User’s Guide

to
PARI / GP

(version 2.7.0)
The PARI Group

Institut de Mathématiques de Bordeaux, UMR 5251 du CNRS.
Université Bordeaux 1, 351 Cours de la Libération
F-33405 TALENCE Cedex, FRANCE

e-mail: pari@math.u-bordeaux.fr

Home Page:
http://pari.math.u-bordeaux.fr/

Copyright (© 2000-2014 The PARI Group

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions, or translations, of this manual
under the conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

PARI/GP is Copyright © 2000-2014 The PARI Group

PARI/GP is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation. It is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY WHATSOEVER.

Table of Contents

Chapter 1: Overview of the PARI system oo, 5
1.1 Introduction L e e e e e e 5
1.2 Multiprecision kernels / Portability 6
1.3 The PARI types 7
1.4 The PARI philosophy e 9
1.5 Operations and functions e 10

Chapter 2: The gp Calculator oo, 13
2.1 Introductiono 13
2.2 The general gp input line 15
2.3 The PARI types o e 17
2.4 GP operators e 27
2.5 Variables and symbolic expressions L L Lo 31
2.6 Variables and Scope 34
2.7 User defined functions e 37
2.8 Member functions 44
2.9 Strings and Keywords 45
2.10 Errors and error reCOVEry i e e e e e e e e e e 47
2.11 Interfacing GP with other languages. oL 54
212 Defaultso 54
2.13 Simple metacommandsl 55
2.14 The preferences file L 59
2.15 Using readline 61
2.16 GNU Emacs and PariEmacs 62

Chapter 3: Functions and Operations Available in PARTand GP 63
3.1 Standard monadic or dyadic operators o 65
3.2 Conversions and similar elementary functions or commands 71
3.3 Transcendental functions L 88
3.4 Arithmetic functions 99
3.5 Functions related to elliptic curves o 130
3.6 Functions related to general number fields oL 151
3.7 Polynomials and power series 215
3.8 Vectors, matrices, linear algebra and sets., 228
3.9 Sums, products, integrals and similar functions L. 257
3.10 Plotting functions 272
3.11 Programming in GP: control statements 278
3.12 Programming in GP: other specific functions L. 287
3.13 Parallel programmingo 302
3.14 GP defaults 304

Appendix A: Installation Guide for the UNIX Versions 315

Index . . . e 325

Chapter 1:
Overview of the PARI system

1.1 Introduction.

PARI/GP is a specialized computer algebra system, primarily aimed at number theorists, but has
been put to good use in many other different fields, from topology or numerical analysis to physics.

Although quite an amount of symbolic manipulation is possible, PARI does badly compared
to systems like Axiom, Magma, Maple, Mathematica, Maxima, or Reduce on such tasks, e.g. mul-
tivariate polynomials, formal integration, etc. On the other hand, the three main advantages of
the system are its speed, the possibility of using directly data types which are familiar to mathe-
maticians, and its extensive algebraic number theory module (from the above-mentioned systems,
only Magma provides similar features).

Non-mathematical strong points include the possibility to program either in high-level scripting
languages or with the PARI library, a mature system (development started in the mid eighties) that
was used to conduct and disseminate original mathematical research, while building a large user
community, linked by helpful mailing lists and a tradition of great user support from the developers.
And, of course, PARI/GP is Free Software, covered by the GNU General Public License, either
version 2 of the License or (at your option) any later version.

PARI is used in three different ways:

1) as a library libpari, which can be called from an upper-level language application, for
instance written in ANSI C or C++;

2) as a sophisticated programmable calculator, named gp, whose language GP contains most
of the control instructions of a standard language like C;

3) the compiler gp2c translates GP code to C, and loads it into the gp interpreter. A
typical script compiled by gp2c runs 3 to 10 times faster. The generated C code can be edited and
optimized by hand. It may also be used as a tutorial to 1ibpari programming.

The present Chapter 1 gives an overview of the PARI/GP system; gp2c is distributed separately
and comes with its own manual. Chapter 2 describes the GP programming language and the gp
calculator. Chapter 3 describes all routines available in the calculator. Programming in library
mode is explained in Chapters 4 and 5 in a separate booklet: User’s Guide to the PARI library
(libpari.dvi.

A tutorial for gp is provided in the standard distribution: A tutorial for PARI/GP (tuto-
rial.dvi) and you should read this first. You can then start over and read the more boring stuff
which lies ahead. You can have a quick idea of what is available by looking at the gp reference card
(refcard.dvi or refcard.ps). In case of need, you can refer to the complete function description
in Chapter 3.

How to get the latest version. Everything can be found on PARI’s home page:
http://pari.math.u-bordeaux.fr/

From that point you may access all sources, some binaries, version information, the complete mailing
list archives, frequently asked questions and various tips. All threaded and fully searchable.

How to report bugs. Bugs are submitted online to our Bug Tracking System, available from
PARI’s home page, or directly from the URL

http://pari.math.u-bordeaux.fr/Bugs/

Further instructions can be found on that page.

1.2 Multiprecision kernels / Portability.

The PARI multiprecision kernel comes in three non exclusive flavors. See Appendix A for how
to set up these on your system; various compilers are supported, but the GNU gcc compiler is the
definite favourite.

A first version is written entirely in ANSI C, with a C+4-compatible syntax, and should be
portable without trouble to any 32 or 64-bit computer having no drastic memory constraints. We
do not know any example of a computer where a port was attempted and failed.

In a second version, time-critical parts of the kernel are written in inlined assembler. At present
this includes

e the whole ix86 family (Intel, AMD, Cyrix) starting at the 386, up to the Xbox gaming
console, including the Opteron 64 bit processor.

e three versions for the Sparc architecture: version 7, version 8 with SuperSparc processors,
and version 8 with MicroSparc I or II processors. UltraSparcs use the MicroSparc I version;

e the DEC Alpha 64-bit processor;

e the Intel Itanium 64-bit processor;

e the PowerPC equipping old macintoshs (G3, G4, etc.);
e the HPPA processors (both 32 and 64 bit);

A third version uses the GNU MP library to implement most of its multiprecision kernel. It
improves significantly on the native one for large operands, say 100 decimal digits of accuracy or
more. You should enable it if GMP is present on your system. Parts of the first version are still in
use within the GMP kernel, but are scheduled to disappear.

A historical version of the PARI/GP kernel, written in 1985, was specific to 680x0 based
computers, and was entirely written in MC68020 assembly language. It ran on SUN-3/xx, Sony
News, NeXT cubes and on 680x0 based Macs. It is no longer part of the PARI distribution; to run
PARI with a 68k assembler micro-kernel, use the GMP kernel!

1.3 The PARI types.

The GP language is not typed in the traditional sense; in particular, variables have no type.
In library mode, the type of all PARI objects is GEN, a generic type. On the other hand, it is
dynamically typed: each object has a specific internal type, depending on the mathematical object
it represents.

The crucial word is recursiveness: most of the PARI types are recursive. For example, the basic
internal type t_COMPLEX exists. However, the components (i.e. the real and imaginary part) of such
a “complex number” can be of any type. The only sensible ones are integers (we are then in Z[i]),
rational numbers (Q[i]), real numbers (R[i] = C), or even elements of Z/nZ (in (Z/nZ)[t]/(t>+1)),
or p-adic numbers when p = 3mod4 (Q,[i]). This feature must not be used too rashly in library
mode: for example you are in principle allowed to create objects which are “complex numbers of
complex numbers”. (This is not possible under gp.) But do not expect PARI to make sensible use
of such objects: you will mainly get nonsense.

On the other hand, it is allowed to have components of different, but compatible, types, which
can be freely mixed in basic ring operations + or x. For example, taking again complex numbers,
the real part could be an integer, and the imaginary part a rational number. On the other hand,
if the real part is a real number, the imaginary part cannot be an integer modulo n !

Let us now describe the types. As explained above, they are built recursively from basic
types which are as follows. We use the letter T' to designate any type; the symbolic names t_xxx
correspond to the internal representations of the types.

type t_INT Z Integers (with arbitrary precision)

type t_REAL R Real numbers (with arbitrary precision)
type t_INTMOD Z/nZ Intmods (integers modulo n)

type t_FRAC Q Rational numbers (in irreducible form)
type t_FFELT F, Finite field element

type t_COMPLEX T7i] Complex numbers

type t_PADIC Q, p-adic numbers

type t_QUAD Q[w] Quadratic Numbers (where [Z[w] : Z] = 2)
type t_POLMOD TIX]/(P) Polmods (polynomials modulo P € T[X])
type t_POL T[X] Polynomials

type t_SER T((X)) Power series (finite Laurent series)

type t_RFRAC T(X) Rational functions (in irreducible form)
type t_VEC ™ Row (i.e. horizontal) vectors

type t_COL ™ Column (i.e. vertical) vectors

type t_MAT Mo (T) Matrices

type t_LIST ™ Lists

type t_STR Character strings

type t_CLOSURE Functions

type t_ERROR Error messages

and where the types T in recursive types can be different in each component. The first nine basic
types, from t_INT to t_POLMOD, are called scalar types because they essentially occur as coefficients
of other more complicated objects. Type t_POLMOD is used to define algebraic extensions of a base
ring, and as such is a scalar type.

In addition, there exist types t_QFR and t_QFI for integral binary quadratic forms, and the in-
ternal type t_VECSMALL. The latter holds vectors of small integers, whose absolute value is bounded

7

by 231 (resp. 2%3) on 32-bit, resp. 64-bit, machines. They are used internally to represent permu-
tations, polynomials or matrices over a small finite field, etc.

Every PARI object (called GEN in the sequel) belongs to one of these basic types. Let us have
a closer look.

1.3.1 Integers and reals. They are of arbitrary and varying length (each number carrying in its
internal representation its own length or precision) with the following mild restrictions (given for
32-bit machines, the restrictions for 64-bit machines being so weak as to be considered nonexistent):
integers must be in absolute value less than 2535870815 (i e roughly 161614219 decimal digits). The
precision of real numbers is also at most 161614219 significant decimal digits, and the binary
exponent must be in absolute value less than 229, resp. 2°!, on 32-bit, resp. 64-bit machines.

Integers and real numbers are non-recursive types.

1.3.2 Intmods, rational numbers, p-adic numbers, polmods, and rational functions.
These are recursive, but in a restricted way.

For intmods or polmods, there are two components: the modulus, which must be of type
integer (resp. polynomial), and the representative number (resp. polynomial).

For rational numbers or rational functions, there are also only two components: the numerator
and the denominator, which must both be of type integer (resp. polynomial).

Finally, p-adic numbers have three components: the prime p, the “modulus” p¥, and an ap-
proximation to the p-adic number. Here Z, is considered as the projective limit <li_lrnZ /P*Z via

its finite quotients, and Q,, as its field of fractions. Like real numbers, the codewords contain an
exponent, giving the p-adic valuation of the number, and also the information on the precision of
the number, which is redundant with p*, but is included for the sake of efficiency.

1.3.3 Finite field elements. The exact internal format depends of the finite field size, but it
includes the field characteristic p, an irreducible polynomial 7' € F,[X]| defining the finite field
F,[X]/(T) and the element expressed as a polynomial in (the class of) X.

1.3.4 Complex numbers and quadratic numbers. Quadratic numbers are numbers of the
form a + bw, where w is such that [Z[w] : Z] = 2, and more precisely w = v/d/2 when d = 0 mod 4,
and w = (1 +v/d)/2 when d = 1 mod 4, where d is the discriminant of a quadratic order. Complex
numbers correspond to the important special case w = v/—1.

Complex numbers are partially recursive: the two components a and b can be of type t_INT,
t_REAL, t_INTMOD, t_FRAC, or t_PADIC, and can be mixed, subject to the limitations mentioned
above. For example, a+bi with a and b p-adic is in Q,[¢], but this is equal to Q, when p = 1 mod 4,
hence we must exclude these p when one explicitly uses a complex p-adic type. Quadratic numbers
are more restricted: their components may be as above, except that t_REAL is not allowed.

1.3.5 Polynomials, power series, vectors, matrices and lists. They are completely recur-
sive: their components can be of any type, and types can be mixed (however beware when doing
operations). Note in particular that a polynomial in two variables is simply a polynomial with
polynomial coefficients.

In the present version 2.7.0 of PARI, it is not possible to handle conveniently power series of
power series, i.e. power series in several variables. However power series of polynomials (which are
power series in several variables of a special type) are OK. This is a difficult design problem: the
mathematical problem itself contains some amount of imprecision, and it is not easy to design an
intuitive generic interface for such beasts.

1.3.6 Strings. These contain objects just as they would be printed by the gp calculator.

1.3.7 Zero. What is zero? This is a crucial question in all computer systems. The answer we
give in PARI is the following. For exact types, all zeros are equivalent and are exact, and thus
are usually represented as an integer zero. The problem becomes non-trivial for imprecise types:
there are infinitely many distinct zeros of each of these types! For p-adics and power series the
answer is as follows: every such object, including 0, has an exponent e. This p-adic or X-adic zero
is understood to be equal to O(p®) or O(X€) respectively.

Real numbers also have exponents and a real zero is in fact O(2¢) where e is now usually a
negative binary exponent. This of course is printed as usual for a floating point number (0.00- - - or
0.Exx depending on the output format) and not with a O symbol as with p-adics or power series.
With respect to the natural ordering on the reals we make the following convention: whatever its
exponent a real zero is smaller than any positive number, and any two real zeroes are equal.

1.4 The PARI philosophy.

The basic principles which govern PARI is that operations and functions should, firstly, give
as exact a result as possible, and secondly, be permitted if they make any kind of sense.

In this respect, we make an important distinction between exact and inexact objects: by
definition, types t_REAL, t_PADIC or t_SER are imprecise. A PARI object having one of these
imprecise types anywhere in its tree is inezact, and exact otherwise. No loss of accuracy (rounding
error) is involved when dealing with exact objects. Specifically, an exact operation between exact
objects will yield an exact object. For example, dividing 1 by 3 does not give 0.333-- -, but the
rational number (1/3). To get the result as a floating point real number, evaluate 1./3 or 0.+1/3.

Conversely, the result of operations between imprecise objects, although inexact by nature,
will be as precise as possible. Consider for example the addition of two real numbers x and y. The
accuracy of the result is a priori unpredictable; it depends on the precisions of x and y, on their
sizes, and also on the size of z + y. From this data, PARI works out the right precision for the
result. Even if it is working in calculator mode gp, where there is a notion of default precision, its
value is only used to convert exact types to inexact ones.

In particular, if an operation involves objects of different accuracies, some digits will be dis-
regarded by PARI. It is a common source of errors to forget, for instance, that a real number is
given as r + 2°¢ where r is a rational approximation, e a binary exponent and ¢ is a nondescript
real number less than 1 in absolute value. Hence, any number less than 2¢ may be treated as an
exact zero:

? 0.E-28 + 1.E-100

%1 = 0.E-28
? 0.E100 + 1
%2 = 0.E100

As an exercise, if a = 27(-100), why doa + 0. and a * 1. differ?

The second principle is that PARI operations are in general quite permissive. For instance
taking the exponential of a vector should not make sense. However, it frequently happens that one
wants to apply a given function to all elements in a vector. This is easily done using a loop, or
using the apply built-in function, but in fact PARI assumes that this is exactly what you want to
do when you apply a scalar function to a vector. Taking the exponential of a vector will do just
that, so no work is necessary. Most transcendental functions work in the same way*.

In the same spirit, when objects of different types are combined they are first automatically
mapped to a suitable ring, where the computation becomes meaningful:

? 1/3 + Mod(1,5)

%1 = Mod (3, 5)

?7 I+ 0(579)

%2 = 2 + 5 + 2%572 + 57°3 + 3%x574 + 4%5°5 + 2576 + 3%5°7 + 0(579)
? Mod(1,15) + Mod(1,10)

%3 = Mod(2, 5)

The first example is straightforward: since 3 is invertible mod 5, (1/3) is easily mapped to
Z/5Z. In the second example, I stands for the customary square root of —1; we obtain a 5-adic
number, 5-adically close to a square root of —1. The final example is more problematic, but there
are natural maps from Z/15Z and Z/10Z to Z/5Z, and the computation takes place there.

1.5 Operations and functions.

The available operations and functions in PARI are described in detail in Chapter 3. Here is
a brief summary:

1.5.1 Standard arithmetic operations.

Of course, the four standard operators +, -, *, / exist. We emphasize once more that division is, as
far as possible, an exact operation: 4 divided by 3 gives (4/3). In addition to this, operations on
integers or polynomials, like \ (Euclidean division), % (Euclidean remainder) exist; for integers, \/
computes the quotient such that the remainder has smallest possible absolute value. There is also
the exponentiation operator ~, when the exponent is of type integer; otherwise, it is considered as a
transcendental function. Finally, the logical operators ! (not prefix operator), && (and operator),
|| (or operator) exist, giving as results 1 (true) or 0 (false).

1.5.2 Conversions and similar functions.

Many conversion functions are available to convert between different types. For example floor,
ceiling, rounding, truncation, etc.... Other simple functions are included like real and imaginary
part, conjugation, norm, absolute value, changing precision or creating an intmod or a polmod.

* An ambiguity arises with square matrices. PARI always considers that you want to do com-
ponentwise function evaluation in this context, hence to get for example the standard exponential
of a square matrix you would need to implement a different function.

10

1.5.3 Transcendental functions.

They usually operate on any complex number, power series, and some also on p-adics. The list is
ever-expanding and of course contains all the elementary functions (exp/log, trigonometric func-
tions), plus many others (modular functions, Bessel functions, polylogarithms...). Recall that by
extension, PARI usually allows a transcendental function to operate componentwise on vectors or
matrices.

1.5.4 Arithmetic functions.

Apart from a few like the factorial function or the Fibonacci numbers, these are functions which
explicitly use the prime factor decomposition of integers. The standard functions are included. A
number of factoring methods are used by a rather sophisticated factoring engine (to name a few,
Shanks’s SQUFOF, Pollard’s rho, Lenstra’s ECM, the MPQS quadratic sieve). These routines
output strong pseudoprimes, which may be certified by the APRCL test.

There is also a large package to work with algebraic number fields. All the usual operations on
elements, ideals, prime ideals, etc. are available. More sophisticated functions are also implemented,
like solving Thue equations, finding integral bases and discriminants of number fields, computing
class groups and fundamental units, computing in relative number field extensions, Galois and class
field theory, and also many functions dealing with elliptic curves over Q or over local fields.

1.5.5 Other functions.

Quite a number of other functions dealing with polynomials (e.g. finding complex or p-adic roots,
factoring, etc), power series (e.g. substitution, reversion), linear algebra (e.g. determinant, charac-
teristic polynomial, linear systems), and different kinds of recursions are also included. In addi-
tion, standard numerical analysis routines like univariate integration (using the double exponential
method), real root finding (when the root is bracketed), polynomial interpolation, infinite series
evaluation, and plotting are included.

And now, you should really have a look at the tutorial before proceeding.

11

12

EMACS:

Chapter 2:
The gp Calculator

2.1 Introduction.

Originally, gp was designed as a debugging device for the PARI system library. Over the
years, it has become a powerful user-friendly stand-alone calculator. The mathematical functions
available in PARI and gp are described in the next chapter. In the present one, we describe the
specific use of the gp programmable calculator.

If you have GNU Emacs and use the PariEmacs package, you can work in a special Emacs shell,
described in Section 2.16. Specific features of this Emacs shell are indicated by an EMACS sign in
the left margin.

2.1.1 Startup.
To start the calculator, the general command line syntax is:
gp [-D key=wvall [files]

where items within brackets are optional. The [files| argument is a list of files written in the GP
scripting language, which will be loaded on startup. There can be any number of arguments of the
form -D key=wal, setting some internal parameters of gp, or defaults: each sets the default key to
the value val. See Section 2.12 below for a list and explanation of all defaults. These defaults can
be changed by adding parameters to the input line as above, or interactively during a gp session,
or in a preferences file also known as gprc.

If a preferences file (to be discussed in Section 2.14) is found, gp then reads it and executes the
commands it contains. This provides an easy way to customize gp. The files argument is processed
right after the gprc.

A copyright banner then appears which includes the version number, and a lot of useful tech-
nical information. After the copyright, the computer writes the top-level help information, some
initial defaults, and then waits after printing its prompt, which is ’? ’ by default . Whether ex-
tended on-line help and line editing are available or not is indicated in this gp banner, between the
version number and the copyright message. Consider investigating the matter with the person who
installed gp if they are not. Do this as well if there is no mention of the GMP kernel.

13

2.1.2 Getting help.

To get help, type a ? and hit return. A menu appears, describing the main categories of
available functions and how to get more detailed help. If you now type ?n with 1 < n < 11, you
get the list of commands corresponding to category n and simultaneously to Section 3.n of this
manual. If you type ?functionname where functionname is the name of a PARI function, you will
get a short explanation of this function.

If extended help (see Section 2.13.1) is available on your system, you can double or triple the ?
sign to get much more: respectively the complete description of the function (e.g. ??sqrt), or a list
of gp functions relevant to your query (e.g. ???"elliptic curve" or ??7"quadratic field").

If gp was properly installed (see Appendix A), a line editor is available to correct the command
line, get automatic completions, and so on. See Section 2.15 or ??readline for a short summary
of the line editor’s commands.

If you type ?\ you will get a short description of the metacommands (keyboard shortcuts).

Finally, typing 7. will return the list of available (pre-defined) member functions. These
are functions attached to specific kind of objects, used to retrieve easily some information from
complicated structures (you can define your own but they won’t be shown here). We will soon
describe these commands in more detail.

More generally, commands starting with the symbols \ or 7, are not computing commands, but
are metacommands which allow you to exchange information with gp. The available metacommands
can be divided into default setting commands (explained below) and simple commands (or keyboard
shortcuts, to be dealt with in Section 2.13).

2.1.3 Input.

Just type in an instruction, e.g. 1 + 1, or Pi. No action is undertaken until you hit the
<Return> key. Then computation starts, and a result is eventually printed. To suppress printing
of the result, end the expression with a ; sign. Note that many systems use ; to indicate end of
input. Not so in gp: a final semicolon means the result should not be printed. (Which is certainly
useful if it occupies several screens.)

2.1.4 Interrupt, Quit.

Typing quit at the prompt ends the session and exits gp. At any point you can type Ctrl-C
(that is press simultaneously the Control and C keys): the current computation is interrupted and
control given back to you at the gp prompt, together with a message like

*** at top-level: gcd(a,b)
KKk T

% gcd: user interrupt after 236 ms.

telling you how much time elapsed since the last command was typed in and in which GP function
the computation was aborted. It does not mean that that much time was spent in the function,
only that the evaluator was busy processing that specific function when you stopped it.

14

2.2 The general gp input line.

The gp calculator uses a purely interpreted language GP. The structure of this language is
reminiscent of LISP with a functional notation, f(x,y) rather than (f x y): all programming
constructs, such as if, while, etc...are functions®, and the main loop does not really execute,
but rather evaluates (sequences of) expressions. Of course, it is by no means a true LISP, and has
been strongly influenced by C and Perl since then.

2.2.1 Introduction. User interaction with a gp session proceeds as follows. First, one types a
sequence of characters at the gp prompt; see Section 2.15 for a description of the line editor. When
you hit the <Return> key, gp gets your input, evaluates it, then prints the result and assigns it to
an “history” array.

More precisely, the input is case-sensitive and, outside of character strings, blanks are com-
pletely ignored. Inputs are either metacommands or sequences of expressions. Metacommands are
shortcuts designed to alter gp’s internal state, such as the working precision or general verbosity
level; we shall describe them in Section 2.13, and ignore them for the time being.

The evaluation of a sequence of instructions proceeds in two phases: your input is first digested
(byte-compiled) to a bytecode suitable for fast evaluation, in particular loop bodies are compiled
only once but a priori evaluated many times; then the bytecode is evaluated.

An expression is formed by combining constants, variables, operator symbols, functions and
control statements. It is evaluated using the conventions about operator priorities and left to right
associativity. An expression always has a value, which can be any PARI object:

71+ 1

%l =2 \\ an ordinary integer

? x

%2 = x \\ @ polynomial of degree 1 in the unknown x
? print("Hello")

Hello \\ void return value

7?7 f(x) = x72
%3 = (x)->x"2 \\ a user function

In the third example, Hello is printed as a side effect, but is not the return value. The print
command is a procedure, which conceptually returns nothing. But in fact procedures return a
special void object, meant to be ignored (but which evaluates to 0 in a numeric context, and
stored as 0 in the history or results). The final example assigns to the variable £ the function
2+ 22, the alternative form f = x->x"2 achieving the same effect; the return value of a function
definition is, unsurprisingly, a function object (of type t_CLOSURE).

Several expressions are combined on a single line by separating them with semicolons (’;’).
Such an expression sequence will be called a seq. A seq also has a value, which is the value of the
last expression in the sequence. Under gp, the value of the seq, and only this last value, becomes
an history entry. The values of the other expressions in the seq are discarded after the execution
of the seq is complete, except of course if they were assigned into variables. In addition, the value
of the seq is printed if the line does not end with a semicolon ;.

* Not exactly, since not all their arguments need be evaluated. For instance it would be stupid
to evaluate both branches of an if statement: since only one will apply, only this one is evaluated.

15

2.2.2 The gp history of results.

This is not to be confused with the history of your commands, maintained by readline. The
gp history contains the results they produced, in sequence.

The successive elements of the history array are called %1, %2, ...As a shortcut, the latest
computed expression can also be called %, the previous one %¢, the one before that %°¢ ¢ and so on.

When you suppress the printing of the result with a semicolon, it is still stored in the history,
but its history number will not appear either. It is a better idea to assign it to a variable for later
use than to mentally recompute what its number is. Of course, on the next line, you may just use

%

The time used to compute that history entry is also stored as part of the entry and can be
recovered using the %# operator: %#1, %#2 %#¢; %# by itself returns the time needed to compute
the last result (the one returned by %).

Remark. The history “array” is in fact better thought of as a queue: its size is limited to 5000
entries by default, after which gp starts forgetting the initial entries. So %1 becomes unavailable as
gp prints %5001. You can modify the history size using histsize.

2.2.3 Special editing characters. A GP program can of course have more than one line. Since
your commands are executed as soon as you have finished typing them, there must be a way to tell
gp to wait for the next line or lines of input before doing anything. There are three ways of doing
this.

The first one is to use the backslash character \ at the end of the line that you are typing,
just before hitting <Return>. This tells gp that what you will write on the next line is the physical
continuation of what you have just written. In other words, it makes gp forget your newline
character. You can type a \ anywhere. It is interpreted as above only if (apart from ignored
whitespace characters) it is immediately followed by a newline. For example, you can type

73+ \
4

instead of typing 3 + 4.

The second one is a variation on the first, and is mostly useful when defining a user function
(see Section 2.7): since an equal sign can never end a valid expression, gp disregards a newline
immediately following an =.

? a-=
123
%l = 123

The third one is in general much more useful, and uses braces { and }. An opening brace {
signals that you are typing a multi-line command, and newlines are ignored until you type a closing
brace }. There are two important, but easily obeyed, restrictions: first, braces do not nest; second,
inside an open brace-close brace pair, all input lines are concatenated, suppressing any newlines.
Thus, all newlines should occur after a semicolon (;), a comma (,) or an operator (for clarity’s
sake, never split an identifier over two lines in this way). For instance, the following program

{

16

}

would silently produce garbage, since this is interpreted as a=bb=c which assigns the value of ¢ to
both bb and a. It should have been written

{

2.3 The PARI types.

We see here how to input values of the different data types known to PARI. Recall that blanks are
ignored in any expression which is not a string (see below).

