorphic and a multiple of a unitary
isomorphism otherwise.

We denote the external or internal direct sum of a family of representations
Q i as

⊕

i Q i. IfHi is the underlying Hilbert space of Q i, then that of
⊕

i Q i is
the Hilbert space completion

⊕

i

Hi

of the algebraic direct sum of theHi .
A finite-dimensional representation of a group always contains an irre-

ducible subrepresentation because one can pick a non-zero subrepresentation
of minimal dimension. This argument cannot be applied to infinite-dimensional
representations. Even worse, the left regular representation of the additive
group R on the Hilbert space L2(R) is an example which has plenty of subrepre-
sentations but no irreducible ones (as explained in for example [Fol95, p. 72]),
showing that this property is not satisfied in general. When we do have this
knowledge at our disposal a general argument can be used for

Proposition A.3.6. A non-zero representation of a group such that every non-zero
subrepresentation contains an irreducible subrepresentation is the (internal) direct
sum of a set of mutually orthogonal, irreducible subrepresentations.

Proof. (As for example in [Kow14, Proof of Corollary 5.4.2].) Denote the
representation and its underlying Hilbert space by Q and H , respectively.
Consider the set Σ of which each element is a set of mutually orthogonal,
irreducible subrepresentations of Q. Such sets can be ordered by inclusion,
making Σ a poset. Our assumption says that Q contains at least one irreducible
subrepresentation, so the singleton set that it forms belongs to Σ and therefore
Σ is non-empty. Every non-empty chain in Σ has an upper bound in Σ, namely
the union of the sets belonging to that chain. Zorn’s lemma now tells us that Σ
contains a maximal element, say, a set {Kα}α∈A of subrepresentations for some
index set A. Define K to be the (internal, Hilbert space) direct sum of the Kα.
If K =H , we are done. If not, then K ⊥ is a non-zero subrepresentation of Q
because Q is unitary. Applying the assumption again to exhibit an irreducible
subrepresentation of K ⊥ and adding this to the set {Kα}α∈A contradicts its
maximality. We conclude that K =H after all.
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Of course, the decomposition that we obtain in this way is in no way unique.
Moreover, this result and its proof do not tell you anything about how to
concretely decompose a given representation.

A.3.1 Induction of representations in the case of a discrete coset
space

Throughout this section G will be a group, H a subgroup such that the coset
space G/H is discrete and countable and Q a representation1 of H on a Hilbert
space K . (This implies that H is open, and hence closed in G.) We explain
a method of inducing Q up to a representation of G and we prove some of its
basic properties.

The conditions we impose on G/H are sufficient for the purposes of this
thesis because for the pairs (G, H) considered in Sections 2.5.3 and 3.4.2 the
coset space is isomorphic to the underlying abelian group of a lattice and of
a rational lattice, respectively. Furthermore, for those pairs H is normal in G.
Therefore we will often include that assumption in our results as well, although
this is not essential.

We start by constructing from the data G, H and Q a new Hilbert space
IndG

HK that is larger than K as the following (external) Hilbert space direct
sum indexed over the left cosets σ of H in G:

IndG
HK :=

⊕

σ∈G/H

K σ.

Here, K σ stands for the Hilbert space σ×H K . Its vectors are equivalence
classes of pairs (x , v) ∈ σ×K for the relation (xh, v)∼ (x ,Q(h)v). We denote
such a class as [x , v]. Addition of vectors is defined as [x , v] + [x ′, v′] :=
[x , v+Q(x−1 x ′)v′]. The inverse of [x , v] is [x ,−v] and the zero vector is [x , 0].
Scalar multiplication is defined as α · [x , v] := [x ,αv], and, lastly, the inner
product is 〈[x , v], [x ′, v′]〉 := 〈v,Q(x−1 x ′)v′〉. Any choice of representative
x ∈ σ induces a unitary map K σ ∼−→K given by [x , v] 7→ v. Hence K σ can
be seen as a copy of K associated to σ which is constructed without making
any choices.

We will often abbreviate IndG
HK as IndK when it is clear which groups

are under discussion. A general vector of IndK is a tuple of vectors

�

[xσ, vσ]
�

σ∈G/H , [xσ, vσ] ∈K σ,

1We inherit the conventions on terminology from Appendix A.3. So groups are meant to be
topological and representations are strongly continuous and unitary.
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such that
∑

σ∈G/H

‖vσ‖2K <∞.

Next, we define an action IndG
H Q of G on IndK by setting for g ∈ G

(IndG
H Q)(g) ·

�

[xσ, vσ]
�

σ
:=
�

�

g x g−1σ, vg−1σ
�

�

σ
.

It is easily checked that (IndG
H)(g) is well-defined, linear and unitary, and we

will often abbreviate this action as IndQ. Informally, and more geometrically
speaking, it can be understood by seeing G×HK as the total space of a complex
vector bundle over the space of cosets G/H. The action IndQ on IndK is then
the natural one when the latter is considered as a space of sections of this
bundle that are square-integrable with respect to the counting measure on
G/H.

Proposition A.3.7. The action IndQ of G on IndK is strongly continuous.

Proof. Let ([xσ, vσ])σ be a vector in IndK and (gn)n a sequence of elements
in G converging to 1. We then wish to show that the sequence of vectors

�

(IndQ)(gn) ·
�

[xσ, vσ]
�

σ

�

n

converges to ([xσ, vσ])σ. For every n there holds

�

[xσ, vσ]
�

σ
− (IndQ)(gn) ·

�

[xσ, vσ]
�

σ

=
�

[xσ, vσ]
�

σ
−
�

�

gn x g−1
n σ, vg−1

n σ
�

�

σ

=
��

xσ, vσ −Q
�

(xσ)−1 gn x g−1
n σ
��

vg−1
n σ
�

��

σ
,

and hence







�

[xσ, vσ]
�

σ
− (IndQ)(gn) ·

�

[xσ, vσ]
�

σ







2

IndK

=
∑

σ∈G/H





vσ −Q
�

(xσ)−1 gn x g−1
n σ
��

vg−1
n σ
�







2

K
.

Now note that, since G/H is discrete, (gn)n converging to 1 implies that there
exists some N ≥ 1 such that for n ≥ N we have g−1

n σ = σ for all cosets
σ simultaneously. An appeal to the strong continuity of Q then finishes the
argument.
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We call IndQ the representation of G induced from Q.

Proposition A.3.8. Let Q1 and Q2 be two representations of H with underlying
Hilbert space K1 and K2, respectively. If f : Q1→Q2 is an H-intertwiner, then
the function Ind f : IndK1→ IndK2 defined by

(Ind f )
�

[xσ, vσ]
�

σ
:=
�

�

xσ, f (vσ)
�

�

σ
(A.5)

for all vectors ([xσ, vσ])σ ∈ IndK1 is a G-intertwiner. It is isometric when f is.

Proof. That Ind f is linear and compatible with the actions of G is easily checked.
Because

∑

σ



 f (vσ)




2
K2
≤ ‖ f ‖ ·

∑

σ

‖vσ‖2K1
<∞,

the tuple on the right hand side of (A.5) is indeed a vector of IndK2. This
inequality also shows that ‖Ind f ‖= ‖ f ‖.

Corollary A.3.9. The assignment Q 7→ IndQ defines a functor IndG
H : Rep H →

Rep G.

