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1 Introduction

Let us first recall Lehmer’s conjecture [Le| on lower bounds for the height of an algebraic
number which was stated in 1933. Let K be an algebraic number field of degree D over Q.
For any valuation v we denote D, = [K, : Q,], where K,, Q, are the completions of K,Q
with respect to v. For archimedean v we normalise the valuation by |z,| = |z|P*/P
is the ordinary complex absolute value. When v is non-archimedean we take |p|, = p~
where p is the unique rational prime such that |p|, < 1. The height of an algebraic number
a € K is defined by

H(a) = Hmax(l, |]y)

Because of our normalisation H («) does not depend on the choice of the field K in which «
is contained. We can now state Lehmer’s conjecture.

Conjecture 1.1 There exists a number ¢ > 1 such that for any algebraic number o, not a
root of unity and of degree D we have
H(a)P >ec.

Presumably ¢ = 1.1762808 . . ., which is the larger real root of 0 + 29 — 27 — 26 — 25 — 2% —
3+ +1.

The best unconditional result so far follows from work of Dobrowolski, Cantor and Louboutin
[Lo], stating that there exists v > 0 such that
loglog D\ 3
H(a)P >1 ——) .
(@) 2147 < log D )

It came as a great surprise when S.Zhang [Zh] showed in 1992 that there does exist a
number ¢; > 1 such that
H)H(1 —«a) >

for all @ € Q such that a # 0,1, % + %\/—3. This was proved by using Arakelov intersection

theory on PL. It was almost immediately realised by one of us (see [Za]) that an elementary
proof could be given which at the same time yields the best possible c¢1, namely /7 where



n = (1++/5)/2, the golden ratio. The minimum is attained when « is minus a fifth root of
unity. In [Za] there is also a generalisation of the following sort. For any K-rational point
P=(Py:P:...:P,) in n-dimensional projective space P™ we define the height by

H(P) = [[max(|Polv, - -, |Pulv)-

In particular the height of an algebraic number « is nothing but the projective height of
(1:a) € PY(K). Then it is shown in [Za] that for any (x¢ : 71 : 22) € P2(Q) such that
o+ x1 + 22 =0, w120 # 0 and (zg : 21 : T2) # (1: wr 1 wF), (W3 = 1), we have

H(ZL‘(), Ty, 132) Z C2

where ¢ is the larger real root of 2% — z* — 1. The minimum is attained when the x; are the
roots of 2% + 2 — 1.

Inspired by [Za], H.P.Schlickewei and E.Wirsing [SW] showed the following result. Consider
the line L : Az + py + vz = 0 in P? with Auv # 0. Suppose that A + p + v = 0. Then, for
any two points P, P, € L(Q) with non-zero coordinates and such that (1:1: 1), P, P, are
distinct, we have

H(P\)H(Py) > exp(1/2400) = 1.00041 . ..

This result was applied by Schlickewei [Schl] to estimating numbers of solutions of three term
S-unit equations in a strikingly successful way. Although very useful, the derivation of the
Schlickewei-Wirsing result did not look optimal. It is the goal of this paper to remedy this
situation and also give a generalisation which encompasses the previous results. We finish the
introduction by giving a description of our general setup and main result.

Consider a hypersurface S of multidegree dy, ..., d, on P x---xP™ given by a polynomial
F with coefficients in Z. Denote the coordinates of P by x; = (x;0, Zi1, . - . , Tin,; ). The degree
of F'in the variable x;; is denoted by d;;. We define Jz = —d; + Zj d;j.

Choose a subset I of {i| n; = 1} and let E be the set {(¢,0)|i € I}, to which we refer as
exceptional index pairs. For any polynomial with coefficients in Z we denote by || P|| the sum
of the absolute values of the coefficients. We define

oF
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?
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The advantage of having the exceptional set F is that the value of ¢y may be smaller than
the one we would get by taking the maximum over all pairs (4, 7). In the first example in [Za)]
this enables us to get the optimal lower bound for the product H(a)H (1 —«). By ¢ we denote

the maximum of the numbers maxiej(di +d;,1)/2 and max;g; #

Theorem 1.2 For each point (x1,...,%,) € P"(Q) x -+ x P"(Q) such that F(z;;) = 0,
xi; 7 0 for all i,j and F(m;l) # 0 we have

Hx)" - Hx, )"+ > p,

where p is the unique real root larger than 1 of =2 + c}lsc_‘s =1.



