
Unitary monodromy of Lamé differential operators
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Abstract

The classical second order Lamé equation contains a so-called accessory parameter B. In
this paper we study for which values of B the Lamé equation has a monodromy group which
is conjugate to a subgroup of SL(2,R) (unitary monodromy with indefinite hermitian
form). We refomulate the problem as a spectral problem and give an asymptotic expansion
for the spectrum.

1 Introduction

Consider the differential equation in the complex plane

P (z)y′′ +
1
2
P ′(z)y + (

z

4
−B)y = 0, P (z) = 4z3 − g2z − g3 (1)

and where P (z) has three distinct zeros z1, z2, z3 . This is the Lamé equation with parameter
n = −1/2. See [WW]. This equation is Fuchsian and has four singular points, z1, z2, z3,∞
and local exponents 0, 1/2 at the finite singularities and exponents 1/4, 1/4 at ∞. Conversely
any linear differential equation with these four singularities and local exponents is necessarily
of the form given above. Only the parameter B is not determined by the location of the
singularities and their exponents. This parameter is known as the accessory parameter. Let
G be the monodromy group of equation (1).
We shall be interested in the following question.

Question 1.1 (Accessory parameter problem) We call G unitary if it admits a non-
trivial G-invariant hermitian form on C2 (not necessarily positive definite). Given P (z), for
which complex values of B is G unitary?

For differential equations in the p-adic domain there is the similar question for which values of
B there exist solutions with p-adic radius of convergence one (see [Dwork]). This problem is
studied in a separate paper [Be2002]. We like to consider the present problem as the ∞-adic
version of it.
There is a very picturesque interpretation of the condition ”unitary” on the monodromy group
G in the case when z1, z2, z3 are real with ordering z1 < z2 < z3. Consider a Schwarz map
corresponding to the equation (1) which consists of the quotient D(z) = y1(z)/y2(z) of two
independent solutions y1 and y2 of (1). On the upper half plane this function can be chosen
as a one-valued analytic function. Since (1) has real coefficients on R, the Schwarz map maps
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the four segments (−∞, z1), (z1, z2), (z2, z3), (z3,∞) onto four segments of circles, which we
denote by I, II, III, IV . Moreover, the segments I and IV are tangent, due to the exponent
differences zero at ∞. The pairs (I, II), (II, III), (III, IV ) intersect at right angles because
of the local exponent differences 1/2 at the finite singularities. In particular, let us choose y1

such that it is the holomorphic solution around z2 whose powerseries has constant term 1 and
let y2 be the unique solution starting with (z − z2)1/2(1 + · · ·). Then a possible image of the
Schwarz map looks like

I

II

III

IV

C

However, one should be careful with pictures like this. The above image corresponds to the
situation when y1 has no zeros on the intervals (z1, z2) and (z2, z3). When y1 does have zeros
on these intervals, the image of the Schwarz map may overlap itself several times.
Let S be the group generated by the complex reflections in the four circles. Let S ⊂ S be the
subgroup of index two of automorphisms of P1. Then it also well-known that the monodromy
group G modulo scalars is precisely S.
Clearly there is a circle C with 0 as origin, which passes through the point of tangency between
I, IV . The following Lemma is more or less obvious.

Lemma 1.2 The group G is unitary if and only if C is orthogonal to the circle segments
I, IV .

The question of the orthogonality of circles like C was asked by F.Klein in [Kl1907]. Based on
the so-called oscillation theorems of Hilbert it can be established that there exists an infinite,
but discrete, set of real values of B for which C is indeed orthogonal. At that time this result
was considered a possible step towards the solution of the uniformisation problem.
Very soon afterwards, E.Hilb, [Hi1909] established a similar theorem for differential equation
with four singularities and general exponents.
Now that the uniformisation problem has been solved by methods from analysis, we can reverse
the situation and show the existence of at least one B for which (1) has unitary monodromy.
Let D be the hyperbolic disc and j : D → C \ {z1, z2, z3} be the universal cover of P1 minus
the points z = z1, z2, z3,∞. Apply the Schwarzian derivative

S : η(z) 7→ η′′′

η′′
− 3

2

(
η′′

η′

)2
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Then S(j−1) is a rational function Q of z regular outside of z1, z2, z3,∞ and poles of order at
most two. It is known that u′′+Qu = 0 is a Fuchsian equation of order two such that there exist
two solutions u1, u2 with the property that j(u1/u2) = z. Replacing u by

√
4z3 − g2z − g3y,

the equation changes into an equation of type (1). The projectivised monodromy of this
equation is precisely the covering group of our universal cover.
It is the purpose of this paper to rewrite the unitarity problem of G as a spectral problem
in the space of real-analytic functions on C \ {z1, z2, z3} with the values of B as spectrum.
Moreover, an asymptotic analysis of the spectrum indicates that eigenvalues to the problem
occur in abundance. See Conjecture 5.1 and Theorem 7.1. In particular we see that most
eigenvalues B are complex numbers.