A note on efficiency. The following types are provided for convenience, not for speed: t_INTMOD,
t_FRAC, t_PADIC, t_QUAD, t_POLMOD, t_RFRAC. Indeed, they always perform a reduction of some
kind after each basic operation, even though it is usually more efficient to perform a single reduction
at the end of some complex computation. For instance, in a convolution product), 4jen TiY; 0
Z/NZ — common when multiplying polynomials! —, it is quite wasteful to perform n reductions
modulo N. In short, basic individual operations on these types are fast, but recursive objects
with such components could be handled more efficiently: programming with libpari will save large
constant factors here, compared to GP.

2.3.1 Integers (t_INT). After an (optional) leading + or -, type in the decimal digits of your
integer. No decimal point!

? 1234567

%1 = 1234567

? -3

w2 = -3

? 1. \\ oops, not an integer

%3 = 1.000000000000000000000000000
2.3.2 Real numbers (t_REAL).

Real numbers are represented (approximately) in a floating point system, internally in base 2,
but converted to base 10 for input / output purposes. A t_REAL object has a given accuracy (or
precision) ¢ > 0; it comprises

e a sign s: +1, —1 or O;
e a mantissa m: a multiprecision integer, 0 < m < 10%;

e an exponent e: a small integer in [~ FE, E], where E ~ 281log,,2, and B = 32 on a 32-bit
machine and 64 otherwise.

This data may represent any real number x such that
|z — sm10°| < 10~

We consider that a t_REAL with sign s = 0 has accuracy ¢ = 0, so that its mantissa is useless, but
it still has an exponent e and acts like a machine epsilon for all accuracies < e.

17

After an (optional) leading + or -, type a number with a decimal point. Leading zeroes may
be omitted, up to the decimal point, but trailing zeroes are important: your t_REAL is assigned
an internal precision, which is the supremum of the input precision, one more than the number of
decimal digits input, and the default precision. For example, if the default precision is 28 digits,
typing 2. yields a precision of 28 digits, but 2.0...0 with 45 zeros gives a number with internal
precision at least 45, although less may be printed.

You can also use scientific notation with the letter E or e. As usual, en is interpreted as x10"
for all integers n. Since the result is converted to a t_REAL, you may often omit the decimal point
in this case: 6.02 E 23 or 1le-5 are fine, but e10 is not.

By definition, 0.E n returns a real 0 of exponent n, whereas 0. returns a real 0 “of default
precision” (of exponent —realprecision), see Section 1.3.7, behaving like the machine epsilon for
the current default accuracy: any float of smaller absolute value is indistinguishable from 0.

Note on output formats. A zero real number is printed in e format as 0.FExxz where zx is the
(usually negative) decimal exponent of the number (cf. Section 1.3.7). This allows the user to check
the accuracy of that particular zero.

When the integer part of a real number z is not known exactly because the exponent of z is
greater than the internal precision, the real number is printed in e format.

2.3.3 Intmods (t_INTMOD). To create the image of the integer a in Z/bZ (for some non-zero
integer b), type Mod(a,b); not a%b. Internally, all operations are done on integer representatives
belonging to [0,b — 1].

Note that this type is available for convenience, not for speed: each elementary operation
involves a reduction modulo b.

If z is a t_INTMOD Mod(a,b), the following member function is defined:

x.mod: return the modulus b.

2.3.4 Rational numbers (t_FRAC). All fractions are automatically reduced to lowest terms, so it
is impossible to work with reducible fractions. To enter n/m just type it as written. As explained
in Section 3.1.5, floating point division is not performed, only reduction to lowest terms.

Note that rational computation are almost never the fastest method to proceed: in the PARI
implementation, each elementary operation involves computing a gecd. It is generally a little more
efficient to cancel denominators and work with integers only:

? P = Pol(vector(10°3,i, 1/1)); \\ big polynomial with small rational coeffs
? P2

time = 1,392 ms.

? ¢ = content(P); c”2 *x (P/c)"2; \\ same computation in integers

time = 1,116 ms.

And much more efficient (but harder to setup) to use homomorphic imaging schemes and modular
computations. As the simple example below indicates, if you only need modular information, it
is very worthwhile to work with t_INTMODs directly, rather than deal with t_FRACs all the way
through:

? p = nextprime(1077);
? sum(i=1, 1075, 1/i) % p

18

time = 13,288 ms.

%1 = 2759492

? sum(i=1, 1075, Mod(1/i, p))
time = 60 ms.

%2 = Mod (2759492, 10000019)

2.3.5 Finite field elements (t_FFELT). Let T' € F,,[X| be a monic irreducible polynomial defining
your finite field over F,,, for instance obtained using ffinit. Then the ffgen function creates a
generator of the finite field as an F,-algebra, namely the class of X in F,[X]/(T), from which you
can build all other elements. For instance, to create the field Fgs, we write

? T = ffinit(2, 8);

7 y = ffgen(T, ’y);

? y°0 \\ the unit element in the field

%3 =1

?y°8

M=y 6+y5+y4+y3+y+1
The second (optional) parameter to ffgen is only used to display the result; it is customary to
use the name of the variable we assign the generator to. If g is a t_FFELT, the following member
functions are defined:

g.pol: the polynomial (with reduced integer coefficients) expressing g in term of the field
generator.

g.p: the characteristic of the finite field.

g.f: the dimension of the definition field over its prime field; the cardinality of the definition
field is thus p/.

g.mod: the minimal polynomial (with reduced integer coefficients) of the field generator.
2.3.6 Complex numbers (t_COMPLEX). To enter x + iy, type x + I*y. (That’s I, not i!) The

letter I stands for v/—1. The “real” and “imaginary” parts x and y can be of type t_INT, t_REAL,
t_INTMOD, t_FRAC, or t_PADIC.

2.3.7 p-adic numbers (t_PADIC):. Typing 0(p~k), where p and k are integers, yields a p-adic
0 of accuracy k, representing any p-adic number whose valuation is > k. To input a general non-0
p-adic number, write a suitably precise rational or integer approximation and add 0(p~k) to it.

Note that it is not checked whether p is indeed prime but results are undefined if this is not the
case: you can work on 10-adics if you want, but disasters will happen as soon as you do something
non-trivial like taking a square root. Note that 0(25) is not the same as 0(572); you want the
latter!

For example, you can type in the 7-adic number
2x77(=1) + 3 + 4x7 + 2x7°2 + 0(773)
exactly as shown, or equivalently as 905/7 + 0(773).
If a is a t_PADIC, the following member functions are defined:

a.mod: returns the modulus p*.

19

a.p: returns p.

Note that this type is available for convenience, not for speed: internally, t_PADICs are stored
as p-adic units modulo some p*. Each elementary operation involves updating p* (multiplying or
dividing by powers of p) and a reduction mod p*. In particular, additions are slow.

? n = 1+0(2720); for (i=1,10"6, n++)
time = 841 ms.
? n = Mod(1,27°20); for (i=1,10"6, n++)
time = 441 ms.
?n=1; for (i=1,10"6, n++)
time = 328 ms.

The penalty associated with maintaining p* decreases steeply as p increases (and updates become
very rare). But t_INTMODs remain at least 25% more efficient. (But they do not have denominators!)

2.3.8 Quadratic numbers (t_QUAD). This type is used to work in the quadratic order of discrim-
inant d, where d is a non-square integer congruent to 0 or 1 (modulo 4). The command

w = quadgen(d)

assigns to w the “canonical” generator for the integer basis of the order of discriminant d, i.e. w =
Vd/2 if d = 0mod 4, and w = (14 +/d)/2 if d = 1 mod 4. The name w is of course just a suggestion,
but corresponds to traditional usage. You can use any variable name that you like, but quadgen (d)
is always printed as w, regardless of the discriminant. So beware, two t_QUADs can be printed in
the same way and not be equal; however, gp will refuse to add or multiply them for example.

Since the order is Z + wZ, any other element can be input as z+y*w for some integers x and y.

In fact, you may work in its fraction field Q(v/d) and use t_FRAC values for = and .

2.3.9 Polmods (t_POLMOD). Exactly as for intmods, to enter x mody (where x and y are poly-
nomials), type Mod(x,y), not x%y. Note that when y is an irreducible polynomial in one variable,
polmods whose modulus is y are simply algebraic numbers in the finite extension defined by the
polynomial y. This allows us to work easily in number fields, finite extensions of the p-adic field
Q,, or finite fields.

Note that this type is available for convenience, not for speed: each elementary operation
involves a reduction modulo y. If p is a t_POLMOD, the following member functions are defined:

p-pol: return a representative of the polynomial class of minimal degree.

p-mod: return the modulus.

20

Important remark. Mathematically, the variables occurring in a polmod are not free variables.
But internally, a congruence class in R[t]/(y) is represented by its representative of lowest degree,
which is a t_POL in RJt], and computations occur with polynomials in the variable ¢. PARI will not
recognize that Mod(y, y~2 + 1) is “the same” as Mod(x, x"2 + 1), since x and y are different
variables.

To avoid inconsistencies, polmods must use the same variable in internal operations (i.e. be-
tween polmods) and variables of lower priority for external operations, typically between a poly-
nomial and a polmod. See Section 2.5.3 for a definition of “priority” and a discussion of (PARI’s
idea of) multivariate polynomial arithmetic. For instance:

? Mod(x, x72+ 1) + Mod(x, x72 + 1)

%1 = Mod(2%x, x°2 + 1) \\ 2i (or —2i), with i* = —1
? x + Mod(y, y°2 + 1)

%2 = x + Mod(y, y°2 + 1) \\ in Q(i)[z]

7 y + Mod(x, x72 + 1)

%3 = Mod(x + y, x°2 + 1) \\ in Q(y)[q]

The first two are straightforward, but the last one may not be what you want: y is treated here as
a numerical parameter, not as a polynomial variable.

If the main variables are the same, it is allowed to mix t_POL and t_POLMODs. The result is
the expected t_POLMOD. For instance

? X + Mod(x, x72 + 1)

%1 = Mod(2*x, x~2 + 1)
2.3.10 Polynomials (t_POL). Type the polynomial in a natural way, not forgetting to put a “«”
between a coefficient and a formal variable;

7?71 + 2%x + 3%x72
%1 = 3%x"2 + 2%xx + 1

This assumes that x is still a ”free variable”.

?7x=1; 1 + 2%x + 3*%x”2
%2 = 6

generates an integer, not a polynomial! It is good practice to never assign values to polynomial
variables to avoid the above problem, but a foolproof construction is available using ’x instead of x:
’x is a constant evaluating to the free variable with name x, independently of the current value
of x.

7 x=1; 1 + 2x’x + 3%x°x"2
%3 =1 + 2%kx + 3%x"2
7?7 x =7x; 1+ 2%x + 3%x"2
%A = 1 + 2xx + 3%x72

You may also use the functions Pol or Polrev:

? Pol([1,2,3]) \\ Pol creates a polynomial in x by default
%l = x72 + 2%x + 3

7 Polrev([1,2,3])

%2 = 3*%x72 + 2%x + 1

? Pol([1,2,3]1, ’y) \\ we use ’y, safer than y

21

W3 = y"2 + 2%y + 3

The latter two are much more efficient constructors than an explicit summation (the latter is
quadratic in the degree, the former linear):

? for (i=1, 1074, Polrev(vector (100, i,i)))
time = 124ms

? for (i=1, 1074, sum(i = 1, 100, (i+1) * ’x7i))
time = 3,985ms

Polynomials are always printed as univariate polynomials, with monomials sorted by decreasing
degree:

7 (x+y+1)°2
hl = x72 + (2%y + 2)*x + (y~2 + 2%y + 1)

(Univariate polynomial in x whose coefficients are polynomials in y.) See Section 2.5 for valid
variable names, and a discussion of multivariate polynomial rings.

2.3.11 Power series (t_SER). Typing 0(X"k), where k is an integer, yields an X-adic 0 of
accuracy k, representing any power series in X whose valuation is > k. Of course, X can be replaced
by any other variable name! To input a general non-0 power series, type in a polynomial or rational
function (in X, say), and add 0(X"k) to it. The discussion in the t_POL section about variables
remains valid; a constructor Ser replaces Pol and Polrev.

Caveat. Power series with inexact coefficients sometimes have a non-intuitive behavior: if k
significant terms are requested, an inexact zero is counted as significant, even if it is the coefficient
of lowest degree. This means that useful higher order terms may be disregarded.

If a series with a zero leading coefficient must be inverted, then as a desperation measure that
coefficient is discarded, and a warning is issued:

?7C=0.+7y+0(F°2);
7 1/C

%% _/_: Warning: normalizing a series with O leading term.
%2 = y~-1 + 0(1)

The last output could be construed as a bug since it is a priori impossible to deduce such a result
from the input (0. represents any sufficiently small real number). But it was thought more useful
to try and go on with an approximate computation than to raise an early exception.

If the series precision is insufficient, errors may occur (mostly division by 0), which could have
been avoided by a better global understanding of the computation:

?7A=1/(y +0.); B=1. + 0(y);
7 B * denominator (A)
%2 = 0.E-28 + 0(y)
7 A/B
x% _/_: Warning: normalizing a series with O leading term.
%3 = 1.000000000000000000000000000*y~-1 + 0(1)
? AxB
%% _*_: Warning: normalizing a series with O leading term.
%4 = 1.000000000000000000000000000*y~-1 + 0(1)

22

2.3.12 Rational functions (t_RFRAC). As for fractions, all rational functions are automatically
reduced to lowest terms. All that was said about fractions in Section 2.3.4 remains valid here.

2.3.13 Binary quadratic forms of positive or negative discriminant (t_QFR and t_QFI).
These are input using the function Qfb. For example Qfb(1,2,3) creates the binary form z2 +
22y +3y?. It is imaginary (of internal type t_QFI) since its discriminant 22 —4 x 3 = —8 is negative.
Although imaginary forms could be positive or negative definite, only positive definite forms are
implemented.

In the case of forms with positive discriminant (t_QFR), you may add an optional fourth
component (related to the regulator, more precisely to Shanks and Lenstra’s “distance”), which
must be a real number. See also the function gfbprimeform which directly creates a prime form
of given discriminant.

2.3.14 Row and column vectors (t_VEC and t_COL).) To enter a row vector, type the com-

ponents separated by commas “,”, and enclosed between brackets “[” and “]”, e.g. [1,2,3]. To
enter a column vector, type the vector horizontally, and add a tilde “~” to transpose. [] yields the
empty (row) vector. The function Vec can be used to transform any object into a vector (see Chap-
ter 3). The construction [i..j], where ¢ < j are two integers returns the vector [i,i+1,...,5 — 1, 7]

7 [1,2,3]

wo=[1, 2, 3]

7 [-2..3]

%2 = [-2, -1, 0, 1, 2, 3]
Let the variable v contain a (row or column) vector:

e v[m] refers to its m-th entry; you can assign any value to v[m], i.e. write something like
vlm] = expr.

e v[i..j], where i < j, returns the vector slice containing elements v[i], ..., v[j]; you can not
assign a result to v[i..j].

e v[~i] returns the vector whose i-th entry has been removed; you can not assign a result to
v[~i].

In the last two constructions v[i..j] and v[~i], ¢ and j are allowed to be negative integers, in
which case, we start counting from the end of the vector: e.g., —1 is the index of the last element.

?v=1[1,2,3,41;
7 v[2..4]

%2 = [2, 3, 4]
? v[~3]

%3 = [1, 2, 4]
7 v[~-1]

%3 = [1, 2, 3]
? v[-3..-1]

% = [2, 3, 4]

23

Remark. vector is the standard constructor for row vectors whose i-th entry is given by a simple
function of i; vectorv is similar for column vectors:

? vector(10, i, i~2+1)
%1 = [2, 5, 10, 17, 26, 37, 50, 65, 82, 101]

The functions Vec and Col convert objects to row and column vectors respectively (as well as
Vecrev and Colrev, which revert the indexing):

? T = poltchebi(5) \\ 5-th Chebyshev polynomial
%1 = 16*%x"5 - 20%x”3 + 5*x

? Vec(T)

%2 = [16, 0, -20, 0, 5, 0] \\ coefficients of T

? Vecrev(T)

%3 = [0, 5, 0, -20, 0, 16] \\ ... in reverse order

Remark. For v a t_VEC, t_COL, t_LIST or t_MAT, the alternative set-notations

[g(x) | x <= v, £(x)]
[x | x <- v, £(x)]
[gx) | x <= v]

are available as shortcuts for

apply(g, select(f, Vec(v)))
select (f, Vec(v))
apply(g, Vec(v))

respectively, and may serve as t_VEC constructors:
7?7 [p | p<- primes(10), isprime(p+2)]
%2 = [3, 5, 11, 17, 29]

returns the primes p (among the first 10 primes) such that (p,p + 2) is a twin pair;
?7 [p72 | p<- primes(10), p % 4 == 1]

%1 = [25, 169, 289, 841]

returns the squares of the primes congruent to 1 modulo 4, where p runs among the first 10 primes.

24

2.3.15 Matrices (t_MAT). To enter a matrix, type the components row by row, the components

@ ” @,

being separated by commas “,”, the rows by semicolons “;”, and everything enclosed in brackets
“[” and “17, e.g. [x,y; z,t; u,v]. [;] yields an empty (0 x 0) matrix. The function Mat
transforms any object into a matrix, and matrix creates matrices whose (i, 7)-th entry is described
by a function f(i,j):

? Mat (1)

%1 =

[1]

? matrix(2,2, i,j, 2*i+j)
%2 =

[3 4]

[5 6]
Let the variable M contain a matrix, and let i, j, k,[denote four integers:
e M[1i,j] refers to its (i, j)-th entry; you can assign any result to M[1i, j].
e M[i,] refers to its i-th row; you can assign a t_VEC of the right dimension to M[i,].
e M[,j] refers to its j-th column; you can assign a t_COL of the right dimension to M[, jJ.

But M[i] is meaningless and triggers an error. The “range” ¢..; and “caret” ~c notations are
available as for vectors; you can not assign to any of these:

e M[i..j, k..1],i < j, k <, returns the submatrix built from the rows i to j and columns
k tol of M. assign to M[i..j, j..1].

e M[i..j,] returns the submatrix built from the rows i to j of M.
e M[,i..j] returns the submatrix built from the columns i to j of M.
e M[i..j, “k], ¢ < j, returns the submatrix built from the rows ¢ to 5 and column £ removed.
e M["k,] returns the submatrix with row k removed.
e M[, k] returns the submatrix with column k& removed.
Finally,
e M[i..j, k] returns the t_COL built from the k-th column (entries i to j).
e M["i, k] returns the t_COL built from the k-th column (entry i removed).
e M[k, i..j] returns the t_VEC built from the k-th row (entries i to 7).
e M[k, ~i] returns the t_VEC built from the k-th row (entry ¢ removed).

?M=1[1,2,3;4,5,6;7,8,9];
? M[1..2, 2..3]

%2 =

[2 3]

[5 6]

? M[1..2,]
%3 =

[1 2 3]

[4 5 6]

25

7 M[,2..3]
W4 =
[2 3]

[5 6]
[8 9]

All this is recursive, so if M is a matrix of matrices of ..., an expression such as M[1,1][,3] [4]
= 1is perfectly valid (and actually identical to M[1,1] [4,3] = 1), assuming that all matrices along
the way have compatible dimensions.

Technical note (design flaw). Matrices are internally represented as a vector of columns. All
matrices with 0 columns are thus represented by the same object (internally, an empty vector), and
there is no way to distinguish between them. Thus it is not possible to create or represent matrices
with zero columns and an actual nonzero number of rows. The empty matrix [;] is handled as
though it had an arbitrary number of rows, exactly as many as needed for the current computation
to make sense:

? [1,2,3; 4,5,6] * [;]
%1 = [;]

The empty matrix on the first line is understood as a 3 x 0 matrix, and the result as a 2 x 0 matrix.
On the other hand, it is possible to create matrices with a given positive number of columns, each
of which has zero rows, e.g. using Mat as above or using the matrix function.

Note that although the internal representation is essentially the same, a row vector of column
vectors is not a matrix; for example, multiplication will not work in the same way. It is easy to go
from one representation to the other using Vec / Mat, though:

7 [1,2,3;4,5,6]
hl =

[1 2 3]

(4 5 6]

? Vec (%)

%2 = [[1, 41~, [2, B]~, [3, 6]1-~]
? Mat (%)

%3 =

[1 2 3]

[4 5 6]
2.3.16 Lists (t_LIST). Lists can be input directly, as in List ([1,2,3,4]); but in most cases, one
creates an empty list, then appends elements using listput:

? a = List(); listput(a,1); listput(a,2);
7 a
%2 = List([1, 2])

Elements can be accessed directly as with the vector types described above.

2.3.17 Strings (t_STR). To enter a string, enclose it between double quotes ", like this: "this is
a string". The function Str can be used to transform any object into a string.

26

2.3.18 Small vectors (t_VECSMALL). This is an internal type, used to code in an efficient way
vectors containing only small integers, such as permutations. Most gp functions will refuse to
operate on these objects.

2.3.19 Functions (t_CLOSURE). We will explain this at length in Section 2.7. For the time being,
suffice it to say that functions can be assigned to variables, as any other object, and the following
equivalent basic forms are available to create new ones

f=(x,y) >x"2+y"2
f(x,y) = x72 + y°2

2.3.20 Error contexts (t_ERROR). An object of this type is created whenever an error occurs: it
contains some information about the error and the error context. Usually, an appropriate error is
printed immediately, the computation is aborted, and GP enters the “break loop”:

?71/0; 1 +1
**x at top-level: 1/0;1+1
*okk S
%% _/_: division by a non-invertible object
**%*%x Break loop: type ’break’ to go back to the GP prompt

Here the computation is aborted as soon as we try to evaluate 1/0, and 1 + 1 is never executed.
Exceptions can be trapped using iferr, however: we can evaluate some expression and either
recover an ordinary result (no error occurred), or an exception (an error did occur).

? i = Mod(6,12); iferr(1/i, E, print(E)); 1 + 1
error ("impossible inverse modulo: Mod(6, 12).")
%1 =2

One can ignore the exception, print it as above, or extract non trivial information from the error
context:

? i = Mod(6,12); iferr(1/i, E, print(component(E,1)));
Mod (6, 12)

We can also rethrow the exception: error (E).

2.4 GP operators.

Loosely speaking, an operator is a function, usually associated to basic arithmetic operations, whose
name contains only non-alphanumeric characters. For instance + or -, but also = or +=, or even []
(the selection operator). As all functions, operators take arguments, and return a value; assignment
operators also have side effects: besides returning a value, they change the value of some variable.

Each operator has a fixed and unchangeable priority, which means that, in a given expression,
the operations with the highest priority is performed first. Unless mentioned otherwise, opera-
tors at the same priority level are left-associative (performed from left to right), unless they are
assignments, in which case they are right-associative. Anything enclosed between parenthesis is
considered a complete subexpression, and is resolved recursively, independently of the surrounding
context. For instance,

a+b+c --> (a+b) +c \\ left-associative

27

a=b=c -=> a=(b=c) \\ right-associative

Assuming that op1, opa, ops are binary operators with increasing priorities (think of +, *, ~),

X 0p Y Opgy 2 0Py X OP3 Y

is equivalent to
z opy ((y opy 2) opy (z ops y)).

GP contains many different operators, either unary (having only one argument) or binary, plus
a few special selection operators. Unary operators are defined as either prefiz or postfix, meaning
that they respectively precede (op x) and follow (x op) their single argument. Some symbols are
syntactically correct in both positions, like !, but then represent different operators: the ! symbol
represents the negation and factorial operators when in prefix and postfix position respectively.
Binary operators all use the (infix) syntax x op y.

Most operators are standard (+, %, =), some are borrowed from the C language (++, <<),
and a few are specific to GP (\, #). Beware that some GP operators differ slightly from their C
counterparts. For instance, GP’s postfix ++ returns the new value, like the prefix ++ of C, and the
binary shifts <<, >> have a priority which is different from (higher than) that of their C counterparts.
When in doubt, just surround everything by parentheses; besides, your code will be more legible.

Here is the list of available operators, ordered by decreasing priority, binary and left-associative
unless mentioned otherwise. An expression is an lvalue if something can be assigned to it. (The
name comes from left-value, to the left of a = operator; e.g. x, or v[1] are lvalues, but x + 1 is
not.)

e Priority 14

: as in x:small, is used to indicate to the GP2C compiler that the variable on the left-hand
side always contains objects of the type specified on the right hand-side (here, a small integer) in
order to produce more efficient or more readable C code. This is ignored by GP.

e Priority 13
() is the function call operator. If f is a closure and args is a comma-separated list of
arguments (possibly empty), f(args) evaluates f on those arguments.

e Priority 12

++ and -- (unary, postfix): if = is an 1lvalue, z++ assigns the value x + 1 to x, then returns
the new value of z. This corresponds to the C statement ++z: there is no prefix ++ operator in GP.
x—- does the same with x — 1. These operators are not associative, i.e. x++++ is invalid, since x++
is not an lvalue.

e Priority 11
.member (unary, postfix): x.member extracts member from structure x (see Section 2.8).

[] is the selection operator. x[i] returns the i-th component of vector x; x[i,7], =[,7]
and x[i,] respectively return the entry of coordinates (i, 7), the j-th column, and the i-th row of
matrix z. If the assignment operator (=) immediately follows a sequence of selections, it assigns its
right hand side to the selected component. E.g x[1] [1] = 0 is valid; but beware that (x[1]) [1]
= 0 is not (because the parentheses force the complete evaluation of x[1], and the result is not
modifiable).

e Priority 10
> (unary, postfix): derivative with respect to the main variable. If f is a function (t _CLOSURE),

28

/' is allowed and defines a new function, which will perform numerical derivation when evaluated
at a scalar z; this is defined as (f(z +¢) — f(x — €))/2¢ for a suitably small epsilon depending on
current precision.

7 (x72 + yxx + y~2)° \\ derive with respect to main variable x
%l = 2xx + y

? SIN = cos’

%2 = cos’

? SIN(Pi/6) \\ numerical derivation

%3 = -0.5000000000000000000000000000

? cos’(Pi/6) \\ works directly: no need for intermediate SIN

%4 = -0.5000000000000000000000000000
~ (unary, postfix): vector/matrix transpose.
! (unary, postfix): factorial. z! = z(x —1)---1.

! (unary, prefix): logical not. 'x returns 1 if z is equal to 0 (specifically, if gequalO(z)==1),
and 0 otherwise.

e Priority 9
(unary, prefix): cardinality; #x returns length(z).

e Priority 8
~: powering. This operator is right associative: 2 374 is understood as 2 ~(374).

e Priority 7
+, = (unary, prefix): - toggles the sign of its argument, + has no effect whatsoever.

e Priority 6
*: multiplication.

/: exact division (3/2 yields 3/2, not 1.5).

\, %: Euclidean quotient and remainder, i.e. if z = qy + r, then x\y = ¢, x%y =r. If z and y
are scalars, then ¢ is an integer and r satisfies 0 < r < y; if x and y are polynomials, then ¢ and r
are polynomials such that degr < degy and the leading terms of r and = have the same sign.

\/: rounded Euclidean quotient for integers (rounded towards +oo when the exact quotient
would be a half-integer).

<<, >>: left and right binary shift. By definition, x<<n = z%2" if n > 0, and truncate(z2™")
otherwise. Right shift is defined by x>>n = x<<(-n).

e Priority 5
+, —: addition/subtraction.

e Priority 4
<, >, <=, >=: the usual comparison operators, returning 1 for true and 0 for false. For
instance, x<=1 returns 1 if x < 1 and 0 otherwise.

