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2 F.BEUKERS

1. Introduction

Hypergeometric functions of Gauss type are immediate generalisations of the
classical elementary functions like sin, arcsin, arctan, log, etc. They were studied
extensively in the 19th century by mathematicians like Kummer and Riemann.
Towards the end of the 19th century and the beginning of the 20th century
hypergeometric functions in several variables were introduced. For example Ap-
pell’s functions, the Lauricella functions and the Horn series. Around 1990, in
the series of papers [19], [20], [21], [22] it was realised by Gel’fand, Kapranov
and Zelevinsky that all above types and their differential equations fit into a
far more general but extremely elegant scheme of so-called A-hypergeometric
functions, or GKZ-hypergeometric functions.
Nowadays hypergeometric functions of all types (including GKZ-type, but also
many others not mentioned here) are ubiquitous throughout the mathematics
and mathematical physics literature, ranging from orthogonal polynomials, mo-
dular forms to scattering theory and mirror symmetry.
The present notes form an introduction to A-hypergeometric functions. We des-
cribe their defining equations and explicit solutions in the form of power series
expansions and so-called Euler integral representations. We also discuss the as-
sociated D-modules and their relation with the work of B.Dwork in [14]. The
latter book describes a theory of generalised hypergeometric functions which
runs for a large part in parallel with the theory of Gel’fand, Kapranov and
Zelevinsky. However, the language is entirely different and a large part of [14]
is also devoted to the p-adic theory of generalised hypergeometric functions.
Essentially the first book devoted entirely to A-hypergeometric functions is
the one by Saito, Sturmfels and Takayama [37]. In addition, there are several
introductory notes such as [38] and [33], discussing similar, and on the other
hand, different aspects of the theory. The book [40] deals with a certain type of
A-hypergeometric function, namely the Aomoto-systems X(2, 4) and X(3, 6).
However, it does cover aspects such as monodromy calculations for this system
and a moduli interpretation of the underlying geometry. These subjects are not
addressed in this survey, simply because a general theory is still lacking. In
a forthcoming publication we like to show how subgroups of the monodromy
group of general A-hypergeometric systems can be computed.
Another aspect not dealt with in these notes is the question which hypergeome-
tric equations have all of their solutions algebraic over the rational function field
generated by their variables. This is a classical question. In 1873 H.A.Schwarz
compiled his famous list of Gauss hypergeometric functions which are algebraic.
This list was extended to general one variable hypergeometric functions in 1989
by G.Heckman and F.Beukers in [7]. In the several variable case Schwarz’s list
had also been extended to functions such as Appell’s F1 (T.Sasaki, [34]), Appell
F2 (M.Kato, [27]), Appell F4 (M.Kato, [26]), Lauricella’s FD (Cohen-Wolfart,
[4]) and the Aomoto system X(3, 6) (K.Matsumoto, T.Sasaki, N.Takayama,
M.Yoshida, [31]).
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In 2006 the present author found a combinatorial characterisation for algebraic
A-hypergeometric functions (in the irreducible case) in [9]. It is perhaps inter-
esting to note that, as an application, Esther Bod [6] succeeded in extending
Schwarz’s list to all irreducible Appell, Lauricella and Horn equations.
Finally, we should mention the book of Gel’fand, Kapranov and Zelevinsky, [24],
which is not on A-hypergeometric functions proper, but on A-resultants and
discriminants which arise in connection the singular loci of A-hypergeometric
systems.

2. The one variable case

Let α1, . . . , αn;β1, . . . , βn be any complex numbers and consider the generalised
hypergeometric equation in one variable,

(1) z(D + α1) · · · (D + αn)F = (D + β1 − 1) · · · (D + βn − 1)F, D = z
d

dz

This is a Fuchsian equation of order n with singularities at 0, 1,∞. The local
exponents read,

1− β1, . . . , 1− βn at z = 0
α1, . . . , αn at z = ∞
0, 1, . . . , n− 2, −1 +

∑n
1 (βi − αi) at z = 1

When the βi are distinct modulo 1 a basis of solutions at z = 0 is given by the
functions

z1−βi
nFn−1

(
α1 − βi + 1, . . . , αn − βi + 1

β1 − βi + 1, ..∨.., βn − βi + 1

∣∣∣∣ z) (i = 1, . . . , n).

Here ..∨.. denotes suppression of the term βi − βi + 1 and nFn−1 stands for the
generalised hypergeometric function in one variable

nFn−1

(
α1, . . . , αn

β1, . . . , βn−1

∣∣∣∣ z) =

∞∑
k=0

(α1)k · · · (αn)k
(β1)k · · · (βn−1)kk!

zk.

Here (x)k is the Pochhammer symbol defined by (x)k = Γ(x + k)/Γ(x) =
x(x+1)(x+2) · · · (x+k−1). The function Γ(z) is of course the Euler Γ-function.
When the αj are distinct modulo 1 we have the following n independent power
series solutions in 1/z,

z−αj
nFn−1

(
αj − β1 + 1, . . . , αj − βn + 1

αj − α1 + 1, ..∨.., αj − αn + 1

∣∣∣∣ 1z
)

(j = 1, . . . , n).

At z = 1 we have the following interesting situation.

Theorem 2.1 (Pochhammer). — The equation (1) has n − 1 independent
holomorphic solutions near z = 1.

However, the solutions are not as easy to write down.
Finally we mention the Euler integral for nFn−1(α1, . . . , αn;β1, . . . , βn−1|z),

n−1∏
i=1

Γ(βi)

Γ(αi)Γ(βi − αi)

∫ 1

0
· · ·

∫ 1

0

∏n−1
i=1 t

αi−1
i (1− ti)

βi−αi−1

(1− zt1 · · · tn−1)αn
dt1 · · · dtn−1

F.Beukers: Notes on A-hypergeometric Functions



4 F.BEUKERS

for all ℜβi > ℜαi > 0 (i = 1, . . . , n− 1).
In the case n = 2 this becomes the famous Euler integral

2F1(a, b, c|z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt (ℜc > ℜb > 0)

The restriction ℜc > ℜb > 0 is included to ensure convergence of the integral
at 0 and 1. We can drop this condition if we take the Pochhammer contour γ
given by

0 1

X

Y

as integration path. Notice that the integrand acquires the same value after
analytic continuation along γ.
It is a straightforward exercise to show that for any b, c− b ̸∈ Z we have

2F1(a, b, c|z) =
Γ(c)

Γ(b)Γ(c− b)

1

(1− e2πib)(1− e2πi(c−b))

∫
γ
tb−1(1−t)c−b−1(1−tz)−adt.

In Section 20 we shall generalise the Pochhammer contour to higher dimensional
versions.

3. Appell and Lauricella functions

There exist many generalisations of hypergeometric functions in several va-
riables. The most well-known ones are the Appell functions in 2 variables,
introduced by P.Appell in 1880, and Lauricella functions of n variables. The
Appell functions read

F1(a, b, b
′, c, x, y) =

∑ (a)m+n(b)m(b′)n
(c)m+nm!n!

xmyn

F2(a, b, b
′, c, c′, x, y) =

∑ (a)m+n(b)m(b′)n
(c)m(c′)nm!n!

xmyn

F3(a, a
′, b, b′, c, x, y) =

∑ (a)m(a′)n(b)m(b′)n
(c)m+nm!n!

xmyn

F4(a, b, c, c
′, x, y) =

∑ (a)m+n(b)m+n

(c)m(c)nm!n!
xmyn

The guiding principle for these functions is the following. Consider the product

2F1

(
a, b

c

∣∣∣∣x) 2F1

(
a′, b′

c′

∣∣∣∣ y) =
∑ (a)m(a′)n(b)m(b′)n

(c)m(c′)nm!n!
xmyn.

F.Beukers: Notes on A-hypergeometric Functions
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Now replace one or two of the product pairs

(a)m, (a
′)n (b)m(b′)n (c)m(c′)n

by the corresponding

(a)m+n, (b)m+n, (c)m+n.

Replacing all three pairs would give us

∑ (a)m+n(b)m+n

(c)m+nm!n!
= 2F1

(
a, b

c

∣∣∣∣x+ y

)
which we omit for obvious reasons.
In 1893 G.Lauricella introduced the 3-variable versions of these functions in
[29], but nowadays one considers the obvious n-variable analogues as well. We
use the notations

x = x1, . . . , xn xm = xm1
1 . . . xmn

n

(a)m = (a1)m1 · · · (an)mn m! = m1! · · ·mn! |m| = m1 + · · ·+mn

We have

FA(a,b, c|x) =
∑
m≥0

(a)|m|(b)m

(c)mm!
xm |x1|+ · · ·+ |xn| < 1

FB(a,b, c|x) =
∑
m≥0

(a)m(b)m
(c)|m|m!

xm ∀i : |xi| < 1

FC(a, b, c|x) =
∑
m≥0

(a)|m|(b)|m|

(c)mm!
xm |

√
x1|+ · · ·+ |

√
xn| < 1

FD(a,b, c|x) =
∑
m≥0

(a)|m|(b)m

(c)|m|m!
xm ∀i : |xi| < 1

When n = 2 these functions coincide with Appell’s F2, F3, F4, F1 respectively.
When n = 1, they all coincide with Gauss’ 2F1. Lauricella gave several trans-
formation formulae, of which we mention a few. Many more can be found in
Exton’s book [18] on hypergeometric equations.