Unfortunately, this induction functor produces in general representations
of G that are too large or too small for the functor to be a left or a right adjoint,
respectively, to the restriction functor ResH

G : Rep G → Rep H. Regarding the
first of these two claims: if Q′ is a representation of G there always exists the
injective complex linear map

HomG(IndQ,Q′) ,→ HomH(Q, ResQ′) (A.6)

given by pre-composition with the H-intertwining inclusion K ,→ IndK , v 7→
[1, v]. To show that (A.6) is surjective means that for an H-intertwiner f : Q→
ResQ′ we should produce a G-intertwiner f̂ : IndQ→ Q′ such that f̂ [1, v] =
f (v) for all v ∈K . Algebraic considerations force us to define

f̂ [xσ, vσ] :=Q′(xσ) f (vσ)

for every coset σ ∈ G/H.
That f̂ can have problems of convergence is illustrated by taking G :=

Z, H = {0} and letting Q and Q′ be the trivial representations of H and G,
respectively. In this case the underlying Hilbert space IndK of IndQ consists
of all square-integrable functions Z→K := C. It contains in particular the
function k 7→ 1/k. The domain of the H-intertwiner Q → ResQ′ given by
1C 7→ 1C then cannot be enlarged to IndQ because the series

∑

k∈Z 1/k does
not converge in K ′ := C.
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To show that Ind is neither right adjoint to Res we observe that there always
exists the injective complex linear map

HomG(Q
′, IndQ) ,→ HomH(ResQ′,Q) (A.7)

given by post-composition with the H-intertwining orthogonal projection P of
IndK to K . Showing that (A.7) is surjective means that for an H-intertwiner
f : ResQ′ → Q we should produce an G-intertwiner f̂ : Q′ → IndQ such that
P ◦ f̂ = f . We have no choice but to define

f̂ (v) =
∑

σ∈G/H

�

xσ, f
�

Q′(xσ)−1(v)
�

�

for every vector v ∈K ′, where {xσ}σ∈G/H is any set of representatives of the
(left) cosets of H in G.

Now choose again G := Z, H = {0} and Q and Q′ to be the trivial repre-
sentations of H and G respectively. Then the codomain of the H-intertwiner
ResQ′→Q given by 1C 7→ 1C cannot be enlarged to IndQ because the vector

∑

σ∈G/H

[xσ, 1C]

does not converge in IndK .
Nevertheless, these weak forms (A.6) and (A.7) of Frobenius reciprocity are

sufficient to show that the irreducibility of a representation that is induced
from a normal subgroup can be tested by calculating conjugate representations.
Either one will do, and we will choose to use (A.6). We begin with a little
preparatory material that is useful for the study of induced representations in
general:

Definition A.3.10. Let g ∈ G. The associated representation Qg of the sub-
group gH g−1 ⊆ G that is conjugate to Q is defined by Qg(ghg−1) := Q(h) for
all h ∈ H on the Hilbert space K .

Obviously, the conjugates of Q are either all reducible or all irreducible. The
importance of conjugate representations is their appearance in the restriction
back to a normal subgroup of an induced representation:

Lemma A.3.11. Assume that the subgroup H of G is normal. Then for every
set of representatives {xσ}σ∈G/H of the (left) cosets of H in G the conjugate

representations Qxσ are representations of H and the unitary maps K σ ∼
−→ K

given by [xσ, vσ] 7→ vσ induce a unitary isomorphism

ResH
G IndG

H Q ∼=
⊕

σ∈G/H

Qxσ
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of H-representations.

Proof. Since H is normal in G, we have xσH(xσ)−1 = H and so Qxσ is a repre-
sentation of H given by Qxσ(h) =Q((xσ)−1hxσ) for all h ∈ H. Furthermore, if
h ∈ H, then H being normal implies that h−1σ = σ for every coset σ. Hence,

(Res IndQ)(h)
�

[xσ, vσ]
�

σ
=
�

[hxσ, vσ]
�

σ

=
�

�

xσ(xσ)−1hxσ, vσ
�

�

σ

=
�

�

xσ,Q
�

(xσ)−1hxσ
�

(vσ)
�

�

σ
.

This proves what was asked.

Theorem A.3.12 (Mackey’s irreducibility criterion in the case of a normal
subgroup). Assume that the subgroup H of G is normal. If Q is irreducible and for
some set of representatives {xσ}σ∈G/H the associated conjugate representations
Qxσ for σ 6= H are not isomorphic to Q, then the induced representation IndQ is
irreducible as well.

Proof. Let us at first not make any assumptions about the representations at
hand. It follows from (A.6) that there is an inclusion

HomG(IndQ, IndQ) ,→ HomH(Q, Res IndQ)

of complex vector spaces. Applying Lemma A.3.11 next to some set of coset
representatives {xσ}σ∈G/H , we may expand this as:

HomG(IndQ, IndQ) ,→ HomH

�

Q,
⊕

σ∈G/H

Qxσ
�

,→
∏

σ∈G/H

HomH

�

Q,Qxσ
�

= HomH

�

Q,QxH �

⊕
∏

σ∈G/H
σ 6=H

HomH

�

Q,Qxσ
�

.

Now suppose that Q is irreducible and that Qxσ �Q when σ 6= H. Then also
Qxσ is irreducible for all xσ, so by Schur’s lemma HomH(Q,Qxσ) is zero when
σ 6= H and HomH(Q,QxH

) is 1-dimensional. Therefore, HomG(IndQ, IndQ) is
1-dimensional and hence IndQ is irreducible by Schur’s lemma.
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A.3.2 The positive energy condition

The representations of the various groups studied in Section 2.5 and Section 3.4
satisfy one more property besides the ones listed in Definition A.3.1: they are of
positive energy. It is this attribute which makes them amenable to classification.
We introduce this notion in this section and explain how it interacts with that
of irreducibility.

References. The material in this section is largely taken from [PS86, Section
9.2] and [Was98, Section I.6]. More specific references will be given in the
text.

Recall from the Introduction that we denote the topological group of coun-
terclockwise rotations of the manifold S1 by Rot(S1). We will use the following
models for the covering groups of Rot(S1):

Rot(∞)(S1)∼= {Φθ : R
∼
−→ R, θ ′ 7→ θ ′ + θ}θ∈R

and for m≥ 1
Rot(m)(S1)∼= Rot(∞)(S1)/mZ,

where Z stands for the subgroup of Rot(∞)(S1) generated by the shift θ 7→ θ+1.
We denote elements of Rot(m)(S1) as [Φθ ], where Φθ ∈ Rot(∞)(S1) and the
square brackets stand for its equivalence class in Rot(m)(S1). The image [Φθ ]
in Rot(S1) of Φθ ∈ Rot(∞)(S1) is the anti-clockwise rotation by angle θ , so
[Φ1] = idS1 .

It is a well-known fact that a non-zero representation of a compact group
can be written as the (internal) direct sum of a set of mutually orthogonal,
irreducible, finite-dimensional subrepresentations. (See for example [Kow14,
Corollary 5.4.2].) This applies in particular to the group Rot(m)(S1) for some
m≥ 1. Collecting the irreducible representations together into isotypic compo-
nents, such a representation R on a Hilbert spaceH can then be written as the
completion

H =
⊕

a∈(1/m)Z
H (a),

whereH (a) is the isotypic component

H (a) :=
�

v ∈H
�

� R[Φθ ](v) = e−2πiaθ v for all θ ∈ [0, 1]
	

on which R acts by the (−a)-th character of Rot(m)(S1).

Definition A.3.13. A representation R of Rot(m)(S1) for some m ≥ 1 on a
Hilbert spaceH is said to be of positive energy if both
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• the isotypic componentsH (a) are zero for a < 0, and

• R is of finite type, that is, for each a ∈ (1/m)Z≥0 the dimension ofH (a)
is finite.