During the preparation of this paper W.M.Schmidt informed us that in [Schm| he had
already proved a theorem very similar to ours in the case where one works in (P!)". The
logarithm of the lower bound given in [Schm] is 1/(2*/72"H), where f is the total degree of F
and H the maximum of all coefficients. Although the basic starting point in this paper and
[Schm] is the same, we nevertheless found that the principle of our approach and the better
values of the constants have some interest.

2 Applications

Before proving the theorem we describe a few consequences. First of all consider r algebraic
numbers aq,...,q, whose sum is a rational integer N. We like to interpret the r-tuple as a
point (1 : ay) x --- x (1 : a,) € (P!)". For the set I of our theorem we choose {1,...,r}.
Letting F' be the homogeneous version of 1 + -+ - + z, — N one easily checks that ¢; = 1 for
all . Note that the coefficient NV in I’ does not appear in the ¢; because of our choice of I.
So we get cp = 1. Moreover, n; = 1 and d; = 1 for all 7. Hence § = 1. Thus we find,

Corollary 2.1 Letaj...,«qp € Q", N € Z be such that a1+ - -+a, = N and ozl_l—i-' ot £
N. Then,

H(ay)---H(ar) = /1

where 1 is the golden ratio.

Note that when r > 4 the lower bound is actually attained for the r-tuple —(5,1 +
(501, G2,y vy 1’:23 where (, denotes a primitive k-th root of unity. When we take for the
«; the conjugates of an algebraic number « of degree D we get the following consequence.

Corollary 2.2 Let a € Q" be such that trace(q) is integral and trace(a) # trace(a™'). Then
H(a)? > /m.

However, this result is already contained in a result of C.Smyth [Sm] which states that
H(a)P > 6 for every non-reciprocal o € Q. Here 6 is the real root of 2% — z — 1.

We now consider r algebraic numbers «; whose sum is 1 and give a lower bound for
H(1,aq,...,0,). The polynomial F' can be written z1 + --- + z, — o and we have cp =
1, di = 1. Furthermore, 6 =r/(r + 1).

Corollary 2.3 For any ay,...,a, € Q such that oq + -+ oy = 1 cmdozl_l—i-'”—i-a;l #1
we have

H(l,ay,...,ap) > p.
where p is the real root larger than 1 of 1 = 72" =2 4 27"

As pointed out in the introduction, this result is optimal when r = 2. For r > 2 this is not
true any more. When r = 3 for example we find the lower bound 1.14613... (which improves
the bound exp(1/402) = 1.00249. .. from [SW]). However the lowest height we could find was
H = 1.15096 . .. when the o; are the zeros of 3 — 22 4+ 1. On the other hand the asymptotic
behaviour of p as a function of r looks optimal. It is not hard to show that p"! — 5 asr — oo



while on the other hand the zeros ag, ..., a, of 2" — 2 — 1 satisfy H(ao,...,0,) ! — 2 as
r — 00.

We now consider the Schlickewei-Wirsing result. Suppose we have a line L : Az + py +
vz = 0 in P? with Auv # 0. Let P, Py, P; € L(Q) be three distinct points with non-zero
coordinates. Letting P; = (x; : y; : 2z;) (i = 1,2,3) we get the relation

1 Y1 A
A= ro2 Y2 22| = 0.
r3 Ys =3

We want a lower bound of H(P;)H(Py)H(Ps). Our polynomial F' is now the determinant
form A. First we point out that

—1 —1 —1
A 1 1 e 1 “1 1
T3 Yz 23

Suppose A = 0. Then there exist «, 3,7, not all zero, such that aa:i_l + ﬂyi_l + ’yzi_l =0 for
i =1,2,3. Hence ay;z + Bziz; +vriy; = 0 (i = 1,2,3). The conic C : ayz+ fzx+~yry = 0is
reducible if and only if a8y = 0. So, if v = 0 for example, we get ax; + fy; = 0 for i = 1,2, 3.
But this contradicts v # 0. So C' is an irreducible conic. But then P;, P», P53 lie both on C'
and L which is impossible since |C' N L| < 2. We must conclude that A # 0. We can now
apply our Theorem with r =3, ny =no=n3 =2, di=do =d3 =1, cpr =2 and I = 0.