FA(a,b, c|x)

= (1− x1)
−a1FA

(
a, c1 − b1, b2, . . . , bn, c

∣∣∣∣ x1
x1 − 1

,
x2

1− x1
, . . . ,

xn
1− x1

)
= (1− |x|)−aFA

(
a, c− b, c

∣∣∣∣ x

|x| − 1

)

F.Beukers: Notes on A-hypergeometric Functions
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FD(a,b, c|x)

= (1− x)−bFD

(
c− a,b, c

∣∣∣∣ x

x− 1

)
= (1− x1)

−aFD

(
a, c− |b|, b2, . . . , bn, c

∣∣∣∣ x1
x1 − 1

,
x1 − x2
x1 − 1

, . . . ,
x1 − xn
x1 − 1

)
= (1− x1)

c−a(1− x)−b ×

FD

(
c− a, c− |b|, b2, . . . , bn, c

∣∣∣∣ x1, x2 − x1
x2 − 1

, . . . ,
xn − x1
xn − 1

)
Similar transformations for FB, FC have not been found. The following quadra-
tic transformation was discovered in 1974 by Srivastava and Exton,

(1 + |x|)aFC(a/2, a/2 + 1/2, c| x2) = FA

(
a, c− 1/2, 2c− 1

∣∣∣∣ 2x

1 + |x|

)

4. Horn series

In 1889 J.Horn began the investigation of multiple power series∑
m≥0

A(m)xm

having the property that A(m + ek)/A(m) is a rational function of m =
m1, . . . ,mn for each k = 1, . . . , n. Here ek denotes the k-th unit vector in
Rn. More precisely, Horn studied the cases n = 2, 3. Let us consider the formal
Laurent series ∑

m∈Zn

A(m)xm

such that fk(m) = A(m+ ek)/A(m) ∈ C(m). Of course we have the compati-
bility conditions

∀i, j : fi(m+ ej)fj(m) = fj(m+ ei)fi(m).

In the 1930’s Ore [32] suggested the following general result to hold.

Theorem 4.1 (Ore-Sato). — Let supp(A) be the subset of m ∈ Zn where
A(m) ̸= 0. Suppose that supp(A) is connected and Zariski-dense in Cn. A
subset S ⊂ Zn is called connected if every point of S can be reached by unit
steps ±ei inside S from any other point of S.
Then there exist R(m) ∈ C(m)∗, θ1, . . . , θN ∈ C, c1, . . . , cN ∈ C∗, s1, . . . , sN ∈
Z and an integral matrix

d11 . . . d1n
...

...
dN1 . . . dNn

such that

A(m) = R(m)cm
N∏
j=1

Γ(θj + 1 +
n∑

p=1

djpmp)
si .

F.Beukers: Notes on A-hypergeometric Functions
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In the history of this theorem the conditions on the support of A were ignored.
This was remedied in [1, Corollary 2] where it was derived as a Corollary of the
work of M.Sato (see [35]). Erdelyi worked out the two-variable case in [17] in
1951.
Series with R(m) = 1, ci = 1 for all i will be called Horn series. Under the
assumptions n = 2 and deg fi ≤ 2 Horn (1889 and 1931) found 34 such power
series, among which 14 where the degrees of numerators and denominators of
all fi are 2 (the so-called complete series). Series derived from one variable
functions or products of one variable functions are not included. Beside the
Appell F1, F2, F3, F4 Horn’s list of complete series consists of

G1(a, b, b
′, x, y) =

∑ (a)m+n(b)n−m(b′)m−n

m!n!
xmyn

G2(a, a
′, b, b′, x, y) =

∑ (a)m(a′)n(b)n−m(b′)m−n

m!n!
xmyn

G3(a, a
′, x, y) =

∑ (a)2n−m(a′)2m−n

m!n!
xmyn

H1(a, b, c, d, x, y) =
∑ (a)m−n(b)m+n(c)n

(d)mm!n!
xmyn

H2(a, b, c, d, e, x, y) =
∑ (a)m−n(b)m(c)n(d)n

(e)mm!n!
xmyn

H3(a, b, c, x, y) =
∑ (a)2m+n(b)n

(c)m+nm!n!
xmyn

H4(a, b, c, d, x, y) =
∑ (a)2m+n(b)n

(c)m(d)nm!n!
xmyn

H5(a, b, c, x, y) =
∑ (a)2m+n(b)n−m

(c)nm!n!
xmyn

H6(a, b, c, x, y) =
∑ (a)2m−n(b)n−m(c)n

m!n!
xmyn

H7(a, b, c, d, x, y) =
∑ (a)2m−n(b)n(c)n

(d)mm!n!
xmyn

The Pochhammer symbol (x)n for any n ∈ Z should be interpreted as Γ(x +
n)/Γ(x).

5. Definitions, first properties

After some preliminary papers by Gel’fand concerning hypergeometric functions
on Grassmannian manifolds, the general idea of an A-hypergeometric function
was formulated by Gel’fand, Kapranov and Zelevinsky around 1988.
The definition of A-hypergeometric functions begins with a finite subset A ⊂ Zr

(hence their name) consisting of N vectors a1, . . . ,aN such that
i) The Z-span of a1, . . . ,aN equals Zr.
ii) There exists a linear form h on Rr such that h(ai) = 1 for all i.

F.Beukers: Notes on A-hypergeometric Functions
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The second condition ensures that we shall be working in the case of so-called
Fuchsian systems. In a number of papers, eg [2], this condition is dropped to
include the case of so-called confluent hypergeometric equations.
We are also given a vector of parameters α = (α1, . . . , αr) which could be chosen
in Cr, but we will usually take α ∈ Qr. The lattice L ⊂ ZN of relations consists
of all (l1, . . . , lN ) ∈ ZN such that

∑N
i=1 liai = 0.

The A-hypergeometric equations are a set of partial differential equations with
independent variables v1, . . . , vN . This set consists of two groups. The first are
the structure equations

2lΦ :=
∏
li>0

∂lii Φ−
∏
li<0

∂
|li|
i Φ = 0 (A1)

for all l = (l1, . . . , lN ) ∈ L. The operators 2l are called the box-operators. The
second group consists of the homogeneity or Euler equations.

ZiΦ := (ai1v1∂1 + ai2v2∂2 + · · ·+ aiNvN∂N − αi)Φ = 0, i = 1, 2, . . . , r (A2)

where ai,k denotes the i-th coordinate of ak. The coefficients aik are simply the
coefficients of the r×N -matrix with columns given by a1, . . . ,aN . We call this
the A-matrix. So every operator Zi corresponds to the i-th row in the A-matrix.
It is not hard to prove the following Proposition.

Proposition 5.1. — Let Ψ be an analytic function in v1, . . . , vN . Then Ψ is
a solution of the system ZiΨ = 0 for i = 1, . . . , r if and only if

Ψ(ta1v1, . . . , t
aN vN ) = tαΨ(v1, . . . , vN )

for all t ∈ (C∗)N .

Proof. Choose i, 1 ≤ i ≤ N . We will show that Ψ satisfies ZiΨ = 0 if and only
if

Ψ(tai1v1, . . . , t
aiN vN ) = tαiΨ(v1, . . . , vN )

for all t ∈ C∗. Note that the functional equation is equivalent to(
t
d

dt
− αi

)
Ψ(tai1v1, . . . , t

aiN vN ) = 0.

Use the chain rule to obtain the equivalent statement−αi +

N∑
j=1

aijvj∂j

Ψ(ta1iv1, . . . , t
aNivN ) = 0.

This is equivalent to ZiΨ = 0.

We denote the system of equations (A1) and (A2) by HA(α). In the next section
we explain the concept of the rank of a system of partial differential equations.
Roughly speaking it is the dimension of the space of analytic solutions around
a generic point.

F.Beukers: Notes on A-hypergeometric Functions
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6. The A-hypergeometric D-module

Let K be a differential field with commuting derivations ∂i = ∂
∂vi

for i =
1, . . . , N . The field of constants, being the subfield of elements of K all of
whose derivatives are zero, is denoted by CK .
Let L be a finite set of linear partial differential operators with coefficients in
K. Consider the differential ring K[∂1, . . . , ∂N ] and let (L) be the left ideal
generated by the differential operators of the system. The quotient K[∂i]/(L)
can be considered as a differential module over K with the natural left action
of the operators ∂i. Denote its K-rank by d. We call d the rank of the system

L. Let us assume that d is finite. Fix a monomial K-basis ∂b = ∂b11 · · · ∂bNN
of K[∂i]/(L) with b ∈ S and where S is a finite set of N -tuples in ZN

≥0 of
cardinality d.
The following Proposition links the rank with the dimension of the k-vector
space of solutions of the system of differential equations L(f) = 0, L ∈ L.

Proposition 6.1. — Let K be some differential extension of K with field of
constants k. Let f1, . . . , fm ∈ K be a set of k-linear independent solutions of the
system L(f) = 0, L ∈ L. Then m ≤ d. Moreover, if m = d the determinant

WS(f1, . . . , fd) = det(∂bfi)b∈S;i=1,...,d

is nonzero.

For any d solutions f1, . . . , fd we call WS the Wronskian matrix with respect to
S and f1, . . . , fd. Obviously, if f1, . . . , fd are k-linear dependent solutions then
WS(f1, . . . , fd) = 0.

Proof. Suppose that either m > d or m = d and WS = 0. In both cases
there exists a K-linear relation between the vectors dfi := (∂bfi)b∈S for i =
1, 2, . . . ,m. Choose µ < m maximal such that dfi, i = 1, . . . , µ are K-linear
independent. Then, up to a factor, the vectors dfi, i = 1, . . . , µ + 1 satisfy a
unique dependence relation

∑µ+1
i=1 Aidfi = 0 with Ai ∈ K not all zero. For any

j we can apply the operator ∂j to this relation to obtain

µ+1∑
i=1

∂j(Ai)dfi +Ai∂j(dfi) = 0.

Since ∂j∂
b is a K-linear combination of the elements ∂b,b ∈ S in K[∂i]/(L)

there exists a d× d-matrix Mj with elements in K such that ∂j(dfi) = dfi ·Mj .

Consequently
∑µ+1

i=1 Ai∂j(dfi) =
∑µ+1

i=1 Aidfi ·Mj = 0 and so we are left with∑µ+1
i=1 ∂j(Ai)dfi = 0. Since the relation between dfi, i = 1, . . . , µ + 1 is unique

up to a scalar factor, there exists λj ∈ K such that ∂j(Ai) = λjAi for all i.
Suppose A1 ̸= 0. Then this implies that ∂j(Ai/A1) = 0 for all i and all j. We
conclude that Ai/A1 ∈ CK for all i. Hence there is a relation between the dfi
with coefficients in CK . A fortiori there is a CK-linear relation between the fi.
This contradicts our assumption of independence of f1, . . . , fm.
So we conclude that m ≤ d and if m = d then WS ̸= 0.

