Lower bounds of heights of points on hypersurfaces

Frits Beukers and Don Zagier

January 8, 2007

1 Introduction

Let us first recall Lehmer's conjecture [Le] on lower bounds for the height of an algebraic number which was stated in 1933. Let K be an algebraic number field of degree D over \mathbf{Q} . For any valuation v we denote $D_v = [K_v : \mathbf{Q}_v]$, where K_v, \mathbf{Q}_v are the completions of K, \mathbf{Q} with respect to v. For archimedean v we normalise the valuation by $|x_v| = |x|^{D_v/D}$ where |.|is the ordinary complex absolute value. When v is non-archimedean we take $|p|_v = p^{-D_v/D}$ where p is the unique rational prime such that $|p|_v < 1$. The height of an algebraic number $\alpha \in K$ is defined by

$$H(\alpha) = \prod_{v} \max(1, |x|_{v})$$

Because of our normalisation $H(\alpha)$ does not depend on the choice of the field K in which α is contained. We can now state Lehmer's conjecture.

Conjecture 1.1 There exists a number c > 1 such that for any algebraic number α , not a root of unity and of degree D we have

$$H(\alpha)^D \ge c.$$

Presumably c = 1.1762808..., which is the larger real root of $x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1$.

The best unconditional result so far follows from work of Dobrowolski, Cantor and Louboutin [Lo], stating that there exists $\gamma > 0$ such that

$$H(\alpha)^D \ge 1 + \gamma \left(\frac{\log \log D}{\log D}\right)^3.$$

It came as a great surprise when S.Zhang [Zh] showed in 1992 that there does exist a number $c_1 > 1$ such that

$$H(\alpha)H(1-\alpha) \ge c_1$$

for all $\alpha \in \overline{\mathbf{Q}}$ such that $\alpha \neq 0, 1, \frac{1}{2} \pm \frac{1}{2}\sqrt{-3}$. This was proved by using Arakelov intersection theory on \mathbf{P}^1 . It was almost immediately realised by one of us (see [Za]) that an elementary proof could be given which at the same time yields the best possible c_1 , namely $\sqrt{\eta}$ where $\eta = (1 + \sqrt{5})/2$, the golden ratio. The minimum is attained when α is minus a fifth root of unity. In [Za] there is also a generalisation of the following sort. For any K-rational point $P = (P_0 : P_1 : \ldots : P_n)$ in *n*-dimensional projective space \mathbf{P}^n we define the height by

$$H(P) = \prod_{v} \max(|P_0|_v, \dots, |P_n|_v).$$

In particular the height of an algebraic number α is nothing but the projective height of $(1 : \alpha) \in \mathbf{P}^1(K)$. Then it is shown in [Za] that for any $(x_0 : x_1 : x_2) \in \mathbf{P}^2(\overline{\mathbf{Q}})$ such that $x_0 + x_1 + x_2 = 0$, $x_0 x_1 x_2 \neq 0$ and $(x_0 : x_1 : x_2) \neq (1 : \omega^{\pm 1} : \omega^{\mp 1})$, $(\omega^3 = 1)$, we have

$$H(x_0, x_1, x_2) \ge c_2$$

where c_2 is the larger real root of $x^6 - x^4 - 1$. The minimum is attained when the x_i are the roots of $x^3 + x - 1$.

Inspired by [Za], H.P.Schlickewei and E.Wirsing [SW] showed the following result. Consider the line $L : \lambda x + \mu y + \nu z = 0$ in \mathbf{P}^2 with $\lambda \mu \nu \neq 0$. Suppose that $\lambda + \mu + \nu = 0$. Then, for any two points $P_1, P_2 \in L(\overline{\mathbf{Q}})$ with non-zero coordinates and such that $(1:1:1), P_1, P_2$ are distinct, we have

$$H(P_1)H(P_2) > \exp(1/2400) = 1.00041\dots$$

This result was applied by Schlickewei [Schl] to estimating numbers of solutions of three term S-unit equations in a strikingly successful way. Although very useful, the derivation of the Schlickewei-Wirsing result did not look optimal. It is the goal of this paper to remedy this situation and also give a generalisation which encompasses the previous results. We finish the introduction by giving a description of our general setup and main result.