We then callH (a) the a-th energy eigenspace ofH .
Let N be a group together with a continuous Rot(m)(S1)-action on it. A

representation Q of N on a Hilbert spaceH is said to be of positive energy if
there exists an extension of Q to a representation of the semidirect product
N oRot(m)(S1) onH such that its restriction to Rot(m)(S1) is of positive energy.
A morphism between two positive energy N -representations is defined to be a
morphism of N -representations.

Notice that the extension to N o Rot(m)(S1) is not part of the data of a
positive energy representation which is why, correspondingly, morphisms are
not required to intertwine the rotation actions on the respective Hilbert spaces
either.

Remark A.3.14. Write the (left) action of Rot(m)(S1) on N as [Φθ ]∗g := [Φθ ] · g,
where g ∈ N . Recall that N oRot(m)(S1) has N ×Rot(m)(S1) as its underlying
topological space and that its multiplication is defined by

�

g, [Φθ ]
�

·
�

g ′, [Φθ ′]
�

:=
�

g[Φθ ]
∗(g ′), [Φθ+θ ′]

�

for all g, g ′ ∈ N and [Φθ ], [Φθ ′] ∈ Rot(m)(S1). It is then easily seen that Q
extending to N oRot(m)(S1) is equivalent to there existing a representation R
of Rot(m)(S1) onH satisfying the intertwining property

R[Φθ ]Q(g)R[Φθ ]
∗ =Q

�

[Φθ ]
∗g
�

. (A.8)

That is, R[Φθ ] is an isomorphism from Q to the ‘twisted’ representation Q◦[Φθ ].
If χa is the character [Φθ ] 7→ e2πiaθ of Rot(m)(S1), then of course χa · R

also satisfies (A.8) and χa · R is again of positive energy if a ≤ 0. This shows
that the lift of Q to N oRot(m)(S1) is never unique. However, this is the only
indeterminacy if Q is irreducible. Let R′ namely be another representation of
Rot(m)(S1) onH intertwining like R with Q. Then [Φθ ] 7→ R[Φθ ]∗R′[Φθ ] is a
representation of Rot(m)(S1) onH which commutes with Q, hence it must be
a character by Schur’s lemma.

Remark A.3.15. Of course, any finite-dimensional representation of any group
N on a Hilbert space H is of positive energy by making Rot(S1) act as the
identity on both N and H . However, the groups N we study in this thesis
already come with natural, non-trivial actions of Rot(m)(S1) for some m, hence
making the demand of positivity of energy for their representations restrictive
and interesting.
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Remark A.3.16. One could obviously relax the assumption of positivity of energy
to obtain the more general notion of a representation of which the energy is
bounded from below. However, for such a representation it would again not be
appropriate to require the Rot(m)(S1)-action R to be part of the data. Therefore
we would be free to ‘shift the energy’, that is, to multiply R with a character
χa, obtaining a positive energy representation for small enough negative a. We
thus see that this generalisation is vacuous.

The notions of irreducibility for the groups N and N o Rot(m)(S1) agree
when positivity of energy is assumed:

Lemma A.3.17. Let N be a group together with a continuous Rot(m)(S1)-action
on it. An irreducible representation of N oRot(m)(S1) such that the restriction to
Rot(m)(S1) is of positive energy is also irreducible as a representation of N.

The proof of this Lemma will actually not use that the representation of
Rot(m)(S1) is of finite type.

Proof. (Taken from [PS86, Proposition 9.2.3].) Denote the underlying Hilbert
space of the representation in the Lemma byH and the representations of N
and Rot(m)(S1) onH by Q and R respectively. Let P be the orthogonal projection
ofH onto a subrepresentation of Q. It commutes with Q. We will prove that
P also commutes with R, which will then imply that the subrepresentation is
invariant under N oRot(m)(S1) and must therefore be either {0} orH itself.

Consider the m-periodic function θ 7→ R[Φθ ]PR[Φθ ]∗ on the real line with
values in the orthogonal projections onH . We want to show that it is constant
because filling in θ = 0 will then imply that P commutes with R. Using the
intertwining relation of R with Q and the fact that P commutes with Q it is
easily checked that this family of projections commutes with Q. Define for each
a ∈ (1/m)Z the a-th Fourier coefficient of this function as the operator

Pa :=
1
m

∫ m

0

e−2πiaθR[Φθ ]PR[Φθ ]
∗ dθ .

We give a precise meaning to this integral as follows. If v, w ∈H are two
fixed vectors, then the two functions R → H given by θ 7→ PR[Φθ ]∗v and
θ 7→ R[Φθ ]∗w are continuous thanks to the strong continuity of R and the
continuity of P. The function

θ 7→



PR[Φθ ]
∗v, R[Φθ ]

∗w
�

=



R[Φθ ]PR[Φθ ]
∗v, w

�

(A.9)

is then continuous as well and so the a-th Fourier coefficient

1
m

∫ m

0

e−2πiaθ



R[Φθ ]PR[Φθ ]
∗v, w

�

dθ
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of (A.9) exists. Next, we observe that the absolute value of this integral is
bounded by

1
m

∫ m

0

�

�

�e−2πiaθ



R[Φθ ]PR[Φθ ]
∗v, w

�

�

�

�dθ ≤
1
m

∫ m

0



R[Φθ ]PR[Φθ ]
∗v


 · ‖w‖dθ

≤
1
m

∫ m

0

‖v‖ · ‖w‖dθ = ‖v‖ · ‖w‖,

where we used that R is unitary and P is bounded. This estimate shows both
that for v ∈H there exists a unique vector Pa(v) ∈H satisfying

〈Pav, w〉=
1
m

∫ m

0

e−2πiaθ



R[Φθ ]PR[Φθ ]
∗v, w

�

dθ

for all w ∈H , and that the operator Pa thus defined is bounded.
Using the fact that R[Φθ ]PR[Φθ ]∗ commutes with Q one can show that Pa

commutes with Q as well. Furthermore, since R[Φθ ]PR[Φθ ]∗ is self-adjoint we
have P∗a = P−a:

〈Pav, w〉=
1
m

∫ m

0

e−2πiaθ



v, R[Φθ ]PR[Φθ ]
∗w
�

dθ

=
1
m

∫ m

0

e2πiaθ



R[Φθ ]PR[Φθ ]∗w, v
�

dθ

= 〈P−aw, v〉= 〈v, P−aw〉.

Pick b ∈ (1/m)Z and a vector v ∈H (b) in the associated energy eigenspace.
Then we calculate the energy of Pa(v) as follows. Let θ ′ ∈ R and write




R[Φθ ′]Pav, w
�

=
1
m

∫ m

0

e−2πiaθ



R[Φθ ′+θ ]PR[Φθ ]
∗v, w

�

dθ

= e2πiaθ ′ 1
m

∫ m

0

e−2πia(θ ′+θ )



R[Φθ ′+θ ]PR[Φθ ′+θ ]
∗R[Φ−θ ′]

∗v, w
�

dθ

= e2πi(a−b)θ ′ 1
m

∫ m

0

e−2πia(θ ′+θ )



R[Φθ ′+θ ]PR[Φθ ′+θ ]
∗v, w

�

dθ

= e2πi(a−b)θ ′ 1
m

∫ θ ′+m

θ ′
e−2πiaθ




R[Φθ ]PR[Φθ ]
∗v, w

�

dθ

= e−2πi(b−a)θ ′〈Pav, w〉.
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We conclude from this that Pa mapsH (b) toH (b− a).
Let b ∈ (1/m)Z be the lowest energy level of R. Then Pa annihilatesH (b)

for a > 0. BecauseH is irreducible as a representation of N oRot(m)(S1) it is
generated byH (b) under the action of N oRot(m)(S1). In other words,H is
the closure of the span of the set of vectors

�

Q(g)R[Φθ ](v)
�

� g ∈ N , Φθ ∈ Rot(∞)(S1) and v ∈H (b)
	

.

