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Abstract

We give an elementary proof of the Gel’fand–Kapranov–Zelevinsky theorem that non-resonant A-
hypergeometric systems are irreducible. We also provide a proof of a converse statement.
c⃝ 2011 Royal Netherlands Academy of Arts and Sciences. Published by Elsevier B.V. All rights reserved.

1. Introduction

Let A ⊂ Zr (with r ≥ 1) be a finite set such that:

1. The Z-span of A is Zr .
2. There exists a linear form h such that h(a) = 1 for all a ∈ A.

Let α = (α1, . . . , αr ) ∈ Cr . At the end of the 1980’s Gel’fand, Kapranov and Zelevinsky
[4–6] developed a theory of hypergeometric functions and equations which uses A and α as
starting data. It turns out that the resulting equations contain the classical cases of Appell, Horn,
Lauricella and Aomoto hypergeometric functions.

Let A = {a1, . . . , aN } (with N ≥ r ). Writing the vectors ai in column form we get the
so-called A-matrix

A =


a11 a12 · · · a1N
a21 a22 · · · a2N
...

...

ar1 ar2 · · · ar N

 .
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For i = 1, 2, . . . , r consider the first-order differential operators

Zi = ai1v1∂1 + ai2v2∂2 + · · · + ai N vN ∂N

where ∂ j =
∂

∂v j
for all j .

Let

L = {(l1, . . . , lN ) ∈ ZN
| l1a1 + l2a2 + · · · + lN aN = 0}

be the lattice of integer relations between the elements of A. For every l ∈ L we define the
so-called box operator

�l =

∏
li >0

∂
li
i −

∏
li <0

∂
−li
i .

The system of differential equations

(Zi − αi )Φ = 0 (i = 1, . . . , r)

�lΦ = 0 l ∈ L

is known as the system of A-hypergeometric differential equations and we denote it by HA(α).
We would like to remark that independently, and at around the same time, B. Dwork arrived
at a similar setup for generalized hypergeometric functions. The system of A-hypergeometric
equations is implicit in his book [3].

Let K = C(v1, . . . , vN ) and let H A(α) be the left ideal in K [∂1, . . . , ∂N ] generated by the
operators from HA(α). The quotient K [∂1, . . . , ∂N ]/H A(α) is a K -module. Its K -rank is called
the rank of the system HA(α). Furthermore, the system is called non-resonant if the set α + Zr

has empty intersection with the boundary of C(A), the cone given by

C(A) = {λ1a1 + · · · + λN aN |λi ∈ R≥0}.

The system is called resonant if the intersection is non-empty.
In [6] (corrected in [8]) and [1, Corollary 5.20] the following theorem is shown.

Theorem 1.1 (GKZ, Adolphson). Suppose at least one of the following conditions holds:

1. The toric ideal IA in C[∂1, . . . , ∂N ] generated by the box operators has the Cohen–Macaulay
property.

2. The system HA(α) is non-resonant.

Then the rank of HA(α) is finite and equals the volume of the convex hull Q(A) of the points
of A. The volume is normalized such that a minimal (r − 1)-simplex with integer vertices in
h(x) = 1 has volume 1.

Let p be a generic point in (C∗)N (the space with coordinates v1, . . . , vN ). Then it is known
that the dimension of the C-vector space of local power series solutions around p of HA(α)

equals the rank of HA(α).
The K -module K [∂1, . . . , ∂N ]/H A(α) has a natural left action by the operators ∂i , so it is a D-

module. We shall say that the system HA(α) is irreducible if this D-module has no submodules
beside 0 and the module itself. We call it reducible otherwise. Gel’fand, Kapranov and Zelevinsky
proved in [7, Thm 2.11] the following beautiful theorem.

Theorem 1.2 (GKZ, 1990). Suppose that the system HA(α) is non-resonant. Then HA(α) is
irreducible.
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The proof uses the theory of perverse sheaves and is hard to follow for someone without
this background. It is the purpose of the present paper to give a more elementary proof of this
theorem. This is done in Section 5.