F.Beukers: Notes on A-hypergeometric Functions



10 F.BEUKERS

Now let L be the system HA(α) with K = C(v1, . . . , vN ) = C(v). The corres-
ponding differential module is called the A-hypergeometric module.
In general the A-hypergeometric system has rank equal to the r−1-dimensional
volume of the so-called A-polytope Q(A). This polytope is the convex hull of the
endpoints of the ai. The volume-measure is normalised to 1 for a (r−1)-simplex
of lattice-points in the plane h(x) = 1 whose vertices are spanned by a set of r
vectors with determinant 1. In the first days of the theory of A-hypergeometric
systems there was some confusion as to what ’general’ means, see the correction
in [23] and [2]. To describe this consider the ideal IA in C[∂1, . . . , ∂N ] generated
by the box operators 2l. This is an ideal in the commutative polynomial ring
C[∂1, . . . , ∂N ], known as the toric ideal associated to A. It can be generated
by a finite number of box-operators. We say that IA has the Cohen-Macaulay
property if the ring RA/IA is Cohen-Macaulay.

Theorem 6.2 (GKZ). — Let notations be as above. If the ideal IA has the
Cohen-Macaulay property, then the system HA(α) is holonomic of rank equal
to the volume of the convex hull Q(A) of A.

A theorem of Hochster [25] ensures that the following condition is sufficient for
the Cohen-Macaulay property of IA.
iii) The R≥0-span of A intersected with Zr equals the Z≥0-span of A.
When A satifies condition (iii) we say that A is saturated. When IA is not
Cohen-Macaulay the rank of the system HA(α) may be larger than the volume
of Q(A) for specific values of α. We say that the system has a rank jump at α if
this occurs. For a complete story on rank jumps we refer to [30], [39] and [5].
In [2, Theorem 5.15] it is shown that if HA(α) is non-resonant (see Definition
8.1) then the rank also equals the volume of Q(A).

From now on we assume that all conditions i),ii),iii) are satisfied.

7. Dwork modules (optional)

Although it is not relevant to the remainder of these lectures we like to point
out that B.Dwork completely independently arrived at a description of A-
hypergeometric functions in [14], although the language is entirely different.
In this section we describe the isomorphism between the Dwork approach and
the GKZ approach.
In [14] the following module is defined. Let RA = K[ta1 , . . . , taN ] where, as
before, K = C(v) and where we denote tai = tai11 · · · tairr . We call this the ring
of A-polynomials. Define

f =

N∑
i=1

vit
ai

and fj = tj
∂
∂tj
f for j = 1, 2, . . . , r. We turn RA into a D-module by defining a

connection ∇ according to

∇(∂i) = δi + ∂i(f), i = 1, 2, . . . , N

F.Beukers: Notes on A-hypergeometric Functions
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where δi is defined by δi(a) = ∂i(a) for all a ∈ C(v) and δi(tj) = 0 for all
j = 1, . . . , r. Notice by the way that ∂i(f) = tai .
For i = 1, . . . , r define the differential operators

Di,f,α = ti
∂

∂ti
+ fi − αi

where αi ∈ C. Denote the sum
∑r

i=1Di,f,α(RA) by Df,αRA. The following
Lemma is easy to prove.

Lemma 7.1. — The operators Di,f,α commute with the action of δj + ∂j(f)
for all i, j.

Proof. Notice that formally,

ti
∂

∂ti
+ fi =

1

f
◦ ti

∂

∂ti
◦ f

and

δj + ∂j(f) =
1

f
◦ ∂j ◦ f.

So the operators are the same twist of the partial differential operators ti(∂/∂ti)
and ∂j . Since they commute, their twists will also commute.

As a result we find that Df,αRA is stable under the action of δj + ∂j(f) and
hence, is a sub D-module of RA.
In [14] B.Dwork defined the following hypergeometric D-module.

Definition 7.2. — With the notations above the Dwork module is defined as
the quotient D-module RA/Df,αRA. Notation : Wf,α.

Remark 7.3. — In fact, Dwork uses more general differential base fields than
C(v) in his definitions. However, these more general modules can be considered
as restrictions of the Dwork modules we defined above.

We now like to show that the A-hypergeometric module defined earlier is iso-
morphic (as D-module) to Wf,α.
Let 21, . . . ,2s be a finite set of box operators such that every box operator is
contained in C[∂] · 21 + · · ·+ C[∂] · 2s. Then the A-hypergeometric D-module
can be written as

K[∂]/(K[∂] ·21 + · · ·+K[∂] ·2s +K[∂] · Z1 + · · ·+K[∂] · Zr)

where K[∂] is shorthand for K[∂1, . . . , ∂N ] (and K = C(v)). We map K[∂],
considered as K-module, to the K-module Wf,α of Dwork by mapping
P (∂1, . . . , ∂N ) to P (tai , . . . , taN )(mod Df,αRA) for i = 1, 2, . . . , N for every
P ∈ K[∂]. Call this map σ. To show that σ is a D-module homomorphism we
need to verify that σ(∂i ◦P ) = (δi+∂i(f))σ(P ) for every i and every P ∈ K[∂].
This is obvious, as we can see,

σ(∂i ◦ P ) = σ(δiP + P∂i)

= δiσ(P ) + taiσ(P )

= δiσ(P ) + ∂i(f)σ(P )
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The map σ is of course surjective, so it suffices to determine the kernel of σ.
To do this it suffices to determine the inverse image of Df,αRA of the map
τ : K[∂] → RA given by P (∂1, . . . , ∂N ) → P (ta1 , . . . , taN ).
First of all note that the kernel of τ consists precisely of the left ideal in K[∂]
generated by the box operators 2l, l ∈ L.
Take the operator D = ∂i11 · · · ∂iNN ∈ K[∂] and determine the image of D ◦ Zi

under τ .

D ◦ Zi = ∂i11 · · · ∂iNN ◦ (ai1v1∂1 + · · ·+ aiNvN∂N − αi)

= (ai1v1∂1 + · · ·+ aiNvN∂N )∂i11 · · · ∂iNN + · · ·
(i1ai1 + · · ·+ iNaiN )∂i11 · · · ∂iNN − αi∂

i1
1 · · · ∂iNN

Hence we get

τ(D ◦ Zi) =

−αi + ti
∂

∂ti
+

N∑
j=1

aijvjt
aj

 ti1a1+···+iNaN

=

(
−αi + ti

∂

∂ti
+ fi

)
τ(D)

By taking K-linear combinations we conclude that

τ(P ◦ Zi) =

(
−αi + ti

∂

∂ti
+ fi

)
τ(P )

for any P ∈ K[∂]. Hence the Dwork submodule Df,α is precisely the image of
τ of the left ideal in B[∂] generated by Z1, . . . , Zr. Together with the fact that
the kernel of τ is the left ideal generated by the box-operators, we obtain

Proposition 7.4. — The A-hypergeometric D-module is isomorphic to the
Dwork module.

8. Contiguity

Consider the system HA(α),

2lΦ = 0, l ∈ L, ZjΦ = αjΦ, j = 1, . . . , r.

Apply the operator ∂i from the left. We obtain,

2l∂iΦ = 0, l ∈ L, Zj∂iΦ = −aji∂iΦ, j = 1, . . . , r.

In other words, F 7→ ∂iF maps the solution space of HA(α) to the solution
space of HA(α− ai).
We can phrase this alternatively in terms of D-modules. Denote by HA(α)
the left ideal in K[∂] generated by the hypergeometric operators 2l and Zj .
Then the map P 7→ ∂iP gives a D-module homomorphism from K[∂]/HA(α−
ai) to K[∂]/HA(α). We are interested in the cases when this is a D-module
isomorphism.

Definition 8.1. — The system HA(α) is called non-resonant if α + Zr does
not contain a point which is on one of the faces of C(A), the positive real cone
generated by the points of A.
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We then have

Theorem 8.2. — When HA(α) is non-resonant, the map F 7→ ∂iF yields an
isomorphism between the solution spaces of HA(α) and HA(α− ai).

Proof. We basically follow Dwork’s approach from [14]. It suffices to show that
∂i does not have a kernel, as the dimension of the solution spaces are the same.
To this end we will construct an operator P ∈ K[∂] (with K = C(v)) such that
P∂i ≡ 1(mod HA(α)). In particular, F 7→ P (F ) would be the inverse of ∂i.
Suppose the positive cone C(A) is given by a finite set of linear inequalities
l(x) ≥ 0, l ∈ F . Assume moreover that the linear forms l are integral valued on
Zr and normalise them so that the greatest common divisor of all values is 1. For
any differential operator ∂u we define the valuation vall(∂

u) =
∑N

j=1 ujl(aj).

More generally, for any differential operator P ∈ K[∂] we define vall(P ) to be
the minimal valuation of all terms in P .
Suppose vall(∂

u) ≤ vall(∂
w) for every l ∈ F . Hence

∑
j=1 l((wj − uj)aj) ≥ 0

for all l ∈ F . So
∑N

j=1(wj −uj)aj is a lattice point in C(A). By the assumption

of saturatedness there exist non-negative integers w′
j such that

∑N
j=1w

′
jaj =∑N

j=1(wj − uj)aj . Hence ∂
w is equivalent modulo the box operator 2w−w′−u

with ∂w
′
∂u.

Let l ∈ F be given. We show that modulo the ideal HA(α), the operator ∂u

is equivalent to an operator P such that vall(P ) > vall(∂
u) and vall′(P ) ≥

vall′(∂
u) for all l′ ∈ F , l′ ̸= l. Let Zl = −l(α) +

∑N
j=1 l(aj)vj∂j . Notice that

∂uZl = Zl∂
u + l(u)∂u. Hence,

N∑
j=1

l(aj)vj∂j∂
u ≡ l(α− u)∂u(mod HA(α)).