However, since R leavesH (b) invariantH is also generated byH (b) under
the action of Q alone. The continuity of Pa and it commuting with Q then
implies that Pa for a > 0 annihilates all ofH , that is, Pa = 0.

From the relation P∗a = P−a it now follows that Pa = 0 for all a 6= 0. Because
for each two fixed v and w the scalars 〈Pav, w〉 are the Fourier coefficients
of the continuous function (A.9), this function is constant by Fejér’s theorem.
In particular, 〈R[Φθ ]PR[Φθ ]∗v, w〉 = 〈Pv, w〉 for all θ ∈ R. We conclude that
R[Φθ ]PR[Φθ ]∗ = P for all θ ∈ R.

An alternative proof of the above result is demonstrated in [Nee14, Theorem
1.5]which uses the Borchers–Arveson theorem from the theory of von Neumann
algebras.

The next criterion guarantees existence of an irreducible subrepresentation.

Proposition A.3.18. Let G be a group containing Rot(m)(S1). Then a non-zero
representation of G contains an irreducible subrepresentation when at least one
non-zero isotypic component of the Rot(m)(S1)-action is finite-dimensional.

Our only use of the above result in this thesis is when G is of the form
N oRot(m)(S1) for some group N carrying an action of Rot(m)(S1).

Proof. (Compare with [Was98, Proposition I.6(c)].) Denote the representation
and its underlying Hilbert space by Q and H , respectively. Pick a non-zero,
finite-dimensional Rot(m)(S1)-isotypic component H (a), where a ∈ (1/m)Z.
We first show that for any subrepresentation K of Q there is a decomposition

H (a) =
�

H (a)∩K
�

⊕
�

H (a)∩K ⊥
�

. (A.10)

One inclusion is obvious. For the reverse inclusion, let v ∈H (a) and write it as
v = w+w⊥ with w ∈K and w⊥ ∈K ⊥. We want to prove that w, w⊥ ∈H (a).
Take [Φθ ] ∈ Rot(m)(S1). Then on the one hand

Q
�

[Φθ ]
�

(v) =Q
�

[Φθ ]
�

(w) +Q
�

[Φθ ]
�

(w⊥).
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On the other hand,

Q
�

[Φθ ]
�

(v) = e2πiaθ v = e2πiaθw+ e2πiaθw⊥,

which proves (A.10) by the unicity of decompositions of vectors along a direct
sum.

We may without loss of generality now assume that H is generated by
H (a) under Q. Otherwise we could consider the subrepresentation of H
which is generated by H (a) under Q instead because this satisfies the same
hypotheses in the Proposition asH .

Consider the following set
�

K ∩H (a)
�

�K is a subrepresentation of Q
	

\{0}

of (finite-dimensional) Rot(m)(S1)-subrepresentations ofH (a). It is non-empty
because it contains at leastH (a) =H ∩H (a). LetK0 be a subrepresentation
of Q such thatK0 ∩H (a) has the smallest dimension of all the elements in the
above set. We claim that K0 is irreducible for Q.

Let K ⊆ K0 be a subrepresentation of Q. Suppose that K ∩H (a) =
K0 ∩H (a). Then (K ⊥ ∩K0)∩H (a) = {0} and so by (A.10) there holds

H (a) ⊆ (K ⊥ ∩K0)
⊥ =K +K ⊥0 .

BecauseH is generated under Q byH (a) it follows that K +K ⊥0 =H and
so K ⊥ ∩K0 = {0}. Hence we have K = K0. Suppose on the contrary that
K ∩H (a) (K0∩H (a). Then, by the minimality assumption onK0, we have
K ∩H (a) = {0}. By (A.10) this implies that H (a) is entirely contained in
K ⊥. Using again that H is generated under Q by H (a) we conclude that
K ⊥ =H and so K = {0}.

Having proved these results, we show that positive energy representations
are similar to finite-dimensional ones in the following regard:

Proposition A.3.19. (See [Was98, Proposition I.6(d)].) A non-zero, positive
energy representation of a group is the (internal) direct sum of a set of mutually
orthogonal, irreducible, positive energy subrepresentations.

Proof. Denote the group, the representation and its underlying Hilbert space
by N , Q andH , respectively. We are given that for some m≥ 1 there exists a
positive energy representation R of Rot(m)(S1) onH which intertwines with Q.

A non-zero subrepresentationK ⊆H for N oRot(m)(S1) is again the direct
sum of its energy eigenspaces for the restriction of R to K , each of which is of
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course again finite-dimensional. Therefore at least one of these eigenspaces
must be non-zero and so K contains an irreducible subrepresentation for
N o Rot(m)(S1) by Proposition A.3.18. The representation of N o Rot(m)(S1)
on H thus satisfies the criterion of Proposition A.3.6. The summands in the
resulting orthogonal decomposition into irreducible subrepresentations for
N oRot(m)(S1) are then irreducible for Q as well by Lemma A.3.17.

We close this section by introducing notation and a name for the generating
function of the dimensions of the energy eigenspaces of a positive energy
representation.

Definition A.3.20. (After [FLM88, Section 1.10] and [PS86, Definition 14.1.1].)
Let R be a positive energy representation of Rot(m)(S1) for some m ≥ 1 on a
Hilbert spaceH . The formal Laurent series

chR(q) :=
∑

a∈(1/m)Z≥0

dim
�

H (a)
�

qa

in a formal variable q is called the (graded) character of R.

A.4 Heisenberg groups

In this section we will define Heisenberg groups and their Weyl representations.
They are relevant to this thesis because the central extensions of uni- and
bicoloured torus loop groups constructed in Sections 2.2 and 3.2 turn out to
contain Heisenberg groups. This fact is the key to the representation theory of
the former.

References. The material in this section is taken from [PS86, Section 9.5], [Par92,
Chapter II] and [Ism96, Chapter I]. More specific references will be given in
the text.

Definition A.4.1. Let V be a topological real vector space carrying a continuous,
non-degenerate, bilinear skew form S : V × V → R. The Heisenberg group eV
associated to the pair (V, S) is the U(1)-central extension of the underlying
topological abelian group of V defined by the 2-cocycle

c : V × V → U(1), c(ξ,η) := e−2πiS(ξ,η)

on V .
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Spelling this out, eV has as underlying topological space V ×U(1) and its
continuous multiplication and inverse are given by

(ξ, z) · (η, w) :=
�

ξ+η, zw · c(ξ,η)
�

, (ξ, z)−1 =
�

−ξ, z−1 · c(ξ,−ξ)−1
�

,

respectively, for ξ,η ∈ V and z, w ∈ U(1).
Note that c is indeed a normalised 2-cocycle because S is bi-additive. The

centre of eV consists of (the image of) U(1) alone. If namely an element (ξ, z) ∈
eV commutes with all (η, w) ∈ eV , then c(ξ,η)2 = 1 using the skew-symmetry
of S and so 2S(ξ,η) ∈ Z for all η ∈ V . The bilinearity of S then implies
that S(ξ,η) = 0 and therefore ξ = 0 because S is non-degenerate. The non-
degeneracy and skew-symmetry of S hence ensure that the centre of U(1) is as
small as possible.