We say that the convex hull Q(A) of A is a pyramid if there is a linear subspace of Rr of
dimension r − 1 which contains all points of A except one. Note that the case r = 1 (and hence
N = 1) is considered a pyramid by this definition. We now formulate a statement converse to
Theorem 1.2,

Theorem 1.3. Suppose that the convex hull Q(A) is not a pyramid. If the system HA(α) is
resonant, then it is reducible.

As far as we could see the latter theorem is not stated as such in the papers of Gel’fand,
Kapranov and Zelevinsky or any other papers. In an original version of the present paper,
Theorem 1.3 contained the condition that the toric ideal IA generated by the box operators should
have the Cohen–Macaulay (CM) property. In a very recent manuscript, Schulze and Walther [10],
after the appearance of a preprint of this text, have managed to prove Theorems 1.2 and 1.3
without the CM condition and where the homogeneity condition (2) on A is dropped. The results
in that paper rely heavily on Walther’s paper [13], which in its turn uses Koszul complexes and
homological algebra around A-hypergeometric systems. In the present paper I decided to adopt
the version of Theorem 1.3 without the CM condition, but with the homogeneity (2) still present.
As for the proof, in the text I shall refer to the necessary places in [13], but give a self-contained
proof for Theorem 1.3 under the CM condition. Since this proof is much easier than the proof of
the unconditional theorem, I hope it has some value in itself.

To show that the pyramidal condition is really necessary, suppose for example that Q(A) is a
pyramid with top a1 and bottom the convex hull of Ã = {a2, . . . , aN }. Suppose that α ∈ Q( Ã),
so our system is resonant. Introduce new coordinates in Rr such that all points of Ã are in the
space x1 = 0. The new A-matrix now has the form

A =


1 0 · · · 0

a21 a22 · · · a2N
...

...

ar1 ar2 · · · ar N


and α = (0, α2, . . . , αr ). Then one easily sees that the box operators do not contain ∂1 and the
first homogeneity equation reads v1∂1 F = 0, i.e. all solutions are independent of v1. Hence all so-
lutions are of the form F(v2, . . . , vN ) and they satisfy the hypergeometric system HÃ(α̃) where
α̃ = (α2, . . . , αr ). If α̃ does not lie in a face of C( Ã) modulo Zr−1, the system HÃ(α̃) is irre-
ducible by Theorem 1.2 and so is HA(α). This explains the pyramidal condition in Theorem 1.3.

2. Contiguity

Consider the system HA(α),

�lΦ = 0, l ∈ L , Z jΦ = α jΦ, j = 1, . . . , r.

Apply the operator ∂i from the left. We obtain

�l∂iΦ = 0, l ∈ L , Z j∂iΦ = (α j − a j i )∂iΦ, j = 1, . . . , r.

In other words, F → ∂i F maps the solution space of HA(α) to the solution space of HA(α −ai ).
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We can phrase this alternatively in terms of D-modules. Denote by H A(α) the left ideal in
K [∂] generated by the hypergeometric operators �l and Z j . Then the map P → P∂i gives a
D-module homomorphism K [∂]/H A(α − ai ) → K [∂]/H A(α). We are interested in the cases
when this is a D-module isomorphism or, equivalently, whether F → ∂i F gives an isomorphism
of solution spaces.

The following theorem was first proven by Dwork in his book [3, Thm 6.9.1]. Another proof
was given in [2, Lemma 7.10]. We present an adaptation of Dwork’s ideas into the notation of
the present paper.

Theorem 2.1 (Dwork). Suppose HA(α) is non-resonant. Then the map F → ∂i F yields an
isomorphism between the solution spaces of HA(α) and HA(α − ai ).

For the proof we need an extra lemma and some notation. Suppose the positive cone C(A) is
given by a finite set F of linear inequalities l(x) ≥ 0, l ∈ F . Assume moreover that the linear
forms l are integral valued on Zr and normalize them so that the greatest common divisor of all
values is 1.

Consider the integral points in C(A). It is not necessarily true that every point in C(A) ∩ Zr

is a linear combination of the ai with non-negative integer coefficients. However, we do have the
following lemma.

Lemma 2.2. There exists a point p ∈ C(A) ∩ Zr such that (p + C(A)) ∩ Zr
⊂ Z≥0 A where

Z≥0 A is the span of A with non-negative integer coefficients.