2 Unitary groups

Let H be a Hermitean matrix with det(H) 6= 0. We define the corresponding unitary group
U(H) by

U(H) = {g ∈ GL(2,C)|gtHg = H}.
Notice that for any h ∈ GL(2,C) we have

U(ht
Hh) = h−1U(H)h.

We can conjugate the group U(H) in such a way that the corresponding Hermitian matrix is

either
(

1 0
0 1

)
or

(
1 0
0 −1

)
. In the first case we call H, and its conjugated versions, positive

definite, in the second case indefinite.
In this paper we shall deal with indefinite Hermitean forms. In particular we take the form

H0 =
(

0 i
−i 0

)

as standard Hermitean form.

Proposition 2.1 The unitary group U(H0) is the group generated by SL(2,R) and the diag-
onal matrices λI2 with λ ∈ C, |λ| = 1.

Proof. Suppose g =
(

a b
c d

)
∈ U(H0). Then, from gtH0g = H0 it follows that

(
ac− ac ad− bc
bc− ad bd− bd

)
=

(
0 1
−1 0

)
.

The first case we look at is when a = 0. In that case we get −bc = 1 and bd ∈ R. Note that
b 6= 0. Choose β ∈ R and b∗ ∈ C with |b∗| = 1 such that b = βb∗. From bd ∈ R it follows that
d is a real multiple of b. So d = δb∗ where δ ∈ R. Similarly it follows from the first equation
that c = γb∗ for some γ ∈ R. More particularly, −bc = 1 implies that −βγ = 1. So we see
that

g = b∗
(

0 β
γ δ

)
with |b∗| = 1 and − γβ = 1.
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This proves our assertion when a = 0.
Similarly we deal with the case d = 0. Let us now assume that a, d 6= 0. Put a = αa∗ with
α ∈ R and |a∗| = 1. From ac− ac = 0 it follows that ac ∈ R. Hence c is a real multiple of a.
Put c = γa∗ for some γ ∈ R. Similarly it follows from bd− bd = 0 that b is a real multiple of
d, say b = λd with λ ∈ R. Lastly it follows from ad − bc = 1 that ad(1 − γλ) = 1. We now
conclude that d is a real multiple of a. Let us now put d = δa∗. Then ad− bc = 1 implies that

1 = (αδ − βγ)|a∗|2 = αδ − βγ.

Hence

g = a∗
(

α β
γ δ

)
αδ − γβ = 1

as asserted. qed

3 Monodromy groups

In this section we gather some information on the monodromy representation corresponding
to (1). Fix a base point z0 in the complex plane and let Γ1, Γ2, Γ3 be simple closed loops
beginning and ending in z0 which encircle respectively the points z1, z2, z3 counter clockwise.
Let M1, M2,M3 be the corresponding local monodromy matrices. The local monodromy ma-
trix M∞ around infinity is given by the relation M1M2M3M∞ = Id. Note that the finite
local monodromies have eigenvalues 1,−1, hence M2

1 = M2
2 = M2

3 = Id and M1,M2,M3 are
reflections. The matrix M∞ has coinciding eigenvalues i, i or −i,−i and, consequently, trace
±2i. It cannot be a scalar since we always have logarithmic solutions around z = ∞. So we
conclude that M∞ is a parabolic element (in this paper a scalar element is not considered to
be parabolic). Let G be the group generated by these local monodromies.
A first remark we like to make is that G acts irreducibly on the space of solutions. Suppose
on the contrary that G acts reducibly. Then M1,M2,M3,M∞ have a common eigenvector
v. Let λ1, λ2, λ3, λ∞ be the corresponding eigenvalues. Their product should be one. But
this is impossible since λ∞ = i and the other eigenvalues are ±1. So we conclude that G
acts irreducibly. The irreducibility of G also implies that any G-invariant hermitian form is
non-degenerate and uniquely determined up to scalars.
In the following Proposition we give necessary and sufficient conditions for the unitarity of
the group generated by three involutions whose product is parabolic.