Of course, we did not need the structure of a scalar multiplication on V in
order to define the Heisenberg group. The vector space structure is needed
to get a hold on the representation theory—a topic we turn to now. We will
first construct the underlying Hilbert spaces of the representations we will be
studying.

A.4.1 Bosonic Fock spaces

Let V be a real vector space carrying a complex structure J : V → V , meaning a
linear endomorphism (which is automatically an automorphism) such that J2 =
− idV . Let furthermore 〈·, ·〉J be a Hermitian inner product on the corresponding
complex vector space VJ . Then we associate a new, larger complex Hilbert
space to the complex pre-Hilbert space (VJ , 〈·, ·〉J ) as follows.

First, form the symmetric algebra Sym∗(VJ ) on VJ . It is an algebraic direct
sum

Sym∗(VJ ) :=
∞
⊕

k=0

Symk(VJ ),

where the k-th symmetric power Symk(VJ ) of VJ is the complex linear span of
monomials in the vectors of VJ of degree k, which are considered as commuting
variables. By definition, Sym0(VJ ) := C and the 0-th power of any vector in VJ
is 1 ∈ Sym0(VJ). We will ignore the algebra structure and consider Sym∗(VJ)
as a complex vector space. A general vector of it is a sum

∞
∑

k=0

vk, (A.11)

where vk ∈ Symk(VJ ) and only finitely many summands are non-zero.
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This vector space Sym∗(VJ ) inherits a Hermitian inner product from VJ . If
ξ1ξ2 · · ·ξk and ξ′1ξ

′
2 · · ·ξ

′
k are namely two monomials of the same degree k

then we set their inner product to be

〈ξ1ξ2 · · ·ξk,ξ′1ξ
′
2 · · ·ξ

′
k〉 :=

∑

σ∈Sk

〈ξ1,ξ′
σ(1)〉J · · · 〈ξk,ξ′

σ(k)〉J , (A.12)

where Sk is the symmetric group on k symbols. Two monomials of different
degrees are set to be orthogonal. This inner product on monomials is finally
extended to general vectors of Sym∗(VJ ) by (Hermitian) linearity.

The positive definiteness can be seen by picking an orthonormal basis for
VJ . The values of the inner product are then determined on the monomials in
these basis elements. If in the expression (A.12) the vectors ξi and ξ′i are such
basis elements, this value is only non-zero when there is a permutation σ such
that ξ′

σ(i) = ξi for all i and in that case it is clearly non-negative because 〈·, ·〉J
is positive definite.

We conclude that Sym∗(VJ) in this way becomes a complex pre-Hilbert
space.

Definition A.4.2. The bosonic Fock space S (VJ ) associated to the triple

(V, J , 〈·, ·〉J )

is the Hilbert space completion of Sym∗(VJ ).

A general vector of S (VJ) is a series of the form (A.11) where possibly
infinitely many summands are non-zero, but

∞
∑

k=0

‖vk‖2 <∞.

The inner product of two such vectors is given summand-wise.
In order to later define unitary operators on S (VJ ) we single out a special

class of its vectors.

Definition A.4.3. Let ξ ∈ VJ . The coherent vector associated to ξ is the formal
power series

eξ :=
∞
∑

k=0

ξk

k!

seen as an element of the infinite product
∏∞

k=0 Symk(VJ ).

Proposition A.4.4. Coherent vectors satisfy the following properties:



A.4 Heisenberg groups 145

(i) eξ ∈ S (VJ ) for all ξ ∈ VJ , that is, the partial sums defining eξ converge in
S (VJ ),

(ii) if also η ∈ VJ then 〈eξ, eη〉= e〈ξ,η〉J ,

(iii) every finite set of coherent vectors is linearly independent,

(iv) the space of finite linear combinations of coherent vectors lies densely in
S (VJ ),

(v) the function VJ →S (VJ ) given by ξ 7→ eξ is continuous with respect to the
norm topology on VJ induced by 〈·, ·〉J .

Proof. If n≥ 0, then we calculate that, according to the definition of the inner
product (A.12),

 n
∑

k=0

ξk

k!
,

n
∑

l=0

ηl

l!

·

=
n
∑

k,l=0

〈ξk,ηl〉
k! · l!

=
n
∑

k=0

k! · 〈ξ,η〉kJ
(k!)2

=
n
∑

k=0

〈ξ,η〉kJ
k!

.

This proves both (i) and (ii).
(iii): Let eξ1 , . . . , eξn be a finite set of coherent vectors and suppose that

∑n
k=1αkeξk = 0 for some scalars αk ∈ C. Then define for each (unordered)

pair {k, l} ⊆ {1, . . . , n} of indices with k 6= l the following subset of vectors of
VJ :

Ek,l :=
�

ξ ∈ VJ

�

� 〈ξ,ξk〉J 6= 〈ξ,ξk〉J
	

.

One can think of Ek,l as the complement of the hyperplane orthogonal to the
line C · (ξk −ξl). It is open and lies densely in VJ . Since a finite intersection of
open and dense subsets is again dense, the intersection

⋂

1≤k,l≤n
k 6=l

Ek,l

is in particular not empty. In other words: there exists a vector ξ ∈ VJ such that
the n scalars zk := 〈ξ,ξk〉J are all distinct. It is well known that this implies that
the n functions C→ C given by z 7→ ez·zk are linearly independent. Because for
all z ∈ C there holds

n
∑

k=1

αkez·zk =
n
∑

k=1

αk〈ez·ξ, eξk〉=
¬

ez·ξ,
n
∑

k=1

αkeξk
¶

= 0

by (ii), we conclude that αk = 0 for all k.
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(iv): Set H ⊆ S (VJ) to be the closure of the span of all the exponential
vectors. Let ξ ∈ VJ and consider the function R→H given by θ 7→ eθ ·ξ. It is
smooth because the series eθ ·ξ is absolutely convergent. Its n-th derivative is
valued inH also and is given by term-wise differentation:

θ 7→
∞
∑

k=0

ξk ·
(θξ)k

k!
.

In particular, the monomial

ξk =
dk

dθ k
eθ ·ξ

�

�

�

θ=0
(A.13)

lies in H for all k ≥ 0. Now note that by taking partial derivatives a more
general monomial ξ1 · · ·ξk can be expressed in terms of a power of a single
vector:

k! · ξ1 · · ·ξk =
∂ k

∂ θ1 · · ·∂ θk
(θ1ξ1 + · · ·+ θkξk)

k
�

�

�

θ1=···=θk=0
. (A.14)

Having just learned that (
∑k

i=1 θiξi)k ∈H , we see that ξ1 · · ·ξk ∈H as well.
Hence,H equals S (VJ ).

(v): If ξ,η ∈ VJ then, using (ii),

‖eξ − eη‖2 = e‖ξ‖
2
J + e‖η‖

2
J − 2 ·Re e〈ξ,η〉J .

Together with the continuity of the inner product 〈·, ·〉J this proves what was
asked.

The properties (i)–(iv) in this Proposition allow one to uniquely specify a
unitary operator on S (VJ) by prescribing its values on the coherent vectors
and checking whether it then preserves inner products.