<>, !=: test for (exact) inequality.

==: test for (exact) equality. t_QFR having the same coefficients but a different distance
component are tested as equal.

29

===: test whether two objects are identical component-wise. This is stricter than ==: for
instance, the integer 0, a 0 polynomial or a vector with O entries, are all tested equal by ==, but
they are not identical.

e Priority 3
&&: logical and.

| 1: logical (inclusive) or. Any sequence of logical or and and operations is evaluated from left
to right, and aborted as soon as the final truth value is known. Thus, for instance,

x == 0 || test(1/x)

will never produce an error since test (1/x) is not even evaluated when the first test is true (hence
the final truth value is true). Similarly

type(p) == "t_INT" && isprime(p)
does not evaluate isprime(p) if p is not an integer.

e Priority 2

= (assignment, lvalue = expr). The result of x = y is the value of the expression y, which
is also assigned to the variable x. This assignment operator is right-associative. This is not the
equality test operator; a statement like x = 1 is always true (i.e. non-zero), and sets x to 1; the
equality test would be x == 1. The right hand side of the assignment operator is evaluated before
the left hand side.

It is crucial that the left hand-side be an lvalue there, it avoids ambiguities in expressions like
1 + x = 1. The latter evaluates as 1 + (x = 1), not as (1 + x) = 1, even though the priority
of = is lower than the priority of +: 1 + x is not an lvalue.

If the expression cannot be parsed in a way where the left hand side is an lvalue, raise an error.

7Tx+1=1
*kk unused characters: x+1=1

* %k -

op=, where op is any binary operator among +, -, *, %, /, \, \/, <<, or >> (composed assignment
lvalue op= expr). The expression x op= y assigns (x op y) to x, and returns the new value of x.
The result is not an lvalue; thus

(x += 2) = 3
is invalid. These assignment operators are right-associative:

?T X =7°X; X += x *x= 2
%1 = 3*x

e Priority 1
-> (function definition): (vars)->expr returns a function object, of type t_CLOSURE.

Remark. Use the op= operators as often as possible since they make complex assignments more
legible: one needs not parse complicated expressions twice to make sure they are indeed identical.
Compare

v[i+j-1] = v[i+j-1] + 1 -—> v[i+j-1]1++

M[i,i+j] = M[i,i+j] * 2 -=> M[i,i+j] *= 2

30

Remark. Less important but still interesting. The ++, —— and op= operators are slightly more
efficient:

1076;

0; while(i<a, i=i+1)
time = 365 ms.

? i = 0; while(i<a, i++)
time = 352ms.

7 a
7?1

For the same reason, the shift operators should be preferred to multiplication:

? a = 1<<(10°5);

? i = 1; while(i<a, i=ix*2);
time = 1,052 ms.

? i =1; while(i<a, i<<=1);
time = 617 ms.

2.5 Variables and symbolic expressions.

In this section we use wvariable in the standard mathematical sense, symbols representing
algebraically independent elements used to build rings of polynomials and power series, and explain
the all-important concept of variable priority. In the next Section 2.6, we shall no longer consider
only free variables, but adopt the viewpoint of computer programming and assign values to these
symbols: (bound) variables are names associated to values in a given scope.

2.5.1 Variable names. A valid name starts with a letter, followed by any number of keyword
characters: _ or alphanumeric characters ([A-Za-z0-9]). The built-in function names are reserved
and cannot be used; see the list with \c, including the constants Pi, Euler, Catalan and I = /—1.

GP names are case sensitive. For instance, the symbol i is perfectly safe to use, and will not
be mistaken for I = 1/—1; analogously, o is not synonymous to 0.

In GP you can use up to 16383 variable names (up to 65535 on 64-bit machines). If you ever
need thousands of variables and this becomes a serious limitation, you should probably be using
vectors instead: e.g. instead of variables X1, X2, X3, ..., you might equally well store their values
in X[1], X[2], X[3], ...

2.5.2 Variables and polynomials. What happens when you use a valid variable name,t say, for
the first time before assigning a value into it? This registers a new free variable with the interpreter
(which will be written as t), and evaluates to a monomial of degree 1 in the said variable t. It
is important to understand that PARI/GP is not a symbolic manipulation package: even free
variables already have default values®, there is no such thing as an “unbound” variable in GP.
You have access to this default value using the quote operator: ’t always evaluates to the above
monomial of degree 1, independently of assignments made since then (e.g. t = 1).

?7t72+1

% =t"2 + 1
?Tt=2;tt2+1

* More generally, any expression has a value, and is replaced by its value as soon as it is read; it
never stays in an abstract form.

31

%2 =5

? %W

%3 =t"2 + 1
? eval(%1)
%4 =5

In the above, t is initially a free variable, later bound to 2. We see that assigning a value to a
variable does not affect previous expressions involving it; to take into account the new variable’s
value, one must force a new evaluation, using the function eval (see Section 3.7.5). It is preferable
to leave alone your “polynomial variables”, never assigning values to them, and to use subst and
its more powerful variants rather than eval. You will avoid the following kind of problems:

?7p=1t"2+ 1; subst(p, t, 2)

%l =5

7t =2;

? subst(p, t, 3) \\ t is no longer free: it evaluates to 2
*** at top-level: subst(p,t,3)
*ok ok o

**% variable name expected.
? subst(p, ’t, 3) \\ 0K
w3 = 10

A statement like x = ’x in effect restores x as a free variable.

2.5.3 Variable priorities, multivariate objects. A multivariate polynomial in PARI is just a
polynomial (in one variable), whose coefficients are themselves polynomials, arbitrary but for the
fact that they do not involve the main variable. (PARI currently has no sparse representation for
polynomials, listing only non-zero monomials.) All computations are then done formally on the
coefficients as if the polynomial was univariate.

This is not symmetrical. So if I enter x + y in a clean session, what happens? This is
understood as
at 4 (y' +0xy) x2® € (Zly])[x]

but how do we know that z is “more important” than y ? Why not y* 4+ x * y°, which is the same
mathematical entity after all?

The answer is that variables are ordered implicitly by the interpreter: when a new identifier
(e.g x, or y as above) is input, the corresponding variable is registered as having a strictly lower
priority than any variable in use at this point®. To see the ordering used by gp at any given time,
type variable().

Given such an ordering, multivariate polynomials are stored so that the variable with the
highest priority is the main variable. And so on, recursively, until all variables are exhausted. A
different storage pattern (which could only be obtained via libpari programming and low-level
constructors) would produce an invalid object, and eventually a disaster.

In any case, if you are working with expressions involving several variables and want to have
them ordered in a specific manner in the internal representation just described, the simplest is just
to write down the variables one after the other under gp before starting any real computations.

* This is not strictly true: the variable z is predefined and always has the highest possible
priority.

32

You could also define variables from your gprc to have a consistent ordering of common variable
names in all your gp sessions, e.g read in a file variables.gp containing

X;y¥;2z;t5a;b;¢;4d;

Important note. PARI allows Euclidean division of multivariate polynomials, but assumes that
the computation takes place in the fraction field of the coefficient ring (if it is not an integral
domain, the result will a priori not make sense). This can become tricky; for instance assume z
has highest priority (which is always the case), then y:

?7xhy

%1 =0

7y %X

W2 =y \\ these two take place in Q(y)|[x]
? x * Mod(1,y)

%3 = Mod(1, y)*x \\in (Q(y)/yQ(y))[z] ~ Q[z]
? Mod(x,y)

W4 =0

In the last example, the division by y takes place in Q(y)[z], hence the Mod object is a coset
in (Q(y)[z])/(yQ(y)[z]), which is the null ring since y is invertible! So be very wary of variable
ordering when your computations involve implicit divisions and many variables. This also affects
functions like numerator/denominator or content:

? denominator(x / y)

%=1

? denominator(y / x)
%2 = x

? content(x / y)

%3 = 1/y

? content(y / x)

W =y

? content(2 / x)

%5 = 2

Can you see why? Hint: x/y = (1/y) * = is in Q(y)[z] and denominator is taken with respect to
Qy)(x); y/z = (y*2°)/x is in Q(y)(x) so y is invertible in the coefficient ring. On the other hand,
2/x involves a single variable and the coefficient ring is simply Z.

These problems arise because the variable ordering defines an implicit variable with respect
to which division takes place. This is the price to pay to allow % and / operators on polynomials
instead of requiring a more cumbersome divrem(x, y, war) (which also exists). Unfortunately,
in some functions like content and denominator, there is no way to set explicitly a main variable
like in divrem and remove the dependence on implicit orderings. This will hopefully be corrected
in future versions.

33

2.5.4 Multivariate power series. Just like multivariate polynomials, power series are funda-
mentally single-variable objects. It is awkward to handle many variables at once, since PARI’s
implementation cannot handle multivariate error terms like O(z'y’). (It can handle the polyno-
mial O(y’) x x* which is a very different thing, see below.)

The basic assumption in our model is that if variable x has higher priority than y, then y does
not depend on x: setting y to a function of x after some computations with bivariate power series
does not make sense a priori. This is because implicit constants in expressions like O(z?) depend
on y (whereas in O(y’) they can not depend on x). For instance

?70(x) xy
%1 = 0(x)

7 0(y) * x
%2 = 0(y)*x

Here is a more involved example:

?7A=1/x"2+ 1 +0&x); B=1/x+ 1+ 0(x"3);
? subst(z*A, z, B)

%2 = x"-3 + x"-2 +x"-1 + 1+ 0(x)

? B x A

%3 = x"-3 + x"-2 + x~-1 + 0(1)

7z *x A

%4 = zxx"-2 + z + 0(x)

The discrepancy between %2 and %3 is surprising. Why does %2 contain a spurious constant term,
which cannot be deduced from the input? Well, we ignored the rule that forbids to substitute
an expression involving high-priority variables to a low-priority variable. The result %4 is correct
according to our rules since the implicit constant in O(z) may depend on z. It is obviously wrong
if z is allowed to have negative valuation in z. Of course, the correct error term should be O(zz),
but this is not possible in PARI.

2.6 Variables and Scope.

This section is rather technical, and strives to explain potentially confusing concepts. Skip to
the last subsection for practical advice, if the next discussion does not make sense to you. After
learning about user functions, study the example in Section 2.7.3 then come back.

34

Definitions.

A scope is an enclosing context where names and values are associated. A user’s function body,
the body of a loop, an individual command line, all define scopes; the whole program defines the
global scope. The argument of eval is evaluated in the enclosing scope.

Variables are bound to values within a given scope. This is traditionally implemented in two
different ways:

e lexical (or static) scoping: the binding makes sense within a given block of program text.
The value is private to the block and may not be accessed from outside. Where to find the value
is determined at compile time.

e dynamic scoping: introducing a local variable, say x, pushes a new value on a stack associated
to the name x (possibly empty at this point), which is popped out when the control flow leaves the
scope. Evaluating x in any context, possibly outside of the given block, always yields the top value
on this dynamic stack.

GP implements both lexical and dynamic scoping, using the keywords™* my (lexical) and local
(dynamic):

x = 0;
O =x
g() = my(x = 1); £O
h() = local(x = 1); £QO

The function g returns 0 since the global x binding is unaffected by the introduction of a private
variable of the same name in g. On the other hand, h returns 1; when it calls £ (), the binding stack
for the x identifier contains two items: the global binding to 0, and the binding to 1 introduced in
h, which is still present on the stack since the control flow has not left h yet.

2.6.1 Scoping rules.

Named parameters in a function definition, as well as all loop indices®, have lexical scope
within the function body and the loop body respectively.

p=0;
forprime (p = 2, 11, print(p)); p \\ prints O at the end
x = 0;

f(x) = x++;
f(1) \\ returns 2, and leave global x unaffected (= 0)

If you exit the loop prematurely, e.g. using the break statement, you must save the loop index in
another variable since its value prior the loop will be restored upon exit. For instance

for(i = 1, n,
if (ok(i), break);
)

if (i > n, return(failure));

* The names are borrowed from the Perl scripting language.
* More generally, in all iterative constructs which use a variable name (for, prod, sum, vector,
matrix, plot, etc.) the given variable is lexically scoped to the construct’s body.

35

is incorrect, since the value of i tested by the (i > n) is quite unrelated to the loop index. One ugly
workaround is

for(i = 1, n,
if (ok(i), isave = i; break);
);

if (isave > n, return(failure));

But it is usually more natural to wrap the loop in a user function and use return instead of break:

try() =
{
for(i = 1, n,
if (ok(i), return (i));
)
0 \\ failure
}

A list of variables can be lexically or dynamically scoped (to the block between the declaration
and the end of the innermost enclosing scope) using a my or local declaration:

for (i =1, 10,
my(x, y, z, i2 = 1i"2); \\ temps needed within the loop body

)

Note how the declaration can include (optional) initial values, i2 = i"2 in the above. Variables
for which no explicit default value is given in the declaration are initialized to 0. It would be more
natural to initialize them to free variables, but this would break backward compatibility. To obtain
this behavior, you may explicitly use the quoting operator:

my(x = ’x, y =’y, z = ’2);
A more complicated example:

for (i = 1, 3,
print("main loop");

my(x = i); \\ local to the outermost loop
for (j =1, 3,
my (y = x72); \\ local to the innermost loop
print (y + y~2);
X++;
)

)

When we leave the loops, the values of x, y, i, j are the same as before they were started.

Note that eval is evaluated in the given scope, and can access values of lexical variables:

7 x=1;
? my(x = 0); eval("x")
%2 =0 \\ we see the local x scoped to this command line, not the global one

Variables dynamically scoped using local should more appropriately be called temporary val-
ues since they are in fact local to the function declaring them and any subroutine called from

36

within. In practice, you almost certainly want true private variables, hence should use almost
exclusively my.

We strongly recommended to explicitly scope (lexically) all variables to the smallest possible
block. Should you forget this, in expressions involving such “rogue” variables, the value used will
be the one which happens to be on top of the value stack at the time of the call; which depends on
the whole calling context in a non-trivial way. This is in general not what you want.

2.7 User defined functions.

The most important thing to understand about user-defined functions is that they are ordinary
GP objects, bound to variables just like any other object. Those variables are subject to scoping
rules as any other: while you can define all your functions in global scope, it is usually possible
and cleaner to lexically scope your private helper functions to the block of text where they will be
needed.

Whenever gp meets a construction of the form expr (argument list) and the expression expr
evaluates to a function (an object of type t_CLOSURE), the function is called with the proper
arguments. For instance, constructions like funcs[i] (x) are perfectly valid, assuming funcs is an
array of functions.

2.7.1 Defining a function.
A user function is defined as follows:

(list of formal variables) -> seq.

The list of formal variables is a comma-separated list of distinct variable names and allowed to be
empty. It there is a single formal variable, the parentheses are optional. This list corresponds to
the list of parameters you will supply to your function when calling it.

In most cases you want to assign a function to a variable immediately, as in

R = (x,y) -> sqrt(x"2+y"2);
sq = x —> x72; \\ or equivalently (x) -> x"2

but it is quite possible to define (a priori short-lived) anonymous functions. The trailing semicolon
is not part of the definition, but as usual prevents gp from printing the result of the evaluation, i.e.
the function object. The construction

f (list of formal variables) = seq
is available as an alias for
f = (list of formal variables) -> seq

Using that syntax, it is not possible to define anonymous functions (obviously), and the above two
examples become:

R(x,y) = sqrt(x"2+y°2);
sq(x) = x72;

The semicolon serves the same purpose as above: preventing the printing of the resulting function
object; compare

? sq(x) = x"2; \\ no output

37

? 8q(x) = x"2 \\ print the result: a function object
%2 = (x)->x"2

Of course, the sequence seq can be arbitrarily complicated, in which case it will look better written
on consecutive lines, with properly scoped variables:

{
f(l’o, I,) =
my (tg, t1, -..); \\ wariables lexically scoped to the function body

}

Note that the following variant would also work:

f(l’o, I,) =
{
my (tg, t1, -..); \\ wariables lexically scoped to the function body

}

(the first newline is disregarded due to the preceding = sign, and the others because of the enclosing
braces). The my statements can actually occur anywhere within the function body, scoping the
variables to more restricted blocks than the whole function body.

Arguments are passed by value, not as variables: modifying a function’s argument in the
function body is allowed, but does not modify its value in the calling scope. In fact, a copy of
the actual parameter is assigned to the formal parameter when the function is called. Formal
parameters are lexically scoped to the function body. It is not allowed to use the same variable
name for different parameters of your function:

? f(x,x) =1
*x% variable declared twice: f(x,x)=1
k k% Nm————

Finishing touch. You can add a specific help message for your function using addhelp, but the
online help system already handles it. By default ?name will print the definition of the function
name: the list of arguments, as well as their default values, the text of seq as you input it. Just as
\c prints the list of all built-in commands, \u outputs the list of all user-defined functions.

Backward compatibility (lexical scope). Lexically scoped variables were introduced in ver-
sion 2.4.2. Before that, the formal parameters were dynamically scoped. If your script depends on
this behavior, you may use the following trick: replace the initial £(x) = by

f(x_orig) = local(x = x_orig)

38

Backward compatibility (disjoint namespaces). Before version 2.4.2, variables and functions
lived in disjoint namespaces and it was not possible to have a variable and a function share the
same name. Hence the need for a kill function allowing to reuse symbols. This is no longer the
case.

There is now no distinction between variable and function names: we have PARI objects
(functions of type t_CLOSURE, or more mundane mathematical entities, like t_INT, etc.) and
variables bound to them. There is nothing wrong with the following sequence of assignments:

?7f=1 \\ assigns the integer 1 to £

wo=1;

?7f0 =1 \\ a function with a constant value
h2 = O->1

?7f=x"2 \\ £ now holds a polynomial

%3 = x"2

7 £(x) = x"2 \\ ... and now a polynomial function

%4 = (x)->x"2

7 g(fun) = fun(Pi);\\ a function taking a function as argument
? g(cos)

%6 = -1.000000000000000000000000000

Previously used names can be recycled as above: you are just redefining the variable. The previous
definition is lost of course.

Important technical note. Built-in functions are a special case since they are read-only (you
cannot overwrite their default meaning), and they use features not available to user functions, in
particular pointer arguments. In the present version 2.7.0, it is possible to assign a built-in function
to a variable, or to use a built-in function name to create an anonymous function, but some special
argument combinations may not be available:

7 issquare(9, &e)

nl =1
? e
%2 =3
? g = issquare;
? g(9)
=1

7 g(9, &e) \\ pointers are not implemented for user functions
+ unexpected &: g(9,&e)
*ok ok S

2.7.2 Function call, Default arguments.

You may now call your function, as in £(1,2), supplying values for the formal variables.
The number of parameters actually supplied may be less than the number of formal variables in
the function definition. An uninitialized formal variable is given an implicit default value of (the
integer) 0, i.e. after the definition

f(x, y) = ...

you may call £(1, 2), supplying values for the two formal parameters, or for example
£(2) equivalent to £(2,0),

39

£0O £(0,0),
£(,3) £(0,3). (“Empty argument” trick)

This implicit default value of 0, is actually deprecated and setting

default(strictargs, 1)
allows to disable it (see Section 3.14.39).

The recommended practice is to explicitly set a default value: in the function definition, you
can append =expr to a formal parameter, to give that variable a default value. The expression gets
evaluated the moment the function is called, and may involve the preceding function parameters:
a default value for z; may involve x; for j < ¢. For instance, after

fx=1,y=2, z=y+l) =

typing in f(3,4) would give you £(3,4,5). In the rare case when you want to set some far
away argument, and leave the defaults in between as they stand, use the “empty argument” trick:
£(6,,1) would yield £(6,2,1). Of course, £() by itself yields £(1,2,3) as was to be expected.

In short, the argument list is filled with user supplied values, in order. A comma or closing
parenthesis, where a value should have been, signals we must use a default value. When no input
arguments are left, the defaults are used instead to fill in remaining formal parameters. A final
example:

f(x, y=2, z=3) = print(x, ":", y, ":", z);
defines a function which prints its arguments (at most three of them), separated by colons.

7 £(6,7)
6:7:3
? £(,5)
0:5:3
7 £0)
0:2:3

If strictargs is set (recommended), x is now a mandatory argument, and the above becomes:

default(strictargs,1)
£(6,7)

:7:3

£(,5)

xk at top-level: f(,5)
N e —

N O N N

*kk in function f: x,y=2,z=3
*okk B

**k*x missing mandatory argument ’x’ in user function.

40

Example. We conclude with an amusing example, intended to illustrate both user-defined func-
tions and the power of the sumalt function. Although the Riemann zeta-function is included (as
zeta) among the standard functions, let us assume that we want to check other implementations.
Since we are highly interested in the critical strip, we use the classical formula

27 =1)¢(s) =D ()™, Rs>0.

n>1

The implementation is obvious:
ZETA(s) = sumalt(n=1, (-1)"n*n~(-s)) / (2°(1-s) - 1)

Note that n is automatically lexically scoped to the sumalt “loop”, so that it is unnecessary to add
a my(n) declaration to the function body. Surprisingly, this gives very good accuracy in a larger
region than expected:

? check = z -> ZETA(z) / zeta(z);

? check(2)

%1 = 1.000000000000000000000000000

? check(200)

%2 = 1.000000000000000000000000000

? check(0)

%3 = 0.9999999999999999999999999994

? check(-5)

%4 = 1.00000000000000007549266557

? check(-11)

%5 = 0.9999752641047824902660847745

7 check(1/2+14.134%I) \\ wery close to a non-trivial zero
%6 = 1.000000000000000000003747432 + 7.62329066 E-21*I
? check(-1+10%I)

%7 = 1.000000000000000000000002511 + 2.989950968 E-24x*I

Now wait a minute; not only are we summing a series which is certainly no longer alternating (it
has complex coefficients), but we are also way outside of the region of convergence, and still get
decent results! No programming mistake this time: sumalt is a “magic” function®, providing very
good convergence acceleration; in effect, we are computing the analytic continuation of our original
function. To convince ourselves that sumalt is a non-trivial implementation, let us try a simpler
example:

? sum(n=1, 1077, (-1)"n/n, 0.) / (-log(2)) \\ approximates the well-known formula
time = 7,417 ms.

%1 = 0.9999999278652515622893405457

7 sumalt(n=1, (-1)"n/n) / (-log(2)) \\ accurate and fast

time = O ms.

%2 = 1.000000000000000000000000000

No, we are not using a powerful simplification tool here, only numerical computations. Remember,
PARI is not a computer algebra system!

* sumalt is heuristic, but its use can be rigorously justified for a given function, in particular our
¢(s) formula. Indeed, Peter Borwein (An efficient algorithm for the Riemann zeta function, CMS
Conf. Proc. 27 (2000), pp. 29-34) proved that the formula used in sumalt with n terms computes
(1 — 217*)((s) with a relative error of the order of (3 + /8)~"|T'(s)|~!.

41

2.7.3 Beware scopes. Be extra careful with the scopes of variables. What is wrong with the
following definition?

FirstPrimeDiv(x) =

{ my(p);
forprime(p=2, x, if (x)p == 0, break));
p

}

? FirstPrimeDiv(10)

%1 =0

Hint. The function body is equivalent to

{ my(newp = 0);
forprime(p=2, x, if (x%p == 0, break));
newp

}

Detailed explanation. The index p in the forprime loop is lexically scoped to the loop and is
not visible to the outside world. Hence, it will not survive the break statement. More precisely,
at this point the loop index is restored to its preceding value. The initial my (p), although well-
meant, adds to the confusion: it indeed scopes p to the function body, with initial value 0, but the
forprime loop introduces another variable, unfortunately also called p, scoped to the loop body,
which shadows the one we wanted. So we always return 0, since the value of the p scoped to the
function body never changes and is initially 0.

To sum up, the routine returns the p declared local to it, not the one which was local to
forprime and ran through consecutive prime numbers. Here is a corrected version:

? FirstPrimeDiv(x) = forprime(p=2, x, if (x¥p == 0, return(p)))
2.7.4 Recursive functions. Recursive functions can easily be written as long as one pays proper

attention to variable scope. Here is an example, used to retrieve the coefficient array of a multivari-
ate polynomial (a non-trivial task due to PARI’s unsophisticated representation for those objects):

coeffs(P, nbvar) =

{
if (type(P) !'= "t_POL",
for (i=1, nbvar, P = [P]);
return (P)
);
vector(poldegree(P)+1, i, coeffs(polcoeff(P, i-1), nbvar-1))
}
If P is a polynomial in k variables, show that after the assignment v = coeffs(P,k), the coefficient

of z1* ... z}* in P is given by v[ni+1]1 [... 1 [ng+1].

The operating system automatically limits the recursion depth:
? dive(n) = dive(n+1)

? dive(0);

42

*¥*x [...] at: dive(n+1)

O

*** in function dive: dive(n+1)
skk e
\\ (last 2 lines repeated 19 times)

**x* deep recursion.

There is no way to increase the recursion limit (which may be different on your machine) from
within gp. To increase it before launching gp, you can use ulimit or limit, depending on your
shell, and raise the process available stack space (increase stacksize).

2.7.5 Function which take functions as parameters. This is done as follows:

? calc(f, x) = f(x)
? calc(sin, Pi)
%2 = -5.04870979 E-29

7 g(x) = x72;
? calc(g, 3)
%4 =9

If we do not need g elsewhere, we should use an anonymous function here, calc(x->x"2, 3). Here
is a variation:

? funs = [cos, sin, tan, x->x"3+1]; \\ an array of functions
? call(i, x) = funs[i] (®)

evaluates the appropriate function on argument x, provided 1 < ¢ < 4. Finally, a more useful
example:

APPLY(f, v) = vector(#v, i, f(v[il))
applies the function f to every element in the vector v. (The built-in function apply is more
powerful since it also applies to lists and matrices.)
2.7.6 Defining functions within a function. Defining a single function is easy:

init(x) = (add = y -> x+y);

Basically, we are defining a global variable add whose value is the function y->x+y. The parentheses
were added for clarity and are not mandatory.

? init(5);
? add(2)
%2 =7

A more refined approach is to avoid global variables and return the function:

init(x) =y -> x+y
add = init(5)

Then add (2) still returns 7, as expected! Of course, if add is in global scope, there is no gain, but
we can lexically scope it to the place where it is useful:

my (add = init(5));

How about multiple functions then? We can use the last idea and return a vector of functions,
but if we insist on global variables? The first idea

43

init(x) = add(y) = x+y; mul(y) = xxy;

does not work since in the construction £() = seq, the function body contains everything until
the end of the expression. Hence executing init defines the wrong function add (itself defining a
function mul). The way out is to use parentheses for grouping, so that enclosed subexpressions will
be evaluated independently:

? init(x) = (add(y) = x+y); (mul(y) = x*y);
? init(5);

? add(2)

W3 =7

7 mul(3)

%4 = 15

This defines two global functions which have access to the lexical variables private to init! The
following would work in exactly the same way:

? inits6() = my(x = 5); (add(y) = x+y); (mul(y) = x*xy);

2.7.7 Closures as Objects. Contrary to what you might think after the preceding examples, GP’s
closures may not be used to simulate true “objects”, with private and public parts and methods
to access and manipulate them. In fact, closures indeed incorporate an existing context (they may
access lexical variables that existed at the time of their definition), but then may not change it.
More precisely, they access a copy, which they are welcome to change, but a further function call
still accesses the original context, as it existed at the time the function was defined:

init() =

{ my(count = 0);
inc()=count++;
dec()=count--;

}

? inc()
%1 =1
? incQ)
%2 =1
? incQ)
%3 =1

2.8 Member functions.

Member functions use the ‘dot’ notation to retrieve information from complicated structures.
The built-in structures are bid, ell, galois, ff, nf, bnf, bnr and prid, which will be described at length
in Chapter 3. The syntax structure.member is taken to mean: retrieve member from structure,
e.g. E.j returns the j-invariant of the elliptic curve E, or outputs an error message if E is not a
proper ell structure. To define your own member functions, use the syntax

var . member = seq,

where the formal variable var is scoped to the function body seq. This is of course reminiscent of
a user function with a single formal variable var. For instance, the current implementation of the
ell type is a vector, the j-invariant being the thirteenth component. It could be implemented as

44

Xx.j =
{

if (type(x) != "t_VEC" || #x < 14, error("not an elliptic curve: " x));
x[13]

}

As for user functions, you can redefine your member functions simply by typing new definitions.
On the other hand, as a safety measure, you cannot redefine the built-in member functions, so
attempting to redefine x.j as above would in fact produce an error; you would have to call it
e.g. x.myj in order for gp to accept it.