Proposition 3.1 Let P, Q, R ∈ GL(2,C) be reflections (eigenvalues 1,−1) and suppose that
PQR is parabolic with trace ±2i. Let G be the group generated by P, Q, R and denote by tM
the trace of a 2× 2-matrix M . Then the following statements are equivalent

1. G is unitary

2. tPQ, tQR, tPR are real.

3. tPQ and tQR are real and satisfy (t2PQ − 4)(t2QR − 4) ≥ 16.

In the proof the following Lemma is useful.
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Lemma 3.2 Let P, Q, R ∈ GL(2,C) be reflections (eigenvalues 1,−1). Then

t2PQ + t2QR + t2PR − tPQtQRtPR = 2 + t(PQR)2 .

Suppose in addition that PQR is parabolic with trace ±2i and tPQ, tQR, tPR ∈ R. Then
|tPQ|, |tQR|, |tPR| > 2.

Proof. The identity

t2PQ + t2QR + t2PR − tPQtQRtPR = 2 + t(PQR)2

can be proven by a straightforward computation. Suppose PQR is parabolic with trace ±2i,
the matrix (PQR)2 is parabolic with trace −2. Hence

t2PQ + t2QR + t2PR − tPQtQRtPR = 0.

Supppose al three traces in this equation are real. Consider the equation as a quadratic
equation in tPQ. Then its discriminant should be ≥ 0. This means, (tPRtQR)2−4(t2PR+t2QR) ≥
0 and hence

(t2PR − 4)(t2QR − 4) ≥ 16.

Similar inequalities hold for any other pair of traces. The inequalities imply that either the
absolute values of all traces are > 2, as asserted, or that all traces are zero.
In the latter case we consider the group G generated by P,Q, R in more detail. Since the
trace of PQ is zero and determinant 1, the eigenvalues of PQ are ±i. Hence (PQ)2 = −Id.
Using this and P 2 = Q2 = Id we get PQ = −QP . Similarly for the other pairs. From this we
conclude that G modulo scalars is an abelian group of order 4. Hence G is a finite group and
PQR cannot be parabolic, since parabolic elements have infinite order. qed

Proof of Proposition 3.1. From the proof of Lemma 3.2 we see that tPQ, tQR, tRP ∈ R
is equivalent to tPQ, tQR ∈ R and (t2PQ − 4)(t2QR − 4) ≥ 16. Hence it remains to show the
equivalence of (1) and (2).
First we prove (1)⇒(2). So suppose that G is unitary. Since G contains the parabolic element
PQR the signature of the hermitian form should be (1, 1). Without loss of generality we may
then assume that the hermitian form is given by H0 as defined in the previous section. Since
P, Q,R are determinant −1 matrices, it follows from Proposition 2.1 that they should be of
the form iN , where N ∈ SL(2,R). Hence PQ, QR,PR ∈ SL(2,R) and so their traces are
real.
Proof of (2)⇒(1). Suppose that tPQ, tQR, tPR are real. Since PQR is parabolic with trace
±2i, Lemma 3.2 tells us that all traces have absolute value > 2. By conjugation we can see
to it that

P =
(

0 i
−i 0

)
.

Suppose that Q =
(

p q
r −p

)
. Choose a, b ∈ C such that a2+b2 = 1 and (a2−b2)p+ab(q+r) =

0. Then conjugation by M =
(

a b
−b a

)
leaves P fixed and changes Q into

MQM−1 =
(

0 −2abp + a2q − b2r
−2abp− b2q + a2r 0

)
.
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Adopting this conjugation we get a new Q =
(

0 q′

r′ 0

)
with q′r′ = 1. From the fact that

tPQ ∈ R it follows that i(q′− r′) ∈ R. Put q′ = iλ. Substitute this in q′r′ = 1 to find that r′ =
−i/λ. Now i(q′ − r′) ∈ R implies that λ + 1/λ ∈ R. We also know that |λ + 1/λ| = |tPQ| > 2.
Hence λ ∈ R, and we conclude

Q = i

(
0 λ

−1/λ 0

)
∈ iSL(2,R).