A.4.2 The Weyl representations of a Heisenberg group

Given a real vector space, we saw in Definition A.4.1 how to associate a Heisen-
berg group to a skew form, and in Appendix A.4.1 how to forge a bosonic
Fock space from a complex structure and a Hermitian inner product. In this
subsection we will build a representation of the former group on the latter
Hilbert space, but in order to do so the skew form and the complex structure
will need to be compatible in a certain sense and, moreover, the inner product
should be a specific one derived from these two pieces of structure.
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Proposition A.4.5. Let V be a real vector space carrying a non-degenerate, bilin-
ear skew form S and a complex structure J : V → V . Write VJ for the associated
complex vector space. Then the following compatibility requirements between S
and J are equivalent:

(i) S is J-invariant, that is, S(Jξ, Jη) = S(ξ,η) for all ξ,η ∈ V , and J tames
S, meaning that S(ξ, Jξ)> 0 for all non-zero ξ ∈ V ,

(ii) the bilinear form

gJ : V × V → R, gJ (ξ,η) := S(ξ, Jη)

is J-invariant and makes V a real pre-Hilbert space,

(iii) the form

〈·, ·〉J : VJ × VJ → C, 〈ξ,η〉J := 2π
�

S(ξ, Jη)− iS(ξ,η)
�

,

makes VJ a complex pre-Hilbert space, that is, 〈·, ·〉J is a Hermitian inner
product.2,3

Remark A.4.6. If a pair (S, J) satisfies the equivalent properties of Proposi-
tion A.4.5, then so does the pair (−S,−J). One gets a Hermitian inner product
on the conjugate complex pre-Hilbert space V−J .

Let V be a real vector space carrying a non-degenerate, bilinear skew form
S and a complex structure J : V → V . Write VJ for the associated complex
vector space and suppose that S and J satisfy the equivalent compatibility
requirements of Proposition A.4.5. Then S is continuous with respect to the
norm topology on V induced by the Hermitian inner product 〈·, ·〉J because the
latter is continuous and S is up to a scalar its imaginary part:

S(ξ,η) =
i

4π

�

〈ξ,η〉J − 〈η,ξ〉J
�

= −
1

2π
· Im〈ξ,η〉J .

We may therefore construct a Heisenberg group eV from S.

Theorem A.4.7. Let S (VJ ) be the bosonic Fock space associated to the Hermitian
inner product 〈·, ·〉J in Proposition A.4.5(iii). Define for (ξ, z) ∈ eV and κ ∈ VJ a
vector4

WJ (ξ, z)(eκ) := z · e−
1
2 〈ξ,ξ〉J−〈κ,ξ〉J · eκ+ξ ∈ S (VJ ). (A.15)

2Recall our convention that a Hermitian inner product is complex linear in its first variable.
3The factor 2π in the definition of 〈·, ·〉J is of course irrelevant for the statement of this Propo-

sition on its own. It serves as a normalisation to ensure compatibility with our Definition A.4.1
of a Heisenberg group.

4On the right hand side of the following equation we consider ξ as a vector of VJ .
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Then

(i) this is an action of the group eV on the space of finite linear combinations of
the coherent vectors in S (VJ ),

(ii) which preserves inner products.

Therefore, (A.15) extends to a unitary representation WJ of eV on S (VJ). It is
strongly continuous.

Proof. After filling in the definitions of the multiplication in eV and of WJ ,
checking the equation

WJ

�

(ξ, z) · (η, w)
�

(eκ) =WJ (ξ, z)
�

WJ (η, w)(eκ)
�

for all (η, w) ∈ eV quickly comes down to verifying whether

1
2
〈ξ,η〉J −

1
2
〈η,ξ〉J = −2πi · S(ξ,η).

This follows from the definition in Proposition A.4.5(iii) of 〈·, ·〉J in terms of S
and J :

1
2

�

〈ξ,η〉J − 〈η,ξ〉J
�

=
1
2

�

〈ξ,η〉J − 〈ξ,η〉J
�

= i · Im〈ξ,η〉J = −2πi · S(ξ,η).

Proving that inner products are preserved is a matter of writing out




WJ (ξ, z)(eη), WJ (ξ, z)(eκ)
�

= |z|e−
1
2 〈ξ,ξ〉J−〈η,ξ〉J · e−

1
2 〈ξ,ξ〉J−〈κ,ξ〉J · 〈eη+ξ, eκ+ξ〉

= e−〈ξ,ξ〉J e−〈η,ξ〉J e−〈ξ,κ〉J · e〈η+ξ,κ+ξ〉J

= e〈η,κ〉J = 〈eη, eκ〉,

where we used Proposition A.4.4(ii) for the last equality.
That the action (A.15) first extends from coherent vectors to finite linear

combinations of those is implied by Proposition A.4.4(iii), and that it then
extends further to all of S (VJ ) follows from Proposition A.4.4(iv).

To prove strong continuity of this representation we show that for all vectors
v ∈ S (VJ) the map eV → S (VJ) given by (ξ, z) 7→ WJ(ξ, z)(v) is continuous.
It is sufficient to prove this when v is an coherent vector eκ and in that case
this can be seen from the continuity of the inner product 〈·, ·〉J together with
Proposition A.4.4(v), which tells us that the composite function

eV � V
∼
−→ VJ →S (VJ ), (ξ, z) 7→ ξ 7→ κ+ ξ 7→ eκ+ξ

is continuous.
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The factor e−
1
2 〈ξ,ξ〉J−〈κ,ξ〉J in (A.15) can be understood as a correction to

make the action unitary. It has a more conceptual meaning also, though, namely
that of a certain Radon-Nikodym derivative. This is explained in, for example,
[Ism96, Chapter 1, §1.3].

Definition A.4.8. The representation (A.15) of the Heisenberg group eV on the
bosonic Fock space S (VJ ) is called the Weyl representation (associated to the
complex structure J on V ).

Theorem A.4.9. The Weyl representation WJ is irreducible.

Proof. (After [Ism96, Theorem 7.1].) Let T be an endomorphism of WJ . We
wish to show that T is a scalar multiple of the identity operator because that
will imply the irreducibility of WJ by Schur’s lemma.

Let us first study the vector T(1), where 1 ∈ C =: Sym0(VJ) ⊆ S (VJ).
Define for a fixed vector ξ ∈ VJ the function

C→ C, z 7→ 〈T1, ezξ〉. (A.16)

By expanding ezξ into a power series we see that this function is anti-holomorphic.
On the other hand, using the unitarity of WJ and that 1 = e0, we can rewrite it
as

〈T1, ezξ〉=



WJ (−zξ, 1)(T1), WJ (−zξ, 1)(ezξ)
�

=



TWJ (−zξ, 1)(1), e
1
2 |z|

2〈ξ,ξ〉J · 1
�

=



T (e−
1
2 |z|

2〈ξ,ξ〉J · e−zξ), e
1
2 |z|

2〈ξ,ξ〉J · 1
�

= 〈Te−zξ, 1〉= 〈e−zξ, T ∗1〉.

Hence (A.16) is also holomorphic. Therefore, it is a constant function. It then
follows from the expressions (A.13) and (A.14) respectively that 〈T1,ξk〉= 0
and 〈T1,ξ1 · · ·ξk〉 = 0 for all k ≥ 1 and monomials ξ1 · · ·ξk ∈ Symk(VJ).
This means that T(1) is a scalar multiple of 1, say, T(1) = α ∈ C. Then also
T (eξ) = α · eξ holds for all ξ ∈ VJ since

eξ = e
1
2 〈ξ,ξ〉J WJ (ξ, 1)(1).

The density of the coherent vectors in S (VJ ) finishes the argument. In other
words, we use that 1 (or, more generally, any other coherent vector) is cyclic
for WJ .