Rationale. In most cases, member functions are simple accessors of the form

x.a = x[1];
x.b = x[2];
x.c = x[3];

where x is a vector containing relevant data. There are at least three alternative approaches to the
above member functions: 1) hardcode x[1], etc. in the program text, 2) define constant global
variables AINDEX = 1, BINDEX = 2 and hardcode x[AINDEX], 3) user functions a(x) = x[1] and
SO On.

Even if 2) improves on 1), these solutions are neither elegant nor flexible, and they scale badly.
3) is a genuine possibility, but the main advantage of member functions is that their namespace is
independent from the variables (and functions) namespace, hence we can use very short identifiers
without risk. The j-invariant is a good example: it would clearly not be a good idea to define j (E)
= E[13], because clashes with loop indices are likely.

Note. Typing \um will output all user-defined member functions.

Member function names. A valid name starts with a letter followed by any number of keyword
characters: _ or alphanumeric characters ([A-Za-z0-9]). The built-in member function names are
reserved and cannot be used (see the list with 7.). Finally, names starting with e or E followed
by a digit are forbidden, due to a clash with the floating point exponent notation: we understand
1.e2 as 100.000.. ., not as extracting member e2 of object 1.

2.9 Strings and Keywords.

2.9.1 Strings. GP variables can hold values of type character string (internal type t_STR). This
section describes how they are actually used, as well as some convenient tricks (automatic concate-
nation and expansion, keywords) valid in string context.

As explained above, the general way to input a string is to enclose characters between quotes ".
This is the only input construct where whitespace characters are significant: the string will contain
the exact number of spaces you typed in. Besides, you can “escape” characters by putting a \ just
before them; the translation is as follows

\e: <Escape>
\n: <Newline>
\t: <Tab>

45

For any other character x, \z is expanded to x. In particular, the only way to put a " into a
string is to escape it. Thus, for instance, "\"a\"" would produce the string whose content is “a’”.
This is definitely not the same thing as typing "a", whose content is merely the one-letter string a.

You can concatenate two strings using the concat function. If either argument is a string, the
other is automatically converted to a string if necessary (it will be evaluated first).

? concat("ex", 1+1)

%1 = "ex2"

?a=2; b= "ex"; concat(b, a)
%2 = ngx"

? concat(a, b)

%3 = "2ex"

Some functions expect strings for some of their arguments: print would be an obvious example,
Str is a less obvious but useful one (see the end of this section for a complete list). While typing
in such an argument, you will be said to be in string context. The rest of this section is devoted to
special syntactical tricks which can be used with such arguments (and only here; you will get an
error message if you try these outside of string context):

e Writing two strings alongside one another will just concatenate them, producing a longer
string. Thus it is equivalent to type in "a " "b" or "a b". A little tricky point in the first
expression: the first whitespace is enclosed between quotes, and so is part of a string; while the
second (before the "b") is completely optional and gp actually suppresses it, as it would with any
number of whitespace characters at this point (i.e. outside of any string).

e If you insert any expression when a string is expected, it gets “expanded”: it is evaluated
as a standard GP expression, and the final result (as would have been printed if you had typed
it by itself) is then converted to a string, as if you had typed it directly. For instance "a" 1+1
"b" is equivalent to "a2b": three strings get created, the middle one being the expansion of 1+1,
and these are then concatenated according to the rule described above. Another tricky point here:
assume you did not assign a value to aaa in a GP expression before. Then typing aaa by itself in
a string context will actually produce the correct output (i.e. the string whose content is aaa), but
in a fortuitous way. This aaa gets expanded to the monomial of degree one in the variable aaa,
which is of course printed as aaa, and thus will expand to the three letters you were expecting.

Warning. Expression involving strings are not handled in a special way; even in string context,
the largest possible expression is evaluated, hence print ("a"[1]) is incorrect since "a" is not an
object whose first component can be extracted. On the other hand print("a", [1]) is correct
(two distinct argument, each converted to a string), and so is print("a" 1) (since "a"1 is not
a valid expression, only "a" gets expanded, then 1, and the result is concatenated as explained
above).

2.9.2 Keywords. Since there are cases where expansion is not desirable, we now distinguish
between “Keywords” and “Strings”. String is what has been described so far. Keywords are
special relatives of Strings which are automatically assumed to be quoted, whether you actually
type in the quotes or not. Thus expansion is never performed on them. They get concatenated,
though. The analyzer supplies automatically the quotes you have “forgotten” and treats Keywords
just as normal strings otherwise. For instance, if you type "a"b+b in Keyword context, you will get
the string whose contents are ab+b. In String context, on the other hand, you would get a2xb.

All GP functions have prototypes (described in Chapter 3 below) which specify the types of
arguments they expect: either generic PARI objects (GEN), or strings, or keywords, or unevaluated

46

expression sequences. In the keyword case, only a very small set of words will actually be meaningful
(the default function is a prominent example).

Reference. The arguments of the following functions are processed in string context:

The

Str

addhelp (second argument)
default (second argument)
error

extern

plotstring (second argument)
plotterm (first argument)
read and readvec

system

all the printzzz functions
all the writezzz functions

arguments of the following functions are processed as keywords:
alias

default (first argument)

install (all arguments but the last)

trap (first argument)

whatnow

2.9.3 Useful examples. The function Str converts its arguments into strings and concatenate
them. Coupled with eval, it is very powerful. The following example creates generic matrices:

into

? genmat (u,v,s="x") = matrix(u,v,i,j, eval(Str(s,i,j)))
? genmat(2,3) + genmat(2,3,"m")

%1 =

[x11 + m11 x12 + m12 x13 + mi13]

[x21 + m21 x22 + m22 x23 + m23]

Two last examples: hist(10,20) returns all history entries from %10 to %20 neatly packed
a single vector; histlast (10) returns the last 10 history entries:

hist(a,b) = vector(b-a+l, i, eval(Str("%", a-1+i)))
histlast(n) = vector(n, i, eval(Str("%", %#-i+1)))

2.10 Errors and error recovery.

47

2.10.1 Errors. Your input program is first compiled to a more efficient bytecode; then the latter
is evaluated, calling appropriate functions from the PARI library. Accordingly, there are two kind
of errors: syntax errors produced by the compiler, and runtime errors produced by the PARI
library either by the evaluator itself, or in a mathematical function. Both kinds are fatal to your
computation: gp will report the error, perform some cleanup (restore variables modified while
evaluating the erroneous command, close open files, reclaim unused memory, etc.), and output its
usual prompt.

When reporting a syntazx error, gp gives meaningful context by copying (part of) the expression
it was trying to compile, indicating where the error occurred with a caret ~-, as in

? factor()
*** too few arguments: factor()

*okok -
? 1+
x%* syntax error, unexpected $end: 1+
*okok ~—

possibly enlarged to a full arrow given enough trailing context

? if (isprime(1+, do_something())
*** syntax error, unexpected ’,’: if (isprime(1+,do_something()))
Rk e

These error messages may be mysterious, because gp cannot guess what you were trying to do, and
the error may occur once gp has been sidetracked. The first error is straightforward: factor has
one mandatory argument, which is missing.

The other two are simple typos involving an ill-formed addition 1 + missing its second
operand. The error messages differ because the parsing context is slightly different: in the first case
we reach the end of input ($end) while still expecting a token, and in the second one, we received
an unexpected token (the comma).

Here is a more complicated one:

7 factor(x
*** syntax error, unexpected $end, expecting)-> or ’,’ or ’)’: factor(x

%k k -

The error is a missing parenthesis, but from gp’s point of view, you might as well have intended to
give further arguments to factor (this is possible and useful, see the description of the function).
In fact gp expected either a closing parenthesis, or a second argument separated from the first by
a comma. And this is essentially what the error message says: we reached the end of the input
($end) while expecting a >)’ ora ’,’.

Actually, a third possibility is mentioned in the error message)->, which could never be valid
in the above context, but a subexpression like (x)->sin(x), defining an inline closure would be
valid, and the parser is not clever enough to rule that out, so we get the same message as in

? (x

*** syntax error, unexpected $end, expecting)-> or ’,’ or ’)’: (x

Hokk -

where all three proposed continuations would be valid.

48

Runtime errors from the evaluator are nicer because they answer a correctly worded query,
otherwise the bytecode compiler would have protested first; here is a slightly pathological case:

? if (siN(x) < eps, do_something())
*x*kx at top-level: if(siN(x)<eps,do_someth
* oKk i SR
**%*x not a function in function call

(no arrow!) The code is syntactically correct and compiled correctly, even though the siN function,
a typo for sin, was not defined at this point. When trying to evaluate the bytecode, however, it
turned out that siN is still undefined so we cannot evaluate the function call siN(x).

Library runtime errors are even nicer because they have more mathematical content, which is
easier to grasp than a parser’s logic:

? 1/Mod(2,4)
*** at top-level: 1/Mod(2,4)
s,k A
**%% _/_: impossible inverse in Fp_inv: Mod(2, 4).

telling us that a runtime error occurred while evaluating the binary / operator (the _ surrounding
the operator are placeholders), more precisely the Fp_inv library function was fed the argument
Mod(2,4) and could not invert it. More context is provided if the error occurs deep in the call
chain:

? f(x) = 1/x;
?7 g) = for(i = -N, N, £(i + 0(5)));
? g(10)
*** at top-level: g(10)
*ok ok p—
*%ok in function g: for(i=-N,N,f(i))
*ok ok S

xx% in function f: 1/x
KoKk -~

%% _/_: impossible inverse in ginv: 0(5).

In this example, the debugger reports (at least) 3 enclosed frames: last (innermost) is the body of
user function f, the body of g, and the top-level (global scope). In fact, the for loop in g’s body
defines an extra frame, since there exist variables scoped to the loop body.

2.10.2 Error recovery.

It is annoying to wait for a program to finish and find out the hard way that there was a
mistake in it (like the division by 0 above), sending you back to the prompt. First you may lose
some valuable intermediate data. Also, correcting the error may not be obvious; you might have to
change your program, adding a number of extra statements and tests to narrow down the problem.

A different situation, still related to error recovery, is when you actually foresee that some
error may occur, are unable to prevent it, but quite capable of recovering from it, given the chance.
Examples include lazy factorization, where you knowingly use a pseudo prime NN as if it were prime;
you may then encounter an “impossible” situation, but this would usually exhibit a factor of N,
enabling you to refine the factorization and go on. Or you might run an expensive computation
at low precision to guess the size of the output, hence the right precision to use. You can then

49

encounter errors like “precision loss in truncation”, e.g when trying to convert 1E1000, known to
28 digits of accuracy, to an integer; or “division by 0”7, e.g inverting OE1000 when all accuracy has
been lost, and no significant digit remains. It would be enough to restart part of the computation
at a slightly higher precision.

We now describe error trapping, a useful mechanism which alleviates much of the pain in the
first situation (the break loop debugger), and provides satisfactory ways out of the second one (the
iferr exception handler).

2.10.3 Break loop.

A break loop is a special debugging mode that you enter whenever a user interrupt (Control-C)
or runtime error occurs, freezing the gp state, and preventing cleanup until you get out of the loop.
By runtime error, we mean an error from the evaluator, the library or a user error (from error),
not syntax errors. When a break loop starts, a prompt is issued (break>). You can type in a gp
command, which is evaluated when you hit the <Return> key, and the result is printed as during
the main gp loop, except that no history of results is kept. Then the break loop prompt reappears
and you can type further commands as long as you do not exit the loop. If you are using readline,
the history of commands is kept, and line editing is available as usual. If you type in a command
that results in an error, you are sent back to the break loop prompt: errors do not terminate the
loop.

To get out of a break loop, you can use next, break, return, or type C-d (EQF), any of which
will let gp perform its usual cleanup, and send you back to the gp prompt. Note that C-d is slightly
dangerous, since typing it twice will not only send you back to the gp prompt, but to your shell
prompt! (Since C-d at the gp prompt exits the gp session.)

If the break loop was started by a user interrupt Control-C, and not by an error, inputting an
empty line, i.e hitting the <Return> key at the break> prompt, resumes the temporarily interrupted
computation. A single empty line has no effect in case of a fatal error, to avoid getting get out of
the loop prematurely, thereby losing valuable debugging data. Any of next, break, return, or C-d
will abort the computation and send you back to the gp prompt as above.

Break loops are useful as a debugging tool. You may inspect the values of gp variables to
understand why an error occurred, or change gp’s state in the middle of a computation (increase
debugging level, start storing results in a log file, set variables to different values. ..): hit C-c, type
in your modifications, then let the computation go on as explained above. A break loop looks like
this:

?v=0; 1/v
***x at top-level: v=0;1/v
KKk ==

%% _/_: impossible inverse in gdiv: O.
**%* Break loop (type ’break’ to go back to the GP prompt)
break>

So the standard error message is printed first. The break> at the bottom is a prompt, and hitting
v then <Return>, we see:

break> v
0

explaining the problem. We could have typed any gp command, not only the name of a variable,
of course. Lexically-scoped variables are accessible to the evaluator during the break loop:

50

? for(v = -2, 2, print(1/v))
-1/2
-1
*%ok at top-level: for(v=-2,2,print(1/v))
ok ok pp—
%% _/_: impossible inverse in gdiv: O.
*x** Break loop (type ’break’ to go back to the GP prompt)
break> v
0

Even though loop indices are automatically lexically scoped and no longer exist when the break
loop is run, enough debugging information is retained in the bytecode to reconstruct the evaluation
context. Of course, when the error occurs in a nested chain of user function calls, lexically scoped
variables are available only in the corresponding frame:

?7 f(x) = 1/x;

? g(x) = for(i = 1, 10, f(x+i));

? for(j = -5,5, g(3))
*** at top-level: for(j=-5,5,g(j))
Kok ok —
*k ok in function g: for(i=1,10,f(x+i))
*okok A
*xx in function f: 1/x
*okok ~—
**%*x _/_: impossible inverse in gdiv: O.
**x* Break loop: type ’break’ to go back to GP prompt

break> [i,j,x] \\ the x in f’s body.
(i, j, 0]
break> dbg_up \\ go up one frame
***x at top-level: for(j=-5,5,g(j))
*ok ok R
* %ok in function g: for(i=1,10,f(x+i))
*ok ok Ao
break> [i,j,x] \\ the x in g’s body, i in the for loop.
(5, j, -5]

The following GP commands are available during a break loop to help debugging:
dbg_up(n): go up n frames, as seen above.

dbg_down(n): go down n frames, cancelling previous dbg_up’s.

dbg_x(t): examine ¢, as \x but more flexible.

dbg_err(): returns the current error context t_ERROR. The error components often provide
useful additional information:

7 0(2) + 0(3)

%% at top-level: 0(2)+0(3)

*kx S

**%x _+_: inconsistent addition t_PADIC + t_PADIC.

*okok Break loop: type ’break’ to go back to GP prompt
break> E = dbg_err()

o1

error("inconsistent addition t_PADIC + t_PADIC.")
break> Vec(E)
["e_OP", "+", 0(2), 0(3)]

Note. The debugger is enabled by default, and fires up as soon as a runtime error occurs. If you
do not like this behavior, you may disable it by setting the default breakloop to 0 in for gprc. A
runtime error will send you back to the prompt. Note that the break loop is automatically disabled
when running gp in non interactive mode, i.e. when the program’s standard input is not attached
to a terminal.

Technical Note. When you enter a break loop due to a PARI stack overflow, the PARI stack is
reset so that you can run commands. Otherwise the stack would immediately overflow again! Still,
as explained above, you do not lose the value of any gp variable in the process.

2.10.4 Protecting code. The expression
iferr (statements, ERR, recovery)

evaluates and returns the value of statements, unless an error occurs during the evaluation in which
case the value of recovery is returned. As in an if/else clause, with the difference that statements
has been partially evaluated, with possible side effects. We shall give a lot more details about
the ERR argument shortly; it is the name of a variable, lexically scoped to the recovery expression
sequence, whose value is set by the exception handler to help the recovery code decide what to do
about the error.

For instance one can define a fault tolerant inversion function as follows:

? inv(x) = iferr(1/x, ERR, "oo") \\ ERR is unused...
? for (i=-1,1, print(inv(i)))

-1

00

1

Protected codes can be nested without adverse effect. Let’s now see how ERR can be used; as
written, inv is too tolerant:

7 inv("blah")
%2 = "go"

Let’s improve it by checking that we caught a “division by 0” exception, and not an unrelated
one like the type error 1 / "blah".

7 inv2(x) = {
iferr(1/x,
ERR, if (errname(ERR) != "e_INV", error(ERR)); "oo")
}
? inv2(0)
%3 = "oo" \\ as before
? inv2("blah")
*** at top-level: inv2("blah")
*ok ok A
%+ in function inv2: ...f(errname(ERR)!="e_INV",error(ERR));"oo")
oKk R

52

**%*% error: forbidden division t_INT / t_STR.

In the inv2("blah") example, the error type was not expected, so we rethrow the exception:
error (ERR) triggers the original error that we mistakenly trapped. Since the recovery code should
always check whether the error is the one expected, this construction is very common and can be
simplified to

? inv3(x) = iferr(1/x,
ERR, "oo",
errname (ERR) == "e_INV")

More generally
iferr (statements, ERR, recovery, predicate)

only catches the exception if predicate (allowed to check various things about ERR, not only its
name) is non-zero.

Rather than trapping everything, then rethrowing whatever we do not like, we advise to only
trap errors of a specific kind, as above. Of course, sometimes, one just want to trap everything
because we do not know what to expect. The following function check whether install works
correctly in your gp:

broken_install() =
{ \\ can we install?
iferr(install(addii,GG),
ERR, return ("0S"));
\\ can we use the installed function?
iferr(if (addii(1,1) !'= 2, return("BROKEN")),
ERR, return("USE"));
return (0);

}

The function returns 08 if the operating system does not support install, USE if using an installed
function triggers an error, BROKEN if the installed function did not behave as expected, and 0 if
everything works.

The ERR formal parameter contains more useful data than just the error name, which we
recovered using errname (ERR). In fact, a t_ERROR object usually has extra components, which can
be accessed as component (ERR, 1), component (ERR,2), and so on. Or globally by casting the error
to a t_VEC: Vec (ERR) returns the vector of all components at once. See Section 3.11.17 for the list
of all exception types, and the corresponding contents of ERR.

53

2.11 Interfacing GP with other languages.

The PARI library was meant to be interfaced with C programs. This specific use is dealt with
extensively in the User’s guide to the PARI library. Of course, gp itself provides a convenient
interpreter to execute rather intricate scripts (see Section 3.11).

Scripts, when properly written, tend to be shorter and clearer than C programs, and are
certainly easier to write, maintain or debug. You don’t need to deal with memory management,
garbage collection, pointers, declarations, and so on. Because of their intrinsic simplicity, they
are more robust as well. They are unfortunately somewhat slower. Thus their use will remain
complementary: it is suggested that you test and debug your algorithms using scripts, before
actually coding them in C if speed is paramount. The GP2C compiler often eases this part.

The install command (see Section 3.12.21) efficiently imports foreign functions for use under
gp, which can of course be written using other libraries than PARI. Thus you may code only critical
parts of your program in C, and still maintain most of the program as a GP script.

We are aware of three PARI-related Free Software packages to embed PARI in other languages.
We neither endorse nor support any of them, but you may want to give them a try if you are familiar
with the languages they are based on. The first is William Stein’s Python-based SAGE* system.
The second is the Math: :Pari Perl module (see any CPAN mirror), written by Ilya Zakharevich.
Finally, Michael Stoll has integrated PARI into CLISP*** which is a Common Lisp implementation
by Bruno Haible, Marcus Daniels and others; this interface has been updated for pari-2 by Sam
Steingold.

These provide interfaces to gp functions for use in python, perl, or Lisp programs, respectively.

2.12 Defaults.

There are many internal variables in gp, defining how the system will behave in certain situations,
unless a specific override has been given. Most of them are a matter of basic customization (colors,
prompt) and will be set once and for all in your preferences file (see Section 2.14), but some of
them are useful interactively (set timer on, increase precision, etc.).

The function used to manipulate these values is called default, which is described in Sec-
tion 3.12.7. The basic syntax is

default(def, wvalue),

which sets the default def to value. In interactive use, most of these can be abbreviated using gp
metacommands (mostly, starting with \), which we shall describe in the next section.

Here we will only describe the available defaults and how they are used. Just be aware that
typing default by itself will list all of them, as well as their current values (see \d). Just after the
default name, we give between parentheses the initial value when gp starts, assuming you did not
tamper with factory settings using command-line switches or a gprc.

* see http://sagemath.org/
*** See http://clisp.cons.org/

54

Note. The suffixes k, M or G can be appended to a value which is a numeric argument, with the
effect of multiplying it by 103, 105 and 10° respectively. Case is not taken into account there, so
for instance 30k and 30K both stand for 30000. This is mostly useful to modify or set the default
parisize which typically involve a lot of trailing zeroes.

(somewhat technical) Note. As we saw in Section 2.9, the second argument to default is
subject to string context expansion, which means you can use run-time values. In other words,
something like

a = 3;
default(logfile, "file" a ".log")

logs the output in file3.log.

Some special defaults, corresponding to file names and prompts, expand further the resulting
value at the time they are set. Two kinds of expansions may be performed:

e time expansion: the string is sent through the library function strftime. This means that
%char combinations have a special meaning, usually related to the time and date. For instance, %H
= hour (24-hour clock) and %M = minute [00,59] (on a Unix system, you can try man strftime at
your shell prompt to get a complete list). This is applied to prompt, psfile, and logfile. For
instance,

default (prompt," (%H:%M) ? ")
will prepend the time of day, in the form (hh:mm) to gp’s usual prompt.

e environment expansion: When the string contains a sequence of the form $SOMEVAR,
e.g. $HOME, the environment is searched and if SOMEVAR is defined, the sequence is replaced by
the corresponding value. Also the ~ symbol has the same meaning as in many shells — ~ by itself
stands for your home directory, and ~user is expanded to user’s home directory. This is applied
to all file names.

Available defaults are described in the reference guide, Section 3.14.

2.13 Simple metacommands.

Simple metacommands are meant as shortcuts and should not be used in GP scripts (see Sec-
tion 3.11). Beware that these, as all of gp input, are case sensitive. For example, \Q is not identical
to \q. In the following list, braces are used to denote optional arguments, with their default values
when applicable, e.g. {n = 0} means that if n is not there, it is assumed to be 0. Whitespace (or
spaces) between the metacommand and its arguments and within arguments is optional. (This can
cause problems only with \w, when you insist on having a file name whose first character is a digit,
and with \r or \w, if the file name itself contains a space. In such cases, just use the underlying
read or write function; see Section 3.12.42).

95

2.13.1 ?{command}. The gp on-line help interface. If you type ?n where n is a number from 1 to
11, you will get the list of functions in Section 3.n of the manual (the list of sections being obtained

by simply typing 7).

These names are in general not informative enough. More details can be obtained by typing
?function, which gives a short explanation of the function’s calling convention and effects. Of
course, to have complete information, read Chapter 3 of this manual (the source code is at your
disposal as well, though a trifle less readable).

If the line before the copyright message indicates that extended help is available (this means
perl is present on your system and the PARI distribution was correctly installed), you can add
more ? signs for extended functionality:

7?7 keyword yields the function description as it stands in this manual, usually in Chapter 2
or 3. If you’re not satisfied with the default chapter chosen, you can impose a given chapter by
ending the keyword with @ followed by the chapter number, e.g. 7?7 Hello@2 will look in Chapter 2
for section heading Hello (which doesn’t exist, by the way).

All operators (e.g. +, &&, etc.) are accepted by this extended help, as well as a few other
keywords describing key gp concepts, e.g. readline (the line editor), integer, nf (“number field”
as used in most algebraic number theory computations), ell (elliptic curves), etc.

In case of conflicts between function and default names (e.g log, simplify), the function has
higher priority. To get the default help, use

7?7 default(log)
7?7 default(simplify)

7?77 pattern produces a list of sections in Chapter 3 of the manual related to your query. As
before, if pattern ends by @ followed by a chapter number, that chapter is searched instead; you
also have the option to append a simple @ (without a chapter number) to browse through the whole
manual.

If your query contains dangerous characters (e.g ? or blanks) it is advisable to enclose it within
double quotes, as for GP strings (e.g 7?7 "elliptic curve").

Note that extended help is much more powerful than the short help, since it knows about
operators as well: you can type ?7 * or 77 &&, whereas a single 7 would just yield a not too
helpful

&&: unknown identifier.}

message. Also, you can ask for extended help on section number n in Chapter 3, just by typing
?? n (where ?n would yield merely a list of functions). Finally, a few key concepts in gp are
documented in this way: metacommands (e.g 7?7 "?7"), defaults (e.g ?? psfile) and type names
(e.g t_INT or integer), as well as various miscellaneous keywords such as edit (short summary of
line editor commands), operator, member, "user defined", nf, ell, ...

Last but not least: 7?7 without argument will open a dvi previewer (xdvi by default, $GPXDVI
if it is defined in your environment) containing the full user’s manual. ??tutorial and ??refcard
do the same with the tutorial and reference card respectively.

56

Technical note. This functionality is provided by an external perl script that you are free to
use outside any gp session (and modify to your liking, if you are perl-knowledgeable). It is called
gphelp, lies in the doc subdirectory of your distribution (just make sure you run Configure first,
see Appendix A) and is really two programs in one. The one which is used from within gp is
gphelp which runs TEX on a selected part of this manual, then opens a previewer. gphelp -detex
is a text mode equivalent, which looks often nicer especially on a colour-capable terminal (see
misc/gprc.dft for examples). The default help selects which help program will be used from
within gp. You are welcome to improve this help script, or write new ones (and we would like to
know about it so that we may include them in future distributions). By the way, outside of gp you
can give more than one keyword as argument to gphelp.

2.13.2 /*...%/. A comment. Everything between the stars is ignored by gp. These comments
can span any number of lines.

2.13.3 \\. A one-line comment. The rest of the line is ignored by gp.

2.13.4 \a {n}. Prints the object number n (%n) in raw format. If the number n is omitted, print
the latest computed object (%).

2.13.5 \c. Prints the list of all available hardcoded functions under gp, not including opera-
tors written as special symbols (see Section 2.4). More information can be obtained using the ?

metacommand (see above). For user-defined functions / member functions, see \u and \um.

2.13.6 \d. Prints the defaults as described in the previous section (shortcut for default(), see
Section 3.12.7).

2.13.7 \e {n}. Switches the echo mode on (1) or off (0). If n is explicitly given, set echo to n.
2.13.8 \g {n}. Sets the debugging level debug to the non-negative integer n.