For each term on the left we have l(aj) ̸= 0 ⇒ vall(∂j∂
u) > vall(∂

u). Since, by
non-resonance, l(α− u) ̸= 0 our assertion is proven. Choose kl ∈ Z≥0 for every
l ∈ F . By repeated application of our principle we see that any monomial ∂u

is equivalent modulo HA(α) to an operator P with vall(P ) ≥ kl + vall(∂
u) for

all l ∈ F .
In particular, there exists an operator P , equivalent to 1 and vall(P ) ≥ vall(∂i)
for every l ∈ F . Then, P is equivalent to an operator P ′∂i. Summarizing,
1 ≡ P ′∂i(mod HA(α)). So F 7→ ∂iF is injective on the solution space of HA(α).

Since the Z-span of the points of A is Zr itself, we see that in the case of
non-resonance, any two systems HA(α) and HA(β) with α ≡ β(mod Zr) are
equivalent. We call these systems contiguous. In particular, there exists a dif-
ferential operator P such that F 7→ P (F ) is an isomorphism from the solution
space of HA(α) to that of HA(β).
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9. Irreducibility

A system of partial linear differential equations is said to be irreducible if the
corresponding D-module over its base field has only itself and the trivial module
as sub D-modules. In the case of A-hypergeometric equations life often becomes
easier under the assumption of irreducibility of HA(α). Moreover, irreducibility
also holds generically for A-hypergeometric systems. Although there exist inter-
esting examples of reducible A-hypergeometric systems, we tend to concentrate
on the irreducible ones. In [22], Theorem 2.11 we find the following criterion.

Theorem 9.1 (GKZ). — Any non-resonant A-hypergeometric system is ir-
reducible.

The proof is based on the analysis of perverse sheafs. In [10] we present a proof
which is more elementary. The converse statement is almost true. We have to
make the following assumption.
iv) For every i ∈ {1, 2, . . . , N} there exists l ∈ L such that li ̸= 0.
An equivalent formulation, in terms of A, would be
iv’) For every i ∈ {1, 2, . . . , N} the set A minus ai has rank r.
To see what this condition implies for the hypergeometric system, suppose that
there exists an index i such that li = 0 for all l ∈ L. To fix ideas, assume that
i = N . Then the derivation ∂N will not occur in the box equations (A1). In that
case it is clear that the set a1, . . . ,aN−1 has rank r−1. Choose a basis of Zr such
that a1, . . . ,aN−1 is in the space spanned by the basis vectors e1, . . . , er−1 and
er = aN . Write A′ = {a1, . . . ,aN−1}. Let α = (β1, . . . , βr) with respect to these
new coordinates. We easily verify that the set of box equation is simply the set
corresponding to A′ and the set of homogeneity equations corresponds to those
for A′ and the parameters (β1, . . . , βr−1) and the equation vN∂NΦ = βrΦ.

Theorem 9.2. — Consider the resonant system HA(α) and assume that condi-
tion (iv) holds. Then HA(α) is reducible.

Proof. Unfortunately we can give only part of the proof here. A complete
proof can be found in [10]. The incompleteness of our presentation consists of
the statement that for every index i the operator F 7→ ∂iF is not the trivial
operator on the solution space of HA(α).
We now continue with the remainder of the proof. Since F 7→ ∂iF is an isomor-
phism of solution spaces of HA(α) and HA(α − ai) and ZA = Zr we see that
HA(β) is irreducible for any β ∈ Rr with β ≡ α(mod Zr). Since the system is re-
sonant there exists such a β in a face F of C(A). Suppose A∩F = {a1, . . . ,at}.
We assert that there exist non-trivial solutions of the form f = f(v1, . . . , vt).
Suppose that s = rank(a1, . . . ,at). By an SL(r,Z) change of coordinates we
can see to it that F is given by xs+1 = · · · = xr = 0. Then the coordinate arj
of aj is zero for i = s+ 1, . . . , r and j = 1, . . . , t. Also, βs+1 = · · · = βr = 0. A
solution f = f(v1, . . . , vt) satisfies the homogeneity equations−βi +

t∑
j=1

aijvj∂j

 f = 0, i = 1, . . . , s.
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Notice that the homogeneity equation with i = s+ 1, . . . , r are trivial.
Consider the box-operator 2λ with λ ∈ L. Write λ = (λ1, . . . , λN ). The positive
support is the set of indices i where λi > 0, the negative support is the set of
indices i where λi < 0.
Suppose the positive support is contained in 1, 2, . . . , t. Then

∑
λi>0 λiai is in

F . Hence −
∑

λi<0 λiai is also in F . Since F is a face, all non-zero terms of the
latter have index ≤ t. So the negative support is also in 1, 2, . . . , t. Hence

negative support ⊂ {1, . . . , t} ⇐⇒ positive support ⊂ {1, . . . , t}.
If the positive and negative support of λ contain indices > t then f(v1, . . . , vt)
satisfies 2λf = 0 trivially.
Define a new set Ã = {ã1, . . . , ãt} ⊂ Zs where ãj is the projection of aj on its

first s coordinates. Define a new parameter β̃ similarly. The solutions of the form
f(v1, . . . , vt) of the original GKZ-system satisfy the new GKZ-system corres-

ponding to HÃ(β̃). They all satisfy the additional equations ∂iF = 0 for i > t,
so they form a proper subspace. Hence the system is reducible, contradicting
our initial assumption of irreducibility.

10. Formal solutions

Choose a point γ = (γ1, . . . , γN ) ∈ RN such that α = γ1a1 + · · ·+ γNaN . Then
a formal solution of the A-hypergeometric system can be given by

ΦL,γ(v1, . . . , vN ) =
∑
l∈L

vl+γ

Γ(l+ γ + 1)

where we use the short-hand notation

vl+γ

Γ(l+ γ + 1)
=

vl1+γ1
1 · · · vlN+γN

N

Γ(l1 + γ1 + 1) · · ·Γ(lN + γN + 1)
.

The reader easily verifies that ΦL,γ indeed satisfies the system of A-
hypergeometric equations. In general these solutions are formal, there is
no convergence. However, there are exceptions which turn out to be general
enough. To see this, notice that the choice of the parameters γ is only de-
termined up elements of L(R). So there is some freedom there. By a proper
choice of γ this formal solution gives rise to actual power series solutions with
a non-trivial region of convergence.

11. Gauss hypergeometric function

Consider the set A ⊂ Z3 given by the A-matrix1 0 0 1
0 1 0 1
0 0 1 −1


and the parameter triple (−a,−b, c− 1).
The lattice of relations L is generated by (−1,−1, 1, 1). Choose γ = (−a,−b, c−
1, 0). Formal solution :
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Φ =
∑
n∈Z

v−n−a
1 v−n−b

2 vn+c−1
3 vn4

Γ(−n− a+ 1)Γ(−n− b+ 1)Γ(n+ c)Γ(n+ 1)

Notice that n ≥ 0 because 1/Γ(n + 1) = 0 whenever n is a negative integer.
Application of Euler’s standard identity Γ(z)Γ(1− z) = π/ sin(πz) yields

Φ ∼ v−a
1 v−b

2 vc−1
3

∑
n≥0

Γ(n+ a)Γ(n+ b)

Γ(n+ c)Γ(n+ 1)

(
v3v4
v1v2

)n

This is proportional to 2F1

(
a b
c

∣∣∣ z), when we put v1 = v2 = v3 = 1, v4 = z.

The polytope Q(A) is a square and the cone is given by the inequalities x1 ≥
0, x2 ≥ 0, x1+x3 ≥ 0, x2+x3 ≥ 0 and the faces given by x1 = 0, x2 = 0, x1+x3 =
0, x2 + x3 = 0. So the non-resonance conditions read −a,−b, c − a, c − b ̸∈ Z.
Note that these are precisely the well known irreducibility conditions for the
Gauss hypergeometric equation.

12. Appell F1

We reverse the procedure by starting from the series expansion and then deduce
the data A and α. Appell F1(a, b, b

′, c|x, y) is proportional to∑
m,n≥0

Γ(m+ n+ a)Γ(m+ b)Γ(n+ b′)

Γ(m+ n+ c)Γ(m+ 1)Γ(n+ 1)
xmyn.

Application of Γ-identities gives, up to a constant factor,

∑
m,n≥0

xmyn

Γ(−m− n+ 1− a)Γ(−m+ 1− b)Γ(−n+ 1− b′)Γ(m+ n+ c)Γ(m+ 1)Γ(n+ 1)

The lattice L has the form (−m − n,−m,−n,m + n,m, n) with m,n ∈ Z and
so is spanned by

(−1,−1, 0, 1, 1, 0) and (−1, 0,−1, 1, 0, 1).

A corresponding set A can be given by the A-matrix
1 0 0 0 1 1
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 −1 −1


The parameter vector can also be read off, −aa1 − ba2 − b′a3 + (c − 1)a4 =
(−a,−b,−b′, c− 1).
Notice that our Appell series is precisely the series which we get from∑
m,n≥0

v−m−n−a
1 v−m−b

2 v−n−b′

3 vm+n+c
4 vm5 v

n
6

Γ(−m− n+ 1− a)Γ(−m+ 1− b)Γ(−n+ 1− b′)Γ(m+ n+ c)Γ(m+ 1)Γ(n+ 1)

if we set v1 = v2 = v3 = v4 = 1 and v5 = x, v6 = y.
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Denote ∂i =
∂
∂vi

. The GKZ-equations read

∂1∂2Φ− ∂4∂5Φ = 0, ∂1∂3Φ− ∂4∂6Φ = 0

(v1∂1 + v5∂5 + v6∂6 + a)Φ = 0

(v2∂2 + v5∂5 + b)Φ = 0

(v3∂3 + v6∂6 + b′)Φ = 0

(v4∂4 − v5∂5 − v6∂6 + 1− c)Φ = 0

Let Z be the left ideal in K[∂1, . . . , ∂6] generated by the operators Z1, . . . , Z4

(here K = C(v1, . . . , v6)). Consider for each box operator 2 the intersection of
the class 2(mod Z) with K[∂5, ∂6] and set v1 = · · · = v4 = 1, v5 = x, v6 = y.
We obtain the classical differential equations

x(1− x)Fxx + y(1− x)Fxy + (c− (a+ b+ 1)x)Fx − byFy − abF = 0

y(1− y)Fyy + x(1− y)Fxy + (c− (a+ b′ + 1)y)Fy − b′xFx − ab′F = 0

Here we display a picture of the A-polytopes corresponding to F1 and F4,

F1 F4

The polytope Q(A) is actually a triangular prism given by the inequalities

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x2 + x3 + x4 ≥ 0, x1 + x4 ≥ 0.