The following Proposition explains that the construction of a Weyl repre-
sentation is in a certain sense functorial.
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Proposition A.4.10. Let (Vi , Si , Ji) for i = 1,2 be two triples satisfying the
demands above and let g : V1

∼
−→ V2 be an R-linear isomorphism which preserves

the skew forms Si and intertwines the complex structures Ji . Write g∗ξ1 ∈ V2 for
the image of ξ1 ∈ V1. Then

(i) g lifts to a continuous group isomorphism eV1
∼
−→ eV2 between the associated

Heisenberg groups via g · (ξ1, z1) := (g∗ξ1, z1), where (ξ1, z1) ∈ eV1, and

(ii) there is a unitary operator U(g): S ((V1)J1
)
∼
−→S ((V2)J2

)which extends the
(R-linear) isomorphism g between the subspaces (Vi)Ji

= Sym1((Vi)Ji
) ⊆

S ((Vi)Ji
),

such that U(g) intertwines the Weyl representations WJi
of eVi on S ((Vi)Ji

), that
is,

U(g)WJ1
(ξ1, z1)U(g)

∗ =WJ2

�

g · (ξ1, z1)
�

.

The proof of the claim above is identical to the one in the ‘absolute’ (as
opposed to ‘relative’) situation when (V1, S1, J1) = (V2, S2, J2). We will therefore
only give a proof in this latter case and we simultaneously include the hypothesis
that we have a group of such automorphisms g:

Proposition A.4.11. Let G be a topological group acting by R-linear automor-
phisms on V which preserves S, commutes with J and is strongly continuous with
respect to the norm topology on V induced by 〈·, ·〉J . Write g∗ξ for the translate
of ξ ∈ V by g ∈ G. Then

(i) G acts strongly continuously on eV as g · (ξ, z) := (g∗ξ, z), where (ξ, z) ∈ eV ,
and

(ii) there is a representation U : G→ U(S (VJ)) which extends the (R-linear)
action on the subspace VJ = Sym1(VJ ) ⊆ S (VJ ),

such that the intertwining property

U(g)WJ (ξ, z)U(g)∗ =WJ

�

g · (ξ, z)
�

(A.17)

is satisfied.

Proof. Indeed, (i) is true because G preserves S, and so it also does not perturb
the cocycle c defining eV .

To prove (ii), we first note that since G commutes with J it acts by C-linear
operators on VJ . Moreover, it commuting with J and preserving S implies by
the definition of the Hermitian inner product 〈·, ·〉J in Proposition A.4.5(iii)
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that G preserves 〈·, ·〉J . That is, G acts by unitary operators on the complex
pre-Hilbert space (VJ , 〈·, ·〉J ).

By applying G factor-wise to monomials in the vectors of VJ , we see from
the definition of the inner product (A.12) that we get a unitary G-action on
Sym∗(VJ ) and hence also on its completed Hilbert space S (VJ ). We denote the
latter action by U . Equivalently, we may define U first argument-wise on the
coherent vectors by setting U(g)(eκ) := eg∗κ. Proposition A.4.4(ii) says that
this respects inner products and therefore the action extends to all of S (VJ ).

Proving the strong continuity of U comes down to checking whether, if
κ ∈ VJ , then gn→ g in G implies that eg∗nκ→ eg∗κ in S (VJ ). This follows from
the strong continuity of the G-action on VJ and Proposition A.4.4(v).

To show the intertwining property (A.17) it suffices to equate the actions
of the operators on both sides on coherent vectors. If κ ∈ VJ , then

U(g)WJ (ξ, z)U(g)∗(eκ) = U(g)WJ (ξ, z)e(g
−1)∗κ

= z · e−
1
2 〈ξ,ξ〉J−〈(g−1)∗κ,ξ〉J · U(g)

�

e(g
−1)∗κ+ε

�

= z · e−
1
2 〈ξ,ξ〉J−〈(g−1)∗κ,ξ〉J · eκ+g∗ξ.

Because g preserves 〈·, ·〉J this is equal to

WJ (g
∗ξ, z)(eκ) =WJ

�

g · (ξ, z)
�

(eκ).

Remark A.4.12 (The groupoid of Weyl representations). While the above re-
sult easily allows one to exhibit many symmetries of a Weyl representation—
sufficiently many for the purposes in this thesis—it is worth noting that these
are not the only ones such a representation possesses. It namely turns out
that, in order to implement the elements of a group G, they need not nec-
essarily commute with J , but conjugating J should merely ‘not distort J too
much’. More precisely, for an element g ∈ G the commutator [g, J] should be a
Hilbert–Schmidt operator on VJ . This condition is necessary as well. The result
is then not a representation of G itself on S (VJ ), but of a certain U(1)-central
extension instead. We refer for these claims to [PS86, Proposition 9.5.9].

We can therefore say that to the space of complex structures on V that satisfy
Proposition A.4.5 there is associated a category of which the objects are the
corresponding Weyl representations and the morphisms are the eV -intertwiners.
Schur’s lemma then tells us that this is a groupoid, while the aforementioned
claims (or, rather, their generalisations to the ‘relative’ case) declare that it
is in general not connected: the connected components are exactly the full
subgroupoids associated to each polarisation class of complex structures that
differ from each other by a Hilbert–Schmidt operator.
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With these Weyl representations we have constructed one family of irre-
ducible representations of a Heisenberg group. Having the classical Stone–von
Neumann theorem for finite-dimensional Heisenberg groups in mind (see for
example [Fol89, Theorem 1.50]), it is reasonable to ask to what extent a similar
uniqueness result holds for the possibly infinite-dimensional Heisenberg groups
we are considering here. Of course, the action (A.15) can be tweaked a little
by letting the central subgroup U(1) act by a non-trivial character instead. It
turns out that this is the only freedom we have when we additionally assume
the positive energy property:

Theorem A.4.13 (The Stone–von Neumann theorem for positive energy repre-
sentations). (See [PS86, Proposition 9.5.10].) Suppose there exists a complex
structure J and, for some m≥ 1, a Rot(m)(S1)-action on V satisfying the demands
of Proposition A.4.11 such that the resulting representation of Rot(m)(S1) on
S (VJ ) is of positive energy. Then WJ is, up to isomorphism, the unique irreducible,
positive energy representation of eV such that the central subgroup U(1) acts as
z 7→ z.

According to Proposition A.3.19, the positive energy assumption additionally
gives us complete knowledge of representations of eV that are not necessarily
irreducible: they are simply direct sums of the unique irreducible one.

The proof of the above Theorem involves the Lie algebra of eV and its
representation by densely defined, skew-adjoint operators on any representation
of eV . These are topics we did not have the chance to treat.
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Samenvatting

Hier zal ik een poging doen de belangrijkste onderwerpen en resultaten uit dit
proefschrift op een meer elementaire manier uiteen te zetten. We zullen eerst de
unigekleurde toruslusgroepen uit Hoofdstuk 2 behandelen, om vervolgens over
te gaan naar de theorie van de bigekleurde toruslusgroepen uit Hoofdstuk 3.

Unigekleurde toruslusgroepen

Om uit te leggen wat een toruslusgroep is beginnen we met het kiezen van een
willekeurige, maar vaste torus T waar de toruslusgroep van af zal hangen. (De
betekenis van het bijvoeglijk naamwoord ‘unigekleurde’ in de titel van deze
sectie zal toegelicht worden in de volgende sectie.) Vervolgens beschouwen
we de verzameling van alle gesloten lussen die op T liggen. Wij eisen van
elke lus slechts dat deze in zekere zin glad is, maar het is hem toegestaan om
zichzelf te doorsnijden of meerdere keren om de torus te wikkelen vóór hij sluit.
Deze collectie van lussen is dus zeer groot, maar blijkt over een interessante
structuur te beschikken. Merk namelijk eerst op dat T als torus niet alleen een
meetkundig object is, maar ook een algebraïsche structuur bezit. De punten op
T kunnen namelijk bij elkaar worden opgeteld, van elkaar worden afgetrokken
en ook is er voor deze optelling een neutraal punt 0. Dit maakt T een groep.
Stel een lus γ op T nu voor als een afbeelding van de eenheidscirkel S1 naar T
toe.