2.13.9 \gf {n}. Sets the file usage debugging level debugfiles to the non-negative integer n.
2.13.10 \gm {n}. Sets the memory debugging level debugmem to the non-negative integer n.
2.13.11 \h {m-n}. Outputs some debugging info about the hashtable. If the argument is a number
n, outputs the contents of cell n. Ranges can be given in the form m-n (from cell m to cell n, $
= last cell). If a function name is given instead of a number or range, outputs info on the internal
structure of the hash cell this function occupies (a struct entree in C). If the range is reduced to

a dash (’-’), outputs statistics about hash cell usage.

2.13.12 \1 {logfile}. Switches log mode on and off. If a logfile argument is given, change the
default logfile name to logfile and switch log mode on.

2.13.13 \m. As \a, but using prettymatrix format.
2.13.14 \o {n}. Sets output mode to n (0: raw, 1: prettymatrix, 3: external prettyprint).

2.13.15 \p {n}. Sets realprecision to n decimal digits. Prints its current value if n is omitted.

57

2.13.16 \ps {n}. Sets seriesprecision to n significant terms. Prints its current value if n is
omitted.

2.13.17 \g. Quits the gp session and returns to the system. Shortcut for quit() (see Sec-
tion 3.12.29).

2.13.18 \r {filename}. Reads into gp all the commands contained in the named file as if they had
been typed from the keyboard, one line after the other. Can be used in combination with the \w
command (see below). Related but not equivalent to the function read (see Section 3.12.30); in
particular, if the file contains more than one line of input, there will be one history entry for each of
them, whereas read would only record the last one. If filename is omitted, re-read the previously
used input file (fails if no file has ever been successfully read in the current session). If a gp binary
file (see Section 3.12.44) is read using this command, it is silently loaded, without cluttering the
history.

Assuming gp figures how to decompress files on your machine, this command accepts com-
pressed files in compressed (.Z) or gzipped (.gz or .z) format. They will be uncompressed on
the fly as gp reads them, without changing the files themselves.

2.13.19 \s. Prints the state of the PARI stack and heap. This is used primarily as a debugging
device for PARI.

2.13.20 \t. Prints the internal longword format of all the PARI types. The detailed bit or byte
format of the initial codeword(s) is explained in Chapter 4, but its knowledge is not necessary for
a gp user.

2.13.21 \u. Prints the definitions of all user-defined functions.
2.13.22 \um. Prints the definitions of all user-defined member functions.

2.13.23 \v. Prints the version number and implementation architecture (680x0, Sparc, Alpha,
other) of the gp executable you are using.

2.13.24 \w {n} {filename}. Writes the object number n (%n) into the named file, in raw format.
If the number n is omitted, writes the latest computed object (%). If filename is omitted, appends
to logfile (the GP function write is a trifle more powerful, as you can have arbitrary file names).

2.13.25 \x {n}. Prints the complete tree with addresses and contents (in hexadecimal) of the
internal representation of the object number n (%n). If the number n is omitted, uses the latest
computed object in gp. As for \s, this is used primarily as a debugging device for PARI, and the

format should be self-explanatory. The underlying GP function dbg_x is more versatile, since it
can be applied to other objects than history entries.

2.13.26 \y {n}. Switches simplify on (1) or off (0). If n is explicitly given, set simplify to n.
2.13.27 #. Switches the timer on or off.

2.13.28 ##. Prints the time taken by the latest computation. Useful when you forgot to turn on
the timer.

58

2.14 The preferences file.

This file, called gprc in the sequel, is used to modify or extend gp default behavior, in all gp
sessions: e.g customize default values or load common user functions and aliases. gp opens the
gprec file and processes the commands in there, before doing anything else, e.g. creating the PARI
stack. If the file does not exist or cannot be read, gp will proceed to the initialization phase at
once, eventually emitting a prompt. If any explicit command line switches are given, they override
the values read from the preferences file.

2.14.1 Syntax. The syntax in the gprc file (and valid in this file only) is simple-minded, but
should be sufficient for most purposes. The file is read line by line; as usual, white space is ignored
unless surrounded by quotes and the standard multiline constructions using braces, \, or = are
available (multiline comments between /* ... */ are also recognized).

2.14.1.1 Preprocessor:. Two types of lines are first dealt with by a preprocessor:

e comments are removed. This applies to all text surrounded by /* ... */ as well as to
everything following \\ on a given line.

e lines starting with #if boolean are treated as comments if boolean evaluates to false, and
read normally otherwise. The condition can be negated using either #if not (or #if !). If the
rest of the current line is empty, the test applies to the next line (same behavior as = under gp).
Only three tests can be performed:

EMACS: true if gp is running in an Emacs or TeXmacs shell (see Section 2.16).
READL: true if gp is compiled with readline support (see Section 2.15).

VERSION op number: where op is in the set {>, <,<=,>=}, and number is a PARI version
number of the form Major.Minor.patch, where the last two components can be omitted (i.e. 1 is
understood as version 1.0.0). This is true if gp’s version number satisfies the required inequality.

2.14.1.2 Commands:. After preprocessing, the remaining lines are executed as sequence of ex-
pressions (as usual, separated by ; if necessary). Only two kinds of expressions are recognized:

e default = value, where default is one of the available defaults (see Section 2.12), which will
be set to value on actual startup. Don’t forget the quotes around strings (e.g. for prompt or help).

e read "some_GP_file" where some_GP_file is a regular GP script this time, which will be
read just before gp prompts you for commands, but after initializing the defaults. In particular,
file input is delayed until the gprc has been fully loaded. This is the right place to input files
containing alias commands, or your favorite macros.

For instance you could set your prompt in the following portable way:

\\ self modifying prompt looking like (18:03) gp >
prompt = "(%H:%M) \e[imgp\e[m > "

\\ readline wants non-printing characters to be braced between ~A/"B pairs
#if READL prompt = "(%H:%M) ~“A\e[im"Bgp~A\e[m"B > "

\\ escape sequences not supported under emacs
#if EMACS prompt = "(%4H:%M) gp > "

Note that any of the last two lines could be broken in the following way

#if EMACS

59

prompt = "(%H:%M) gp > "
since the preprocessor directive applies to the next line if the current one is empty.

A sample gprec file called misc/gprc.dft is provided in the standard distribution. It is a good
idea to have a look at it and customize it to your needs. Since this file does not use multiline
constructs, here is one (note the terminating ; to separate the expressions):

#if VERSION > 2.2.3

{
read "my_scripts"; \\ syntax errors in older versions
new_galois_format = 1; \\ default introduced in 2.2.4
b
#if | EMACS
{
colors = "9, 5, no, no, 4, 1, 2";
help = "gphelp -detex -ch 4 -cb 0 -cu 2";
3

2.14.2 The gprc location. When gp is started, it looks for a customization file, or gprc in the
following places (in this order, only the first one found will be loaded):

o gp checks whether the environment variable GPRC is set. On Unix, this can be done with something
like:

GPRC=/my/dir/anyname; export GPRC in sh syntax (for instance in your .profile),
setenv GPRC /my/dir/anyname in csh syntax (in your .login or .cshrc file).
env GPRC=/my/dir/anyname gp on the command line launching gp.

If so, the file named by $GPRC is the gprc.

e If GPRC is not set, and if the environment variable HOME is defined, gp then tries
$HOME/ . gprc on a Unix system
$HOME\gprc.txt on a DOS, OS/2, or Windows system.

o If no gprc was found among the user files mentioned above we look for /etc/gprc for a system-
wide gpre file (you will need root privileges to set up such a file yourself).

e Finally, we look in pari’s datadir for a file named
.gprc on a Unix system

gprc.txt on a DOS, OS/2, or Windows system. If you are using our Windows installer, this
is where the default preferences file is written.

Y

Note that on Unix systems, the gprc’s default name starts with a ’.” and thus is hidden to regular

1s commands; you need to type 1ls -a to list it.

60

2.15 Using readline.

This very useful library provides line editing and contextual completion to gp. You are en-
couraged to read the readline user manual, but we describe basic usage here.

A (too) short introduction to readline. In the following, C- stands for “the Control key
combined with another” and the same for M- with the Meta key; generally C- combinations act
on characters, while the M- ones operate on words. The Meta key might be called A1t on some
keyboards, will display a black diamond on most others, and can safely be replaced by Esc in any
case.

Typing any ordinary key inserts text where the cursor stands, the arrow keys enabling you
to move in the line. There are many more movement commands, which will be familiar to the
Emacs user, for instance C-a/C-e will take you to the start/end of the line, M-b/M-f move the
cursor backward/forward by a word, etc. Just press the <Return> key at any point to send your
command to gp.

All the commands you type at the gp prompt are stored in a history, a multiline command
being saved as a single concatenated line. The Up and Down arrows (or C-p/C-n) will move you
through the history, M-</M-> sending you to the start/end of the history. C-r/C-s will start an
incremental backward/forward search. You can kill text (C-k kills till the end of line, M-d to the
end of current word) which you can then yank back using the C-y key (M-y will rotate the kill-ring).
C-_ will undo your last changes incrementally (M-r undoes all changes made to the current line).
C-t and M-t will transpose the character (word) preceding the cursor and the one under the cursor.

Keeping the M- key down while you enter an integer (a minus sign meaning reverse behavior)
gives an argument to your next readline command (for instance M-- C-k will kill text back to the
start of line). If you prefer Vi-style editing, M-C-j will toggle you to Vi mode.

Of course you can change all these default bindings. For that you need to create a file named
.inputrc in your home directory. For instance (notice the embedding conditional in case you would
want specific bindings for gp):

$if Pari-GP
set show-all-if-ambiguous
"\C-h": backward-delete-char
"\e\C-h": backward-kill-word
"\C-xd": dump-functions

(: "\C-v()\C-b" # can be annoying when copy-pasting!
[: "\C-v[I\C-b"
$endif

C-x C-r will re-read this init file, incorporating any changes made to it during the current session.

Note. By default, (and [are bound to the function pari-matched-insert which, if “electric
parentheses” are enabled (default: off) will automatically insert the matching closure (respectively
) and 1). This behavior can be toggled on and off by giving the numeric argument —2 to ((M--2(),
which is useful if you want, e.g to copy-paste some text into the calculator. If you do not want a
toggle, you can use M--0 / M--1 to specifically switch it on or off).

61

Note. In some versions of readline (2.1 for instance), the A1t or Meta key can give funny re-
sults (output 8-bit accented characters for instance). If you do not want to fall back to the Esc
combination, put the following two lines in your .inputrc:

set convert-meta on
set output-meta off

Command completion and online help. Hitting <TAB> will complete words for you. This
mechanism is context-dependent: gp will strive to only give you meaningful completions in a given
context (it will fail sometimes, but only under rare and restricted conditions).

For instance, shortly after a ~, we expect a user name, then a path to some file. Directly after
default(has been typed, we would expect one of the default keywords. After whatnow(, we
expect the name of an old function, which may well have disappeared from this version. After a

., we expect a member keyword. And generally of course, we expect any GP symbol which may
be found in the hashing lists: functions (both yours and GP’s), and variables.

If, at any time, only one completion is meaningful, gp will provide it together with
e an ending comma if we are completing a default,

e a pair of parentheses if we are completing a function name. In that case hitting <TAB> again
will provide the argument list as given by the online help*.

Otherwise, hitting <TAB> once more will give you the list of possible completions. Just ex-
periment with this mechanism as often as possible, you will probably find it very convenient. For
instance, you can obtain default(seriesprecision,10), just by hitting def<TAB>se<TAB>10,
which saves 18 keystrokes (out of 27).

Hitting M-h will give you the usual short online help concerning the word directly beneath the
cursor, M-H will yield the extended help corresponding to the help default program (usually opens
a dvi previewer, or runs a primitive tex-to-ASCII program). None of these disturb the line you
were editing.

2.16 GNU Emacs and PariEmacs.

If you install the PariEmacs package (see Appendix A), you may use gp as a subprocess in
Emacs. You then need to include in your .emacs file the following lines:

(autoload ’gp-mode "pari" nil t)
(autoload ’gp-script-mode "pari" nil t)
(autoload ’gp "pari" nil t)

(autoload ’gpman "pari" nil t)

(setq auto-mode-alist
(cons ’("\\.gp$" . gp-script-mode) auto-mode-alist))

which autoloads functions from the PariEmacs package and ensures that file with the .gp suffix
are edited in gp-script mode.

Once this is done, under GNU Emacs if you type M-x gp (where as usual M is the Meta key), a
special shell will be started launching gp with the default stack size and prime limit. You can then
work as usual under gp, but with all the facilities of an advanced text editor. See the PariEmacs
documentation for customizations, menus, etc.

* recall that you can always undo the effect of the preceding keys by hitting C-_

62

Chapter 3:
Functions and Operations Available in PARI and GP

The functions and operators available in PARI and in the GP/PARI calculator are numerous and
ever-expanding. Here is a description of the ones available in version 2.7.0. It should be noted that
many of these functions accept quite different types as arguments, but others are more restricted.
The list of acceptable types will be given for each function or class of functions. Except when stated
otherwise, it is understood that a function or operation which should make natural sense is legal.
In this chapter, we will describe the functions according to a rough classification. The general entry
looks something like:

foo(x,{flag = 0}): short description.
The library syntax is GEN foo(GEN x, long fl = 0).

This means that the GP function foo has one mandatory argument x, and an optional one, flag,
whose default value is 0. (The {} should not be typed, it is just a convenient notation we will use
throughout to denote optional arguments.) That is, you can type foo(x,2), or foo(x), which is
then understood to mean foo(x,0). As well, a comma or closing parenthesis, where an optional
argument should have been, signals to GP it should use the default. Thus, the syntax foo(x,) is
also accepted as a synonym for our last expression. When a function has more than one optional
argument, the argument list is filled with user supplied values, in order. When none are left, the
defaults are used instead. Thus, assuming that foo’s prototype had been

fOO({JJ = 1}’ {y = 2}7 {Z = 3})7
typing in foo(6,4) would give you foo(6,4,3). In the rare case when you want to set some far
away argument, and leave the defaults in between as they stand, you can use the “empty arg’
trick alluded to above: foo(6,,1) would yield foo(6,2,1). By the way, foo() by itself yields
foo(1,2,3) as was to be expected.

In this rather special case of a function having no mandatory argument, you can even omit
the (): a standalone foo would be enough (though we do not recommend it for your scripts, for
the sake of clarity). In defining GP syntax, we strove to put optional arguments at the end of the
argument list (of course, since they would not make sense otherwise), and in order of decreasing
usefulness so that, most of the time, you will be able to ignore them.

Finally, an optional argument (between braces) followed by a star, like {z}x, means that any
number of such arguments (possibly none) can be given. This is in particular used by the various
print routines.

Flags. A flag is an argument which, rather than conveying actual information to the routine,
instructs it to change its default behavior, e.g. return more or less information. All such flags are
optional, and will be called flag in the function descriptions to follow. There are two different kind
of flags

e generic: all valid values for the flag are individually described (“If flag is equal to 1, then...”).

e binary: use customary binary notation as a compact way to represent many toggles with
just one integer. Let (po,...,pn) be a list of switches (i.e. of properties which take either the value
0 or 1), the number 23 + 2% = 40 means that ps and ps are set (that is, set to 1), and none of the
others are (that is, they are set to 0). This is announced as “The binary digits of flag mean 1: py,
2: p1, 4: p2”, and so on, using the available consecutive powers of 2.

63

Mnemonics for flags. Numeric flags as mentioned above are obscure, error-prone, and quite
rigid: should the authors want to adopt a new flag numbering scheme (for instance when noticing
flags with the same meaning but different numeric values across a set of routines), it would break
backward compatibility. The only advantage of explicit numeric values is that they are fast to type,
so their use is only advised when using the calculator gp.

As an alternative, one can replace a numeric flag by a character string containing symbolic
identifiers. For a generic flag, the mnemonic corresponding to the numeric identifier is given after
it as in

fun(x, {flag = 0}):

If flag is equal to 1 = AGM, use an agm formula ...
which means that one can use indifferently fun(x, 1) or fun(z, "AGM").

For a binary flag, mnemonics corresponding to the various toggles are given after each of them.
They can be negated by prepending no_ to the mnemonic, or by removing such a prefix. These
toggles are grouped together using any punctuation character (such as’,” or ’;’). For instance (taken
from description of ploth(X = a,b, ezpr, {flag = 0},{n = 0}))

Binary digits of flags mean: 1 = Parametric, 2 = Recursive, ...

so that, instead of 1, one could use the mnemonic "Parametric; no_Recursive", or simply "Para-
metric" since Recursive is unset by default (default value of flag is 0, i.e. everything unset).
People used to the bit-or notation in languages like C may also use the form "Parametric |
no_Recursive".

Pointers. If a parameter in the function prototype is prefixed with a & sign, as in
foo(zx, &e)

it means that, besides the normal return value, the function may assign a value to e as a side effect.
When passing the argument, the & sign has to be typed in explicitly. As of version 2.7.0, this
pointer argument is optional for all documented functions, hence the & will always appear between
brackets as in Z_issquare(z, {&e}).

About library programming. The library function foo, as defined at the beginning of this
section, is seen to have two mandatory arguments, z and flag: no function seen in the present
chapter has been implemented so as to accept a variable number of arguments, so all arguments
are mandatory when programming with the library (usually, variants are provided corresponding
to the various flag values). We include an = default value token in the prototype to signal how
a missing argument should be encoded. Most of the time, it will be a NULL pointer, or -1 for a
variable number. Refer to the User’s Guide to the PARI library for general background and details.

64

3.1 Standard monadic or dyadic operators.

3.1.1 +/-. The expressions +x and -z refer to monadic operators (the first does nothing, the second
negates x).

The library syntax is GEN gneg(GEN x) for -z.

3.1.2 +. The expression x + y is the sum of x and y. Addition between a scalar type x and a t_COL
or t_MAT y returns respectively [y[l] + x,y[2],...] and y + zId. Other additions between a scalar
type and a vector or a matrix, or between vector/matrices of incompatible sizes are forbidden.

The library syntax is GEN gadd(GEN x, GEN y).

3.1.3 -. The expression x - y is the difference of x and y. Subtraction between a scalar type x
and a t_COL or t_MAT y returns respectively [y[1] — z,y[2],...] and y — zId. Other subtractions
between a scalar type and a vector or a matrix, or between vector/matrices of incompatible sizes
are forbidden.

The library syntax is GEN gsub(GEN x, GEN y) for x - y.

3.1.4 *. The expression x * y is the product of z and y. Among the prominent impossibilities are
multiplication between vector/matrices of incompatible sizes, between a t_INTMOD or t_PADIC Re-
stricted to scalars, * is commutative; because of vector and matrix operations, it is not commutative
in general.

Multiplication between two t_VECs or two t_COLs is not allowed; to take the scalar product of
two vectors of the same length, transpose one of the vectors (using the operator ~ or the function
mattranspose, see Section 3.8) and multiply a line vector by a column vector:

?a=1[1,2,3];

7 a*x a

*okok at top-level: axa

*okok ~——

% _*_: forbidden multiplication t_VEC * t_VEC.
7?7 a * a~
%2 = 14

If 2,y are binary quadratic forms, compose them; see also qfbnucomp and gfbnupow. If z,y
are t_VECSMALL of the same length, understand them as permutations and compose them.

The library syntax is GEN gmul(GEN x, GEN y) for z * y. Also available is GEN gsqr (GEN x)
for x * x.

3.1.5 /. The expression x / y is the quotient of x and y. In addition to the impossibilities for
multiplication, note that if the divisor is a matrix, it must be an invertible square matrix, and in
that case the result is z*y~!. Furthermore note that the result is as exact as possible: in particular,
division of two integers always gives a rational number (which may be an integer if the quotient
is exact) and not the Euclidean quotient (see x \ y for that), and similarly the quotient of two
polynomials is a rational function in general. To obtain the approximate real value of the quotient
of two integers, add 0. to the result; to obtain the approximate p-adic value of the quotient of two
integers, add 0(p~k) to the result; finally, to obtain the Taylor series expansion of the quotient of
two polynomials, add 0(X"k) to the result or use the taylor function (see Section 3.7.45).

The library syntax is GEN gdiv(GEN x, GEN y) for = / y.

65

3.1.6 \. The expression = \ y is the Euclidean quotient of x and y. If y is a real scalar, this is
defined as floor(x/y) if y > 0, and ceil(x/y) if y < 0 and the division is not exact. Hence the
remainder z - (z\y)*y is in [0, |y|[.

Note that when y is an integer and x a polynomial, y is first promoted to a polynomial of
degree 0. When x is a vector or matrix, the operator is applied componentwise.

The library syntax is GEN gdivent (GEN x, GEN y) for x \ y.

3.1.7 \/. The expression = \/ y evaluates to the rounded Euclidean quotient of x and y. This is
the same as x \ y except for scalar division: the quotient is such that the corresponding remainder
is smallest in absolute value and in case of a tie the quotient closest to +oo is chosen (hence the
remainder would belong to |—|y|/2, |y|/2]).

When z is a vector or matrix, the operator is applied componentwise.

The library syntax is GEN gdivround(GEN x, GEN y) for = \/ y.

3.1.8 %. The expression x % ¥y evaluates to the modular Euclidean remainder of x and y, which we
now define. When z or y is a non-integral real number, z%y is defined as z - (x\y)*y. Otherwise,
if y is an integer, this is the smallest non-negative integer congruent to x modulo y. (This actually
coincides with the previous definition if and only if z is an integer.) If y is a polynomial, this is the
polynomial of smallest degree congruent to x modulo y. For instance:

7 (1/2) % 3

hl =2

705%3

%2 = 0.5000000000000000000000000000
? (1/2) % 3.0

w3 = 1/2

Note that when y is an integer and x a polynomial, y is first promoted to a polynomial of
degree 0. When x is a vector or matrix, the operator is applied componentwise.

The library syntax is GEN gmod(GEN x, GEN y) for = % y.

3.1.9 ~. The expression z"n is powering. If the exponent is an integer, then exact operations are
performed using binary (left-shift) powering techniques. In particular, in this case x cannot be a
vector or matrix unless it is a square matrix (invertible if the exponent is negative). If = is a p-adic
number, its precision will increase if v,(n) > 0. Powering a binary quadratic form (types t_QFI and
t_QFR) returns a reduced representative of the class, provided the input is reduced. In particular,
x~1 is identical to z.

PARI is able to rewrite the multiplication x * x of two identical objects as x2, or sqr(z). Here,

identical means the operands are two different labels referencing the same chunk of memory; no
equality test is performed. This is no longer true when more than two arguments are involved.

If the exponent is not of type integer, this is treated as a transcendental function (see Sec-
tion 3.3), and in particular has the effect of componentwise powering on vector or matrices.

As an exception, if the exponent is a rational number p/q and x an integer modulo a prime or
a p-adic number, return a solution y of y? = zP if it exists. Currently, ¢ must not have large prime
factors. Beware that

? Mod(7,19)"(1/2)

66

%1 = Mod(11, 19) /* is any square root */

7 sqrt(Mod(7,19))

%2 = Mod(8, 19) /* is the smallest square root */

7 Mod(7,19)"(3/5)

%3 = Mod(1, 19)

7 %37(5/3)

%4 = Mod(1l, 19) /* Mod(7,19) is just another cubic root */

If the exponent is a negative integer, an inverse must be computed. For non-invertible
t_INTMOD, this will fail and implicitly exhibit a non trivial factor of the modulus:

7 Mod(4,6)"(-1)
*** at top-level: Mod(4,6)"(-1)
Kk T

*** _~_: impossible inverse modulo: Mod(2, 6).

(Here, a factor 2 is obtained directly. In general, take the ged of the representative and the
modulus.) This is most useful when performing complicated operations modulo an integer N
whose factorization is unknown. Either the computation succeeds and all is well, or a factor d is
discovered and the computation may be restarted modulo d or N/d.

For non-invertible t_POLMOD, this will fail without exhibiting a factor.

? Mod(x"2, x°3-x)"(-1)

*okk at top-level: Mod(x"2,x73-x)"(-1)

*okk T T

*** _"_: non-invertible polynomial in RgXQ_inv.
7 a = Mod(3,4)*y"3 + Mod(1,4); b = y 6+y~5+y 4+y~3+y~2+y+1;
? Mod(a, b)~(-1);

*x** at top-level: Mod(a,b)~(-1)

*okok T

*** _~_: impossible inverse modulo: Mod(0, 4).

In fact the latter polynomial is invertible, but the algorithm used (subresultant) assumes the base
ring is a domain. If it is not the case, as here for Z/4Z, a result will be correct but chances are an
error will occur first. In this specific case, one should work with 2-adics. In general, one can try
the following approach

? inversemod(a, b) =
{ my(m);
m = polsylvestermatrix(polrecip(a), polrecip(b));
m = matinverseimage(m, matid(#m)[,1]);
Polrev(vecextract(m, Str("..", poldegree(b))), variable(b))
}
? inversemod(a,b)
%2 = Mod(2,4)*y"5 + Mod(3,4)*y"3 + Mod(1,4)*y"2 + Mod(3,4)*y + Mod(2,4)

This is not guaranteed to work either since it must invert pivots. See Section 3.8.

The library syntax is GEN gpow(GEN x, GEN n, long prec) for z°n.

67

3.1.10 cmp(zx,y). Gives the result of a comparison between arbitrary objects and y (as —1, 0
or 1). The underlying order relation is transitive, the function returns 0 if and only if z === y,
and its restriction to integers coincides with the customary one. Besides that, it has no useful
mathematical meaning.

In case all components are equal up to the smallest length of the operands, the more complex
is considered to be larger. More precisely, the longest is the largest; when lengths are equal, we
have matrix > vector > scalar. For example:

? cmp(1, 2)

%l o= -1

7 cmp(2, 1)

W2 =1

? cmp(1, 1.0) \\ note that 1 == 1.0, but (1===1.0) is false.
%3 = -1

? cmp(x + Pi, [1)

W = -1

This function is mostly useful to handle sorted lists or vectors of arbitrary objets. For instance, if
v is a vector, the construction vecsort (v, cmp) is equivalent to Set(v).

The library syntax is GEN cmp_universal(GEN x, GEN y).
3.1.11 divrem(z,y,{v}). Creates a column vector with two components, the first being the
Euclidean quotient (z \ y), the second the Euclidean remainder (z - (z\y)*y), of the division of

x by y. This avoids the need to do two divisions if one needs both the quotient and the remainder.
If v is present, and z, y are multivariate polynomials, divide with respect to the variable v.

Beware that divrem(z,y) [2] is in general not the same as x % y; no GP operator corresponds
to it:

? divrem(1/2, 3)[2]

%1 = 1/2
? (1/2) % 3
%h2 = 2

? divrem(Mod(2,9), 3)[2]
***x at top-level: divrem(Mod(2,9),3)[2
*okok N
*kk forbidden division t_INTMOD \ t_INT.
? Mod(2,9) % 6

%3 = Mod(2,3)

The library syntax is GEN divrem(GEN x, GEN y, long v = -1), where v is a variable num-
ber. Also available is GEN gdiventres(GEN x, GEN y) when v is not needed.

68

3.1.12 lex(x,y). Gives the result of a lexicographic comparison between z and y (as —1, 0 or 1).
This is to be interpreted in quite a wide sense: It is admissible to compare objects of different types
(scalars, vectors, matrices), provided the scalars can be compared, as well as vectors/matrices of
different lengths. The comparison is recursive.

In case all components are equal up to the smallest length of the operands, the more complex
is considered to be larger. More precisely, the longest is the largest; when lengths are equal, we
have matrix > vector > scalar. For example:

? lex([1,3], [1,2,5])

% =1

? lex([1,3], [1,3,-11)
%2 = -1

7 lex([1], [[11D)

%3 = -1

? lex([1], [11-~)

%4 =0

The library syntax is GEN lexcmp(GEN x, GEN y).