Now put R =
(

p q
r −p

)
for some suitable p, q, r ∈ C. Notice that tPR = i(q − r) and

tQR = i(pλ− r/λ). Solving for q, r gives

q = i
tPRλ− tQR

λ− 1/λ
r = i

tPR/λ− tQR

λ− 1/λ
.

In particular we see that q, r are purely imaginary. The determinant of R is −1. In other
words, −p2 − qr = −1. Hence we find

−p2 = qr − 1 = −(tPRλ− tQR)(tPR/λ− tQR)
(λ− 1/λ)2

− 1

= − t2PR + t2QR − tPQtPRtQR

(λ− 1/λ)2
− 1

In the last line we used λ + 1/λ = tPQ. We now use the trace identity of Lemma 3.2 to find

−p2 =
t2PQ

(λ− 1/λ)2
− 1

=
(λ + 1/λ)2

(λ− 1/λ)2
− 1 =

4
(λ− 1/λ)2

Hence
p =

2i

(λ− 1/λ)
=

2i√
t2PQ − 4

.

In particular p is purely imaginary. So we conclude that R is i times a matrix from SL(2,R).
Now we see that our normalised P,Q, R have the standard form H0 as common invariant form.

qed

4 A spectral problem

We remind the reader of the concept of Wronskian determinant of a second order equation
y′′ + py′ + qy = 0 where p, q are analytic functions in a simply connected domain U ⊂ C. Let
y1, y2 be two independent solutions and consider W = y′1y2 − y′2y1. It is easy to see that W
satisfies the differential equation W ′ = −pW , hence W = α exp

(− ∫
pdz

)
for some non-zero

constant α. In particular W has no zeros or poles in U .
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In what follows we shall also take into account real analytic solutions of our differential equa-
tion. Since such functions are not holomorphic we must replace the complex differentiation
operator d

dz by its real counterpart. Let us therefore rewrite our second order equation in the
form

∂2
zy + p∂zy + qy = 0 (2)

where

∂z =
1
2

(
∂

∂x
− i

∂

∂y

)

In the following Proposition we show that the real solution space is a four dimensional R-vector
space.

Proposition 4.1 Let U be as above. Let y1, y2 be two independent complex analytic solutions
of (2) in U . Then the R-vector space of real C2 solutions in U is four dimensional and spanned
by y1y1,Re(y1y2), Im(y1y2), y2y2.

We denote the real valued C2-functions on U by C2(U,R) and the complex-valued ones by
C2(U,C).

Proof. Let u be any real C2-solution on U of (2). Choose A,B ∈ C2(U,C) such that

u = Ay1 + By2

∂zu = Ay′1 + By′2

We do this by solving for A,B. We find

A = (y′2u− y2∂zu)/W

B = (−y′1u + y1∂zu)/W

In particular, A,B ∈ C2(U) since the Wronskian W has no zeros in U . A simple calculation
shows that ∂zA = ∂zB = 0, hence A,B are anti-holomorphic functions, i.e. A, B are holomor-
phic. Let us rewrite (2) in the form My = 0, where M = ∂2

z + p∂z + q. Note that Mu = 0
since u is real. After substitution of u = Ay1 + By2 this yields

0 = (MA)y1 + (MB)y2. (3)

Since ∂z commutes with any holomorphic differential operator we get M∂zu = ∂zMu = 0.
Hence

0 = (MA)y′1 + (MB)y′2. (4)

Solving equations (3) and (4) yields MA = MB = 0. So A and B are holomorphic functions
satisfying My = 0. Hence there exist complex constants α, β, γ, δ such that A = αy1 + βy2

and B = γy1 + δy2 on U . We conclude that

u = αy1y1 + βy1y2 + γy2y1 + δy2y2.

Hence we see that our solution space is spanned by the functions of our Proposition.
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It remains to show that the four functions yiyj are C-linear independent. Suppose that there
exist α, β, γ, δ such that

0 = αy1y1 + βy1y2 + γy2y1 + δy2y2.

Apply the operator ∂z,
0 = αy′1y1 + βy′1y2 + γy′2y1 + δy′2y2.