This is a well-known lemma and we include a proof of it in order to make the paper self-
contained.

Proof. It is clear that there exists a positive integer δ such that for any point (λ1, . . . , λN ) ∈ L⊗R
there exists (m1, . . . , mn) ∈ L such that |mi − λi | ≤ δ. Let us take p = δ(a1 + · · · + aN ).

Suppose we are given a point n ∈ (p + C(A)) ∩ Zr . Then there exist λi ∈ R≥δ and
integers n1 . . . , nN such that n = λ1a1 + · · · + λN aN = n1a1 + · · · + nN aN . The point
(λ1 − n1, . . . , λN − nN ) lies in L ⊗ R. Hence there exists (m1, . . . , m N ) ∈ L such that
|λi − ni − mi | ≤ δ for i = 1, . . . , N . Since λi ≥ δ for every i we find that ni + mi ≥ 0.
Hence n = n1a1 +· · ·+nN aN = (n1 +m1)a1 +· · ·+ (nN +m N )aN , and hence n ∈ Z≥0 A. �

Proof of Theorem 2.1. We will construct an operator P ∈ K [∂] such that P∂i ≡

1(mod H A(α)). In particular, F → P(F) would be the inverse of ∂i , which establishes the
isomorphism.

For any l ∈ F and any differential operator ∂u
= ∂

u1
1 · · · ∂

uN
N we define the valuation

vall(∂u) =
∑N

j=1 u j l(a j ). More generally, for any differential operator P ∈ K [∂] we define
vall(P) to be the minimal valuation of all terms in P .

Let p be as in Lemma 2.2. Suppose vall(∂w) ≥ vall(∂u) + l(p) for every l ∈ F .
Hence

∑N
j=1 l((w j − u j )a j ) ≥ l(p) for all l ∈ F . So, according to Lemma 2.2, the sum∑N

j=1(w j − u j )a j is a lattice point in Z≥0 A. Hence there exist non-negative integers w′

j such

that
∑N

j=1 w′

j a j =
∑N

j=1(w j −u j )a j . Hence ∂w is equivalent to ∂w′

∂u modulo the box operator
�w−w′−u.

Let l ∈ F be given. We show that modulo the ideal H A(α), the operator ∂u is equivalent to
an operator P such that vall(P) > vall(∂u) and vall ′(P) ≥ vl ′(∂

u) for all l ′ ∈ F , l ′ ≠ l. Let
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Zl = −l(α) +
∑N

j=1 l(a j )v j∂ j . Notice that Zl ∈ H A(α) and ∂u Zl = Zl∂
u

+ l(u)∂u. Hence,

N−
j=1

l(a j )v j∂ j∂
u

≡ l(α − u)∂u (mod H A(α)).

For each term on the left we have l(a j ) ≠ 0 ⇒ vall(∂ j∂
u) > vall(∂u). Since, by non-resonance,

l(α − u) ≠ 0, our assertion is proven. Choose kl ∈ Z≥0 for every l ∈ F . By repeated application
of our principle we see that any monomial ∂u is equivalent modulo H A(α) to an operator Q with
vall(Q) ≥ kl + vall(∂u) for all l ∈ F .

In particular, there exists an operator Q, equivalent to 1 and vall(Q) ≥ vall(∂i ) + l(p) for
every l ∈ F . Hence Q is equivalent to an operator P∂i . Summarizing, 1 ≡ P∂i (mod H A(α)).
So F → ∂i F is injective on the solution space of HA(α). �

There is another instance when F → ∂i F is an isomorphism of solution spaces.

Theorem 2.3. Suppose that Q(A) is not a pyramid and that HA(α) is an irreducible system.
Suppose also that the toric ideal IA generated by the box operators has the Cohen–Macaulay
property. Then F → ∂i F gives an isomorphism of solution spaces of HA(α) and HA(α − ai ).

It is very likely that this theorem also holds without the Cohen–Macaulay condition and that
the ingredients for its proof are contained in [13]. However, we were not able to reconstruct it.
We restrict our proof to the case with Cohen–Macaulay condition, which is self-contained.

Proof. Since HA(α) is irreducible, the kernel of F → ∂i F is either trivial or the entire solution
space. In the first case we are done, the map is injective and the solution spaces have the same
dimension (because IA has the Cohen–Macaulay property).