Consider a hypersurface S of multidegree d_1, \ldots, d_r on $\mathbf{P}^{n_1} \times \cdots \times \mathbf{P}^{n_r}$ given by a polynomial F with coefficients in **Z**. Denote the coordinates of \mathbf{P}^{n_i} by $\mathbf{x}_i = (x_{i0}, x_{i1}, \ldots, x_{in_i})$. The degree of F in the variable x_{ij} is denoted by d_{ij} . We define $\tilde{d}_i = -d_i + \sum_j d_{ij}$.

Choose a subset I of $\{i | n_i = 1\}$ and let E be the set $\{(i, 0) | i \in I\}$, to which we refer as *exceptional index pairs*. For any polynomial with coefficients in \mathbb{Z} we denote by ||P|| the sum of the absolute values of the coefficients. We define

$$c_{ij} = \left\| \frac{\partial F}{\partial x_{ij}} \right\|, \qquad c_F = \max_{(i,j) \notin E} c_{ij}$$

The advantage of having the exceptional set E is that the value of c_F may be smaller than the one we would get by taking the maximum over all pairs (i, j). In the first example in [Za] this enables us to get the optimal lower bound for the product $H(\alpha)H(1-\alpha)$. By δ we denote the maximum of the numbers $\max_{i \in I} (\tilde{d}_i + d_{i,1})/2$ and $\max_{i \notin I} \frac{\tilde{d}_i}{n_i+1}$.

Theorem 1.2 For each point $(\mathbf{x}_1, \ldots, \mathbf{x}_r) \in \mathbf{P}^{n_1}(\overline{\mathbf{Q}}) \times \cdots \times \mathbf{P}^{n_r}(\overline{\mathbf{Q}})$ such that $F(x_{ij}) = 0$, $x_{ij} \neq 0$ for all i, j and $F(x_{ij}^{-1}) \neq 0$ we have

$$H(\mathbf{x}_1)^{n_1+1}\cdots H(\mathbf{x}_r)^{n_r+1} \ge \rho,$$

where ρ is the unique real root larger than 1 of $x^{-2} + c_F^{-1}x^{-\delta} = 1$.

During the preparation of this paper W.M.Schmidt informed us that in [Schm] he had already proved a theorem very similar to ours in the case where one works in $(\mathbf{P}^1)^r$. The logarithm of the lower bound given in [Schm] is $1/(2^{4f+2r}H)$, where f is the total degree of Fand H the maximum of all coefficients. Although the basic starting point in this paper and [Schm] is the same, we nevertheless found that the principle of our approach and the better values of the constants have some interest.

2 Applications

Before proving the theorem we describe a few consequences. First of all consider r algebraic numbers $\alpha_1, \ldots, \alpha_r$ whose sum is a rational integer N. We like to interpret the r-tuple as a point $(1 : \alpha_1) \times \cdots \times (1 : \alpha_r) \in (\mathbf{P}^1)^r$. For the set I of our theorem we choose $\{1, \ldots, r\}$. Letting F be the homogeneous version of $x_1 + \cdots + x_r - N$ one easily checks that $c_i = 1$ for all i. Note that the coefficient N in F does not appear in the c_i because of our choice of I. So we get $c_F = 1$. Moreover, $n_i = 1$ and $d_i = 1$ for all i. Hence $\delta = 1$. Thus we find,

Corollary 2.1 Let $\alpha_1 \ldots, \alpha_r \in \overline{\mathbf{Q}}^*$, $N \in \mathbf{Z}$ be such that $\alpha_1 + \cdots + \alpha_r = N$ and $\alpha_1^{-1} + \cdots + \alpha_r^{-1} \neq N$. Then,

$$H(\alpha_1)\cdots H(\alpha_r) \ge \sqrt{\eta}$$

where η is the golden ratio.

Note that when $r \ge 4$ the lower bound is actually attained for the *r*-tuple $-\zeta_5, 1 + \zeta_5, 1, \zeta_{r-2}, \ldots, \zeta_{r-2}^{r-3}$ where ζ_k denotes a primitive *k*-th root of unity. When we take for the α_i the conjugates of an algebraic number α of degree *D* we get the following consequence.

Corollary 2.2 Let $\alpha \in \overline{\mathbf{Q}}^*$ be such that $\operatorname{trace}(\alpha)$ is integral and $\operatorname{trace}(\alpha) \neq \operatorname{trace}(\alpha^{-1})$. Then $H(\alpha)^D \geq \sqrt{\eta}$.