Corollary 2.4 Consider the line L : Az + py +vz =0 in P? with A\uv # 0. Let Py, Py, Py €

L(Q) be three distinct points with non-zero coordinates. Then,
H(P1)H(P,)H(Ps) = p,
where p is the real root larger than 1 of 1 = p=6 + (1/2)p~2.

The numerical value of p is 1.09427 . . . which compares favourably with the value 1.00041 . ..
from [SW] or 1.019... from [Sch]. Moreover this result was applied successfully to equations
of the form x + y = 1 with z,y unknows in a finitely generated multiplicative group and to
multiplicity estimates for binary recurrences in [BS].

3 Proof of Theorem 1.2

The proof is based on the following observation, which is a direct generalisation of [Za]. Let
X be a closed subvariety of P™ x --- x P™ defined over Q. We denote the coordinates by
X = (X1,...,%X,) With x; = (zi0, ..., %in,). Denote by X(C); the intersection of X(C) with
the polydisc {x : |z;;| <1 Vi,j}. We also give ourselves a collection of multihomogeneous
polynomials Gi(x) € Z[x| of multidegrees (dg1, ..., dkr)

Lemma 3.1 Let vy > 0 for all k and set

w; = Z Vidpi, A= — max {Z v log ]Gk(x)\} . (1)
k k

x€X(C)1



Then for any point x = (X1, ...,%,) € X(Q) with [[, Gr(x) # 0 we have
H H(xz)wl Z 6)\. (2)
i=1

Proof. Suppose that x € X(K) with Gi(x) # 0 for all k. Here K is an algebraic number
field of degree D, say. For any valuation v of K we let D, = [K, : Q,]. Then the inequality

r D, :

izzlwi log(mjax |Zi5]v) > ;Vk log |Gk(x) |, + {OD A i Z’jooo

holds for all places v of K, because by the homogeneity condition (1) we may assume that

max; ||, = 1 for all i and the inequality follows from the definition of A if v is infinite and is

straightforward if v is finite. The lemma follows by summing over all v and using the product

formula. O
The following Lemma is saves us a considerable amount of effort in the determination of

A for the sake of the previous Lemma.

Lemma 3.2 Letting notations be as above, the function ¥ := Y vilog|Gk(x)| assumes a
mazimum in x € X1(C) and it is altained at a point all of whose coordinates have absolute
value 1 with at most one exception.

Proof. Since the vy are positive, ¥ is bounded from above in X;(C). For € > 0 sufficiently
small the set x € X;(C) such that U(x) > log(e) is compact and not empty. Hence it is clear
that ¥, being continuous, assumes a maximum.

Now suppose that ¥ assumes a maximum at a point P where at least two coordinates have
absolute value < 1. Call these coordinates £, and denote the values of these coordinates at
P by &y, mp. Substitute in F' = 0 the values of all coordinates of P except &,7. The equation
F = 0 reduces to the equation of a curve f(£,n) = 0 containing the point &, n9. By choosing
a branch of f = 0 at the point &y, 19 we find locally analytic functions £(t),n(t) such that
£(0) = &0,1m(0) = no and f(&(t),n(t)) = 0 identically in a neighbourhood of ¢ = 0. When f was
identically zero anyway, we can choose {(t),n(t) arbitrarily. Choose a disk D in the complex
t-plane around 0 such that [£(¢)],|n(t)] < 1 for all ¢ € D. Specialise the arguments in ¥ to
the values of the point P except for { and 7 where we substitute £(t) and n(t). In this way
we obtain a function 9 (t) in ¢ € D which assumes a maximum in ¢ = 0. Notice that ¥(¢) is
harmonic in the real and imaginary part of t. A harmonic function assuming a maximum in
the interior of its domain is necessarily constant. Hence 1 (t) is constant. But in that case we
can continue £(t) and n(t) analytically until either one of them hits the unit circle. In that
new point the value of ¥ is again 1 (0), i.e. maximal. We continue this procedure for other
coordinates, if necessary, until we have found an optimal point all of whose coordinates have
absolute value one with at most one exception. O

Lemma 3.3 Let a, 3,7 > 0. Let m be the unique minimum of the function

R + vlog

u log
U+ v U+ v



m

under the constraints u,v > 0, au+ Gv = 1. Then e~ is the unique real root larger than 1

of y T 427 =1.