Now suppose we are in the second case, when ∂i F ≡ 0 for every solution F of HA(α). This
is equivalent to the statement ∂i ∈ H A(α) or equivalently, vi∂i ∈ H A(α). Let us write

vi∂i =

−
λ

Aλ�λ +

r−
j=1

B j (Z j − α j ).

The summation over the λ ∈ L is supposed to be a finite summation. Let us assume that we
have chosen the Aλ and Bi such that the maximum of the orders of the Bi is minimal. Call this
minimum m. We assert that m = 0. Suppose m > 0.

We now work over the polynomial ring R = C(v)[X1, . . . , X N ]. For any differential
operator P we write P(X) for the polynomial that we get after we replace ∂ j by X j for all
j in P . Write IA for the ideal in R generated by �l(X). Since the quotient ring R/IA is a
Cohen–Macaulay ring, the linear forms Zi (X) form a regular sequence. In particular this means
that if P1 Z1(X)+· · ·+ Pr Zr (X) = 0 in R/IA, then there exist polynomials ηi j with ηi j = −η j i
such that Pi =

∑r
j=1 ηi j Z j (X) for i = 1, . . . , r .

Let us return to the Aλ and B j above. Note that (Aλ�λ)(X) = Aλ(X)�λ(X) since the box

operators have constant coefficients. Denote the order m part of each B j by B(m)
j . Then the

m + 1st degree part of
∑

j (B j (Z j − αi ))(X) reads
∑

j B(m)
j (X)Z j (X). Since m + 1 > 1 this

degree m + 1 part is zero in R/IA. Hence there exist polynomials η jk with η jk = −ηk j such that

B(m)
j (X) =

∑r
k=1 η jk Zk(X) in R/IA. Denote by E jk the differential operator which we get after

we replace the variables Xb in η jk by their counterparts ∂b. Define B̃ j = B j −
∑r

k=1 E jk(Zk−αk)
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and note that B̃ j has order <m. Moreover,
r−

j=1

B j (Z j − α j ) =

r−
j=1

B̃ j (Z j − α j ) +

r−
j,k=1

E jk(Z j − α j )(Zk − αk).

The last sum, by virtue of the antisymmetry of the E jk and the fact that Z j − α j and Zk − αk
commute for all j, k, is equal to zero in R/IA. Hence

vi∂i ≡

r−
j=1

B̃ j (Z j − α j ) (mod IA)

where the B̃i have order <m. This contradicts the minimality of m. Therefore we conclude that
m = 0. In other words there exist bi ∈ C(v) such that vi∂i ≡

∑r
j=1 b j (Z j − α j )(mod IA).

Since the box operators all have order ≥2, this relation holds exactly.
We now show that the b j are constant. To see this, write the operators Z j explicitly and com-

pare the parts of order 1. Writing Z j = a j1v1∂1 + · · · + a j N vN ∂n (as in the introduction) we get

v1∂i =

r−
j=1

b j (a j1v1∂1 + · · · + a j N vN ∂n)

=

N−
k=1

(b1a1k + · · · + br ark)vk∂k .

Comparison of coefficients of the ∂k gives us the equations
r−

j=1

b j a jk = δik k = 1, . . . , N

in b1, . . . , br where δik is the Kronecker delta. We know that there exists a solution; the rank of
the coefficient matrix is r and hence there is a unique solution. Since all coefficients are constant
the b j must be constant. In other words there exists a linear form m on Rr such that m(a j ) = 0
for all j ≠ i and m(ai ) = 1. But this implies that Q(A) is a pyramid with ai as a top. �

3. Resonant systems

In this section we prove Theorem 1.3. In the final stage of the proof we will need the following
straightforward lemma.

Lemma 3.1. Let F be a face of Q(A) of codimension ≥1. If A is not a pyramid then the volume
of F is strictly less than the volume of Q(A).

Proof of Theorem 1.3. Suppose that HA(α) is resonant and irreducible. Then, by Theorem 3.7
of [13], HA(β) is irreducible for any β ∈ Rr with β ≡ α (mod Zr ). In the case when the toric
ideal IA is Cohen–Macaulay this also follows from Theorem 2.3 which says that for any i the
map F → ∂i F is an isomorphism of solution spaces of HA(α) and HA(α − ai ) and the fact that
the ai span Zr .

