Exploring E-functions

Waterloo, 17-19 June 2004

On the occasion of Dale Brownawell's 60-th birthday

Definition: An entire function $f(z)$ given by a powerseries

$$
\sum_{n=0}^{\infty} \frac{a_{k}}{k!} k^{k}
$$

is called an E-function if

1. $a_{0}, a_{1}, a_{2}, \ldots \in \overline{\mathbb{Q}}$
2. $f(z)$ satisfies a linear differential equation with coefficients in $\overline{\mathbb{Q}}(z)$.
3. $h\left(a_{0}, a_{1}, \ldots, a_{N}\right)=O(N)$ for all N.

Here, $h\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ denotes the logarithmic absolute height of the vector $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \overline{\mathbb{Q}}^{n}$.

In Siegel's original definition condition 3) reads

$$
h\left(a_{0}, a_{1}, \ldots, a_{N}\right)=o(N \log N)
$$

Examples:

$$
\begin{gathered}
\exp (z)=\sum_{k=0}^{\infty} \frac{z^{k}}{k!} \\
J_{0}\left(-z^{2}\right)=\sum_{k=0}^{\infty} \frac{z^{2 k}}{k!k!} \\
f(z)=\sum_{k=0}^{\infty} \frac{a_{k}}{k!} z^{k}
\end{gathered}
$$

where $a_{0}=1, a_{1}=3, a_{2}=19, a_{3}=147, \ldots$ are the Apéry numbers corresponding to Apéry's irrationality proof of $\zeta(2)$.

Differential equations

$$
\begin{gathered}
y^{\prime}-y=0 \\
z y^{\prime \prime}+y^{\prime}-4 z y=0 \\
z^{2} y^{\prime \prime \prime}-\left(11 z^{2}-3 z\right) y^{\prime \prime}-\left(z^{2}+22 z-1\right) y^{\prime}-(z+3) y=0
\end{gathered}
$$

Let $f_{1}(z), \ldots, f_{n}(z)$ be E-functions satisfying a system of n differential equations

$$
\frac{d}{d z}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=A\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

where A is an $n \times n$-matrix with entries in $\overline{\mathbb{Q}}(z)$. We assume that the common denominator of the entries is $T(z)$.

Theorem (Siegel-Shidlovskii, 1929, 1956). Let $\alpha \in \overline{\mathbb{Q}}$ and $\alpha T(\alpha) \neq 0$. Then

$$
\begin{aligned}
& \operatorname{degtr}_{\overline{\mathbb{Q}}}\left(f_{1}(\alpha), f_{2}(\alpha), \ldots, f_{n}(\alpha)\right)= \\
& \operatorname{degtr}_{\mathbb{C}(z)}\left(f_{1}(z), f_{2}(z), \ldots, f_{n}(z)\right)
\end{aligned}
$$

The differential galois group

Let $Y(z)$ be an $n \times n$ invertible matrix with functional entries $y_{i j}(z)$ for $i, j=1, \ldots n$ such that

$$
\frac{d}{d z} Y=A Y
$$

Consider the ring $R=\mathbb{C}(z)\left[X_{i, j}\right]_{i, j=1, \ldots, n}$ and the ideal of relations I defined by the kernel of the natural evaluation map

$$
P\left(X_{i j}\right) \mapsto P\left(y_{i j}(z)\right) .
$$

The group $G L(n, \mathbb{C})$ acts on R via

$$
\left(X_{i j}\right) \mapsto\left(X_{i j}\right) g
$$

for any $g \in G L(n, \mathbb{C})$.
The differential galois group G of the differential equation is the subgroup of $G L(n, \mathbb{C})$ given by

$$
G=\{g \in G L(n, \mathbb{C}) \mid g: I \rightarrow I\}
$$

As a result any $g \in G$ acts also on the $y_{i j}$ via $Y \mapsto Y g$.

Remark: When f is a solution of an n-th order equation, the vector of functions $f, f^{\prime}, \ldots, f^{(n-1)}$ satisfies a system of n first order equations.

Algorithms to compute G by Kovacic for $n=2$ (1986) and by Singer, Ulmer for $n=3$ (1990's).

Theoretical algorithm for general n by Compoint,Singer (1999) for reductive G and Hrushovski (2003) in complete generality.

Theorem Let G be the differential galois group of a linear system of n first order differential equations. Then,

1. G is a linear algebraic group.
2. For any solution $\left(f_{1}(z), \ldots, f_{n}(z)\right)$ the dimension of its orbit under G equals the transcendence degree of $f_{1}(z), \ldots, f_{n}(z)$ over $\overline{\mathbb{Q}}(z)$.