Proof. Put x =v/(u+v) and 1 —z = u/(u+ v). Then

- 1—2z - T
U_ﬁm—l—a(l—x) v_ﬁx—i—a(l—x)

and x € [0,1]. We must minimize

(1 —2x)log(v(1—=z))+xlogx
Bz + a(l —x)

fz) =

on [0, 1]. Differentiate with respect to z,

;o —Blog(y(1 —x))+ alogx
PO = ——evatn—ay

This vanishes if (y(1 — z))? = 2. Since z is strictly increasing and 1 — z strictly decreasing
there is a unique solution xg €]0,1[. Choose p > 0 such that zg = p~%. Then, v(1 —z) = p~®
and thus we see that p satisfies 1 — p=% = y~1p~. It remains to verify that f(zo) = —log p,
which is straightforward. |

Proof of Theorem. We apply Lemma 3.1 to the hypersurface X given by the multiho-
mogeneous polynomial F(x) € Z[x] with multidegrees di,...,d,. For the G we take the
coordinates x;; and the function

F(x) = F(a;) [[ =5

where d;; is the degree of F' in x;;. Let u,v;; > 0. Let ®(x) be the function yulog |F(x)] +
> i vijlog|zij| on X(C). Let d; = —d; + > d;j be the degree of F' in x; and suppose

Then Lemma 3.1 states that (2) holds for all x € X (Q) with z;; # 0 and F(a:;jl) # 0.

Let us take w; = n; + 1 for all 7. Although there are many other choices for the weights w;,
this choice gives us the particularly simple shape of our main theorem. It remains to choose
1, V35 in such a way that A becomes positive and as large as possible. We choose

vij=1——pifi g1
7
and B .
d; — d; d: + d.
vio=1- 121’1% vi1=1- Zzz’luifz‘el.



Let us determine maxyc x(c), ®(x). By Lemma 3.2 this maximum is attained at a point all of
whose coordinates, with possibly one exception, lie on the unit circle. Suppose that |z;,;,| < 1
and that |z;;| =1 for all (4, j) # (40, jo). Suppose first that (ig, jo) € E. Then,

~ — d
|F(ai)] = |[Flaih- T (i)™
i?j
= |F(z;,5,,Tij)| - |migjo| P00
= |F(z;,,,T5) — F(Ti)] - |wigjo| o0
1 - _ o -
< Cioj0|f - xi0j0| maX(|xioj0| 1’ |$iojo|)dloj0 b |xioj0|d20]0
20J0

2
= Cigjo (1 = [Tigjo|”)
Put |7;,|? = €& We see that the maximum of ® is

éggxlulog(cmyo(l—-§>)+—(ijo/2)log£

This maximum is attained at & = v4j,/(Vigjo + 21) and its value is

20y, 4 Viodo Viojo

log .
PO i t 22 Vigjo + 24

Since we have v;y;, > 1 — 6, this maximum is bounded above by
21 1—46p 1—46p

1
POBCr T sy von T 2 S —op) +2m

(M)

We now determine the maximum when (ig, jo) € E. In particular, jo = 0. So suppose we
have |z;,0| < 1 and |z;;| = 1 for all other ¢,j. Writing down the dependence on z;, o, Zi, 1
explicitly and putting z = z;, 0/xi,,1, we find

- 21 d;
|F(‘TZ])| = |F( Lig, 07 %0, 171:1] )‘ ’ |$i070‘ 0,0
= |F(Lz a5
= |F(1a271'z]) F(l,l/f,@’

Cin,1|2z — 1/Zmax(|z], |2| ) %ot

IN

= Cigall = |2| - [o| "o
Put € = |2|> = |ziy0/>. We see that the maximum of ® is

[ [1log(cig1(1 = &)) — (dig11/2) log €] + (Vig,0/2) log [£]]

which equals

2¢;,i0 v
lo 0Jo 71
ros S o T2t o

where 7 = v 0 — d;;,11¢/2. Note that by our choice of v, 9, 7 =1 — (d}0 +dig1)p/2>1—0p.
Hence our maximum is again bounded by (M). Now use Lemma 3.3 with a = 6,0 = 2,7 = cp
to minimize (M) by letting p vary. The assertion of our theorem follows immediately. o
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