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Definition: An entire function f(z) given by a
powerseries

o0
Z a

is called an E-function if

1. ap,ay,ao,... cQ

2. f(z) satisfies a linear differential equation
with coefficients in Q(z).

3. h(ag,ai1,...,any) = O(N) for all N.

Here, h(aq,...,an) denotes the logarithmic ab-
solute height of the vector (ag,...,an) € Q™.

In Siegel’s original definition condition 3) reads

h(ag,aq1,...,ay) = o(Nlog N)



Examples:

o0 Zk
exp(z) = Tl
k=0 """
o0 ZQI{:
Jo(—2%) = Y —
=0 k'k!

where ap = 1l,a1 = 3,ap = 19,a3 = 147,... are
the Apéry numbers corresponding to Apéry’s
irrationality proof of {(2).

Differential equations
y —y=0
2y +y — 42y =0

2 "1 (112 _3z)y”_(22—|—22z 1)y (Z‘|‘3)y_o



Let f1(2),..., fn(2) be E-functions satisfying a
system of n differential equations
Y1 Y1
d
Yn YUn
where A is an n x n-matrix with entries in Q(z2).

We assume that the common denominator of
the entries is T'(z).

dz

Theorem (Siegel-Shidlovskii, 1929, 1956).
Let « € Q and aT(a) # 0. Then

degtr@(fl(a)a f2(a)7 IR fN(a)) —
degtre iy (f1(2): f2()s - fu(2))



T he differential galois group

Let Y(z) be an n x n invertible matrix with
functional entries y;;(z) for 4,57 = 1,...n such
that

d
—Y = AY.
dz

Consider the ring R = C(2)[X; jl; j=1,..n and
the ideal of relations I defined by the kernel of
the natural evaluation map

P(X;;) — P(y;(2)).
The group GL(n,C) acts on R via
(X55) — (X;5)g
for any g € GL(n,C).

T he differential galois group G of the differen-
tial equation is the subgroup of GL(n,C) given

by
G={9€GL(n,C)|g:I—1}



As a result any g € G acts also on the y;; via
Y — Yg.

Remark: When f is a solution of an n-th order
equation, the vector of functions f, f/,..., f(n=1)
satisfies a system of n first order equations.

Algorithms to compute G by Kovacic for n = 2
(1986) and by Singer, Ulmer forn = 3 (1990’s).

Theoretical algorithm for general n by Com-
point,Singer (1999) for reductive G and Hrushovski
(2003) in complete generality.



Theorem Let G be the differential galois group
of a linear system of n first order differential
equations. Then,

1. G is a linear algebraic group.

2. For any solution (f1(2),..., fn(2)) the di-
mension of its orbit under G equals the
transcendence degree of f1(z),..., fn(2) over

Q(2).

Example

e 12

=0 (k1)< (6k)!
and f(z%) is an E-function satisfying a differen-
tial equation of order 5. The differential galois
group is SO(5,C). Dimension of its orbits is 4
and we have a quadratic form @ with coeffi-

cients in Q(z) such that
QUL ") =1




Explicitly,
2 ((2K)1?

f(z) = (29162)"
;z;)(kﬂ)Q(Gk)!
satisfies
FIOF = (2)
where
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Theorem (Nesterenko-Shidlovskii, 1996). Let
f1(2),..., fn(z) be E-functions which satisfy a
system of n first order equations. Then there
is a finite set S such that for every £ € Q,£ ¢ S
the following statement holds. To any relation
of the form P(f1(§),..., fn(§)) = 0 where P ¢
Q[X71,...,Xn] is homogeneous, there exists a
Q € Q[z, X1,...,Xn], homogeneous in X;, such

that Q(z, f1(z),..., fn(2)) =0 and
P(Xq1,...,Xn) =Q( X1,...,Xn)

Roughly speaking, any algebraic relation over
Q between f1(€),..., fn(€) at some point & €
Q — S comes from specialisation at z = ¢ of
some functional algebraic relation between f1(z),...,

over Q(z).

The exceptional set S can be computed from
the polynomial relations over Q(z) between the

Ji-



Theorem (Y.André, 2000) Let f(z) be an E-
function. Then f(z) satisfies a differential equa-
tion of the form

m—1
2My(m) 4 > 2P (2)yF) =
k=0

where ¢i(2) € Q[z] has degree < m — k.

Corollary Let f(z) be an E-function with coef-
ficients in Q and suppose that f(1) = 0. Then
1 is an apparent singularity of the minimal dif-
ferential equation satisfied by f.

Proof Consider f(z)/(1 — z). This is again
E-function. So its minimal differential equa-
tion has a basis of analytic solutions at z = 1.
This means that the original differential equa-
tion for f(z) has a basis of analytic solutions
all vanishing at z = 1. S0 z = 1 is apparent
singularity.
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Corollary: w is transcendental.

Suppose o = 2w algebraic. Then the FE-
function e**—1 vanishes at z = 1. The product
over all conjugate E-functions is an E-function
with rational coefficients vanishing at z = 1.
So the above corollary applies. However linear
forms in exponential functions satisfy differen-
tial equations with constant coefficients, con-
tradicting existence of a singularity at z = 1.

By a combination of André’'s Theorem and dif-
ferential galois theory one can show more.

Theorem (FB, 2004) Let f(z) be an E-function
and suppose that f(¢) = 0 for some ¢ € Q*.
Then £ is an apparent singularity of the mini-
mal differential equation satisfied by f.

Corollary The Nesterenko-Shidlovskii theorem
holds with S = singularities U O.
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Relations between values at singular points.
Example f(z) = (z—1)e?. It satisfies (z—1)f/ =
zf and f(1) = 0.

More generally,

f1(2) f1(2)
(z—OF| = A(z) |
fn(2) fn(2)
where A(§) = O. Then,
p f1(§)
A(S)E : = 0.
fn(&)

Theorem Let f(z) = (f1(2),..., fn(2)) be E-
function solution of system of n first order
equations and suppose they are Q(z)-linear in-
dependent. Then there exists an n X n- matrix
B with entries in Q[z] and det(B) # 0 and
E-functions e(z) = (e1(2),...,en(2z) such that
f(z) = Be(z) and e(z) satisfies system of equa-
tions with singularities in the set {0, c0}.
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