These two inequalities together yield αy1 + βy2 = 0 and γy1 + δy2 = 0. Since y1, y2 are
independent functions this implies α = β = γ = δ = 0. Hence our functions are indeed
independent. qed

Proposition 4.2 Let G be the monodromy group of the linear second order differential equa-
tion y′′ + py′ + qy = 0 where p, q ∈ C(z). Let S be the set of poles of p and q. Then G is
unitary if and only if there exists a non-trivial real, C2 function f on C\S which is a solution
of (2). Moreover, this function f is uniquely determined up to a constant factor.

Proof. Suppose first that G is unitary. Hence there exists a non-trivial 2 × 2-matrix H so
that H

t = H and gtHg = H for all g ∈ G. The bar denotes complex conjugation and the
superscript t denotes transposition of a matrix. Let y0, y1 be any two independent solutions

around a non-singular point z0. Then we see that f = (y1, y2)H
(

y1

y2

)
is invariant under

monodromy. Hence f can be extended globally throughout C \ S. Moreover it is real-valued
and real-analytic. Furthermore, f cannot be identically zero since the functions yiyj are
linearly independent according to Proposition 4.1. Finally, since ∂zy1 = ∂zy2 = 0 we see that
f satisfies our equation (2).
Suppose conversely that we have a global real, C2-function f satisfying equation (2). Choose
a simply connected domain U ∈ C \ S and two independent complex analytic solutions y1, y2

of (2), defined on U . In Proposition 4.1 we have seen that there exist unique numbers α, β, γ, δ
such that

f = αy1y1 + βy1y2 + γy2y1 + δy2y2.

Hence

f = (y1, y2)H
(

y1

y2

)

where H =
(

α β
γ δ

)
. Since f is real-valued, conjugation and transposition show that H

t = H.

Furthermore, f is globally defined, hence gtHg = H for any g ∈ G.
Finally the existence two independent global real solutions to 2 would imply the existence
of two independent G-invariant Hermitian forms. However this is impossible in view of the
irreducible action of G. Therefore f is uniquely determined up to scalars. qed

Let us now return to our equation (1) and its monodromy group G. Note that Proposition
4.2 has now turned the unitary problem of G into the problem

Lf = Bf, f ∈ C2(C \ {z1, z2, z3},R) (5)

where
L = P∂2

z + (P ′/2)∂z + z/4
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The interesting point here is that we now restated our unitarity problem as an eigenvalue
problem on C2(C\{z1, z2, z3}). In particular, the eigenspace for any dimension is at most one
by the uniqueness (up to scalars) of f . It would be of great interest to determine the complete
spectrum.
To initiate this study we rewrite equation (1) using elliptic functions. As is well known the
elliptic curve E : y2 = 4x3−g2x−g3 can be parametrised by a suitable Weierstrass ℘-function
as follows, x = ℘(z), y = ℘′(z). Replace z by ℘(z) in (1) to get

d2y

dz2
+

(
℘(z)

4
−B

)
y = 0. (6)

We denote the period lattice of E by Λ. The Lamé equation can thus be considered either
as a differential equation in C with doubly periodic coefficients and singularities in Λ, or a
differential equation on the elliptic curve E with a single singularity at the point ∞ of E. In
both cases the local exponents at the singularity read 1/2, 1/2. The fundamental group of E
minus ∞ is the free group on two generators, where the generators are formed by a basis γ1, γ2

of the closed paths on E. In the covering space C→ C/Λ = E these closed loops correspond
to two periods ω1, ω2 ∈ Λ say. The commutator γ1γ2γ

−1
1 γ−1

2 is the closed simple path around
the point ∞ on E. Since the local exponents there are equal and 1/2, the local monodromy
matrix at ∞ is parabolic with trace −2. The monodromy group H of (6) is generated by
the subgroup of G consisting of the determinant 1 elements. So, with the above notations
H = 〈M1M2,M2M3〉 . for example. In particular H has index two in G.
The spectral problem (5) can now be lifted to

∂2
zu +

℘(z)
4

u = Bu, u ∈ C2(C \ Λ), u real− valued and even (7)

The extra condition that u is even (i.e. u(−z) = u(z)) is a remnant of the fact that u is a
pullback via the covering map of E from the original Lamé spectral problem (5).

