Recurrent sequences coming from Shimura curves

Frits Beukers

On the occasion of Cam Stewart's 60th birthday

An example

Recall

$$
(n+1)^{2} u_{n+1}=\left(11 n^{2}+11 n+3\right) u_{n}+n^{2} u_{n-1}
$$

Let a_{n} be the solution with starting values $a_{0}=0, a_{1}=5, \ldots$ and b_{n} the solution with $b_{0}=1, b_{1}=3, b_{2}=19, b_{3}=147, \ldots$. Then $a_{n} / b_{n} \rightarrow \zeta(2)$ as $n \rightarrow \infty$ fast enough to prove irrationality.

Recurrences and ODE's

Consider the generating function

$$
u(z)=\sum_{n \geq 0} b_{n} z^{n}
$$

Then $u(z)=1+3 z+19 z^{2}+147 z^{3}+\cdots$ satisfies

$$
z\left(z^{2}+11 z-1\right) u^{\prime \prime}+\left(3 z^{2}+22 z-1\right) u^{\prime}+(z+3) u=0
$$

This is a linear second order differential equation with a G-function solution (i.e. coefficients have denominators of at most exponential growth).

The modular connection

Basis of solutions of $z\left(z^{2}+11 z-1\right) u^{\prime \prime}+\left(3 z^{2}+22 z-1\right) u^{\prime}+(z+3) u=0$ is

$$
y_{1}=u(z), \quad y_{2}=u(z) \log (z)+v(z)
$$

where $v(z)=5 z+75 z^{2} / 2+5565 z^{3} / 18+\cdots$
The map $z \mapsto \frac{1}{2 \pi i} y_{2} / y_{1}$ maps \mathbb{P}^{1} to complex upper half plane \mathscr{H}. Its inverse is the map

$$
\mathscr{H} \rightarrow \mathscr{H} / \Gamma_{1}(5) \hookrightarrow \mathbb{P}^{1}
$$

where $\Gamma_{1}(5) \subset S L(2, \mathbb{Z})$ is congruence subgroup modulo 5 .

The challenge

Find recurrences of the form

$$
P(n) u_{n+1}=Q(n) u_{n}+R(n) u_{n-1}
$$

where P, Q, R are polynomials of degree 2 , which allow a solution u_{n} whose coefficients are at most exponential in n.
Alternatively, one can try to find second order linear differential equations of the form

$$
z\left(z^{2}+a_{1} z+a_{0}\right) y^{\prime \prime}+\left(b_{2} z^{2}+b_{1} z+b_{0}\right) y^{\prime}+\left(c_{1} z+c_{0}\right) y=0
$$

which have a Siegel G-function solution.

An idea

Start with congruence subgroup 「 of $S L(2, \mathbb{Z})$ with four cusps and $X(\Gamma)$ genus zero. The map

$$
\mathscr{H} \rightarrow \mathscr{H} / \Gamma
$$

gives rise to a second order linear differential equation of the desired kind.
This gives us 5 more cases.

Chudnovsky's idea

Start with an arithmetic quaternion group $\Gamma \subset S L(2, \mathbb{R})$ and then consider $\mathscr{H} \rightarrow \mathscr{H} / \Gamma$.
Example of Lamé equation from Chudnovsky's Theta functions, 1989

$$
P(z) u^{\prime \prime}+\frac{1}{2} P^{\prime}(z) u^{\prime}+\left(-\frac{3}{128}-\frac{3}{64} z\right) u=0
$$

where $P(z)=z(z-1)(z-1 / 2)$.
Recurrence

$$
(n+1)(n+1 / 2) u_{n+1}=\left(n^{2}+3 / 64\right) u_{n}-((n-1)(2 n-1)-3 / 32) u_{n-1}
$$

Quaternion groups

Let B be a quaternion algebra over totally real number field F. More concrete, take $a, b \in F^{*}$ and define $B=F \oplus F i \oplus F j \oplus F k$ with

$$
i^{2}=a, \quad j^{2}=b, \quad k=i j=-j i .
$$

Let \mathscr{O} be a maximal order of B and \mathscr{O}^{\times}its units.
Any embedding $\iota: F \hookrightarrow \mathbb{R}$ induces an embedding of B into either $M_{2}(\mathbb{R})(2 \times 2$ real matrices) or \mathbb{H} (Hamilton's quaternions).
Suppose that $B \hookrightarrow M_{2}(\mathbb{R})$ for exactly one place $\iota: F \hookrightarrow \mathbb{R}$. Then we call \mathscr{O}^{\times}, embedded in $M_{2}(\mathbb{R})$, an arithmetic quaternion group. More generally, any subgroup $\Gamma \subset B$ commensurable with \mathscr{O}^{\times}is called an arithmetic quaternion group.
Commensurable means that $\Gamma \cap \mathscr{O}^{\times}$has finite index in both Γ and \mathscr{O}^{\times}.