However, this result is already contained in a result of C.Smyth [Sm] which states that $H(\alpha)^D \ge \theta$ for every non-reciprocal $\alpha \in \overline{\mathbf{Q}}^*$. Here θ is the real root of $x^3 - x - 1$.

We now consider r algebraic numbers α_i whose sum is 1 and give a lower bound for $H(1, \alpha_1, \ldots, \alpha_r)$. The polynomial F can be written $x_1 + \cdots + x_r - x_0$ and we have $c_F = 1$, $d_1 = 1$. Furthermore, $\delta = r/(r+1)$.

Corollary 2.3 For any $\alpha_1, \ldots, \alpha_r \in \overline{\mathbf{Q}}^*$ such that $\alpha_1 + \cdots + \alpha_r = 1$ and $\alpha_1^{-1} + \cdots + \alpha_r^{-1} \neq 1$ we have

 $H(1, \alpha_1, \ldots, \alpha_r) \ge \rho.$

where ρ is the real root larger than 1 of $1 = x^{-2r-2} + x^{-r}$.

As pointed out in the introduction, this result is optimal when r = 2. For r > 2 this is not true any more. When r = 3 for example we find the lower bound 1.14613... (which improves the bound $\exp(1/402) = 1.00249...$ from [SW]). However the lowest height we could find was H = 1.15096... when the α_i are the zeros of $x^3 - x^2 + 1$. On the other hand the asymptotic behaviour of ρ as a function of r looks optimal. It is not hard to show that $\rho^{r+1} \to \eta$ as $r \to \infty$ while on the other hand the zeros $\alpha_0, \ldots, \alpha_r$ of $x^{r+1} - x - 1$ satisfy $H(\alpha_0, \ldots, \alpha_r)^{r+1} \to 2$ as $r \to \infty$.

We now consider the Schlickewei-Wirsing result. Suppose we have a line $L : \lambda x + \mu y + \nu z = 0$ in \mathbf{P}^2 with $\lambda \mu \nu \neq 0$. Let $P_1, P_2, P_3 \in L(\overline{\mathbf{Q}})$ be three distinct points with non-zero coordinates. Letting $P_i = (x_i : y_i : z_i)$ (i = 1, 2, 3) we get the relation

$$\Delta := egin{pmatrix} x_1 & y_1 & z_1 \ x_2 & y_2 & z_2 \ x_3 & y_3 & z_3 \end{bmatrix} = 0.$$

We want a lower bound of $H(P_1)H(P_2)H(P_3)$. Our polynomial F is now the determinant form Δ . First we point out that

$$\tilde{\Delta} := \begin{vmatrix} x_1^{-1} & y_1^{-1} & z_1^{-1} \\ x_2^{-1} & y_2^{-1} & z_2^{-1} \\ x_3^{-1} & y_3^{-1} & z_3^{-1} \end{vmatrix} \neq 0$$

Suppose $\tilde{\Delta} = 0$. Then there exist α, β, γ , not all zero, such that $\alpha x_i^{-1} + \beta y_i^{-1} + \gamma z_i^{-1} = 0$ for i = 1, 2, 3. Hence $\alpha y_i z_i + \beta z_i x_i + \gamma x_i y_i = 0$ (i = 1, 2, 3). The conic $C : \alpha yz + \beta zx + \gamma xy = 0$ is reducible if and only if $\alpha\beta\gamma = 0$. So, if $\gamma = 0$ for example, we get $\alpha x_i + \beta y_i = 0$ for i = 1, 2, 3. But this contradicts $\nu \neq 0$. So C is an irreducible conic. But then P_1, P_2, P_3 lie both on C and L which is impossible since $|C \cap L| \leq 2$. We must conclude that $\tilde{\Delta} \neq 0$. We can now apply our Theorem with r = 3, $n_1 = n_2 = n_3 = 2$, $d_1 = d_2 = d_3 = 1$, $c_F = 2$ and $I = \emptyset$.

Corollary 2.4 Consider the line L: $\lambda x + \mu y + \nu z = 0$ in \mathbf{P}^2 with $\lambda \mu \nu \neq 0$. Let $P_1, P_2, P_3 \in L(\overline{\mathbf{Q}})$ be three distinct points with non-zero coordinates. Then,

$$H(P_1)H(P_2)H(P_3) \ge \rho,$$

where ρ is the real root larger than 1 of $1 = \rho^{-6} + (1/2)\rho^{-2}$.