5 Asymptotic analysis

Instead of looking at the spectral problem (7) we consider the more general version

∂2
zu− n(n + 1)℘(z)u = Bu, u ∈ C2(C \ Λ), u real− valued and even (8)

which corresponds to the general Lamé equation with parameter n. We take n ∈ R. The
problem (7) corresponds to the choice n = −1/2.
Let Λ be the lattice corresponding to the elliptic curve y2 = 4x3 − g2x− g3 and let ω1, ω2 be
a Z-basis satisfying Im(ω2/ω1) > 0.
By η1, η2 we denote the quasi-periods corresponding to the lattice Λ. They are defined by
ηi = ζ(z + ωi) − ζ(z) where ζ(z) is the Weierstrass ζ-function defined by ζ ′(z) = −℘(z) and
ζ(z) = −ζ(−z). We let ∆ = (ω2ω1 − ω1ω2)/2i. Note that ∆ is real and positive because
Im(ω2/ω1) > 0. Moreover, ∆ is the area of a fundamental paralellogram of Λ. We also define
a = η1ω2 − η2ω1.
In this section we provide evidence in the form of a perturbation calculation for the validity
of the following conjecture.
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Conjecture 5.1 Let notations be as above. Up to order 1/|l0| the values of B in problem (7)
are given by

B = l20 − n(n + 1)
a

2i∆
+

π

4∆
l0

l0
(9)

where l0 ∈ Λ, the lattice generated by ω2, ω1.

Let us first solve (8) when n(n + 1) is replaced by 0 and B is replaced by l2 for convenience.
The real-valued solutions of ∂2

zu = l2u are given by

Aelz+lz + B(elz−lz + e−lz+lz) +
C

i
(elz−lz − e−lz+lz) + De−lz−lz

with A,B, C,D ∈ R. The condition that u is even sees to it that C = 0 and A = D, so we get

u = A(elz+lz + e−lz−lz) + B(elz−lz + e−lz+lz).

If A 6= 0 we see that u cannot be periodic with respect to Λ. So A = 0 and periodicity of u
now implies the existence of m1,m2 ∈ Z such that

lω1 − lω1 = −2πim2

lω2 − lω2 = 2πim1

Hence l = π(m2ω2 + m1ω1)/∆.
Let us now turn to an asymptotic study of the original problem (8) with B = l2 when |l| → ∞.
We first find an approximate solution of the complex differential equation u′′−n(n+1)℘u = l2u.
Put u = elz+β(z) for some β(z). We find, β′′ + (β′)2 + 2lβ′ − n(n + 1)℘(z) = 0. Now consider
the asymptotic expansion

β(z) =
β1(z)

l
+

β2(z)
l2

+ · · ·
After substitution into the differential equation and comparison of equal powers of 1/l we can
find the βk recursively as follows,

2β′1 − n(n + 1)℘ = 0
2β′2 + β′′1 = 0

2β′3 + β′1β
′
2 + β′′2 = 0

· · ·

We shall consider the second order approximation of β. Denote by ζ(z) the Weierstrass ζ-
function, i.e. ζ ′(z) = −℘(z). Then, β1(z) = −n(n + 1)ζ(z)/2. From the second equation we
infer β2(z) = −β′1(z)/2 = −n(n + 1)℘(z)/4.
Let us first compute the spectrum up to order 1/|l|. We perturb the solution elz−lz + c.c. to

exp
(
lz − n(n + 1)ζ(z)/2l − lz + n(n + 1)ζ(z)/2l

)
+ c.c.
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Here c.c stands for complex conjugate. The periodicity conditions now imply the existence of
m1,m2 ∈ Z such that

lω1 − lω1 − n(n + 1)
η1

2l
+ n(n + 1)

η1

2l
= −2πim2 + O(1/|l|2) (10)

lω2 − lω2 − n(n + 1)
η2

2l
+ n(n + 1)

η2

2l
= 2πim1 + O(1/|l|2) (11)

where ηi = ζ(z + ωi) − ζ(z) for i = 1, 2. Put l0 = π(m2ω2 + m1ω1)/∆ and l = l0 + ε. Then,
up to second order in 1/l0,

εω1 − εω1 = n(n + 1)η1/2l0 − c.c

εω2 − εω2 = n(n + 1)η2/2l0 − c.c

Solution of ε yields

l = l0 − n(n + 1)
2i∆

(
a

l0
+

b

l0

)
+ O

(
1
|l0|2

)

where a = (η1ω2−η2ω1) and b = (η2ω1−η1ω2). Notice that b equals 2πi because of Legendre’s
relation. We conclude,

B = l2 = l20 −
n(n + 1)

2i∆

(
a + 2πi

l0

l0

)
+ O

(
1
|l0|

)
,

as conjectured.