3.1.13 max(z,y). Creates the maximum of x and y when they can be compared.

The library syntax is GEN gmax(GEN x, GEN y).

3.1.14 min(z,y). Creates the minimum of x and y when they can be compared.

The library syntax is GEN gmin(GEN x, GEN y).
3.1.15 shift(x,n). Shifts £ componentwise left by n bits if n > 0 and right by |n| bits if n < 0.
May be abbreviated as << n or >> (—n). A left shift by n corresponds to multiplication by 2™.

A right shift of an integer « by |n| corresponds to a Euclidean division of = by 2" with a remainder
of the same sign as x, hence is not the same (in general) as x\2".

The library syntax is GEN gshift(GEN x, long n).
3.1.16 shiftmul(z,n). Multiplies x by 2. The difference with shift is that when n < 0, ordinary

division takes place, hence for example if x is an integer the result may be a fraction, while for
shifts Euclidean division takes place when n < 0 hence if z is an integer the result is still an integer.

The library syntax is GEN gmul2n(GEN x, long n).

3.1.17 sign(z). sign (0, 1 or —1) of x, which must be of type integer, real or fraction.

The library syntax is GEN gsigne (GEN x).

69

3.1.18 vecmax(z, {&v}). If x is a vector or a matrix, returns the largest entry of x, otherwise
returns a copy of x. Error if z is empty.

If v is given, set it to the index of a largest entry (indirect maximum), when z is a vector. If
x is a matrix, set v to coordinates [i, j| such that x[i, j] is a largest entry. This flag is ignored if =
is not a vector or matrix.

? vecmax([10, 20, -30, 40])

%1 = 40

? vecmax([10, 20, -30, 40], &v); v
%2 =4

? vecmax([10, 20; -30, 40], &v); v
%3 = [2, 2]

The library syntax is GEN vecmaxO(GEN x, GEN *v = NULL). Also available is GEN vec-
max (GEN x).

3.1.19 vecmin(z, {&v}). If x is a vector or a matrix, returns the smallest entry of x, otherwise
returns a copy of x. Error if z is empty.

If v is given, set it to the index of a smallest entry (indirect minimum), when z is a vector. If
x is a matrix, set v to coordinates [i, j] such that x[i, j] is a smallest entry. This is ignored if x is
not a vector or matrix.

? vecmin([10, 20, -30, 40])

%1 = =30

? vecmin([10, 20, -30, 40], &v); v
%2 = 3

? vecmin([10, 20; -30, 40], &v); v
%3 = [2, 1]

The library syntax is GEN vecminO(GEN x, GEN *v = NULL). Also available is GEN
vecmin (GEN x).

3.1.20 Comparison and Boolean operators. The six standard comparison operators <=, <, >=
>, ==, !=are available in GP. The result is 1 if the comparison is true, 0 if it is false. The operator
== ig quite liberal : for instance, the integer 0, a 0 polynomial, and a vector with O entries are all
tested equal.

The extra operator === tests whether two objects are identical and is much stricter than == :
objects of different type or length are never identical.

For the purpose of comparison, t_STR objects are strictly larger than any other non-string
type; two t_STR objects are compared using the standard lexicographic order.

GP accepts <> as a synonym for !=. On the other hand, = is definitely not a synonym for ==:
it is the assignment statement.

The standard boolean operators || (inclusive or), && (and) and ! (not) are also available.

70

3.2 Conversions and similar elementary functions or commands.

Many of the conversion functions are rounding or truncating operations. In this case, if the argu-
ment is a rational function, the result is the Euclidean quotient of the numerator by the denomi-
nator, and if the argument is a vector or a matrix, the operation is done componentwise. This will
not be restated for every function.

3.2.1 Col(x,{n}). Transforms the object = into a column vector. The dimension of the resulting
vector can be optionally specified via the extra parameter n.

If n is omitted or 0, the dimension depends on the type of x; the vector has a single component,
except when z is

e a vector or a quadratic form (in which case the resulting vector is simply the initial object
considered as a row vector),

e a polynomial or a power series. In the case of a polynomial, the coefficients of the vector start
with the leading coefficient of the polynomial, while for power series only the significant coefficients
are taken into account, but this time by increasing order of degree. In this last case, Vec is the
reciprocal function of Pol and Ser respectively,

e a matrix (the column of row vector comprising the matrix is returned),
e a character string (a vector of individual characters is returned).

In the last two cases (matrix and character string), n is meaningless and must be omitted or
an error is raised. Otherwise, if n is given, 0 entries are appended at the end of the vector if n > 0,
and prepended at the beginning if n < 0. The dimension of the resulting vector is |n|.

Note that the function Colrev does not exist, use Vecrev.

The library syntax is GEN gtocolO(GEN x, long n). GEN gtocol(GEN x) is also available.

3.2.2 Colrev(z,{n}). As Col(x,n), then reverse the result. In particular

The library syntax is GEN gtocolrevO(GEN x, long n). GEN gtocolrev(GEN x) is also avail-
able.

3.2.3 List({z = []}). Transforms a (row or column) vector x into a list, whose components are the
entries of x. Similarly for a list, but rather useless in this case. For other types, creates a list with
the single element x. Note that, except when z is omitted, this function creates a small memory
leak; so, either initialize all lists to the empty list, or use them sparingly.

The library syntax is GEN gtolist(GEN x = NULL). The variant GEN listcreate(void) cre-
ates an empty list.

71

3.2.4 Mat({z = []|}). Transforms the object x into a matrix. If = is already a matrix, a copy of
x is created. If x is a row (resp. column) vector, this creates a 1-row (resp. l-column) matrix,
unless all elements are column (resp. row) vectors of the same length, in which case the vectors are
concatenated sideways and the associated big matrix is returned. If x is a binary quadratic form,
creates the associated 2 x 2 matrix. Otherwise, this creates a 1 x 1 matrix containing z.

? Mat(x + 1)

%1 =

[x + 1]

? Vec(matid(3))

%2 = [[1, 0, O]~, [0, 1, O]~, [O, O, 1]~]
? Mat (%)

%3 =

[1 0 0]

[0 1 0]

[0 0 1]

? Col([1,2; 3,4])

%4 = [[1, 21, [3, 411~
? Mat (%)

%5 =

[1 2]

[3 4]
? Mat(Qfb(1,2,3))
e =
[1 1]

[1 3]
The library syntax is GEN gtomat (GEN x = NULL).

3.2.5 Mod(a,b). In its basic form, creates an intmod or a polmod (amod b); b must be an integer
or a polynomial. We then obtain a t_INTMOD and a t_POLMOD respectively:

? t = Mod(2,17); t°8

%1 = Mod(1, 17)

? t = Mod(x,x"2+1); t~2
%2 = Mod(-1, x"2+1)

If a%b makes sense and yields a result of the appropriate type (t_INT or scalar/t_POL), the operation
succeeds as well:

? Mod(1/2, 5)

%3 = Mod(3, 5)

? Mod(7 + 0(376), 3)

%4 = Mod(1, 3)

? Mod(Mod(1,12), 9)

%5 = Mod(1, 3)

? Mod(1/x, x72+1)

%6 = Mod(-1, x~2+1)

? Mod(exp(x), x74)

%7 = Mod(1/6%x"3 + 1/2%x"2 + x + 1, x~4)

72

If a is a complex object, “base change” it to Z/bZ or K|[z]/(b), which is equivalent to, but
faster than, multiplying it by Mod(1,b):

? Mod([1,2;3,4], 2)
%8 =
[Mod(1, 2) Mod(0, 2)]

[Mod (1, 2) Mod(0, 2)]

? Mod(3*x+5, 2)

%9 = Mod(1, 2)*x + Mod(1, 2)

7 Mod(x"2 + y*x + y~3, y~2+1)

%10 = Mod(1, y~2 + 1)*x"2 + Mod(y, y~2 + 1)*x + Mod(-y, y~2 + 1)

This function is not the same as = % y, the result of which has no knowledge of the indended
modulus y. Compare

?x=479%5; x+1

%1 =5

? x = Mod(4,5); x + 1
%2 = Mod(0,5)

The library syntax is GEN gmodulo(GEN a, GEN b).

3.2.6 Pol(t,{v =" x}). Transforms the object ¢ into a polynomial with main variable v. If ¢ is
a scalar, this gives a constant polynomial. If ¢ is a power series with non-negative valuation or
a rational function, the effect is similar to truncate, i.e. we chop off the O(X*) or compute the
Fuclidean quotient of the numerator by the denominator, then change the main variable of the
result to v.

The main use of this function is when ¢ is a vector: it creates the polynomial whose coefficients
are given by ¢, with ¢[1] being the leading coefficient (which can be zero). It is much faster to
evaluate Pol on a vector of coefficients in this way, than the corresponding formal expression
an X™ + ...+ ag, which is evaluated naively exactly as written (linear versus quadratic time in n).
Polrev can be used if one wants x[1] to be the constant coefficient:

7 Pol([1,2,3])

%1 = x"2 + 2%x + 3

? Polrev([1,2,3])

%2 = 3*%x"2 + 2%x + 1

The reciprocal function of Pol (resp. Polrev) is Vec (resp. Vecrev).

? Vec(Pol([1,2,3]))

%1 = [1, 2, 3]

? Vecrev(Polrev([1,2,3]))
%2 = [1, 2, 3]

73

Warning. This is not a substitution function. It will not transform an object containing variables
of higher priority than v.

? Pol(x +y, y)
*** at top-level: Pol(x+y,y)
* oKk e
**x* Pol: variable must have higher priority in gtopoly.

The library syntax is GEN gtopoly(GEN t, long v = -1), where v is a variable number.

3.2.7 Polrev(t,{v =" z}). Transform the object ¢ into a polynomial with main variable v. If ¢ is a
scalar, this gives a constant polynomial. If ¢ is a power series, the effect is identical to truncate,
i.e. it chops off the O(X*).

The main use of this function is when ¢ is a vector: it creates the polynomial whose coeflicients
are given by ¢, with ¢[1] being the constant term. Pol can be used if one wants ¢[1] to be the leading
coefficient:

? Polrev([1,2,3])

%1 = 3*%x72 + 2xx + 1
? Pol([1,2,3])

%2 = x"2 + 2%x + 3

The reciprocal function of Pol (resp. Polrev) is Vec (resp. Vecrev).

The library syntax is GEN gtopolyrev(GEN t, long v = -1), where v is a variable number.

3.2.8 Qfb(a,b,c,{D = 0.}). Creates the binary quadratic form ax? + bry + cy?. If b* — 4ac > 0,
initialize Shanks’ distance function to D. Negative definite forms are not implemented, use their
positive definite counterpart instead.

The library syntax is GEN QfbO(GEN a, GEN b, GEN ¢, GEN D = NULL, long prec). Also
available are GEN qfi(GEN a, GEN b, GEN c) (assumes b2 — dac < 0) and GEN qfr(GEN a, GEN
b, GEN c, GEN D) (assumes b? — 4ac > 0).

3.2.9 Ser(s,{v =" z},{d = seriesprecision}). Transforms the object s into a power series with
main variable v (z by default) and precision (number of significant terms) equal to d (= the default
seriesprecision by default). If s is a scalar, this gives a constant power series in v with precision
d. If s is a polynomial, the polynomial is truncated to d terms if needed

? Ser(1, ’y, 5)

%1 =1+ 0(y"5)

? Ser(x"2,, 5)

%2 = x"2 + 0(x"7)

? T = polcyclo(100)

%3 = x740 - x730 + x°20 - x710 + 1
? Ser(T, ’x, 11)

%4 =1 - x710 + 0(x~11)

The function is more or less equivalent with multiplication by 1+ O(v?) in theses cases, only faster.

If s is a vector, on the other hand, the coefficients of the vector are understood to be the
coefficients of the power series starting from the constant term (as in Polrev(z)), and the precision
d is ignored: in other words, in this case, we convert t_VEC / t_COL to the power series whose

74

significant terms are exactly given by the vector entries. Finally, if s is already a power series in
v, we return it verbatim, ignoring d again. If d significant terms are desired in the last two cases,
convert/truncate to t_POL first.

?v=1[1,2,3]; Ser(v, t, 7)

%5 =1+ 2%t + 3%t”"2 + 0(t"3) \\ 3 terms: 7 is ignored!
? Ser(Polrev(v,t), t, 7)

%6 =1 + 2%t + 3*%t"2 + 0(t"7)

? s = 1+x+0(x"2); Ser(s, x, 7)

BT =1+ x+ 0(x"2) \\ 2 terms: 7 ignored

? Ser(truncate(s), x, 7)

%8 =1+ x + 0(x"7)

The warning given for Pol also applies here: this is not a substitution function.

The library syntax is GEN gtoser(GEN s, long v = -1, long precdl), where v is a variable
number.

3.2.10 Set({z = []}). Converts z into a set, i.e. into a row vector, with strictly increasing entries
with respect to the (somewhat arbitrary) universal comparison function cmp. Standard container
types t_VEC, t_COL, t_LIST and t_VECSMALL are converted to the set with corresponding elements.
All others are converted to a set with one element.

? Set([1,2,4,2,1,3])

% = [1, 2, 3, 4]

? Set(x)

%2 = [x]

? Set(Vecsmall([1,3,2,1,3]1))
%3 = [1, 2, 3]

The library syntax is GEN gtoset(GEN x = NULL).
3.2.11 Str({z}=). Converts its argument list into a single character string (type t_STR, the empty

string if = is omitted). To recover an ordinary GEN from a string, apply eval to it. The arguments
of Str are evaluated in string context, see Section 2.9.

?x2=0; i=2; Str(x, i)

Y1 = nxon
7 eval(¥%)
%2 =0

This function is mostly useless in library mode. Use the pair strtoGEN/GENtostr to convert
between GEN and char*. The latter returns a malloced string, which should be freed after usage.

3.2.12 Strchr(x). Converts z to a string, translating each integer into a character.

? Strchr(97)

%1 = "a"

? Vecsmall("hello world")

%2 = Vecsmall([104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100])
? Strchr (%)

%3 = "hello world"

The library syntax is GEN Strchr (GEN x).

75

3.2.13 Strexpand({z}x). Converts its argument list into a single character string (type t_STR,
the empty string if x is omitted). Then perform environment expansion, see Section 2.12. This
feature can be used to read environment variable values.

? Strexpand("$HOME/doc")
%1 = "/home/pari/doc"

The individual arguments are read in string context, see Section 2.9.
3.2.14 Strtex({z}«). Translates its arguments to TeX format, and concatenates the results into
a single character string (type t_STR, the empty string if x is omitted).

The individual arguments are read in string context, see Section 2.9.
3.2.15 Vec(z,{n}). Transforms the object x into a row vector. The dimension of the resulting
vector can be optionally specified via the extra parameter n.

If n is omitted or 0, the dimension depends on the type of x; the vector has a single component,
except when x is

e a vector or a quadratic form (in which case the resulting vector is simply the initial object
considered as a row vector),

e a polynomial or a power series. In the case of a polynomial, the coefficients of the vector start
with the leading coefficient of the polynomial, while for power series only the significant coefficients
are taken into account, but this time by increasing order of degree. In this last case, Vec is the
reciprocal function of Pol and Ser respectively,

e a matrix: return the vector of columns comprising the matrix.
e a character string: return the vector of individual characters.
e an error context (t_ERROR): return the error components, see iferr.

In the last three cases (matrix, character string, error), n is meaningless and must be omitted
or an error is raised. Otherwise, if n is given, 0 entries are appended at the end of the vector if
n > 0, and prepended at the beginning if n < 0. The dimension of the resulting vector is |n|.
Variant: GEN gtovec (GEN x) is also available.

The library syntax is GEN gtovecO(GEN x, long n).
3.2.16 Vecrev(x,{n}). As Vec(z,n), then reverse the result. In particular In this case, Vecrev is

the reciprocal function of Polrev: the coefficients of the vector start with the constant coefficient
of the polynomial and the others follow by increasing degree.

The library syntax is GEN gtovecrevO(GEN x, long n). GEN gtovecrev(GEN x) is also avail-
able.
3.2.17 Vecsmall(z, {n}). Transforms the object z into a row vector of type t_VECSMALL. The

dimension of the resulting vector can be optionally specified via the extra parameter n.

This acts as Vec(z,n), but only on a limited set of objects: the result must be representable
as a vector of small integers. If = is a character string, a vector of individual characters in ASCII
encoding is returned (Strchr yields back the character string).

The library syntax is GEN gtovecsmallO(GEN x, long n). GEN gtovecsmall(GEN x) is also
available.

76

3.2.18 binary(x). Outputs the vector of the binary digits of |x|. Here x can be an integer, a
real number (in which case the result has two components, one for the integer part, one for the
fractional part) or a vector/matrix.

The library syntax is GEN binaire(GEN x).

3.2.19 bitand(z,y). Bitwise and of two integers x and y, that is the integer

%

Negative numbers behave 2-adically, i.e. the result is the 2-adic limit of bitand(x,, ¥,), where
x, and y, are non-negative integers tending to z and y respectively. (The result is an ordinary
integer, possibly negative.)

? bitand(5, 3)

%1 =1

? bitand(-5, 3)
%2 =3

? bitand(-5, -3)
%3 = -7

The library syntax is GEN gbitand(GEN x, GEN y). Also available is GEN ibitand(GEN x,
GEN y), which returns the bitwise and of |z| and |y|, two integers.

3.2.20 bitneg(x, {n = —1}). bitwise negation of an integer z, truncated to n bits, n > 0, that is
the integer

The special case n = —1 means no truncation: an infinite sequence of leading 1 is then represented
as a negative number.

See Section 3.2.19 for the behavior for negative arguments.

The library syntax is GEN gbitneg(GEN x, long n).

3.2.21 bitnegimply(z,y). Bitwise negated imply of two integers x and y (or not (z = y)), that
is the integer

Z(wl andnot (y;))2"

See Section 3.2.19 for the behavior for negative arguments.

The library syntax is GEN gbitnegimply(GEN x, GEN y). Also available is GEN ibitnegim-
ply(GEN x, GEN y), which returns the bitwise negated imply of |z| and |y|, two integers.

3.2.22 bitor(z,y). bitwise (inclusive) or of two integers = and y, that is the integer
Z(mz or y;)2'

See Section 3.2.19 for the behavior for negative arguments.

The library syntax is GEN gbitor (GEN x, GEN y). Also available is GEN ibitor (GEN x, GEN
y), which returns the bitwise ir of |x| and |y|, two integers.

77

3.2.23 bittest(z,n). Outputs the n'® bit of x starting from the right (i.e. the coefficient of 2" in
the binary expansion of x). The result is 0 or 1.

? bittest(7, 3)
%1 =1 \\ the 3rd bit is 1
? bittest(7, 4)
%2 = 0 \\ the 4th bit is O

See Section 3.2.19 for the behavior at negative arguments.

The library syntax is GEN gbittest(GEN x, long n). For a t_INT z, the variant long
bittest(GEN x, long n) is generally easier to use, and if furthermore n > 0 the low-level function
ulong int_bit(GEN x, long n) returns bittest(abs(x),n).

3.2.24 bitxor(z,y). Bitwise (exclusive) or of two integers x and y, that is the integer
Z(fﬁz xor yz‘)Qi

See Section 3.2.19 for the behavior for negative arguments.
The library syntax is GEN gbitxor(GEN x, GEN y). Also available is GEN ibitxor(GEN x,

GEN y), which returns the bitwise zor of |z| and |y|, two integers.

3.2.25 ceil(z). Ceiling of x. When z is in R, the result is the smallest integer greater than or equal
to x. Applied to a rational function, ceil(z) returns the Euclidean quotient of the numerator by
the denominator.

The library syntax is GEN gceil(GEN x).
3.2.26 centerlift(x, {v}). Same as 1ift, except that t_INTMOD and t_PADIC components are lifted
using centered residues:

o for a t_INTMOD x € Z/nZ, the lift y is such that —n/2 <y < n/2.

e a t_PADIC z is lifted in the same way as above (modulo pPadicPrec(®)) if its valuation v is non-
negative; if not, returns the fraction p¥ centerlift(zp~"); in particular, rational reconstruction is
not attempted. Use bestappr for this.

For backward compatibility, centerlift(x,’v) is allowed as an alias for 1ift(x,’v).
The library syntax is centerlift(GEN x).
3.2.27 characteristic(z). Returns the characteristic of the base ring over which z is defined (as

defined by t_INTMOD and t_FFELT components). The function raises an exception if incompatible
primes arise from t_FFELT and t_PADIC components.

? characteristic(Mod(1,24)*x + Mod(1,18)*y)
%1 =6

The library syntax is GEN characteristic(GEN x).

78

3.2.28 component(r,n). Extracts the n'"-component of x. This is to be understood as follows:
every PARI type has one or two initial code words. The components are counted, starting at 1,
after these code words. In particular if = is a vector, this is indeed the n*-component of z, if
is a matrix, the n'® column, if z is a polynomial, the n'" coefficient (i.e. of degree n — 1), and for
power series, the n'" significant coefficient.

For polynomials and power series, one should rather use polcoeff, and for vectors and matri-
ces, the [] operator. Namely, if z is a vector, then x[n] represents the n** component of z. If z is
a matrix, x[m,n] represents the coefficient of row m and column n of the matrix, x[m,] represents
the m*™ row of x, and x[,n] represents the n*" column of x.

Using of this function requires detailed knowledge of the structure of the different PARI types,
and thus it should almost never be used directly. Some useful exceptions:
? x =3+ 0(375);
? component(x, 2)
%2 = 81 \\ p~(p-adic accuracy)
? component(x, 1)
%3 =3 \\ p
7 q = Qfb(1,2,3);
? component(q, 1)
W =1

The library syntax is GEN compo(GEN x, long n).
3.2.29 conj(x). Conjugate of x. The meaning of this is clear, except that for real quadratic

numbers, it means conjugation in the real quadratic field. This function has no effect on integers,
reals, intmods, fractions or p-adics. The only forbidden type is polmod (see conjvec for this).

The library syntax is GEN gconj (GEN x).
3.2.30 conjvec(z). Conjugate vector representation of z. If z is a polmod, equal to Mod(a, T'), this
gives a vector of length degree(T") containing:

e the complex embeddings of z if T has rational coefficients, i.e. the a(r[i]) where r =
polroots(T);

e the conjugates of z if T' has some intmod coefficients;

if z is a finite field element, the result is the vector of conjugates [z, 27, ng, e zpnfl} where n =
degree(T).

If z is an integer or a rational number, the result is z. If z is a (row or column) vector, the result
is a matrix whose columns are the conjugate vectors of the individual elements of z.

The library syntax is GEN conjvec(GEN z, long prec).

3.2.31 denominator(z). Denominator of x. The meaning of this is clear when z is a rational
number or function. If x is an integer or a polynomial, it is treated as a rational number or function,
respectively, and the result is equal to 1. For polynomials, you probably want to use

denominator(content(x))

instead. As for modular objects, t_INTMOD and t_PADIC have denominator 1, and the denominator
of a t_POLMOD is the denominator of its (minimal degree) polynomial representative.

If x is a recursive structure, for instance a vector or matrix, the lem of the denominators of its
components (a common denominator) is computed. This also applies for t_COMPLEXs and t_QUADs.

79

Warning. Multivariate objects are created according to variable priorities, with possibly surprising
side effects (x/y is a polynomial, but y/x is a rational function). See Section 2.5.3.

The library syntax is GEN denom(GEN x).
3.2.32 digits(z, {b = 10}). Outputs the vector of the digits of |z| in base b, where z and b are
integers.

The library syntax is GEN digits(GEN x, GEN b = NULL).
3.2.33 floor(z). Floor of z. When z is in R, the result is the largest integer smaller than or equal

to x. Applied to a rational function, floor(z) returns the Euclidean quotient of the numerator by
the denominator.

The library syntax is GEN gfloor (GEN x).

3.2.34 frac(z). Fractional part of z. Identical to = — floor(z). If x is real, the result is in [0, 1].
The library syntax is GEN gfrac(GEN x).
3.2.35 hammingweight(x). If = is a t_INT, return the binary Hamming weight of |z|. Otherwise

x must be of type t_POL, t_VEC, t_COL, t _VECSMALL, or t_MAT and the function returns the number
of non-zero coefficients of x.

? hammingweight (15)

hl =4

? hammingweight (x7100 + 2*x + 1)

%2 =3

? hammingweight ([Mod(1,2), 2, Mod(0,3)]1)
W3 =2

? hammingweight (matid (100))

%4 = 100

The library syntax is long hammingweight (GEN x).
3.2.36 imag(x). Imaginary part of x. When z is a quadratic number, this is the coefficient of w
in the “canonical” integral basis (1,w).

The library syntax is GEN gimag(GEN x).

3.2.37 length(x). Length of x; #x is a shortcut for length(x). This is mostly useful for
e vectors: dimension (0 for empty vectors),
e lists: number of entries (0 for empty lists),
e matrices: number of columns,

e character strings: number of actual characters (without trailing \0, should you expect it
from C' charx).

7?7 #"a string"

%1 =8
? #[3,2,1]
%2 =3

80

7 #0

%3 =0

? #matrix(2,5)

%4 =5

? L = List([1,2,3,4]); #L
%5 =4

The routine is in fact defined for arbitrary GP types, but is awkward and useless in other
cases: it returns the number of non-code words in z, e.g. the effective length minus 2 for integers
since the t_INT type has two code words.

The library syntax is long glength(GEN x).

3.2.38 lift(z, {v}). If v is omitted, lifts intmods from Z/nZ in Z, p-adics from Q, to Q (as
truncate), and polmods to polynomials. Otherwise, lifts only polmods whose modulus has main
variable v. t_FFELT are not lifted, nor are List elements: you may convert the latter to vectors
first, or use apply(1ift,L). More generally, components for which such lifts are meaningless (e.g.
character strings) are copied verbatim.

7 1ift(Mod(5,3))

%1 =2

? 1ift(3 + 0(379))
%2 =3

? 1lift (Mod(x,x"2+1))
%3 = x

7 1lift(Mod(x,x"2+1))
% = x

Lifts are performed recursively on an object components, but only by one level: once a
t_POLMOD is lifted, the components of the result are not lifted further.

? 1lift(x *
%4 = x + 2
? lift(x *

Mod(1,3) + Mod(2,3))

Mod(y,y~2+1) + Mod(2,3))

%5 = y*x + Mod(2, 3) \\ do you understand this one?
7 lift(x * Mod(y,y~2+1) + Mod(2,3), ’x)

%6 = Mod(y, y™2 + 1)*x + Mod(Mod(2, 3), y~2 + 1)
? 1ift (%, y)

%7 = yxx + Mod(2, 3)

* +

To recursively lift all components not only by one level, but as long as possible, use 1liftall. To
lift only t_INTMODs and t_PADICs components, use liftint. To lift only t_POLMODs components,
use 1iftpol. Finally, centerlift allows to lift t_INTMODs and t_PADICs using centered residues
(lift of smallest absolute value).

The library syntax is GEN 1iftO(GEN x, long v = -1), where v is a variable number. Also
available is GEN 1ift (GEN x) corresponding to 1ift0(x,-1).

81

3.2.39 liftall(z). Recursively lift all components of x from Z/nZ to Z, from Q,, to Q (as truncate),
and polmods to polynomials. t_FFELT are not lifted, nor are List elements: you may convert the
latter to vectors first, or use apply(1iftall,L). More generally, components for which such lifts
are meaningless (e.g. character strings) are copied verbatim.

? 1iftall(x * (1 + 0(3)) + Mod(2,3))

%1 =x + 2

7 liftall(x * Mod(y,y~2+1) + Mod(2,3)*Mod(z,z"2))
%2 = yxx + 2%z

The library syntax is GEN 1iftall(GEN x).