Since the system is resonant there exists such a β in a face F of Q(A). Suppose A ∩ F =

{a1, . . . , at }. We assert that there exist non-trivial solutions of the form f = f (v1, . . . , vt ).
Suppose that s = rank(a1, . . . , at ) (after reordering indices if necessary). By an SL(r, Z) change
of coordinates we can ensure that F is given by xs+1 = · · · = xr = 0. Then the coordinate ai j
of a j is zero for i = s + 1, . . . , r and j = 1, . . . , t . Also, βs+1 = · · · = βr = 0. A solution of
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the form f = f (v1, . . . , vt ) satisfies the homogeneity equations
−βi +

t−
j=1

ai jv j∂ j


f = 0, i = 1, . . . , s.

Notice that the homogeneity equations with i = s + 1, . . . , r are trivially satisfied by f .
Consider the box operator �λ with λ ∈ L . Write λ = (λ1, . . . , λN ). The positive support is

the set of indices i where λi > 0; the negative support is the set of indices i where λi < 0.
Suppose the positive support is contained in 1, 2, . . . , t . Then

∑
λi >0 λi ai is in F . Hence

−
∑

λi <0 λi ai is also in F . Since F is a face, all non-zero terms of the latter have index ≤t . So
the negative support is also in 1, 2, . . . , t . Hence

negative support ⊂ {1, . . . , t} ⇐⇒ positive support ⊂ {1, . . . , t}.

If the positive and negative supports of λ contain indices >t then f (v1, . . . , vt ) satisfies �λ f = 0
trivially.

Define a new set Ã = {ã1, . . . , ãt } ⊂ Zs where ã j is the projection of a j on its first s
coordinates. Define a new parameter β̃ similarly. The solutions of the form f (v1, . . . , vt ) of
the original GKZ system satisfy the new GKZ system corresponding to HÃ(β̃). We make the
additional assumption that we choose β and F in such a way that t is minimal. It can be 0 when
α ∈ Zr and β = 0. When t > 0 the new system HÃ(β̃) is non-resonant and the rank equals
the volume of F . However, by Lemma 3.1 this volume is strictly less than Q(A) and therefore
strictly less than the rank of HA(β). Hence the additional equations ∂i F = 0 for i > t define a
proper subspace of the solution space of HA(β). So the system H(β) is reducible and we have a
contradiction.

In the extreme case when t = 0 we have α ∈ Zr and we can take β = 0. The system then has
the constant solution 1. Since, by the pyramidal condition, the rank of HA(β) must be at least 2,
we again get a contradiction with irreducibility of HA(β). �

4. Series solutions

Just as in the classical literature we like to be able to display explicit series solutions
for the A-hypergeometric system. In GKZ theory one chooses γ = (γ1, . . . , γN ) such that
α = γ1a1 + · · · + γN aN and one takes as the starting point the formal Laurent series

ΦL ,γ (v1, . . . , vN ) =

−
l∈L

vl+γ

Γ (l + γ + 1)

where we use the shorthand notation

vl+γ

Γ (l + γ + 1)
=

v
l1+γ1
1 · · · v

lN +γN
N

Γ (l1 + γ1 + 1) · · ·Γ (lN + γN + 1)
.

Note that there is a freedom of choice in γ through shifts over L ⊗ R. A priori this series is
formal, i.e. there is no convergence. However by making proper choices for γ we do end up with
series that have an open domain of convergence in CN .

Choose a subset I ⊂ {1, 2, . . . , N } with |I| = N − r such that ai with i ∉ I are linearly
independent. In [5, Prop 1] we find the following proposition (albeit in a different formulation).