Takeuchi's list

A discrete subgroup $\Gamma \subset S L(2, \mathbb{R})$ is said to be of type $(1 ; e)$ if $E_{\Gamma}:=\mathscr{H} / \Gamma$ has genus one and the projection $\mathscr{H} \rightarrow \mathscr{H} / \Gamma$ ramifies above exactly one point of order e.
Such groups are generated by two elements A, B with the single relation $[A, B]^{e}=-\mathrm{Id}$. The group is determined by the traces of A, B and $A B$.

Theorem (Takeuchi, 1983)

There exist, up to conjugation, precisely 71 arithmetic quaternion groups of type $(1 ; e)$.

The problem

Let Γ be an arithmetic group of type $(1 ; e)$. The problem is twofold,
(1) Determine a Weierstrass equation for \mathscr{H} / Γ of the form $y^{2}=P(x)$, (P cubic and monic).
(2) Determine the constant C (accesory parameter) so that the covering $\mathscr{H} \rightarrow \mathscr{H} / \Gamma /$ inv is determined by

$$
P(z) y^{\prime \prime}+\frac{1}{2} P^{\prime}(z) y^{\prime}+(C-n(n+1) z / 4) y=0
$$

with $n=(-1+1 / e) / 2$.

Sijsling's thesis

In the recent PhD-thesis of Jeroen Sijsling he tackled the first problem and found almost all j-invariants in Takeuchi's list.
Techniques used:
(1) If Γ is commensurable with a triangle group there exists Belyi $\operatorname{map} E_{\Gamma}$ to \mathbb{P}^{1}.
(2) According to Shimura-Deligne theory there exists a canonical model of E_{Γ}, defined over the narrow classfield of F, with good reduction outside a known set of primes.
(3) Using explicit calculation of Hecke operators T_{p} on $H_{1}\left(E_{\Gamma}, \mathbb{Z}\right)$ and the Eichler-Shimura theorem one determines the zeta-function of E_{Γ} at p for a large set of primes p.
(9) To select a j-invariant in an isogeny class one determines the reduction $\bmod p$ of E_{Γ} at the primes p of multiplicative reduction using a refinement of Cerednik-Drin'feld by Boutot-Zink.
(5) Prove correctness for the candidate j-invariants.

A sample \boldsymbol{j}-invariant

There are three arithmetic quaternion groups of type $(1 ; 7)$ not commensurable with a triangle group. The j-invariants of the Shimura curve $E(\Gamma)$ are the conjugates of

$$
\frac{-1448892 \alpha^{2}-1930931 \alpha+1318350}{7 \cdot 13^{2}}
$$

where α is a zero of $x^{3}-x^{2}-2 x+1$.
The corresponding quaternion algebra is defined over the field $\mathbb{Q}(\alpha)$ and the discriminant is $\wp_{7} \wp_{13} \infty_{1} \infty_{2}$. Discriminant of $\mathbb{Q}(\alpha)$ is 49 .

Determination of the accessory parameter

Recall, we must determine $P(z)$ and C in

$$
P(z) y^{\prime \prime}+\frac{1}{2} P^{\prime}(z) y^{\prime}+(C-n(n+1) z / 4) y=0
$$

with $n=(-1+1 / e) / 2$. We know $P(z)$ from the j-invariant computation. As yet there is no systematic method to compute C. Numerically, given $P(z)$ and n and C, one can compute generators of the monodromy group and their traces. By interpolation determine C as precise as possible to obtain the desired traces given by the quaternion group. Then guess an algebraic value of C.

Example of accessory parameter

We take the two ($1 ; 4$)-groups Γ from Takeuchi's list corresponding to the quaternion algebra over $\mathbb{Q}(\sqrt{2})$ of discriminant $\wp_{7} \infty$. The curves \mathscr{H} / Γ correspond to the conjugates of

$$
y^{2}=P(x)=x(x-1)(x-(3-2 \sqrt{2}) / 4)
$$

Numerical approximation (50 decimal places) indicates that $C=(2-\sqrt{2}) / 2^{4}$ in

$$
P(z) y^{\prime \prime}+\frac{1}{2} P^{\prime}(z) y^{\prime}+(C+15 z / 256) y=0
$$