From this we see that the non-resonance conditions read a, b, b′, c−b−b′, c−a ̸∈
Z. These are the irreducibility conditions for Appell’s F1.

13. Horn G3

Horn’s G3(a, b, x, y) is proportional to∑
m,n≥0

Γ(2m− n+ a)Γ(2n−m+ b)

Γ(m+ 1)Γ(n+ 1)
xmyn.

Using Γ-identities gives us, up to a constant factor,∑
m,n≥0

(−1)m+nxmyn

Γ(−2m+ n+ 1− a)Γ(−2n+m+ 1− b)Γ(m+ 1)Γ(n+ 1)
.
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The lattice L is spanned by

(−2, 1, 1, 0), (1,−2, 0, 1).

A set A is given by the A-matrix(
1 0 2 −1
0 1 −1 2

)
The parameters read α = (−a,−b). Here is the cone C(A) associated to G3

together with the points of A.

(0,0)
(1,0)

(0,1)

(2,-1)

(-1,2)

A and C(A)

Note that the power series for G3 arises from

∑
m,n≥0

v−2m+n−a
1 v−2n+m−b

2 vm3 v
n
4

Γ(−2m+ n+ 1− a)Γ(−2n+m+ 1− b)Γ(m+ 1)Γ(n+ 1)

by setting v1 = v2 = 1 and v3 = −x, v4 = −y.
It is an exercise to show that all box operators 2l are contained in the ideal
in C[∂1, . . . , ∂4] generated by ∂21 − ∂2∂3, ∂

2
2 − ∂1∂4, ∂1∂2 − ∂3∂4. So the GKZ-

equations read

∂21Φ− ∂2∂3Φ = 0, ∂22Φ− ∂1∂4Φ = 0, ∂1∂2Φ− ∂3∂4Φ = 0

(v1∂1 + 2v3∂3 − v4∂4 + a)Φ = 0

(v2∂2 − v3∂3 + 2v4∂4 + b)Φ = 0

Let again Z be the left ideal in K[∂1, . . . , ∂4] generated by the operators Z1, Z2

(here K = C(v1, . . . , v4)). Consider for each box operator 2 the intersection of
the class 2(mod Z) with K[∂3, ∂4] and set v1 = v2 = 1, v3 = −x, v4 = −y. We
obtain the differential equations
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x(4x+ 1)Fxx − (4x+ 2)yFxy + y2Fyy + ((4a+ 6)x+ 1− b)Fx

−2ayFy + a(a+ 1)F = 0

x2Fxx − (4y + 2)xFxy + y(4y + 1)Fyy + ((4b+ 6)y + 1− a)Fy

−2bxFx + b(b+ 1)F = 0

2x2Fxx + (1− 5xy)Fxy + 2y2Fyy + (2− 2b+ a)xFx

+(2− 2a+ b)yFy − abF = 0

In some of the older literature only the first two equations were mentioned.
This system of two equations allows for the spurious solution xρyσ where ρ =
−(2a+b)/3, σ = −(2b+a)/3 (see [16]). This monomial doesn’t satisfy the third
equation however (I learnt this from Alicia Dickenstein, see also [12] and [13]).
So, in this sense the A-hypergeometric equations are more elegant.
Finally, note that C(A) is given by the inequalities x1 + 2x2 ≥ 0, 2x1 + x2 ≥ 0.
The non-resonance conditions read a+ 2b, 2a+ b ̸∈ Z.

14. Power series solutions

Consider the system HA(α) and a formal solution

Φ =
∑
l∈L

vl1+γ1
1 · · · vlN+γN

N

Γ(l1 + γ1 + 1) · · ·Γ(lN + γN + 1)
.

Choose a subset I ⊂ {1, 2, . . . , N} with |I| = N − r such that ai with i ̸∈ I are
linearly independent.

Proposition 14.1. — Define πI : L → ZN−r by l 7→ (li)i∈I . Then πI is
injective and its image is a sublattice of ZN−r of index |det(ai)i̸∈I |.

Proof. Let b1, . . . ,bN−r be a Z-basis of L. Denote bi = (bi1, . . . , biN ). We must
prove that

det(bij)i=1,...,N−r;j∈I = ±det(ai)i ̸∈I .

This follows from the following Lemma with J = Ic and the fact that the gcd
of all (N − r)× (N − r) subdeterminants of (bij) is one and that the gcd of all
r × r-subdeterminants of (aij) is one.

Lemma 14.2. — Let w1, . . . ,wN−r and u1, . . . ,ur be two sets of vectors in
RN such that wi · uj = 0 for all i, j and such that the wi,uj span RN . We
denote the coordinates of wi,uj by wik and ujk respectively. Then there exists
a number c ̸= 0 such that for any J ⊂ {1, . . . , N} with |J | = r we have

det(wij)i=1,...,N−r,j∈Jc = ±cdet(uij)i=1,...,r,j∈J .

Proof. Consider two linear forms H1,H2 on ∧rRN given by

H1 : x1 ∧ · · · ∧ xr 7→ det(w1, . . . , wN−r,x1, . . . ,xr)

and
H2 : x1 ∧ · · · ∧ xr 7→ det(ui · xj)i,j=1,...,r.
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For any w in the span of w1, . . . ,wN−r and any j ∈ {1, . . . , r} we have H1(x1∧
. . .∧ (xj+w)∧ . . .∧xr) = H1(x1∧ . . .∧xr) and similarly for H2. So we see that
H1,H2 are uniquely determined by their value in u1 ∧ . . . ∧ ur. More precisely,

H1(x1, . . . ,xr)

det(w1, . . . ,wN−r,u1, . . . ,ur)
=

H2(x1, . . . ,xr)

det(ui · uj)i,j=1,...,r
.

Define

c =
det(w1, . . . ,wN−r,u1, . . . ,ur)

det(ui · uj)i,j=1,...,r

and evaluate at ej1 ∧ · · · ∧ ejr where J = {j1, . . . , jr} to obtain our assertion.
Here e1, . . . , eN is the standard basis of RN .

We denote ∆I = |det(ai)i̸∈I |. Choose γ such that γi ∈ Z for i ∈ I. The formal
solution series

Φ =
∑
l∈L

∏
i∈I

vli+γi
i

Γ(li + γi + 1)

∏
i̸∈I

vli+γi
i

Γ(li + γi + 1)

is now a power series because the summation runs over the polyhedron li+γi ≥ 0
for i ∈ I and the other lj are dependent on li, i ∈ I. By abuse of language we will
call the corresponding simplicial cone li ≥ 0 for i ∈ I the sector of summation
with index I.
Put mi = li + γi for i ∈ I (remember γi ∈ Z for all i ∈ I). Then all li + γi
are linear functions in m = (mi)i∈I , possibly with rational coefficients. Denote
them by di(m) + βi for all i. Consider

∑
m≥0

∏
i∈I

vmi
i

mi!

∏
i ̸∈I

v
di(m)+βi

i

Γ(di(m) + βi + 1)
.

Note that this is a Horn series, in the sense that now the linear forms di may
have rational coefficients instead of integer coefficients. As m runs over ZN−r

the vector

(d1(m), · · · , dN (m))

runs over a lattice containing L of index ∆I . Therefore the power series above
in fact represents ∆I independent solutions of the GKZ-system.
There is one important assumption we need in order to make this approach
work. Namely the guarantee that none of the arguments di(m) + βi with i ̸∈ I
is a negative integer. The best way to do is to impose the condition βi ̸∈ Z
for i ̸∈ I. Geometrically, since α =

∑
i̸∈I βiai, this condition comes down to

the requirement that α + Zr does not contain points in a face of the simplex
spanned by ai with i ̸∈ I. This is slightly stronger than the requirement of non-
resonance, as faces of individual simplices are involved. We shall come back to
this requirement in the Definition 19.2 of T-nonresonance.
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15. An example, G3 again

Consider the set A given by the columns of

A =

(
−1 0 1 2
2 1 0 −1

)
and parameter vector (−a,−b)t. The lattice of relations is generated by

(1,−2, 1, 0), (0, 1,−2, 1)

The formal solution series reads∑
p,q

vp+γ1
1 v−2p+q+γ2

2 vp−2q+γ3
3 vq+γ4

4

Γ(p+ γ1 + 1)Γ(−2p+ q + γ2 + 1)Γ(p− 2q + γ3 + 1)Γ(q + γ4 + 1)

where A(γ1, . . . , γ4)
t = (−a,−b)t. Let us take I = {2, 3} and notice that

∆I = |det(a1,a4)| = 3.

Choose γ2, γ3 ∈ Z and put m = −2p+ q + γ2, n = p− 2q + γ3. Then

p+ γ1 = −(2m+ n)/3− (a+ 2b)/3, q + γ4 = −(2n+m)/3− (2a+ b)/3.

The Horn type solution reads

v
−(a+2b)/3
1 v

−(2a+b)/3
4

∑
m,n≥0

(v−2
1 v32v

−1
4 )m/3(v−1

1 v33v
−2
4 )n/3

Γ(−(2m+ n+ a+ 2b)/3)Γ(−(m+ 2n+ 2a+ b)/3)m!n!

Splitting this sum over the three residue classes of m+ 2n modulo 3 gives us 3
independent solutions.