3.2.40 liftint(z). Recursively lift all components of z from Z/nZ to Z and from Q, to Q (as
truncate). t_FFELT are not lifted, nor are List elements: you may convert the latter to vectors
first, or use apply(liftint,L). More generally, components for which such lifts are meaningless
(e.g. character strings) are copied verbatim.

? liftint(x * (1 + 0(3)) + Mod(2,3))

%1 =x + 2

7 liftint(x * Mod(y,y 2+1) + Mod(2,3)*Mod(z,z"2))

%2 = Mod(y, y~2 + 1)*x + Mod(Mod(2*z, z~2), y~"2 + 1)

The library syntax is GEN 1iftint(GEN x).

3.2.41 liftpol(x). Recursively lift all components of 2 which are polmods to polynomials. t_FFELT
are not lifted, nor are List elements: you may convert the latter to vectors first, or use ap-
ply(liftpol,L). More generally, components for which such lifts are meaningless (e.g. character
strings) are copied verbatim.

? liftpol(x * (1 + 0(3)) + Mod(2,3))

%1 = (1 + 0(3))*x + Mod(2, 3)

? liftpol(x * Mod(y,y 2+1) + Mod(2,3)*Mod(z,z"2))
%2 = y*x + Mod(2, 3)*z

The library syntax is GEN 1iftpol(GEN x).
3.2.42 norm(x). Algebraic norm of z, i.e. the product of x with its conjugate (no square roots
are taken), or conjugates for polmods. For vectors and matrices, the norm is taken componentwise

and hence is not the L?-norm (see norm12). Note that the norm of an element of R. is its square,
so as to be compatible with the complex norm.

The library syntax is GEN gnorm(GEN x).
3.2.43 numerator(x). Numerator of . The meaning of this is clear when z is a rational number

or function. If x is an integer or a polynomial, it is treated as a rational number or function,
respectively, and the result is x itself. For polynomials, you probably want to use

numerator (content(x))
instead.

In other cases, numerator (x) is defined to be denominator (x)*x. This is the case when x is
a vector or a matrix, but also for t_COMPLEX or t_QUAD. In particular since a t_PADIC or t_INTMOD
has denominator 1, its numerator is itself.

82

Warning. Multivariate objects are created according to variable priorities, with possibly surprising
side effects (x/y is a polynomial, but y/x is a rational function). See Section 2.5.3.

The library syntax is GEN numer (GEN x).
3.2.44 numtoperm(n, k). Generates the k-th permutation (as a row vector of length n) of the

numbers 1 to n. The number £ is taken modulo n!, i.e. inverse function of permtonum. The
numbering used is the standard lexicographic ordering, starting at 0.

The library syntax is GEN numtoperm(long n, GEN k).
3.2.45 padicprec(z,p). Absolute p-adic precision of the object x. This is the minimum precision

of the components of z. The result is LONG_MAX (23! — 1 for 32-bit machines or 263 — 1 for 64-bit
machines) if x is an exact object.

The library syntax is long padicprec(GEN x, GEN p).
3.2.46 permtonum(z). Given a permutation z on n elements, gives the number k such that

x = numtoperm(n, k), i.e. inverse function of numtoperm. The numbering used is the standard
lexicographic ordering, starting at 0.

The library syntax is GEN permtonum(GEN x).
3.2.47 precision(z,{n}). The function has two different behaviors according to whether n is
present or not.

If n is missing, the function returns the precision in decimal digits of the PARI object x. If x
is an exact object, the largest single precision integer is returned.

? precision(exp(1e-100))

%1 = 134 \\ 134 significant decimal digits

? precision(2 + x)

%h2 = 2147483647 \\ exact object

? precision(0.5 + 0(x))

%3 = 28 \\ floating point accuracy, NOT series precision
7 precision([exp(le-100), 0.5 1)

= 28 \\ minimal accuracy among components

The return value for exact objects is meaningless since it is not even the same on 32 and 64-bit
machines. The proper way to test whether an object is exact is

7 isexact(x) = precision(x) == precision(0)

If n is present, the function creates a new object equal to z with a new “precision” n. (This
never changes the type of the result. In particular it is not possible to use it to obtain a polynomial
from a power series; for that, see truncate.) Now the meaning of precision is different from the
above (floating point accuracy), and depends on the type of z:

For exact types, no change. For = a vector or a matrix, the operation is done componentwise.

For real x, n is the number of desired significant decimal digits. If n is smaller than the
precision of z, x is truncated, otherwise x is extended with zeros.

For z a p-adic or a power series, n is the desired number of significant p-adic or X-adic digits,
where X is the main variable of x. (Note: yes, this is inconsistent.) Note that the precision is a

83

priori distinct from the exponent k appearing in O(**); it is indeed equal to k if and only if = is a
p-adic or X-adic unit.

? precision(1l + 0(x), 10)

%1 =1+ 0(x"10)

? precision(x”2 + 0(x~10), 3)
%2 = x"2 + 0(x"5)

? precision(7°2 + 0(7°10), 3)
%3 = 7°2 + 0(7°5)

For the last two examples, note that 224+ O(2%) = 22(14+O(23)) indeed has 3 significant coefficients

The library syntax is GEN precisionO(GEN x, long n). Also available are GEN gprec(GEN
x, long n) and long precision(GEN x). In both, the accuracy is expressed in words (32-bit or
64-bit depending on the architecture).

3.2.48 random({N = 231}). Returns a random element in various natural sets depending on the
argument N.

e t_INT: returns an integer uniformly distributed between 0 and NV —1. Omitting the argument
is equivalent to random(2°31).

e t_REAL: returns a real number in [0, 1] with the same accuracy as N (whose mantissa has
the same number of significant words).

e t_INTMOD: returns a random intmod for the same modulus.
e t_FFELT: returns a random element in the same finite field.
e t_VEC of length 2, N = [a, b]: returns an integer uniformly distributed between a and b.

e t_VEC generated by ellinit over a finite field k (coefficients are t_INTMODs modulo a prime
or t_FFELTS): returns a “random” k-rational affine point on the curve. More precisely if the curve
has a single point (at infinity!) we return it; otherwise we return an affine point by drawing an
abscissa uniformly at random until ellordinate succeeds. Note that this is definitely not a uniform
distribution over E(k), but it should be good enough for applications.

e t_POL return a random polynomial of degree at most the degree of N. The coeflicients are
drawn by applying random to the leading coefficient of N.

? random(10)

%1 =9

? random(Mod(0,7))

%2 = Mod(1, 7)

7 a = ffgen(£finit(3,7), ’a); random(a)

%3 = a6 + 2xa”5 + a”4 + a”3 + a"2 + 2*a

? E = ellinit([3,7]%Mod(1,109)); random(E)

%4 = [Mod(103, 109), Mod(10, 109)]

? E = ellinit([1,7]*a"0); random(E)

%5 = [a"6 + a”5 + 2*%a”"4 + 2%a”2, 2*a"6 + 2*a"4 + 2%a"3 + a"2 + 2x*a]
? random(Mod(1,7)*x"~4)

%6 = Mod(5, 7)*x"4 + Mod(6, 7)*x~3 + Mod(2, 7)*x"2 + Mod(2, 7)*x + Mod(5, 7)

These variants all depend on a single internal generator, and are independent from your oper-
ating system’s random number generators. A random seed may be obtained via getrand, and reset

84

using setrand: from a given seed, and given sequence of randoms, the exact same values will be
generated. The same seed is used at each startup, reseed the generator yourself if this is a problem.
Note that internal functions also call the random number generator; adding such a function call in
the middle of your code will change the numbers produced.

Technical note. Up to version 2.4 included, the internal generator produced pseudo-random
numbers by means of linear congruences, which were not well distributed in arithmetic pro-
gressions. We now use Brent’s XORGEN algorithm, based on Feedback Shift Registers, see
http://wwwmaths.anu.edu.au/~brent/random.html. The generator has period 24°% — 1, passes
the Crush battery of statistical tests of L’Ecuyer and Simard, but is not suitable for cryptographic
purposes: one can reconstruct the state vector from a small sample of consecutive values, thus
predicting the entire sequence.

The library syntax is GEN genrand(GEN N = NULL).

Also available: GEN ellrandom(GEN E) and GEN ffrandom(GEN a).

3.2.49 real(z). Real part of z. In the case where z is a quadratic number, this is the coefficient
of 1 in the “canonical” integral basis (1,w).

The library syntax is GEN greal (GEN x).

3.2.50 round(z,{&e}). If z is in R, rounds = to the nearest integer (rounding to +oo in case
of ties), then and sets e to the number of error bits, that is the binary exponent of the difference
between the original and the rounded value (the “fractional part”). If the exponent of x is too large
compared to its precision (i.e. e > 0), the result is undefined and an error occurs if e was not given.

Important remark. Contrary to the other truncation functions, this function operates on every
coefficient at every level of a PARI object. For example

24%x X2 - 1.7

truncate
(%

>:2.4*X,

whereas

round 24x X2 1.7 - 2% X229
X N X '

An important use of round is to get exact results after an approximate computation, when theory
tells you that the coefficients must be integers.

The library syntax is GEN roundO(GEN x, GEN *e = NULL). Also available are GEN grnd-
toi(GEN x, long *e) and GEN ground(GEN x).

85

3.2.51 simplify(x). This function simplifies as much as it can. Specifically, a complex or
quadratic number whose imaginary part is the integer 0 (i.e. not Mod(0,2) or 0.E-28) is converted
to its real part, and a polynomial of degree 0 is converted to its constant term. Simplifications
occur recursively.

This function is especially useful before using arithmetic functions, which expect integer argu-
ments:

?Tx=2+y-y
%= 2
? isprime(x)
xx*x at top-level: isprime(x)

*kk T
**%* isprime: not an integer argument in an arithmetic function
7 type(x)
%2 = "t_POL"
7 type(simplify(x))
%3 = "t_INT"

Note that GP results are simplified as above before they are stored in the history. (Unless you
disable automatic simplification with \y, that is.) In particular

? type(%1)
%4 = "t_INT"

The library syntax is GEN simplify(GEN x).

3.2.52 sizebyte(z). Outputs the total number of bytes occupied by the tree representing the PARI
object x.

The library syntax is long gsizebyte(GEN x). Also available is long gsizeword(GEN x)
returning a number of words.

3.2.53 sizedigit(z). Outputs a quick bound for the number of decimal digits of (the components
of) z, off by at most 1. If you want the exact value, you can use #Str(x), which is slower.

The library syntax is long sizedigit(GEN x).

3.2.54 truncate(z, {&e}). Truncates x and sets e to the number of error bits. When z is in R,
this means that the part after the decimal point is chopped away, e is the binary exponent of the
difference between the original and the truncated value (the “fractional part”). If the exponent of
x is too large compared to its precision (i.e. e > 0), the result is undefined and an error occurs if
e was not given. The function applies componentwise on vector / matrices; e is then the maximal
number of error bits. If x is a rational function, the result is the “integer part” (Euclidean quotient
of numerator by denominator) and e is not set.

Note a very special use of truncate: when applied to a power series, it transforms it into a
polynomial or a rational function with denominator a power of X, by chopping away the O(X¥).
Similarly, when applied to a p-adic number, it transforms it into an integer or a rational number
by chopping away the O(p*).

The library syntax is GEN truncO(GEN x, GEN *e = NULL). The following functions are also
available: GEN gtrunc(GEN x) and GEN gcvtoi(GEN x, long *e).

86

3.2.55 valuation(z,p). Computes the highest exponent of p dividing x. If p is of type integer, z
must be an integer, an intmod whose modulus is divisible by p, a fraction, a g-adic number with
q = p, or a polynomial or power series in which case the valuation is the minimum of the valuation
of the coefficients.

If p is of type polynomial, z must be of type polynomial or rational function, and also a power
series if z is a monomial. Finally, the valuation of a vector, complex or quadratic number is the
minimum of the component valuations.

If x = 0, the result is LONG_MAX (23! — 1 for 32-bit machines or 26 — 1 for 64-bit machines)
if x is an exact object. If x is a p-adic numbers or power series, the result is the exponent of the
zero. Any other type combinations gives an error.

The library syntax is long gvaluation(GEN x, GEN p).

3.2.56 variable({z}). Gives the main variable of the object = (the variable with the highest
priority used in), and p if x is a p-adic number. Return 0 if has no variable associated to it.

? variable(x"2 + y)

% =x

? variable(1l + 0(572))
%2 =5

? variable([x,y,z,t])
%3 = x

? variable(1)

%4 =0

The construction
if (!variable(x),...)
can be used to test whether a variable is attached to x.

If x is omitted, returns the list of user variables known to the interpreter, by order of decreasing
priority. (Highest priority is =, which always come first.)

The library syntax is GEN gpolvar (GEN x = NULL). However, in library mode, this function
should not be used for x non-NULL, since gvar is more appropriate. Instead, for z a p-adic (type
t_PADIC), p is gel(x,2); otherwise, use long gvar (GEN x) which returns the variable number of
if it exists, NO_VARIABLE otherwise, which satisfies the property varncmp(NO_VARIABLE, v) > 0 for
all valid variable number v, i.e. it has lower priority than any variable.

87

3.3 Transcendental functions.

Since the values of transcendental functions cannot be exactly represented, these functions will
always return an inexact object: a real number, a complex number, a p-adic number or a power
series. All these objects have a certain finite precision.

As a general rule, which of course in some cases may have exceptions, transcendental functions
operate in the following way:

e If the argument is either a real number or an inexact complex number (like 1.0 + I or
PixI but not 2 - 3%I), then the computation is done with the precision of the argument. In the
example below, we see that changing the precision to 50 digits does not matter, because x only had
a precision of 19 digits.

? \p 15

realprecision = 19 significant digits (15 digits displayed)
? x = Pi/4
%1 = 0.785398163397448
? \p 50

realprecision = 57 significant digits (50 digits displayed)
7 sin(x)

%2 = 0.7071067811865475244

Note that even if the argument is real, the result may be complex (e.g. acos(2.0) or acosh(0.0)).
See each individual function help for the definition of the branch cuts and choice of principal value.

e If the argument is either an integer, a rational, an exact complex number or a quadratic
number, it is first converted to a real or complex number using the current precision held in the
default realprecision. This precision (the number of decimal digits) can be changed using \p or
default (realprecision,...)). After this conversion, the computation proceeds as above for real
or complex arguments.

In library mode, the realprecision does not matter; instead the precision is taken from the
prec parameter which every transcendental function has. As in gp, this prec is not used when the
argument to a function is already inexact. Note that the argument prec stands for the length in
words of a real number, including codewords. Hence we must have prec > 3.

Some accuracies attainable on 32-bit machines cannot be attained on 64-bit machines for parity
reasons. For example the default gp accuracy is 28 decimal digits on 32-bit machines, corresponding
to prec having the value 5, but this cannot be attained on 64-bit machines.

o If the argument is a polmod (representing an algebraic number), then the function is evaluated
for every possible complex embedding of that algebraic number. A column vector of results is
returned, with one component for each complex embedding. Therefore, the number of components
equals the degree of the t_POLMOD modulus.

e If the argument is an intmod or a p-adic, at present only a few functions like sqrt (square
root), sqr (square), log, exp, powering, teichmuller (Teichmiiller character) and agm (arithmetic-
geometric mean) are implemented.

Note that in the case of a 2-adic number, sqr(z) may not be identical to = * x: for example if
z=1+40(2%) and y = 1+ O(2°) then xxy = 1+ O(2°) while sqr(z) = 1+ 0(2°). Here, z xz yields
the same result as sqr(z) since the two operands are known to be identical. The same statement
holds true for p-adics raised to the power n, where v,(n) > 0.

88

Remark. If we wanted to be strictly consistent with the PARI philosophy, we should have x xy =
(4mod 8) and sqr(z) = (4mod32) when both = and y are congruent to 2 modulo 4. However,
since intmod is an exact object, PARI assumes that the modulus must not change, and the result is
hence (0 mod 4) in both cases. On the other hand, p-adics are not exact objects, hence are treated
differently.

e If the argument is a polynomial, a power series or a rational function, it is, if necessary,
first converted to a power series using the current series precision, held in the default series-
precision. This precision (the number of significant terms) can be changed using \ps or de-
fault(seriesprecision,...). Then the Taylor series expansion of the function around X = 0
(where X is the main variable) is computed to a number of terms depending on the number of
terms of the argument and the function being computed.

Under gp this again is transparent to the user. When programming in library mode, however,
it is strongly advised to perform an explicit conversion to a power series first, as in x = gtoser(x,
seriesprec), where the number of significant terms seriesprec can be specified explicitly. If
you do not do this, a global variable precdl is used instead, to convert polynomials and rational
functions to a power series with a reasonable number of terms; tampering with the value of this
global variable is deprecated and strongly discouraged.

e If the argument is a vector or a matrix, the result is the componentwise evaluation of the
function. In particular, transcendental functions on square matrices, which are not implemented
in the present version 2.7.0, will have a different name if they are implemented some day.

3.3.1 ~. If y is not of type integer, x"y has the same effect as exp(y*log(x)). It can be applied
to p-adic numbers as well as to the more usual types.

The library syntax is GEN gpow(GEN x, GEN n, long prec) for z7n.

3.3.2 Catalan. Catalan’s constant G =) _ _ % = 0.91596 - - -. Note that Catalan is one
of the few reserved names which cannot be used for user variables.

The library syntax is GEN mpcatalan(long prec).
3.3.3 Euler. Euler’s constant v = 0.57721 - - -. Note that Euler is one of the few reserved names

which cannot be used for user variables.

The library syntax is GEN mpeuler (long prec).

3.3.4 1. The complex number /—1.

The library syntax is GEN gen_I().

3.3.5 Pi. The constant 7 (3.14159 - - -). Note that Pi is one of the few reserved names which cannot
be used for user variables.

The library syntax is GEN mppi(long prec).

89

3.3.6 abs(z). Absolute value of z (modulus if z is complex). Rational functions are not allowed.
Contrary to most transcendental functions, an exact argument is not converted to a real number
before applying abs and an exact result is returned if possible.

? abs(-1)

=1

? abs(3/7 + 4/7*1)

%2 = 5/7

? abs(1 + I)

%3 = 1.414213562373095048801688724

If x is a polynomial, returns —z if the leading coefficient is real and negative else returns x. For a
power series, the constant coefficient is considered instead.

The library syntax is GEN gabs(GEN x, long prec).
3.3.7 acos(x). Principal branch of cos™(z) = —ilog(z + iv/1 — 22). In particular, Re(acos(z)) €
[0,7] and if z € R and |z| > 1, then acos(z) is complex. The branch cut is in two pieces:

| — 00, —1] , continuous with quadrant II, and [1, 400, continuous with quadrant IV. We have
acos(z) = m/2 — asin(z) for all .

The library syntax is GEN gacos(GEN x, long prec).

3.3.8 acosh(z). Principal branch of cosh™'(z) = 2log(y/(z + 1)/2 + \/(z — 1)/2). In particular,
Re(acosh(z)) > 0 and In(acosh(x)) €] — 7, 7]0; if z € R and = < 1, then acosh(z) is complex.

The library syntax is GEN gacosh(GEN x, long prec).
3.3.9 agm(z,y). Arithmetic-geometric mean of z and y. In the case of complex or negative
numbers, the optimal AGM is returned (the largest in absolute value over all choices of the signs of
the square roots). p-adic or power series arguments are also allowed. Note that a p-adic agm exists

only if z/y is congruent to 1 modulo p (modulo 16 for p = 2). x and y cannot both be vectors or
matrices.

The library syntax is GEN agm(GEN x, GEN y, long prec).

3.3.10 arg(z). Argument of the complex number z, such that —7 < arg(z) < 7.

The library syntax is GEN garg(GEN x, long prec).
3.3.11 asin(z). Principal branch of sin™!(z) = —ilog(iz + /1 — 22). In particular, Re(asin(z)) €
[-7/2,7/2] and if z € R and |z| > 1 then asin(z) is complex. The branch cut is in two pieces:

| — 00, —1], continuous with quadrant II, and [1,4o00| continuous with quadrant IV. The function
satisfies asin(x) = asinh(ix).

The library syntax is GEN gasin(GEN x, long prec).
3.3.12 asinh(z). Principal branch of sinh™*(z) = log(z + v/1 + 22). In particular Im(asinh(z)) €

[—m/2,m/2]. The branch cut is in two pieces: [-i 00 ,-i|, continuous with quadrant III and [i,+i oo
[continuous with quadrant I.

The library syntax is GEN gasinh(GEN x, long prec).

90

3.3.13 atan(x). Principal branch of tan=!(x) = log((1 + ix)/(1 — iz))/2i. In particular the
real part of atan(x)) belongs to | — w/2,7/2[. The branch cut is in two pieces: | — ioco, —i],
continuous with quadrant IV, and i, +ioo[continuous with quadrant II. The function satisfies
iatan(r) = —iatanh(ix) for all © # =+i.

The library syntax is GEN gatan(GEN x, long prec).
3.3.14 atanh(z). Principal branch of tanh™'(z) = log((1 + 2)/(1 — x))/2. In particular the
imaginary part of atanh(z) belongs to [—m/2,7/2]; if € R and |z| > 1 then atanh(z) is complex.
The library syntax is GEN gatanh(GEN x, long prec).
3.3.15 bernfrac(z). Bernoulli number B,, where By =1, By = —1/2, By = 1/6,..., expressed as
a rational number. The argument x should be of type integer.

The library syntax is GEN bernfrac(long x).

3.3.16 bernpol(n, {v =" z}). Bernoulli polynomial B,, in variable v.

? bernpol(1)
% =x - 1/2
? bernpol(3)
%2 = x73 - 3/2%x72 + 1/2%x

The library syntax is GEN bernpol(long n, long v = -1), where v is a variable number.
3.3.17 bernreal(z). Bernoulli number B,, as bernfrac, but B, is returned as a real number
(with the current precision).

The library syntax is GEN bernreal(long x, long prec).

3.3.18 bernvec(z). Creates a vector containing, as rational numbers, the Bernoulli numbers By,

Bs,. .., By,. This routine is obsolete. Use bernfrac instead each time you need a Bernoulli number
in exact form.

Note. This routine is implemented using repeated independent calls to bernfrac, which is faster
than the standard recursion in exact arithmetic. It is only kept for backward compatibility: it is
not faster than individual calls to bernfrac, its output uses a lot of memory space, and coping
with the index shift is awkward.

The library syntax is GEN bernvec(long x).

3.3.19 besselhl(nu,z). H'-Bessel function of index nu and argument .

The library syntax is GEN hbessell(GEN nu, GEN x, long prec).

3.3.20 besselh2(nu, z). H?-Bessel function of index nu and argument x.
The library syntax is GEN hbessel2(GEN nu, GEN x, long prec).
3.3.21 besseli(nu,z). I-Bessel function of index nu and argument z. If x converts to a power

series, the initial factor (x/2)"/T'(v + 1) is omitted (since it cannot be represented in PARI when
v is not integral).

The library syntax is GEN ibessel (GEN nu, GEN x, long prec).

91

3.3.22 besselj(nu,z). J-Bessel function of index nu and argument z. If x converts to a power
series, the initial factor (z/2)”/I'(v + 1) is omitted (since it cannot be represented in PARI when
v is not integral).

The library syntax is GEN jbessel(GEN nu, GEN x, long prec).
3.3.23 besseljh(n,z). J-Bessel function of half integral index. More precisely, besseljh(n,z)

computes J,,11/2(x) where n must be of type integer, and z is any element of C. In the present
version 2.7.0, this function is not very accurate when « is small.

The library syntax is GEN jbesselh(GEN n, GEN x, long prec).

3.3.24 besselk(nu,). K-Bessel function of index nu and argument x.

The library syntax is GEN kbessel (GEN nu, GEN x, long prec).

3.3.25 besseln(nu, x). N-Bessel function of index nu and argument x.

The library syntax is GEN nbessel(GEN nu, GEN x, long prec).

3.3.26 cos(x). Cosine of x.

The library syntax is GEN gcos(GEN x, long prec).

3.3.27 cosh(x). Hyperbolic cosine of x.
The library syntax is GEN gcosh(GEN x, long prec).

3.3.28 cotan(z). Cotangent of z.

The library syntax is GEN gcotan(GEN x, long prec).

3.3.29 dilog(x). Principal branch of the dilogarithm of x, i.e. analytic continuation of the power
series log,(z) = 3, o, 2" /n.

The library syntax is GEN dilog(GEN x, long prec).

3.3.30 eint1(z, {n}). Exponential integral [? dt = incgam(0,), where the latter expression
extends the function definition from real x > 0 to all complex x # 0.

If n is present, we must have x > 0; the function returns the n-dimensional vector
[eint1(z),...,eint1(nx)]. Contrary to other transcendental functions, and to the default case
(n omitted), the values are correct up to a bounded absolute, rather than relative, error 10 n,
where n is precision(z) if = is a t_REAL and defaults to realprecision otherwise. (In the most
important application, to the computation of L-functions via approximate functional equations,
those values appear as weights in long sums and small individual relative errors are less useful
than controlling the absolute error.) This is faster than repeatedly calling eint1(i * x), but less
precise.

The library syntax is GEN veceint1(GEN x, GEN n = NULL, long prec). Also available is
GEN eint1(GEN x, long prec).

92

3.3.31 erfc(z). Complementary error function, analytic continuation of (2/y/m) [e dt =
incgam(1/2,22)//7, where the latter expression extends the function definition from real z to all
complex x # 0.

The library syntax is GEN gerfc(GEN x, long prec).

3.3.32 eta(z, {flag = 0}). Variants of Dedekind’s 7 function. If flag = 0, return [] - (1 — ¢"),
where ¢ depends on x in the following way:

o g = e¥™ if x is a complex number (which must then have positive imaginary part); notice

that the factor ¢*/?* is missing!

e g =z if x is a t_PADIC, or can be converted to a power series (which must then have positive
valuation).

If flag is non-zero, x is converted to a complex number and we return the true 7 function,
q1/24 HZO:1(1 _ qn)7 where q= 62”“E.

The library syntax is GEN etaO(GEN z, long flag, long prec).

Also available is GEN trueeta(GEN x, long prec) (flag =1).

3.3.33 exp(x). Exponential of z. p-adic arguments with positive valuation are accepted.

The library syntax is GEN gexp(GEN x, long prec). For a t_PADIC z, the function GEN
Qp_exp(GEN x) is also available.

3.3.34 expml1(z). Return exp(z) — 1, computed in a way that is also accurate when the real part
of x is near 0. Only accept real or complex arguments. A naive direct computation would suffer
from catastrophic cancellation; PARI’s direct computation of exp(z) alleviates this well known
problem at the expense of computing exp(z) to a higher accuracy when x is small. Using expm1 is
recommanded instead:

? default(realprecision, 10000); x = 1e-100;
? a = expml(x);

time = 4 ms.

7 b = exp(x)-1;

time = 28 ms.

? default(realprecision, 10040); x
? ¢ = expml(x); \\ reference point
7 abs(a-c)/c \\ relative error in expml(x)
%7 = 0.E-10017

7 abs(b-c)/c \\ relative error in exp(x)-1
%8 = 1.7907031188259675794 E-9919

1e-100;

As the example above shows, when z is near 0, expml is both faster and more accurate than
exp(x)-1.

The library syntax is GEN gexpml(GEN x, long prec).

93

3.3.35 gamma(s). For s a complex number, evaluates Euler’s gamma function

I(s) = /000 t57 L exp(—t) dt.

Error if s is a non-positive integer, where I" has a pole.