Proposition 4.1. Define πI : L → ZN−r by l → (li )i∈I . Then πI is injective and its image is a
sublattice of ZN−r of index | det(ai )i ∉I |.
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We define ∆I = | det(ai )i ∉I |. Choose γ such that γi ∈ Z for i ∈ I . The formal solution
series

Φ =

−
l∈L

∏
i∈I

v
li +γi
i

Γ (li + γi + 1)

∏
i ∉I

v
li +γi
i

Γ (li + γi + 1)

is now a power series because the summation runs over the polytope li +γi ≥ 0 for i ∈ I and the
other l j are dependent on li , i ∈ I . Terms where li +γi < 0 do not occur because 1/Γ (li +γi +1)

is zero when li + γi is a negative integer. By slight abuse of language will call the corresponding
simplicial cone li ≥ 0 for i ∈ I the sector of summation with index I .

Denote the resulting series expansion by ΦI,γ . The following statement, which is a direct
consequence of estimates using Stirling’s formula for Γ , says that there is a non-trivial region of
convergence.

Proposition 4.2. Let (ρ1, . . . , ρN ) ∈ RN be such that ρ1l1 + · · · + ρN lN > 0 for all l ∈ L
with ∀i ∈ I : li ≥ 0. Then ΦI,γ converges for all v ∈ CN with |vi | = tρi for sufficiently small
t ∈ R>0.

A proof can be found for example in [12]. An N -tuple ρ such that ρ1l1 + · · · + ρN lN > 0 for all
l ∈ L with ∀i ∈ I : li ≥ 0 will be called a convergence direction.

The following statement is a direct corollary of Proposition 4.1.

Corollary 4.3. With the notation as above, the number of distinct choices modulo L for γ such
that ∀i ∈ I : γi ∈ Z is ∆I .

There is one important assumption that we need in order to make this approach work, namely
the guarantee that not too many of the arguments li + γi are a negative integer. Otherwise we
might even end up with a power series which is identically zero. The best way to do is to impose
the condition γi ∉ Z for i ∉ I . Geometrically, since α =

∑N
i=1 γi ai ≡

∑
i ∉I γi ai (mod Zr ),

this condition comes down to the requirement that α + Zr does not contain points in a face of
the simplicial cone spanned by ai with i ∉ I . Unfortunately this is stronger than the requirement
of non-resonance of HA(α), as faces of the individual simplicial cones, not necessarily on the
boundary of C(A), are involved. However, the condition of non-resonance does turn out to be
useful.

Proposition 4.4. Let I be as above and suppose that the system HA(α) is non-resonant. Then
there exists an open cone C in L ⊗ R such the series ΦI,γ has non-zero terms for all l ∈ C.

Proof. We will use the following observation. The i th coordinate li of l ∈ L can be considered
as a linear form on L . We shall do so in this proof. Suppose we have a relation

∑N
i=1 λi li = 0

with λi ∈ R. Then there exists a linear form m on Rr such that m(ai ) = λi for i = 1, . . . , N .
Denote the set of indices i for which γi ∉ Z by R. When |R| = r all terms of ΦI,γ are non-

zero and our statement is proven. Suppose |R| < r . Then there exist linear relations between the
forms li with λi = 0 when i ∈ R. Consider the convex hull D of the forms li for i ∉ R. Suppose
that this hull contains the trivial form 0. In other words, there exists a relation with coefficients
λi ∈ R≥0, not all zero, with λi = 0 for all i ∈ R. Hence, by our observation, there exists a non-
trivial form m on Rr such that m(ai ) = λi for all i . Hence we have found a non-trivial form with
m(ai ) ≥ 0 for all i and m(ai ) = 0 for i ∈ R. Therefore the R≥0-span of ai , i ∈ R, is contained
in a face F of C(A). Furthermore, α =

∑N
i=1 γi ai ≡

∑
i∈R γi ai (mod Zr ). Hence modulo Zr
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the vector α lies in the face F . This contradicts our non-resonance assumption and therefore the
convex hull D does not contain 0. Consequently, the set of inequalities li ≥ 0, i ∉ R, has a
polyhedral cone with non-empty interior as the solution space in RN−r . The terms in ΦI,γ with
indices inside this cone are non-zero. �

The following theorem was one of the discoveries made by Gel’fand, Kapranov and
Zelevinsky.

Theorem 4.5. Let ρ be a convergence direction. Then there exists a regular triangulation T of
A such that the summation sectors for which ρ is a convergence direction are given by J c where
J runs through the (r − 1)-simplices in T .