16. The domain of convergence

Choose a summation sector with index I. The domain of convergence of

ΦI =
∑
l∈L

N∏
i=1

vli+γi
i

Γ(li + γi + 1)

is in general the complement of an amoeba-like domain. We simplify by consi-
dering the complement of its skeleton. Any N -tuple ρ1, . . . , ρN ∈ R is called a
convergence direction of Φ if there exists ϵ > 0 such that Φ converges in the
region

|v1| = tσ1 , . . . , |vN | = tσN

for all σi with maxi |σi − ρi| < ϵ and sufficiently small t ∈ R>0.
The subtlety with the ϵ is there to ensure that the convergence directions form
an open set, so to exclude possible convergence directions which are on the
boundary of domains of convergence.

Definition 16.1. — The union of all convergence directions is called the
convergence domain of ΦI .

Proposition 16.2. — The vector (ρ1, . . . , ρN ) ∈ RN is a convergence direction
with respect to I if and only if ρ1l1 + · · · + ρN lN > 0 for every l ̸= 0 in the
summation sector with index I.
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For the proof of this Proposition we require two Lemmas on the growth beha-
viour of the Γ-function.

Lemma 16.3. — Let s ∈ C and n ∈ Z≥0. Then there exists constants c1, c2 >
0 such that

1

Γ(s+ n)
≤ c1

|n−(s−1)|
n!

and
1

Γ(s− n)
≤ c2|ns|n!

Proof. When s ∈ Z≤0 there are only finitely many non-zero values of 1/Γ(s+n).
Hence the first statement of our Lemma is trivial. Now assume that s ̸∈ Z≤0.
Then

Γ(s+ n) = n!
n∏

k=1

(
1 +

s− 1

k

)
Γ(s).

It is an exercise to show that there exists a constant cs > 0 such that

lim
n→∞

|n−(s−1)|
n∏

k=1

(
1 +

s− 1

k

)
= cs

Since all terms in this limit are non-zero we conclude that there exists c′s > 0
such that

|n−(s−1)|
n∏

k=1

∣∣∣∣1 + s− 1

k

∣∣∣∣ ≥ c′s

for all n ∈ Z≥0. The first statement of our Lemma follows directly.
When s ∈ Z≥0 the second statement is again trivial. So we assume s ̸∈ Z≥0.
Then

Γ(s− n) =
1

n!

n∏
k=1

(
−1 +

s

k

)−1
Γ(s).

Again, there exists a constant cs > 0 such that

lim
n→∞

|n−s|
n∏

k=1

∣∣∣1− s

k

∣∣∣ = cs.

Hence there exists c′s > 0 such that

|ns|
n∏

k=1

∣∣∣1− s

k

∣∣∣−1
≥ c′s

for all n ∈ Z≥0. Our second inequality now follows directly.

Lemma 16.4. — Denote ||l|| = |l1|+ · · ·+ |lN | for any l ∈ ZN . Then, for any
l ∈ ZN with l1 + l2 + · · ·+ lN = 0,∏

li<0 |li|!∏
li>0 li!

≤ N ||l||/2.
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Proof. Note that
∑

li>0 |li| =
∑

li<0 |li| = ||l||/2. The quotient can now be
estimated by

(||l||/2)!∏
li>0 |li|!

∏
li<0 |li|

(||l||/2)!
≤ (||l||/2)!∏

li>0 |li|!
.

From the multinomial expansion of N ||l||/2 = (1 + · · ·+ 1)||l||/2 we now deduce

the desired estimate N ||l||/2.

Proof of Proposition 16.2. Consider the series solution

ΦI =
∑
l∈L

N∏
i=1

vli+γi
i

Γ(li + γi + 1)

which is summed over all l ∈ L with li ≥ 0 for all i ∈ I. Choose v1, . . . , vN such
that |vi| = tρi for i = 1, . . . , N . Using the previous Lemmas each term can be
estimated by

N∏
i=1

|vli+γi
i |

|Γ(li + γi + 1)|
≤ c1 · tρ1l1+···+ρN lN ||l||c2N ||l||/2

where c1, c2 are suitable constants.
Suppose ρ1l1 + · · · + ρnlN > 0 for every l ̸= 0 in the summation sector. Then
there exists a constant σ > 0 such that ρ1l1 + · · ·+ ρN lN > σ||l||. Our estimate
becomes

c1 · tσ||l||||l||c2N ||l||/2.

We now see that the series converges for sufficiently small t.
If ρ1l1+· · ·+ρN lN ≤ 0 for some l ̸= 0, then there exists a neighbouring direction
such that strict inequality holds. Then the summation contains infinitely many
terms where tρ1l1+···+lNρN is exponentially increasing for any t < 1. Since the
coefficients are exponentially bounded from below we see that the series does
not converge. Hence (ρ1, . . . , ρN ) is not a convergence direction.

17. Explicit bases of solutions

Let ρ = (ρ1, . . . , ρN ) ∈ RN and suppose the form ρ1l1+ · · ·+ρN lN is non-trivial
on L. We like to write down a basis of power series solutions of HA(α) which
converge for v1 = tρ1 , . . . , vN = tρN when |t| is sufficiently small.
Let I be an index set of a summation sector. Then ρ is a convergence direction
for this sector if ρ1l1 + · · · + ρN lN > 0 for all non-zero (l1, . . . , lN ) ∈ L with
li ≥ 0 whenever i ∈ I. In that case we say that ρ is a convergence direction
for I. Clearly, if ρ is a convergence direction for I then the same holds for
ρ + y where y is any element in RN perpendicular to L(R). A basis of L⊥ is
given by the rows of the A-matrix consisting of the columns a1, . . . ,aN . So any
convergence direction for I can be changed modulo linear combinations of the
rows of the A-matrix. Put differently, if (ρ1, . . . , ρN ) is a convergence direction
for I, then (ρ1 −m(a1), . . . , ρN −m(aN )) is also a direction of convergence for
I for any linear form m on Rr.
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Let us choose the linear form m such that m(ai) = ρi for all i ̸∈ I and write
ρ′i = ρi − m(ai) for i = 1, . . . , N . Then ρ′i = 0 for all i ̸∈ I. Furthermore,
ρ′1l1 + · · · + ρ′N lN > 0 for all l ∈ L \ 0 such that li ≥ 0 whenever i ∈ I. Hence
ρ′i > 0 for all i ∈ I. Thus we arrive at the following Proposition.

Proposition 17.1. — Let ρ = (ρ1, . . . , ρN ) ∈ RN and I the index of a sum-
mation sector. Let m be the linear form on Rr such that m(ai) = ρi for all
i ̸∈ I. Then ρ is a convergence direction for I if and only if m(ai) < ρi for all
i ∈ I.

18. Triangulations

Let A be as always and Q(A) the convex hull of A. For any subset J of
{1, 2, . . . , N} we denote AJ = {aj |j ∈ J} and by Q(AJ) its convex hull. When
|J | = r and Q(AJ) is an (r − 1)-simplex we often refer to the set J as an
(r − 1)-simplex as well.

Definition 18.1. — A triangulation of A is a subset

T ⊂ {J ⊂ {1, 2, . . . , N}| |J | = r and rank(AJ) = r}
such that

Q(A) = ∪J∈TQ(AJ)

and for all J, J ′ ∈ T

Q(AJ) ∩Q(AJ ′) = Q(AJ∩J ′).

By T (A) we denote the set of all triangulations of A.
With a triangulation one associates a vector

χT =
∑
J∈T

Vol(Q(AJ))
∑
j∈J

(ej)

in RN .

Definition 18.2. — The secondary polytope Σ(A) associated with A is defined
by

Σ(A) = convex hull of {χT |T ∈ T (A)}.
A triangulation T is called regular if χT is a vertex of Σ(A).

Later on we will show that different regular triangulations correspond to dif-
ferent vertices on Σ(A).
Note that a priory Σ(A) ⊂ RN but the image of χT under the projection
ψ : RN → Rr (given by ei 7→ ai) is independent of T . Hence Σ(A) is contained
in a translation of the subspace L(R). The secondary polytope was introduced
by Gel’fand, Kapranov and Zelevinsky.
An example, which I reproduce with kind permission from Jan Stienstra [38],
is the following. Consider the A-matrix1 1 1 1 1 1

0 1 −1 0 1 0
1 1 0 0 0 1


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The primary polytope is two-dimensional, here is a picture of Q(A), as it lies
in the plane x1 = 1.
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The secondary polytope Σ(A) is three dimensional. Here is a picture of Σ(A)
with the triangulation at every vertex together with its coordinates.
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Here we reproduce an example of nonregular triangulations from [11] (with
thanks again to Jan Stienstra for the picture). Consider the A-matrix4 0 0 2 1 1

0 4 0 1 2 1
0 0 4 1 1 2


Here are four triangulations of A,
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We compute χT1 = (40, 36, 32, 12, 28, 44), χT4 = (32, 36, 40, 44, 28, 12) and
χT2 = χT3 = (36, 36, 36, 28, 28, 28). So χT2 = χT3 = 1

2(χT1 + χT2). Hence
χT2 = χT3 are not vertices of the secondary polytope and T2, T3 are not re-
gular triangulations.
We now show how to construct regular triangulations. Let ρ = (ρ1, . . . , ρN ) ∈
RN . For every (r − 1)-simplex J we define the linear form mJ on Rr such that
mJ(aj) = ρj for all j ∈ J . We assume that ρ is chosen so that all forms mJ

are distinct. By Q(A)o we denote the convex hull minus the sets Q(AJ) with
|J | < r. Our triangulation arises as follows. For every x ∈ Q(A)o we determine
the (r − 1)-simplex J such that mJ(x) is minimal among the set

{mI(x)|I is an (r − 1)− simplex and x ∈ Q(AI)}.

We claim that J is uniquely determined and that the association x 7→ J gives
a triangulation of A. This claim is based on the following Proposition.

Proposition 18.3. — Let x and J be as above. Then, for any y ∈ Q(A) and
any (r − 1)-simplex Q(AI) which contains y we have that mJ(y) ≤ mI(y).

A first consequence is the following. Suppose there exist two J, J ′ such that
mJ(x) = mJ ′(x) is minimal. Then mJ(y) ≤ mJ ′(y) and mJ ′(y) ≤ mJ(y) for
all y. Hence mJ and mJ ′ are the same, which implies that J = J ′. In other
words, the r−1-simplex J for which mJ(x) is minimal, is uniquely determined.
Another consequence, once J is chosen for x, it gets chosen for every point
y ∈ Q(AJ) ∩Q(A)o. This explains why we get a triangulation.