S1 T

γ

(In de illustratie is T als zijnde 2-dimensionaal weergegeven, maar een
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hoger-dimensionale torus is in onze discussie zeker ook toegestaan.) Dit wil
zeggen dat we de punten op de lus γ schrijven als γ(θ ), waar θ een punt op S1 is.
Als ρ dan een andere lus op T is kan deze met γ puntsgewijs worden opgeteld,
wat een nieuwe lus γ+ρ oplevert. Hiermee zien we dat de verzameling van alle
lussen op T zelf weer een groep is, die we noteren met LT en de (torus)lusgroep
behorende bij T noemen. Zijn neutrale element voor de optelling is de lus die
volledig in het punt 0 van T geconcentreerd is.

In dit werk hebben niet zo zeer toruslusgroepen zelf onze interesse, als
wel bepaalde van hun centrale uitbreidingen die geassocieerd zijn aan roosters.
Een (positief definiet) rooster van dimensie n is een oneindige verzameling
regelmatig verdeelde punten in de n-dimensionale Euclidische ruimte Rn die
1) de oorsprong 0 bevat, 2) Rn opspant, en 3) zodanig gepositioneerd is dat
het inprodukt tussen de twee vectoren vanuit 0 naar iedere twee punten toe
een geheel getal is. Onderstaand zijn twee voorbeelden van (delen van) 2-
dimensionale roosters weergegeven.

Een vierkant rooster. Een hexagonaal rooster.

In hogere dimensies zijn exotischere voorbeelden te vinden en het is vaak
vruchtbaar om een rooster als een meetkundig object op zich te beschouwen.

In Sectie 2.2 van dit proefschrift wordt verteld hoe, vanuit de toruslusgroep
LT , met behulp van ieder rooster Λ van een speciaal type en van dezelfde
dimensie als T een bepaalde grotere groep eLT gecreëerd kan worden. Een
element van eLT is niet langer slechts een lus, maar een paar (γ, z), waar γ een
lus op T is en dus behoort tot LT , terwijl z een complex getal van modulus 1
is. Merk op dat zulke complexe getallen zelf ook een groep vormen, welke we
noteren met U(1). Voor ieder element van LT bevat eLT dus zoveel kopieën als
er in U(1) liggen. Tot zover hebben wij eLT slechts als verzameling beschreven.
De rol van het rooster Λ ligt in het bepalen van de vermenigvuldiging van de
elementen van eLT met elkaar op zo een manier dat eLT , net zoals LT , een groep
vormt. We zeggen dat eLT een centrale uitbreiding van LT is (langs de groep
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U(1)).
Een reden om in deze centrale uitbreidingen geïnteresseerd te zijn is het

feit dat ze een inzichtelijke representatietheorie hebben. Grof gezegd is een
representatie van een groep een specifieke manier waarop de groep zich kan
manifesteren als symmetrieën van een vectorruimte met een inprodukt. Onder
een representatie wordt een element van een groep dus voorgesteld als een
lineaire transformatie die een gegeven inprodukt behoudt. Het bestuderen
van de representaties van een groep kan leiden tot een beter begrip van de
groep zelf. Het is handig om hiermee bij de meest elementaire te beginnen,
de zogenaamde irreducibele representaties, ook omdat deze als bouwstenen
kunnen dienen voor algemene representaties.

Voor de centrale uitbreidingen eLT is deze restrictie helaas toch niet genoeg
om inzicht in hun representatietheorie te verkrijgen. Echter blijkt dat wanneer
we ook een positieve energie conditie eisen deze studie ineens wel behapbaar
wordt. In sectie 2.5 leggen we namelijk uit dat eLT slechts eindig veel irreducible,
positieve energie representaties bezit en dat deze expliciet te classificeren en
construeren zijn.

Bigekleurde toruslusgroepen

De hier boven uiteengezette theorie van toruslusgroepen, samengevat uit Hoofd-
stuk 2, is vrij klassiek en al eerder beschreven in de literatuur. In dit proef-
schrift is een nieuwe generalisatie van toruslusgroepen geïntroduceerd, die we
bigekleurde toruslusgroepen hebben genoemd, en er is geprobeerd om analoge
resultaten over ze te vinden zoals we die kennen over toruslusgroepen.

Voor het definiëren van een bigekleurde toruslusgroep is meer nodig dan
een enkele torus. We fixeren in plaats daarvan drie torussen, T◦, H, en T• van
dezelfde dimensie, samen met twee afbeeldingen, één van H naar T◦ en één van
H naar T•. Van deze afbeeldingen wordt geëist dat ze zowel de meetkundige
(preciezer: de differentieerbare) structuren van de torussen respecteren, als
hun groepsstructuren. We zien T◦ en T• als respectievelijk een witte en een
zwarte torus.

Net zoals een enkele torus heeft ook de zojuist genoemde lijst van data
een begrip van ‘lus’, namelijk een bigekleurde lus. Deze is gedefinieerd als
het geheel van 1) een (glad) pad op T◦, 2) een (glad) pad op T•, en 3) twee
aangewezen punten op H zodanig dat ze worden gestuurd naar de eindpunten
van de paden op T◦ en T• onder de afbeeldingen van H naar deze torussen.
Het is handig om de eenheidscirkel S1 te zien als zijnde opgeknipt in drie
stukken: een linkerhelft, een rechterhelft en hun overlappende twee punten,
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en vervolgens een bigekleurde lus te beschouwen als een drietal afbeeldingen
vanuit deze stukken naar de drie torussen toe.

T◦ T•H

S1

Op dezelfde wijze als in onze eerdere uitleg over gewone lussen op een
torus vormt ook de verzameling van bigekleurde lussen een groep onder de
puntsgewijze optelling. Deze groep noteren we met L(T◦, H, T•) en wordt een
bigekleurde toruslusgroep genoemd. We zien dat als we de torussen H, T◦ en T•
gelijk aan elkaar kiezen en de twee afbeeldingen tussen hen als de identiteit
nemen dat L(T◦, H, T•) dan niets anders is dan LH (onder enkele extra condities
die wij hier niet noemen). Daarom is een bigekleurde toruslusgroep inderdaad
een generalisatie van een gewone, en noemen wij dit tweede type achteraf
beschouwd unigekleurd.

In Sectie 3.2 construeren wij centrale uitbreidingen eL(T◦, H, T•) van zo
een groep L(T◦, H, T•) met eigenschappen analoog aan die van unigekleurde
groepen. Deze keer vereist dit niet een enkel, maar een drietal roosters Λ◦, Γ
en Λ• van gelijke dimensies, samen met twee afbeeldingen, één van Γ naar Λ◦
en één van Γ naar Λ•. Uiteraard eisen we dat deze afbeeldingen de structuren
van de roosters bewaren. Samen met verdere eigenschappen bewezen in
Sectie 3.3 toont het bestaan van deze centrale uitbreidingen dat bigekleurde
toruslusgroepen een werkelijke generalisatie van de unigekleurde theorie toe
laten.

Deze stelling wordt tenslotte kracht bijgezet in Sectie 3.4 door op een zelfde
wijze als in Hoofdstuk 2 de irreducibele, positieve energie representaties van
zo een groep eL(T◦, H, T•) te classificeren en te construeren. Hier blijkt opnieuw
dat er slechts eindig veel van zulke representaties bestaan.
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