In the Section 6 we shall see that the agreement with numerical data in the case n = −1/2 is
remarkably well. In Section 7 we give a proof with convergent series in the case when n = 1.

6 Numerical data

Now let us take n = −1/2, which is the original problem. The generators of the monodromy
of equation (1) can be computed numerically as follows. Fix a non-singular point a0 and
construct three simple loops, each enclosing one of the finite singularities exactly once. Let γ
be such a loop. We discretize γ by choosing N points a0, a1, a2, . . . , aN = a0 on γ which are
regularly spaced and whose increasing indices follow the orientation of γ. Now write equation
(1) as a first order system

y′ = v

v′ = − P ′

2P
v − z/4−B

2P
y

and solve this system numerically with a Runge-Kutta method (we used fourth order) using
the points ai. As initial column vectors we chose (1, 0)t and (0, 1)t. After numerical integration
we obtain two column vectors (a, c)t and (b, d)t. The monodromy matrix corresponding to γ

is then approximated by
(

a b
c d

)
.

We can now compute M1,M2,M3 to any accuracy we like, by increasing the number of in-
terpolation points ai. In order to determine B such that the monodromy group is unitary
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we use Proposition 3.1 and interpolation. For any choice of B we can compute the traces
t12 := tM1M2 and t23 := tM2M3 . These are complex analytic functions of B. Choose a value
B0 of B and a nearby value B1. The derivative of t12, t23 at B0 can be approximated by

λ =
t12(B1)− t12(B0)

B1 −B0
and µ =

t23(B1)− t23(B0)
B1 −B0

.

The linear approximations of t12, t23 at B = B0 now read t12(B) = t12(B0) + λ(B − B0) and
t23(B) = t23(B0) + µ(B −B0). We now solve x ∈ C from the system of equations

Im(t12(B0) + λx) = 0, Im(t23(B0) + µx) = 0.

A brief computation gives us

x =
µIm(t12(B0))− λIm(t23(B0))

Im(λµ)
.

Supposedly the value B0 + x should be a closer approximation to a spectral value of B than
B0. We then repeat the argument with the new value of B. In practice this turns out to work
very well. After we computed a spectral value to high enough order of precision it remains to
check that the third trace tM1M3 is also real.
In the following we carry out the computations described above for a number of values of
g2, g3,m, n and compare them with the asymptotic approximations given by (9).
First we take g2 = 4, g3 = 0. This corresponds to the elliptic curve y2 = 4x3− 4x which has a
square lattice. In this case equation (1) has an extra symmetry with respect to x → −x,B →
−B. Hence the spectrum of (7) has the symmetry B → −B. An obvious spectral value is B =
0. In that case we can write down an explicit solution for (1), namely 2F1(1/8, 1/8, 3/4; z2).
It is well-known that second order differential equations for hypergeometric functions have
triangle groups as monodromy groups, and triangle groups are unitary.
The periods read

ω1 = 2
∫ 0

−1

dx

2
√

x3 − x
= 2.62206 · · ·

and ω2 = iω1 = 2.62206i. The quasi-periods read

η1 = −2
∫ 0

−1

xdx

2
√

x3 − x
= 1.19814 · · ·

and η2 = −iη1 = −1.19814i. We check that η1ω2 − η2ω1 = 0 and π/4∆ = 0.114237. Hence
(9) yields the approximated eigenvalues

1.43554(m + ni)2 + 0.114237
m + ni

m− ni
.

Here is a table with some asymptotic and numerical eigenvalues for the eigenvalue problem
(7) with g2 = 4, g3 = 0. In addition we list the traces of A = M1M2, B = M1M3, C = M2M3.
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m n numerical asymptotic tA tB tC
value value