For s a t_PADIC, evaluates the Morita gamma function at s, that is the unique continuous
p-adic function on the p-adic integers extending I'y(k) = (—1)* H; <k J, Where the prime means
that p does not divide j.

? gamma(1/4 + 0(5710))

%1= 1 + 4%5 + 3%574 + 576 + 577 + 4579 + 0(5710)
? algdep(%,4)

%2 = x"4 + 4%x”2 + 5

The library syntax is GEN ggamma(GEN s, long prec). For a t_PADIC x, the function GEN
Qp_gamma (GEN x) is also available.
3.3.36 gammah(z). Gamma function evaluated at the argument x + 1/2.

The library syntax is GEN ggammah (GEN x, long prec).
3.3.37 hyperu(a,b, x). U-confluent hypergeometric function with parameters a and b. The pa-
rameters a and b can be complex but the present implementation requires x to be positive.

The library syntax is GEN hyperu(GEN a, GEN b, GEN x, long prec).
3.3.38 incgam(s,z,{g}). Incomplete gamma function f;o e~ 't~ dt, extended by analytic con-
tinuation to all complex x, s not both 0. The relative error is bounded in terms of the precision of

s (the accuracy of x is ignored when determining the output precision). When g is given, assume
that g = I'(s). For small |z|, this will speed up the computation.

The library syntax is GEN incgamO(GEN s, GEN x, GEN g = NULL, long prec). Also avail-
able is GEN incgam(GEN s, GEN x, long prec).

3.3.39 incgamc(s,z). Complementary incomplete gamma function. The arguments x and s are
complex numbers such that s is not a pole of I' and |z|/(|s|+1) is not much larger than 1 (otherwise
the convergence is very slow). The result returned is [e~*¢"~1 dt.

The library syntax is GEN incgamc(GEN s, GEN x, long prec).

3.3.40 lambertw(y). Lambert W function, solution of the implicit equation ze® =y, for y > 0.

The library syntax is GEN glambertW(GEN y, long prec).

94

3.3.41 Ingamma(x). Principal branch of the logarithm of the gamma function of . This function
is analytic on the complex plane with non-positive integers removed, and can have much larger
arguments than gamma itself.

For = a power series such that x(0) is not a pole of gamma, compute the Taylor expansion.
(PARI only knows about regular power series and can’t include logarithmic terms.)

? lngamma(1+x+0(x"2))
%1 = -0.57721566490153286060651209008240243104*x + 0(x"2)
? Ilngamma(x+0(x"~2))
**%* at top-level: lngamma(x+0(x~2))
KoKk B atmtntt
**x* Ilngamma: domain error in lngamma: valuation != 0
? Ilngamma(-1+x+0(x"2))
***x lngamma: Warning: normalizing a series with O leading term.
*** at top-level: Ilngamma(-1+x+0(x"2))
* oKk B et
*x** lngamma: domain error in intformal: residue(series, pole) != 0

The library syntax is GEN glngamma(GEN x, long prec).

3.3.42 log(z). Principal branch of the natural logarithm of z € C*, i.e. such that Im(log(x)) €
| — m,mw]. The branch cut lies along the negative real axis, continuous with quadrant 2, i.e. such
that lim;_,q+ log(a + bi) = loga for a € R*. The result is complex (with imaginary part equal to
7m)if x € R and x < 0. In general, the algorithm uses the formula

™

~ ——— —mlog?2
2agm(1,4/s) e,

log()

if s = x2™ is large enough. (The result is exact to B bits provided s > 258/2)) At low accuracies,
the series expansion near 1 is used.

p-adic arguments are also accepted for x, with the convention that log(p) = 0. Hence in
particular exp(log(z))/z is not in general equal to 1 but to a (p — 1)-th root of unity (or %1 if
p = 2) times a power of p.

The library syntax is GEN glog(GEN x, long prec). For a t_PADIC z, the function GEN
Qp_log(GEN x) is also available.
3.3.43 polylog(m,z,{flag = 0}). One of the different polylogarithms, depending on flag:

If flag = 0 or is omitted: m'™ polylogarithm of z, i.e. analytic continuation of the power series
Liy,(xz) = ,~; 2™/n™ (x < 1). Uses the functional equation linking the values at = and 1/z to

restrict to the case |x| < 1, then the power series when |x|? < 1/2, and the power series expansion
in log(x) otherwise.

Using flag, computes a modified m*™ polylogarithm of z. We use Zagier’s notations; let R®,,
denote R or & depending on whether m is odd or even:

If flag = 1: compute D,,(x), defined for |z| < 1 by

m—1, k o m—1
R (Z (Clogla)p; ey + o8l loggD log|1—x|>.

k!
k=0

95

If flag = 2: compute D,,(x), defined for |z| < 1 by

If flag = 3: compute P,,(z), defined for |z| <1 by

2m—1

B, m
Tﬂog\x\)) .

m—1 2kBk
Rom <Z k! (log ’m‘)kLim—k(x) -

k=0

These three functions satisfy the functional equation f,,(1/x) = (=1)™"! f,.(x).

The library syntax is GEN polylogO(long m, GEN x, long flag, long prec). Also avail-
able is GEN gpolylog(long m, GEN x, long prec) (flag= 0).
3.3.44 psi(z). The ¢-function of z, i.e. the logarithmic derivative I''(x)/T'(x).

The library syntax is GEN gpsi(GEN x, long prec).

3.3.45 sin(z). Sine of x.

The library syntax is GEN gsin(GEN x, long prec).

3.3.46 sinh(x). Hyperbolic sine of z.

The library syntax is GEN gsinh(GEN x, long prec).

3.3.47 sqr(x). Square of x. This operation is not completely straightforward, i.e. identical to z*x,
since it can usually be computed more efficiently (roughly one-half of the elementary multiplications
can be saved). Also, squaring a 2-adic number increases its precision. For example,

?7 (1 +0(274))"2

%1 =1 + 0(2°5)

?7 (1 +0(274)) » (1 + 0(2°4))
%2 =1+ 0(27°4)

Note that this function is also called whenever one multiplies two objects which are known to be
identical, e.g. they are the value of the same variable, or we are computing a power.

?x=(1+0(2"4)); x * x
%3 =1 + 0(2°5)

7 (1 +0(274))"4

%4 =1 + 0(2°6)

(note the difference between %2 and %3 above).

The library syntax is GEN gsqr (GEN x).

96

3.3.48 sqrt(x). Principal branch of the square root of z, defined as \/x = exp(logz/2). In
particular, we have Arg(sqrt(z)) € | —7/2,7/2], and if z € R and = < 0, then the result is complex
with positive imaginary part.

Intmod a prime p, t_PADIC and t_FFELT are allowed as arguments. In the first 2 cases
(t_INTMOD, t_PADIC), the square root (if it exists) which is returned is the one whose first p-adic
digit is in the interval [0, p/2]. For other arguments, the result is undefined.

The library syntax is GEN gsqrt(GEN x, long prec). For a t_PADIC z, the function GEN
Qp_sqrt (GEN x) is also available.

3.3.49 sqrtn(x,n,{&z}). Principal branch of the nth root of z, i.e. such that Arg(sqrt(x)) €
| = 7/n,7/n]. Intmod a prime and p-adics are allowed as arguments.

If z is present, it is set to a suitable root of unity allowing to recover all the other roots. If it
was not possible, z is set to zero. In the case this argument is present and no square root exist, 0
is returned instead or raising an error.

? sqrtn(Mod(2,7), 2)
%1 = Mod(4, 7)
7 sqrtn(Mod(2,7), 2, &z); z
%2 = Mod(6, 7)
? sqrtn(Mod(2,7), 3)
*x** at top-level: sqrtn(Mod(2,7),3)
KoKk e e
**k* sqrtn: nth-root does not exist in gsqrtn.
? sqrtn(Mod(2,7), 3, &z)
%2 =0

7z
%3 =0

The following script computes all roots in all possible cases:

sqrtnall(x,n)=
{ my(V,r,z,r2);
r = sqrtn(x,n, &z);
if (!z, error("Impossible case in sqrtn"));
if (type(x) == "t_INTMOD" || type(x)=="t_PADIC",
r2 = r*xz; n = 1;
while (r2!=r, r2%=z;n++));
V = vector(n); V[1] = r;
for(i=2, n, V[i] = V[i-1]*z);
v
}
addhelp(sqrtnall,"sqrtnall(x,n) :compute the vector of nth-roots of x");

The library syntax is GEN gsqrtn(GEN x, GEN n, GEN *z = NULL, long prec). If z is a
t_PADIC, the function GEN Qp_sqrt(GEN x, GEN n, GEN *z) is also available.

3.3.50 tan(x). Tangent of x.
The library syntax is GEN gtan(GEN x, long prec).

97

3.3.51 tanh(z). Hyperbolic tangent of x.
The library syntax is GEN gtanh(GEN x, long prec).

3.3.52 teichmuller(z). Teichmiiller character of the p-adic number z, i.e. the unique (p — 1)-th
root of unity congruent to z/ p»(®) modulo p.

The library syntax is GEN teich(GEN x).

3.3.53 theta(q, z). Jacobi sine theta-function

01(2,4) = 2444 (= 1)+ sin((2n + 1)2).
n>0

The library syntax is GEN theta(GEN q, GEN z, long prec).

3.3.54 thetanullk(q, k). k-th derivative at z = 0 of theta(q, 2).
The library syntax is GEN thetanullk(GEN q, long k, long prec).

GEN vecthetanullk(GEN q, long k, long prec) returns the vector of all 2;63((],0) for all odd

1 = 1,3,...,2k — 1. GEN vecthetanullk_tau(GEN tau, long k, long prec) returns vec-
thetanullk tau at ¢ = exp(2intau).

3.3.55 weber(z, {flag = 0}). One of Weber’s three f functions. If flag = 0, returns

f(a) = exp(—im/24) - n((z +1)/2) /n(x) such that j = (f** —16)°/f*,

where j is the elliptic j-invariant (see the function e1lj). If flag = 1, returns
fi(@) =n(x/2) /n(x) suchthat j=(fi"+16)%/f".
Finally, if flag = 2, returns
fa(x) = V21(2z) /n(x) such that j = (f3* +16)*/f3".

Note the identities f& = f§ 4+ f5 and ffifo = V2.

The library syntax is GEN weberO(GEN x, long flag, long prec). Also available are GEN
weberf (GEN x, long prec), GEN weberfl(GEN x, long prec) and GEN weberf2(GEN x, long
prec).

3.3.56 zeta(s). For s a complex number, Riemann’s zeta function ((s) =), -, n~*, computed
using the Euler-Maclaurin summation formula, except when s is of type integer, in which case it is
computed using Bernoulli numbers for s < 0 or s > 0 and even, and using modular forms for s > 0

and odd.

For s a p-adic number, Kubota-Leopoldt zeta function at s, that is the unique continuous p-
adic function on the p-adic integers that interpolates the values of (1—p~*)((k) at negative integers
k such that k=1 (mod p — 1) (resp. k is odd) if p is odd (resp. p = 2).

The library syntax is GEN gzeta(GEN s, long prec).

98

3.4 Arithmetic functions.

These functions are by definition functions whose natural domain of definition is either Z (or
Z-(). The way these functions are used is completely different from transcendental functions in
that there are no automatic type conversions: in general only integers are accepted as arguments.
An integer argument N can be given in the following alternate formats:

e t_MAT: its factorization fa = factor(N),
e t_VEC: a pair [N, fa] giving both the integer and its factorization.

This allows to compute different arithmetic functions at a given N while factoring the latter
only once.

? N = 10!; faN = factor(N);
? eulerphi(N)

%2 = 829440

? eulerphi(faN)

%3 = 829440

? eulerphi(S = [N, faN])

%4 = 829440

7 sigma(S)

%5 = 15334088

3.4.1 Arithmetic functions and the factoring engine. All arithmetic functions in the narrow
sense of the word — Euler’s totient function, the Moebius function, the sums over divisors or
powers of divisors etc.— call, after trial division by small primes, the same versatile factoring
machinery described under factorint. It includes Shanks SQUFOF, Pollard Rho, ECM and
MPQS stages, and has an early exit option for the functions moebius and (the integer function
underlying) issquarefree. This machinery relies on a fairly strong probabilistic primality test, see
ispseudoprime, but you may also set

default(factor_proven, 1)
to ensure that all tentative factorizations are fully proven. This should not slow down PARI too
much, unless prime numbers with hundreds of decimal digits occur frequently in your application.
3.4.2 Orders in finite groups and Discrete Logarithm functions.

The following functions compute the order of an element in a finite group: ellorder (the
rational points on an elliptic curve defined over a finite field), fforder (the multiplicative group of
a finite field), znorder (the invertible elements in Z/nZ). The following functions compute discrete
logarithms in the same groups (whenever this is meaningful) elllog, fflog, znlog.

All such functions allow an optional argument specifying an integer N, representing the order
of the group. (The order functions also allows any non-zero multiple of the order, with a minor
loss of efficiency.) That optional argument follows the same format as given above:

e t_INT: the integer IV,
e t_MAT: the factorization fa = factor(V),

e t_VEC: this is the preferred format and provides both the integer N and its factorization in
a two-component vector [N, fa].

99

When the group is fixed and many orders or discrete logarithms will be computed, it is much
more efficient to initialize this data once and for all and pass it to the relevant functions, as in

? p = nextprime(10740);

7?7 v = [p-1, factor(p-1)]; \\ data for discrete log & order computations
? znorder (Mod(2,p), V)

%3 = 500000000000000000000000000028

? g = znprimroot(p);

? znlog(2, g, v)

%5 = 543038070904014908801878611374

3.4.3 addprimes({x = []}). Adds the integers contained in the vector z (or the single integer) to
a special table of “user-defined primes”, and returns that table. Whenever factor is subsequently
called, it will trial divide by the elements in this table. If x is empty or omitted, just returns the
current list of extra primes.

The entries in must be primes: there is no internal check, even if the factor_proven default
is set. To remove primes from the list use removeprimes.

The library syntax is GEN addprimes(GEN x = NULL).

3.4.4 bestappr(z,{B}). Using variants of the extended Euclidean algorithm, returns a rational
approximation a/b to x, whose denominator is limited by B, if present. If B is omitted, return the
best approximation affordable given the input accuracy; if you are looking for true rational numbers,
presumably approximated to sufficient accuracy, you should first try that option. Otherwise, B
must be a positive real scalar (impose 0 < b < B).

e If x is a t_REAL or a t_FRAC, this function uses continued fractions.

7 bestappr(Pi, 100)

%1 = 22/7
? bestappr(0.1428571428571428571428571429)
%2 = 1/7

? bestappr([Pi, sqrt(2) + ’x], 1073)
%3 = [355/113, x + 1393/985]

By definition, a/b is the best rational approximation to z if |bx — a| < |vx — u| for all integers
(u,v) with 0 < v < B. (Which implies that n/d is a convergent of the continued fraction of x.)

o If z is a t_INTMOD modulo N or a t_PADIC of precision N = p*, this function performs
rational modular reconstruction modulo N. The routine then returns the unique rational number
a/b in coprime integers |a| < N/2B and b < B which is congruent to x modulo N. Omitting B
amounts to choosing it of the order of \/N/2. If rational reconstruction is not possible (no suitable
a/b exists), returns [].

7 bestappr (Mod (18526731858, 11710))

% o= 1/7

7 bestappr(Mod (18526731858, 11720))

%2 = [1

7 bestappr(3 + 5 + 3%572 + 573 + 3%574 + 575 + 3*%576 + 0(577))
%2 = -1/3

In most concrete uses, B is a prime power and we performed Hensel lifting to obtain x.

100

The function applies recursively to components of complex objects (polynomials, vectors, ...).
If rational reconstruction fails for even a single entry, return [J.

The library syntax is GEN bestappr (GEN x, GEN B = NULL).

3.4.5 bestapprPade(z,{B}). Using variants of the extended Euclidean algorithm, returns a
rational function approximation a/b to x, whose denominator is limited by B, if present. If B is
omitted, return the best approximation affordable given the input accuracy; if you are looking for
true rational functions, presumably approximated to sufficient accuracy, you should first try that
option. Otherwise, B must be a non-negative real (impose 0 < degree(b) < B).

e If z is a t_RFRAC or t_SER, this function uses continued fractions.

7 bestapprPade((1-x711)/(1-x)+0(x~11))

ho=1/(x + 1)

7 bestapprPade([1/(1+x+0(x~10)), (x73-2)/(x"3+1)], 1)
2= [1/(x+ 1), -2]

o If z is a t_POLMOD modulo N or a t_SER of precision N = t*, this function performs rational
modular reconstruction modulo N. The routine then returns the unique rational function a/b in
coprime polynomials, with degree(b) < B which is congruent to 2 modulo N. Omitting B amounts
to choosing it of the order of N/2. If rational reconstruction is not possible (no suitable a/b exists),
returns [].

? bestapprPade (Mod (1+x+x"2+x"3+x"4, x"4-2))
%1 = (2*%x - 1)/(x - 1)
? % * Mod(1,x74-2)
%2 = Mod(x"3 + x"2 + x + 3, x°4 - 2)
? bestapprPade (Mod(1+x+x"2+x"3+x"5, x79))
%2 = []
? bestapprPade (Mod (1+x+x"2+x"3+x"5, x~10))
%3 = (2%x"4 + x°3 - x - 1)/(-x"5 + x°3 + x°2 - 1)
The function applies recursively to components of complex objects (polynomials, vectors, ...). If

rational reconstruction fails for even a single entry, return J.

The library syntax is GEN bestapprPade(GEN x, long B).

3.4.6 bezout(z,y). Deprecated alias for gcdext
The library syntax is GEN gcdextO(GEN x, GEN y).

3.4.7 bigomega(x). Number of prime divisors of the integer |z| counted with multiplicity:

7 factor(392)

hl o=

[2 3]

[7 2]

7 bigomega(392)

h2 = 5; A\ = 3+2

7 omega(392)

%3 = 2; \\ without multiplicity

The library syntax is long bigomega(GEN x).

101

3.4.8 binomial(z,y). binomial coefficient <2$/> Here y must be an integer, but x can be any
PARI object.

The library syntax is GEN binomial (GEN x, long y). The function GEN binomialuu(ulong
n, ulong k) is also available, and so is GEN vecbinome(long n), which returns a vector v with
n + 1 components such that v[k + 1] = binomial(n, k) for k& from 0 up to n.

3.4.9 chinese(z, {y}). If x and y are both intmods or both polmods, creates (with the same type)
a z in the same residue class as x and in the same residue class as y, if it is possible.

? chinese(Mod(1,2), Mod(2,3))

%1 = Mod(5, 6)

? chinese(Mod(x,x"2-1), Mod(x+1,x"2+1))
%2 = Mod(-1/2*x"2 + x + 1/2, x°4 - 1)

This function also allows vector and matrix arguments, in which case the operation is recursively
applied to each component of the vector or matrix.

? chinese([Mod(1,2),Mod(1,3)], [Mod(1,5),Mod(2,7)])
%3 = [Mod(1, 10), Mod(16, 21)]

For polynomial arguments in the same variable, the function is applied to each coefficient; if the
polynomials have different degrees, the high degree terms are copied verbatim in the result, as if
the missing high degree terms in the polynomial of lowest degree had been Mod(0,1). Since the
latter behavior is usually not the desired one, we propose to convert the polynomials to vectors of
the same length first:

7?7 P =x+1; Q = x"2+2%x+1;

? chinese(P*Mod(1,2), Q*Mod(1,3))

%4 = Mod(1, 3)*x"2 + Mod(5, 6)*x + Mod(3, 6)

? chinese(Vec(P,3)*Mod(1,2), Vec(Q,3)*Mod(1,3))
%5 = [Mod(1, 6), Mod(5, 6), Mod(4, 6)]

? Pol(%)

%6 = Mod(1, 6)*x"2 + Mod(5, 6)*x + Mod(4, 6)

If y is omitted, and x is a vector, chinese is applied recursively to the components of x,
yielding a residue belonging to the same class as all components of x.

Finally chinese(z,z) = = regardless of the type of z; this allows vector arguments to contain
other data, so long as they are identical in both vectors.

The library syntax is GEN chinese(GEN x, GEN y = NULL). GEN chinesel(GEN x) is also
available.

102

3.4.10 content(x). Computes the ged of all the coefficients of x, when this gcd makes sense. This
is the natural definition if z is a polynomial (and by extension a power series) or a vector/matrix.
This is in general a weaker notion than the ideal generated by the coefficients:

7 content (2*x+y)
%=1 \\ = gcd(2,y) over QLyl

If z is a scalar, this simply returns the absolute value of x if x is rational (t_INT or t_FRAC),
and either 1 (inexact input) or x (exact input) otherwise; the result should be identical to ged(x,
0).

The content of a rational function is the ratio of the contents of the numerator and the de-
nominator. In recursive structures, if a matrix or vector coefficient x appears, the ged is taken not
with z, but with its content:

? content ([[2], 4*matid(3) 1)
%1 = 2

The library syntax is GEN content (GEN x).

3.4.11 contfrac(z, {b}, {nmaz}). Returns the row vector whose components are the partial quo-
tients of the continued fraction expansion of z. In other words, a result [ag,...,a,] means that
r~ap+1/(a;+...+1/a,). The output is normalized so that a,, # 1 (unless we also have n = 0).

The number of partial quotients n + 1 is limited by nmax. If nmax is omitted, the expansion
stops at the last significant partial quotient.

? \p19

realprecision = 19 significant digits
? contfrac(Pi)
%1 =1[3, 7, 15, 1, 292, 1, 1,
? contfrac(Pi,, 3) \\ n =2
%2 = [3, 7, 15]

1, 2,1, 3,1, 14, 2, 1, 1, 2, 2]

x can also be a rational function or a power series.

If a vector b is supplied, the numerators are equal to the coefficients of b, instead of all equal to
1 as above; more precisely, z ~ (1/bg)(ao+b1/(a1+...+bn/ay)); for a numerical continued fraction
(z real), the a; are integers, as large as possible; if = is a rational function, they are polynomials
with dega; = degb; + 1. The length of the result is then equal to the length of b, unless the next
partial quotient cannot be reliably computed, in which case the expansion stops. This happens
when a partial remainder is equal to zero (or too small compared to the available significant digits
for x a t_REAL).

A direct implementation of the numerical continued fraction contfrac(x,b) described above
would be

\\ "greedy" generalized continued fraction
cf(x, b) =
{ my(a= vector(#b), t);
x *= b[1];
for (i = 1, #b,
ali] = floor(x);
t =x - alil; if ('t || i == #b, break);

103

x = b[i+1] / t;
) a;

}

There is some degree of freedom when choosing the a;; the program above can easily be modified to
derive variants of the standard algorithm. In the same vein, although no builtin function implements
the related Engel expansion (a special kind of Egyptian fraction decomposition: =z = 1/a; +
1/(a1az2) + ...), it can be obtained as follows:

\\ n terms of the Engel expansion of x
engel(x, n = 10) =
{my(u=2x, a=vector(n));
for (k =1, n,
alk] = ceil(1/u);
u = uxalk] - 1;
if (l'u, break);
); a

}

Obsolete hack. (don’t use this): If b is an integer, nmaz is ignored and the command is understood
as contfrac(x,,b).

The library syntax is GEN contfracO(GEN x, GEN b = NULL, long nmax). Also available
are GEN gboundcf (GEN x, long nmax), GEN gcf(GEN x) and GEN gcf2(GEN b, GEN x).

3.4.12 contfracpngn(z,{n = —1}). When z is a vector or a one-row matrix, z is considered as
the list of partial quotients [ag, aq, ..., a,] of a rational number, and the result is the 2 by 2 matrix
[Prs Pn—1; qns Gn—1] in the standard notation of continued fractions, so p, /¢, = ao+ 1/(a1 + ...+
1/ay,). If x is a matrix with two rows [bg, b1, ...,b,] and [ag,a1,...,ay], this is then considered as
a generalized continued fraction and we have similarly p,, /¢, = (1/bg)(ao +b1/(a1 + ...+ bn/an)).
Note that in this case one usually has by = 1.

If n > 0 is present, returns all convergents from pg/qo up to p,/g,. (All convergents if z is too
small to compute the n + 1 requested convergents.)

? a=contfrac(Pi,20)

%1 =1[3, 7, 15, 1, 202, 1, 1, 1, 2,1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2]
7 contfracpngn(a,3)

W2 =

[3 22 333 355]

[1 7 106 113]

? contfracpngn(a,7)
h3 =
[3 22 333 355 103993 104348 208341 312689]

[1 7 106 113 33102 33215 66317 99532]

The library syntax is GEN contfracpngn(GEN x, long n). also available is GEN pngn(GEN
x) for n = —1.

104

3.4.13 core(n, {flag = 0}). If n is an integer written as n = df? with d squarefree, returns d. If
flag is non-zero, returns the two-element row vector [d, f]. By convention, we write 0 = 0 x 12, so
core(0, 1) returns [0,1].

The library syntax is GEN core0(GEN n, long flag). Also available are GEN core(GEN n)
(flag = 0) and GEN core2(GEN n) (flag =1)

3.4.14 coredisc(n, {flag = 0}). A fundamental discriminant is an integer of the form ¢t = 1 mod 4
or 4t = 8,12mod 16, with ¢ squarefree (i.e. 1 or the discriminant of a quadratic number field).
Given a non-zero integer n, this routine returns the (unique) fundamental discriminant d such that
n = df?, f a positive rational number. If flag is non-zero, returns the two-element row vector [d, f].
If n is congruent to 0 or 1 modulo 4, f is an integer, and a half-integer otherwise.

By convention, coredisc(0, 1)) returns [0, 1].

Note that quaddisc(n) returns the same value as coredisc(n), and also works with rational
inputs n € Q*.

The library syntax is GEN corediscO(GEN n, long flag). Also available are GEN core-
disc(GEN n) (flag = 0) and GEN coredisc2(GEN n) (flag = 1)

3.4.15 dirdiv(z,y). = and y being vectors of perhaps different lengths but with y[1] # 0 considered
as Dirichlet series, computes the quotient of x by y, again as a vector.

The library syntax is GEN dirdiv(GEN x, GEN y).

3.4.16 direuler(p = a, b, expr, {c}). Computes the Dirichlet series associated to the Euler product
of expression expr as p ranges through the primes from a to b. erpr must be a polynomial or
rational function in another variable than p (say X) and ezpr(X) is understood as the local factor

expr(p”*).

The series is output as a vector of coefficients. If ¢ is present, output only the first ¢ coefficients
in the series. The following command computes the sigma function, associated to ((s){(s — 1):

? direuler(p=2, 10, 1/((1-X)*(1-p*X)))
% =11, 3, 4, 7, 6, 12, 8, 15, 13, 18]

The library syntax is direuler(void *E, GEN (*eval) (void*,GEN), GEN a, GEN D)
3.4.17 dirmul(z, y). = and y being vectors of perhaps different lengths representing the Dirichlet
series > x,n"° and) y,n"*%, computes the product of z by y, again as a vector.

? dirmul (vector(10,n,1), vector(10,n,moebius(n)))
%1 = [1, 0, O, O, O, O, O, O, O, O]

The product length is the minimum of #z*v(y) and #y*v(z), where v(x) is the index of the first
non-zero coefficient.

? dirmul([0,1], [0,11);
%2 = [0, 0, 0, 1]

The library syntax is GEN dirmul (GEN x, GEN y).

105

3.4.18 divisors(z). Creates a row vector whose components are the divisors of x. The factorization
of = (as output by factor) can be used instead.

By definition, these divisors are the products of the irreducible factors of n, as produced by
factor(n), raised to appropriate powers (no negative exponent may occur in the factorization). If
n is an in