In order to proceed it is now important that different choices of summation sectors give
independent series solutions. For this we require the following condition.

Definition 4.6. For any subset J ⊂ {1, 2, . . . , N } define AJ = {a j | j ∈ J } and let Q(AJ ) be the
convex hull of the points in AJ .

Let T be a regular triangulation of A. The parameter α will be called T -non-resonant if α+Zr

does not contain a point on the boundary of any cone over an (r −1)-simplex Q(AJ ) with J ∈ T .
We call the system T -resonant otherwise.

Notice that the T -non-resonance condition implies the non-resonance condition. Let us
assume that α is T -non-resonant. For any I = J c with J ∈ T and one of the Vol(Q(AJ ))

choices of γ we get the series ΦI,γ .

Theorem 4.7. Under the T -non-resonance condition the power series solutions just constructed
form a basis of solutions of HA(α).

Proof. To show that the solutions are independent it suffices to show that for any two distinct
summation sectors I and I ′ the values of γ1, . . . , γN , as chosen in ΦI and ΦI ′ , are distinct
modulo the lattice L . Suppose they are not distinct modulo L . Then there exists an index i ∈ I ′,
but i ∉ I , such that γi ∈ Z. But this is contradicted by our T -non-resonance assumption.

For every J ∈ T we get Vol(Q(AJ )) solutions by the different choices of γ . Summing over
J ∈ T shows that we obtain

∑
J∈T Vol(Q(AJ )) = Vol(Q(A)) independent solutions. �

Given a regular triangulation we can consider the union of all summation domains in L . More
precisely, define supp(T ) to be the convex closure of ∪J∈T {l ∈ L|li ≥ 0 for all i ∈ J c

}. Then
supp(T ) will be the common support of all series ΦI with I c

∈ T . More precisely, denote
the set of power series in v with support in supp(T ) by C[[v]]T . Note that this set forms a
ring by the obvious multiplication. The coefficient ring C can be extended to the ring of finite
linear combinations of powers vγ to get the ring denoted by C[vγ

][[v]]T . Note that the series
constructed above all belong to this ring. In order to incorporate solutions in T -resonant cases
we need to introduce logarithms of the vi and extend our ring to the so-called Nilsson ring
C[log(v), vγ

][[v]]T (see [11]). We quote the following theorem.

Theorem 4.8 (Saito–Sturmfels–Takayama). Suppose HA(α) is non-resonant. For any regular
triangulation of Q(A) there exists a space of solutions to HA(α) in the ring C[log(v), vγ

][[v]]T
of C-dimension Vol(A).

By a theorem of Adolphson [1, Corollary 5.20] the rank of HA(α) equals Vol(A) when the
system is non-resonant. Hence we get the following.
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Corollary 4.9. When HA(α) is non-resonant the system of solutions in Theorem 4.8 provides a
basis of solutions to HA(α) in C[log(v), vγ

][[v]]T .

5. Non-resonant systems

In this section we prove Theorem 1.2. Suppose we have a non-resonant system and an operator
P ∈ K [∂] which annihilates a non-trivial solution f in the solution space of HA(α).

First we show the existence of such an f which has the form of a power series of the type Φγ ,
as in the previous section. Fix a convergence direction ρ1, . . . , ρN and let T be the corresponding
regular triangulation of Q(A).

Corollary 4.9 provides a basis of solutions in C[log(v), vγ
][[v]]T . Consider these solutions as

analytic functions on an open neighbourhood of the set V given by |v1| = tρ1 , . . . , |vN | = tρN

for t sufficiently small. The fundamental group π1(V ) is generated by v j = tρ j e2π i x , x ∈ [0, 1]

for any j and vi fixed for all i ≠ j . The corresponding monodromy group is an abelian group and
so is its restriction to the common solution space of HA(α) and P( f ) = 0. Since the monodromy
group is abelian, there exists a one-dimensional invariant subspace. The character, with which
π1(V ) acts on this space, uniquely determines a solution of the form Φγ .

In the terminology of [9, Thm 2.7] the solution Φγ is a fully supported solution by virtue
of Proposition 4.4. Theorem 2.7 of [9] implies that the operator P lies in H A(α). Hence we
conclude that HA(α) is irreducible. �
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