Example

$$
f(z)=\sum_{k=0}^{\infty} \frac{((2 k)!)^{2}}{(k!)^{2}(6 k)!} z^{k}
$$

and $f\left(z^{4}\right)$ is an E-function satisfying a differential equation of order 5. The differential galois group is $S O(5, \mathbb{C})$. Dimension of its orbits is 4 and we have a quadratic form Q with coefficients in $\mathbb{Q}(z)$ such that

$$
Q\left(f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}, f^{\prime \prime \prime \prime \prime}\right)=1
$$

Explicitly,

$$
f(z)=\sum_{k=0}^{\infty} \frac{((2 k)!)^{2}}{(k!)^{2}(6 k)!}(2916 z)^{k}
$$

satisfies

$$
\mathbf{F}^{t} \mathcal{Q} \mathbf{F}=(z)
$$

where

$$
\mathbf{F}=\left(\begin{array}{c}
f(z) \\
D f(z) \\
D^{2} f(z) \\
D^{3} f(z) \\
D^{4} f(z)
\end{array}\right), \quad D=z \frac{d}{d z}
$$

and

$$
\mathcal{Q}=\left(\begin{array}{ccccc}
z-324 z^{2} & -18 z & 198 z & -486 z & 324 z \\
-18 z & -\frac{10}{9} & \frac{23}{2} & -28 & 18 \\
198 z & \frac{23}{2} & -120 & 297 & -198 \\
-486 z & -28 & 297 & -729 & 486 \\
324 z & 18 & -198 & 486 & -324
\end{array}\right)
$$

Theorem (Nesterenko-Shidlovskii, 1996). Let $f_{1}(z), \ldots, f_{n}(z)$ be E-functions which satisfy a system of n first order equations. Then there is a finite set S such that for every $\xi \in \overline{\mathbb{Q}}, \xi \notin S$ the following statement holds. To any relation of the form $P\left(f_{1}(\xi), \ldots, f_{n}(\xi)\right)=0$ where $P \in$ $\overline{\mathbb{Q}}\left[X_{1}, \ldots, X_{n}\right]$ is homogeneous, there exists a $Q \in \overline{\mathbb{Q}}\left[z, X_{1}, \ldots, X_{n}\right]$, homogeneous in X_{i}, such that $Q\left(z, f_{1}(z), \ldots, f_{n}(z)\right) \equiv 0$ and

$$
P\left(X_{1}, \ldots, X_{n}\right)=Q\left(\xi, X_{1}, \ldots, X_{n}\right)
$$

Roughly speaking, any algebraic relation over $\overline{\mathbb{Q}}$ between $f_{1}(\xi), \ldots, f_{n}(\xi)$ at some point $\xi \in$ $\overline{\mathbb{Q}}-S$ comes from specialisation at $z=\xi$ of some functional algebraic relation between $f_{1}(z), \ldots$, over $\overline{\mathbb{Q}}(z)$.

The exceptional set S can be computed from the polynomial relations over $\overline{\mathbb{Q}}(z)$ between the f_{i}.

Theorem (Y.André, 2000) Let $f(z)$ be an E function. Then $f(z)$ satisfies a differential equation of the form

$$
z^{m} y^{(m)}+\sum_{k=0}^{m-1} z^{k} q_{k}(z) y^{(k)}=0
$$

where $q_{k}(z) \in \overline{\mathbb{Q}}[z]$ has degree $\leq m-k$.

Corollary Let $f(z)$ be an E-function with coefficients in \mathbb{Q} and suppose that $f(1)=0$. Then 1 is an apparent singularity of the minimal differential equation satisfied by f.

Proof Consider $f(z) /(1-z)$. This is again E-function. So its minimal differential equation has a basis of analytic solutions at $z=1$. This means that the original differential equation for $f(z)$ has a basis of analytic solutions all vanishing at $z=1$. So $z=1$ is apparent singularity.

Corollary: π is transcendental.

Suppose $\alpha:=2 \pi i$ algebraic. Then the E function $e^{\alpha z}-1$ vanishes at $z=1$. The product over all conjugate E-functions is an E-function with rational coefficients vanishing at $z=1$. So the above corollary applies. However linear forms in exponential functions satisfy differential equations with constant coefficients, contradicting existence of a singularity at $z=1$.

By a combination of André's Theorem and differential galois theory one can show more.

Theorem (FB, 2004) Let $f(z)$ be an E-function and suppose that $f(\xi)=0$ for some $\xi \in \overline{\mathbb{Q}}^{*}$. Then ξ is an apparent singularity of the minimal differential equation satisfied by f.

Corollary The Nesterenko-Shidlovskii theorem holds with $S=$ singularities $\cup 0$.

Relations between values at singular points. Example $f(z)=(z-1) e^{z}$. It satisfies $(z-1) f^{\prime}=$ $z f$ and $f(1)=0$.

More generally,

$$
(z-\xi)^{k}\left(\begin{array}{c}
f_{1}(z) \\
\vdots \\
f_{n}(z)
\end{array}\right)=A(z)\left(\begin{array}{c}
f_{1}(z) \\
\vdots \\
f_{n}(z)
\end{array}\right)
$$

where $A(\xi) \neq O$. Then,

$$
A(\xi) \frac{d}{d z}\left(\begin{array}{c}
f_{1}(\xi) \\
\vdots \\
f_{n}(\xi)
\end{array}\right)=0
$$

Theorem Let $\mathbf{f}(z)=\left(f_{1}(z), \ldots, f_{n}(z)\right)$ be E function solution of system of n first order equations and suppose they are $\overline{\mathbb{Q}}(z)$-linear independent. Then there exists an $n \times n$ - matrix B with entries in $\overline{\mathbb{Q}}[z]$ and $\operatorname{det}(B) \neq 0$ and E-functions $\mathrm{e}(z)=\left(e_{1}(z), \ldots, e_{n}(z)\right.$ such that $\mathrm{f}(z)=B \mathrm{e}(z)$ and $\mathrm{e}(z)$ satisfies system of equations with singularities in the set $\{0, \infty\}$.