Proof of the Proposition. The statement to be proven clearly implies the sta-
tement for y = ai for any i. In other words, mJ(ai) ≤ mI(ai) for every i, I with
i ∈ I. This can be restated as

mJ(ai) ≤ ρi for every i ∈ {1, 2, . . . , N}.

Conversely, the latter statement implies the statement to be proven. Namely,
let y =

∑
i∈I τiai where τi are the (non-negative) barycentric coordinates of

Q(AI). Then mJ(ai) ≤ ρi = mI(ai) implies mJ(y) ≤ mI(y) by linearity and
τi ≥ 0 for i ∈ I.
To prove our Proposition let us now assume that there exists i such that
mJ(ai) > ρi. Now choose a face of Q(AJ) which, together with ai, forms an
(r− 1)-simplex Q(AJ ′) which contains x. Then x =

∑
j∈J ′ τjaj with τj > 0 for
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all j ∈ J ′. Then

mJ ′(x) =
∑
j∈J ′

τjmJ ′(aj)

=
∑
j∈J ′

τjρj

= τiρi +
∑

j∈J ′,j ̸=i

τjρj

< τimJ(ai) +
∑

j∈J ′,j ̸=i

τjmJ(aj)

= mJ(x)

This contradicts the minimality of mJ(x), which concludes our proof.

We denote by Tρ the triangulation we just found.

Proposition 18.4. — We have that ρ·χTρ < ρ·χT for every triangulation T ̸=
Tρ. Here · denotes the Euclidean inner product. In particular, the triangulation
Tρ is regular.
Conversely, to any regular triangulation T ′ there exists ρ ∈ RN such that T ′ =
Tρ.

Proof For any triangulation T and ρ ∈ RN we define gT,ρ : Q(A) → R as
follows. To a point x ∈ Q(A) find the (r − 1)-simplex J to which it belongs
in the triangulation T , and determine mJ(x). This will be the function value.
Notice that

ρ · χT =
∑
J∈T

Vol(Q(AJ))
∑
j∈J

ρj =

∫
Q(A)

gT,ρ(x)dµ(x)

for a suitably chosen Euclidean measure dµ on Q(A). Let T ̸= Tρ By the
preceding Proposition we have that gTρ,ρ(x) ≤ gT,ρ(x) for all x ∈ Q(A) where
the inequality is strict on a set of positive measure. Hence ρ · χTρ < ρ · χT .
Conversely let T ′ be a regular triangulation, i.e. χT ′ is a vertex of the secondary
polytope. Hence there exists ρ ∈ RN such that ρ ·χT ′ < ρ ·χT all triangulations
T ̸= T ′. To ρ we construct Tρ. If T

′ ̸= Tρ we would have, according to the
preceding, ρ ·χTρ < ρ ·χT ′ . This contradicts the minimality of ρ ·χT ′ . Hence we
conclude that T ′ = Tρ.

An immediate consequence is the following.

Corollary 18.5. — Let T, T ′ be two distinct regular triangulations. Then
χT ̸= χT ′.

In [24, Chapter 7], the book by Gel’fand, Kapranov and Zelevinsky on dis-
criminants and resultants, we find an extensive discussion of triangulations of
A and secondary polytopes. There, regular triangulations are called coherent
triangulations.
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19. A basis of solutions

From the preceding two sections we can deduce the following conclusion.

Theorem 19.1. — Let ρ be a convergence direction which is sufficiently ge-
neral (in the sense that all linear forms mJ are distinct). Then there exists a
regular triangulation T of Q(A) such that the summation sectors, for which ρ
is a convergence direction, are given by Jc where J runs through the (r − 1)-
simplices in T .

Let I be a summation sector corresponding to ρ. We then construct the series
solution ΦI as in Section 14. In order to ensure non-trivial ΦI we had to assume
that α + Zr does not contain a point on a face of the simplex spanned by the
ai with i ̸∈ I.

Definition 19.2. — Let T be a regular triangulation of Q(A). The parameters
α will be called T -nonresonant if α+Zr does not contain a point on the boundary
of any (r − 1)-simplex ΣJ with J ∈ T .

Notice that the T -nonresonance condition implies the nonresonance condition.
Let us assume that α is T -nonresonant. For any I = Jc with J ∈ T we get the
series ΦI which represents ∆I = Vol(ΣJ) independent solutions.

Proposition 19.3. — Under the T -nonresonance condition the power series
solutions just constructed form a basis of solutions of HA(α).

Proof. To show that the solutions are independent it suffices to show that for
any two distinct summation sectors I and I ′ the values of γ1, . . . , γN , as chosen
in ΦI and ΦI′ , are distinct modulo the lattice L. Suppose they are not distinct
modulo L. Then there exists an index i ∈ I ′, but i ̸∈ I such that γi ∈ Z. But
this is contradicted by our T -nonresonance assumption.
For every J ∈ T we get Vol(ΣJ) solutions by writing down ΦJc . Summing over
J ∈ T shows that we obtain

∑
J∈T Vol(ΣJ) = Vol(Q(A)) solutions.

Here is an example of Gauss’ hypergeometric function with A-matrix1 0 0 1
0 1 0 1
0 0 1 −1


and parameters (−a,−b, c− 1). Here are the triangulations of Q(A),

t tt t
t tt t

1 1

2 2

3 3

4 4

@
@

@

�
�
�T1 : T2 :

The secondary polytope is one-dimensional. We see that nonresonance means
that (−a,−b, c) modulo Z3 does not lie in the faces 14, 24, 23, 13, in other words,
c−b, c−a, a, b ̸∈ Z. In addition, T -nonresonance for the first triangulation means
that c ̸∈ Z and for the second triangulation a − b ̸∈ Z. It is well-known that if
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c ∈ Z the local solutions around z = 0 will also contain log z. Similarly around
z = ∞ when a − b ∈ Z. In general, the occurrence of T -resonance implies
the appearance of logarithmic terms in the solutions, and we have to consider
solutions in the larger space of power series tensored with C(vγ , log(v)). This
is completely elaborated in [37, Chapter 3].

20. Pochhammer cycles

In the construction of Euler integrals for A-hypergeometric functions one often
uses so-called twisted homology cycles. In [22] this is done on an abstract level,
in [28] and [40] it is done more explicitly. In this paper we prefer to follow
a more concrete approach by constructing a closed cycle of integration such
that the (multivalued) integrand can be chosen in a continuous manner and
the resulting integral is non-zero. For the ordinary Euler-Gauss function this
is realised by integration over the so-called Pochhammer contour, as given in
Section 2. Here we construct its n-dimensional generalisation. In Section 21.1
we use it to define an Euler integral for A-hypergeometric functions.
Consider the hyperplane H given by t0 + t1 + · · · + tn = 1 in Cn+1 and the
affine subspaces Hi given by ti = 0 for (i = 0, 1, 2, . . . , n). Let Ho be the
complement in H of all Hi. We construct an n-dimensional real cycle Pn in Ho

which is a generalisation of the ordinary 1-dimensional Pochhammer cycle (the
case n = 1). When n > 1 it has the property that its homotopy class in Ho is
non-trivial, but that its fundamental group is trivial. One can find a sketchy
discussion of such cycles in [40, Section 3.5].
Let ϵ be a positive but sufficiently small real number. We start with a polytope
F in Rn+1 given by the inequalities

|xi1 |+ |xi2 |+ · · ·+ |xik | ≤ 1− (n+ 1− k)ϵ

for all k = 1, . . . , n + 1 and all 0 ≤ i1 < i2 < · · · < ik ≤ n. Geometrically this
is an n+ 1-dimensional octahedron with the faces of codimension ≥ 2 sheared
off. For example in the case n = 2 it looks like

The faces of F can be enumerated by vectors µ = (µ0, µ1, . . . , µn) ∈ {0,±1}n+1,
not all µi equal to 0, as follows. Denote |µ| =

∑n
i=0 |µi|. The face corresponding
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to µ is defined by

Fµ : µ0x0 + µ1x1 + · · ·+ µnxn = 1− (n+ 1− |µ|)ϵ, µjxj ≥ ϵ whenever µj ̸= 0

|xj | ≤ ϵ whenever µj = 0.

Notice that as a polytope Fµ is isomorphic to ∆|µ|−1× In+1−|µ| where ∆r is the
standard r-dimensional simplex and I the unit real interval. Notice in particular
that we have 3n − 1 faces.
The n− 1-dimensional side-cells of Fµ are easily described. Choose an index j
with 0 ≤ j ≤ n. If µj ̸= 0 we set µjxj = ϵ, if µj = 0 we set either xj = ϵ or
xj = −ϵ. As a corollary we see that two faces Fµ and Fµ′ meet in an n− 1-cell
if and only if there exists an index j such that |µj | ̸= |µ′j | and µi = µ′i for all
i ̸= j.
The vertices of F are the points with one coordinate equal to ±(1−nϵ) and all
other coordinates ±ϵ.
We now define a continuous and piecewise smooth map P : ∪µFµ → H by

(2) P : (x0, x1, . . . , xn) 7→
1

y0 + y1 + · · ·+ yn
(y0, y1, . . . , yn)

where yj = |xj | if |xj | ≥ ϵ and yj = ϵeπi(1−xj/ϵ) if |xj | ≤ ϵ. When ϵ is suffi-
ciently small we easily check that P is injective. We define our n-dimensional
Pochhammer cycle Pn to be its image.

Proposition 20.1. — Let β0, β1, . . . , βn be complex numbers. Consider the in-
tegral

B(β0, β1, . . . , βn) =

∫
Pn

ω(β0, . . . , βn)

where

ω(β0, . . . , βn) = tβ0−1
0 tβ1−1

1 · · · tβn−1
n dt1 ∧ dt2 ∧ · · · ∧ dtn.