1 0 1.5526 1.5497 -2.0046 29.5424 -29.6103
2 0 5.8568 5.8564 2.00001 606.12 606.123
1 1 2.9823i 2.9853i -26.191 -26.191 683.914
3 0 13.0343 13.0341 -2 13463.8 -13463.8
2 1 4.3752+5.8326i 4.3751+5.8335i 24.3597 -591.325 -14380.1
1 2 -4.3752+5.8326i -4.3751+5.8335i -591.325 24.3597 -14380.1
3 1 11.5758+8.6814i 11.5757+8.6817i -23.7666 -13352.8 316787
2 2 11.5978i 11.5986i 569.847 569.847 324724
1 3 -11.5758+8.6814i -11.5757+8.6817i -13352.8 -23.7665 316787
3 2 7.22167+17.3315i 7.22164+17.3319i -556.427 13125.2 -7303200
2 3 -7.22167+17.3315i -7.22164+17.3319i 13125.2 -556.426 -7303200
3 3 25.9536i 25.954i -12917.7 -12917.7 166867000

7 The case n = 1

In the previous section we have considered the parameter choice n = −1/2 in our Lamé
equation. We shall now concentrate on the case n = 1. In that case we can write down
explicit solutions and thus provide evidence for the correctness of the asymptotic analysis we
carried out for general n and in particular n = −1/2.
So we consider the equation

d2y

dz2
− (2℘(z) + B)y = 0.

Choose a such that B = ℘(a) and let us suppose that 2a is not in the period lattice. In that
case two independent solutions of the Lamé equation are given by f(z), f(−z) where

f(z) = eζ(a)z σ(z − a)
σ(z)

and σ(z) is the Weierstrass σ-function defined by

σ(z) = z
∏

ω∈Λ

′ (
1− z

ω

)
exp

(
z

ω
+

z2

2ω2

)
.

It is a holomorphic function on C with zeros in the lattice points of Λ. Furthermore, for any
ω ∈ Λ,

σ(z + ω) = ±eη(ω)(z+ω/2)σ(z)

where we use + if ω/2 ∈ Λ and − if not. It follows from this functional equation that

f(z + ω) = eζ(a)ω−aηf(z).

Notice by the way that f(z) is independent of the choice of a modulo Λ. We now study for
which values of a, and hence B, the Lamé equation allows a non-trivial real valued Λ-periodic
solution, symmetric in z.
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A basis for the real valued symmetric solutions is given by

U(z) = f(z)f(−z) + f(−z)f(z), V (z) = |f(z)|2 + |f(−z)|2

Suppose that f(z + ω) = λf(z). Then f(−z − ω) = λ−1f(−z). The Λ-periodic linear combi-
nations of U(z), V (z) are either U(z) itself if λ = λ for all ω ∈ Λ or V (z) if |λ| = 1 for all ω.
Suppose f(z + ωj) = λjf(z) for j = 1, 2. Then the first case corresponds to λ1, λ2 ∈ R and
the second to |λ1| = |λ2| = 1.
Let us consider the second case first. We have necessarily

ζ(a)ω1 − η1a = −2πir2, ζ(a)ω2 − η2a = 2πir1

with r1, r2 ∈ R. Solving this for a and ζ(a) we get

ζ(a) = r1η1 + r2η2, a = r1ω1 + r2ω2.

Hence we must solve
ζ(r1ω1 + r2ω2) = r1η1 + r2η2

in r1, r2 ∈ R. Notice that ζ(x1ω1 + x2ω2) − x1η1 − x2η2 is periodic in x1, x2 with period 1,
so we can restrict ourselves to finding solutions with 0 ≤ r1,2 < 1. We expect at most finitely
many solutions.
Let us now consider the case when λ1, λ2 ∈ R. This implies that there exist integers m1,m2

such that

ζ(a)ω1 − ζ(a)ω1 − aη1 + aη1 = −2πm2

ζ(a)ω2 − ζ(a)ω2 − aη2 + aη2 = 2πm1

We solve this equation recursively in a for large values of |m1|+ |m2|. The observation is that
a should be close to a lattice point, which we can take to be 0. So let us put l = ζ(a) and
notice that a = 1/l + O(1/|l|2). So our equation can be rewritten as

lω1 − lω1 − η1

l
+

η1

l
= −2πim2 + O(|l|−2)

lω2 − lω2 − η2

l
+

η2

l
= 2πim1 + O(|l|−2)

Notice that this precisely the problem (10) for n = 1. The difference is now that we have
convergence instead of asymptotic approximation. Our conclusion follows by noticing that
B = ℘(a) = ζ(a)2 + O(1/|ζ(a)|) = l2 + O(1/|l|) for a very close to 0. So we have,

Theorem 7.1 Conjecture 5.1 is true when n = 1.
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