Then, for a suitable choice of the multivalued integrand, we have

B(β0, . . . , βn) =
1

Γ(β0 + β1 + · · ·+ βn)

n∏
j=0

(1− e−2πiβj )Γ(βj).

Proof. The problem with ω is its multivaluedness. This is precisely the reason
for constructing the Pochhammer cycle Pn. Now that we have our cycle we solve
the problem by making a choice for the pulled back differential form P ∗ω and
integrating it over ∂F . Furthermore, the integral will not depend on the choice
of ϵ. Therefore we let ϵ→ 0. In doing so we assume that the real parts of all βi
are positive. The Proposition then follows by analytic continuation of the βj .
On the face Fµ we define T : Fµ → C by

T : (x0, x1, . . . , xn) =
∏
µj ̸=0

|xj |βj−1eπi(µj−1)βj
∏
µk=0

ϵβj−1eπi(xj/ϵ−1)(βj−1).

This gives us a continuous function on ∂F . For real positive λ we define the
complex power λz by exp(z log λ). With the notations as in (2) we have ti =
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yi/(y0 + · · ·+ yn) and, as a result,

dt1 ∧ dt2 ∧ · · · ∧ dtn =

n∑
j=0

(−1)jyjdy0 ∧ · · · ∧ ˇdyj ∧ · · · dyn

where ˇdyj denotes suppression of dyj . It is straightforward to see that integra-
tion of T (x0, . . . , xn) over Fµ with |µ| < n + 1 gives us an integral of order

O(ϵβ) where β is the minimum of the real parts of all βj . Hence they tend to 0
as ϵ→ 0. It remains to consider the cases |µ| = n+ 1. Notice that T restricted
to such an Fµ has the form

T (x0, . . . , xn) =

n∏
j=0

eπi(µj−1)βj |xj |βj−1.

Furthermore, restricted to Fµ we have

n∑
j=0

(−1)jyjdy0 ∧ · · · ∧ ˇdyj ∧ · · · dyn = dy1 ∧ dy2 ∧ · · · ∧ dyn

and y0 + y1 + · · ·+ yn = 1. Our integral over Fµ now reads

n∏
j=0

µje
πi(µj−1)βj

∫
∆
(1− y1 − . . .− yn)

β0−1yβ1−1
1 · · · yβn−1

n dy1 ∧ · · · ∧ dyn

where ∆ is the domain given by the inequalities yi ≥ ϵ for i = 1, 2, . . . , n and
y1+ · · ·+ yn ≤ 1− ϵ. The extra factor

∏
j µj accounts for the orientation of the

integration domains. The latter integral is a generalisation of the Euler beta-
function integral. Its value is Γ(β0) · · ·Γ(βn)/Γ(β0 + · · · + βn). Adding these
evaluation over all Fµ gives us our assertion.

For the next section we notice that if β0 = 0 the subfactor (1 − e−2πiβ0)Γ(β0)
becomes 2πi.

21. Euler integrals

We now adopt the usual notation from A-hypergeometric functions. Define

I(A,α, v1, . . . , vN ) =

∫
C

t−α

1−
∑N

i=1 vit
ai

dt1
t1

∧ dt2
t2

∧ · · · ∧ dtr
tr
,

where C is an r-cycle which doesn’t intersect the hyperplane 1−
∑N

i=1 vit
ai = 0

for an open subset of v ∈ CN and such that the multivalued integrand can be
defined on C continuously and such that the integral is not identically zero. We
shall specify C in the course of this section.
First note that an integral such as this satisfies the A-hypergeometric equations
easily. The substitution ti → λiti shows that

I(A,α, λa1v1, . . . , λ
anvN ) = λαI(A,α, v1, . . . , vN ).

This accounts for the homogeneity equations. For the ”box”-equations, write
l ∈ L as u−w where u,w ∈ ZN

≥0 have disjoint supports. Then
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2lI(A,α,v) = |u|!
∫
C

t−α+
∑

iuiai − t−α+
∑

iwiai

(1−
∑N

i=1 vit
ai)|u|+1

dt1
t1

∧ dt2
t2

∧ · · · ∧ dtr
tr

where |u| is the sum of the coordinates of u, which is equal to |w| since |u| −
|w| = |l| =

∑N
i=1 lih(ai) = h(

∑
i liai) = 0. Notice that the numerator in the

last integrand vanishes because
∑

i uiai =
∑

iwiai. So 2lI(A,α,v) vanishes.
We now specify our cycle of integration C. Choose r vectors in A such that
their determinent is 1. In the rare instances where such an r-tuple does not
exist we have to work with fractional powers of the ti, but we shall not consider
this complication. After permutation of indices, and change of coordinates if
necessary, we can assume that ai = ei for i = 1, . . . , r (the standard basis of
Rr). Our integral now acquires the form∫

C

t−α

1− v1t1 − · · · − vrtr −
∑N

i=r+1 vit
ai

dt1
t1

∧ dt2
t2

∧ · · · ∧ dtr
tr
.

Perform the change of variables ti → ti/vi for i = 1, . . . , r. Up to a factor
vα1
1 · · · vαr

r we get the integral∫
C

t−α

1− t1 − · · · − tr −
∑N

i=r+1 uit
ai

dt1
t1

∧ dt2
t2

∧ · · · ∧ dtr
tr
,

where the ui are Laurent monomials in v1, . . . , vN . Without loss of generality
we might as well assume that v1 = . . . = vr = 1 so that we get the integral∫

C

t−α

1− t1 − · · · − tr −
∑N

i=r+1 vit
ai

dt1
t1

∧ dt2
t2

∧ · · · ∧ dtr
tr
.

For the r-cycle C we choose the projection of the Pochhammer r-cycle on t0 +
t1+· · ·+tr = 1 to t1, . . . , tr space. Denote it by Cr. By keeping the vi sufficiently
small the hypersurface 1 − t1 − · · · − tr −

∑N
i=r+1 vit

ai = 0 does not intersect
Cr.
To show that we get a non-zero integral we set v = 0 and use the evaluation in
Proposition 20.1. We see that it is non-zero if all αi have non-integral values.
When one of the αi is integral we need to proceed with more care.
We develop the integrand in a geometric series and integrate it over Cr. We
have

t−α

1− t1 − · · · − tr −
∑N

i=r+1 vit
ai

=
∑

mr+1,...,mN≥0

(
|m|

mr+1, . . . ,mN

)
t−α+mr+1ar+1+···+mNaN

(1− t1 − · · · − tr)|m|+1
v
mr+1

r+1 · · · vmN
N

where |m| = mr+1 + · · · + mN . We now integrate over Cr term by term. For
this we use Proposition 20.1. We infer that all terms are zero if and only if
there exists i such that the i-th coordinate of α is integral and positive and the
i-th coordinate of each of ar+1, . . . ,aN is non-negative. In particular this means
that the cone C(A) is contained in the halfspace xi ≥ 0. Moreover, the points
aj = ej with j ̸= i and 1 ≤ j ≤ r are contained in the subspace xi = 0, so
they span (part of) a face of C(A). The set α+ Zr has non-trivial intersection
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with this face because αi ∈ Z. From Theorem 9.1 it follows that our system is
resonant. Thus we conclude

Theorem 21.1. — When HA(α) is nonresonant, the integral I(A,α,v) repre-
sents a non-trivial solution of HA(α).

Furthermore, nonresonance implies irreducibility of HA(α). This means that
analytic continuation of I(A,α,v) gives us a basis of solutions of HA(α). A
fortiori all solutions of the hypergeometric system can be given by linear com-
binations of period integrals of the type I(A,α,v) (but with different integration
cycle).

22. Some examples of Euler integrals

Recall the classical Euler integral for 2F1(a, b, c|z) from Section 2. This is a
one-dimensional integral, whereas the Euler integrals in Theorem 21.1 would be
3-dimensional, since A ⊂ Z3 in this case. We like to show how the 3-dimensional
integral can be reduced to the classical integral.
The integrand of the A-hypergeometric Euler integral reads

ta1t
b
2t

1−c
3

1− t1 − t2 − t3 − zt1t2/t3

dt1
t1

∧ dt2
t2

∧ dt3
t3
.

Replace t2 by t2t3 to get

ta1t
b
2t

b+1−c
3

1− t1 − t2t3 − t3 − zt1t2

dt1
t1

∧ dt2
t2

∧ dt3
t3
.

Now replace t1 by t1/(1 + zt2) and t3 by t3/(1 + t2) to get

ta1t
b+1−c
3 (1 + zt2)

−a(1 + t2)
c−b−1tb2

1− t1 − t3

dt1
t1

∧ dt2
t2

∧ dt3
t3
.

After integration over t1, t3 and the replacement t2 → −u we get up to a
constant factor,

(1− zu)−aub−1(1− u)c−b−1du,

the classical Euler integrand.
In a slightly more general vein we consider the Aomoto-Gel’fand hypergeometric
functions, which are the precursor of A-hypergeometric functions. Let f1, . . . , fn
be n linear forms in k variables x1, . . . , xk where k < n. For any parameters
λ1, . . . , λn consider the integral

I(k, n, λ) =

∫
fλ1
1 · · · fλn

n dx1 ∧ · · · ∧ dxk

as a function of the coefficients of the forms f1, . . . , fn. The integral is taken
over a suitable k-cycle. After a linear change of coordinates we may assume
f1 = x1, . . . , fk = xk. Consider the n-fold Euler integral∫

xλ1
1 · · ·xλk

k t
−λk+1−1
1 · · · t−λn−1

n−k

1− t1fk+1 − · · · − tn−kfn
dx1 ∧ · · · ∧ dxk ∧ dt1 ∧ · · · ∧ dtn−k

Replace ti by ti/fk+i to get
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∫
t
−λk+1

1 · · · t−λn
n−k

1− t1 − · · · − tn−k
xλ1
1 · · ·xλk

k f
λk+1

k+1 · · · fλn
n

dt1 ∧ · · · ∧ dtn−k ∧ dx1 ∧ · · · ∧ dxk
Integrate with respect to t1, . . . , tn−k to recover Aomoto’s integral I(k, n, λ)
with f1 = x1, . . . , fk = xk.
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