The numerical value of ρ is 1.09427... which compares favourably with the value 1.00041... from [SW] or 1.019... from [Sch]. Moreover this result was applied successfully to equations of the form x + y = 1 with x, y unknows in a finitely generated multiplicative group and to multiplicity estimates for binary recurrences in [BS].

3 Proof of Theorem 1.2

The proof is based on the following observation, which is a direct generalisation of [Za]. Let X be a closed subvariety of $\mathbf{P}^{n_1} \times \cdots \times \mathbf{P}^{n_r}$ defined over \mathbf{Q} . We denote the coordinates by $\mathbf{x} = (\mathbf{x}_1, \ldots, \mathbf{x}_r)$ with $\mathbf{x}_i = (x_{i0}, \ldots, x_{in_i})$. Denote by $X(\mathbf{C})_1$ the intersection of $X(\mathbf{C})$ with the polydisc $\{\mathbf{x} : |x_{ij}| \leq 1 \forall i, j\}$. We also give ourselves a collection of multihomogeneous polynomials $G_k(\mathbf{x}) \in \mathbf{Z}[\mathbf{x}]$ of multidegrees (d_{k1}, \ldots, d_{kr})

Lemma 3.1 Let $\nu_k \ge 0$ for all k and set

$$w_i = \sum_k \nu_k d_{ki}, \qquad \lambda = -\max_{\mathbf{x} \in X(\mathbf{C})_1} \left\{ \sum_k \nu_k \log |G_k(\mathbf{x})| \right\}.$$
(1)

Then for any point $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_r) \in X(\overline{\mathbf{Q}})$ with $\prod_k G_k(\mathbf{x}) \neq 0$ we have

$$\prod_{i=1}^{r} H(x_i)^{w_i} \ge e^{\lambda}.$$
(2)

Proof. Suppose that $\mathbf{x} \in X(K)$ with $G_k(\mathbf{x}) \neq 0$ for all k. Here K is an algebraic number field of degree D, say. For any valuation v of K we let $D_v = [K_v : \mathbf{Q}_v]$. Then the inequality

$$\sum_{i=1}^{r} w_i \log(\max_j |x_{ij}|_v) \ge \sum_k \nu_k \log |G_k(\mathbf{x})|_v + \begin{cases} \frac{D_v}{D} \lambda & \text{if } v | \infty \\ 0 & \text{if } v \not | \infty \end{cases}$$

holds for all places v of K, because by the homogeneity condition (1) we may assume that $\max_j |x_{ij}|_v = 1$ for all i and the inequality follows from the definition of λ if v is infinite and is straightforward if v is finite. The lemma follows by summing over all v and using the product formula.

The following Lemma is saves us a considerable amount of effort in the determination of λ for the sake of the previous Lemma.

Lemma 3.2 Letting notations be as above, the function $\Psi := \sum \nu_k \log |G_k(\mathbf{x})|$ assumes a maximum in $\mathbf{x} \in X_1(\mathbf{C})$ and it is attained at a point all of whose coordinates have absolute value 1 with at most one exception.

Proof. Since the ν_k are positive, Ψ is bounded from above in $X_1(\mathbf{C})$. For $\epsilon > 0$ sufficiently small the set $\mathbf{x} \in X_1(\mathbf{C})$ such that $\Psi(\mathbf{x}) \ge \log(\epsilon)$ is compact and not empty. Hence it is clear that Ψ , being continuous, assumes a maximum.

Now suppose that Ψ assumes a maximum at a point P where at least two coordinates have absolute value < 1. Call these coordinates ξ, η and denote the values of these coordinates at P by ξ_0, η_0 . Substitute in F = 0 the values of all coordinates of P except ξ, η . The equation F = 0 reduces to the equation of a curve $f(\xi, \eta) = 0$ containing the point ξ_0, η_0 . By choosing a branch of f = 0 at the point ξ_0, η_0 we find locally analytic functions $\xi(t), \eta(t)$ such that $\xi(0) = \xi_0, \eta(0) = \eta_0$ and $f(\xi(t), \eta(t)) = 0$ identically in a neighbourhood of t = 0. When f was identically zero anyway, we can choose $\xi(t), \eta(t)$ arbitrarily. Choose a disk D in the complex t-plane around 0 such that $|\xi(t)|, |\eta(t)| \leq 1$ for all $t \in D$. Specialise the arguments in Ψ to the values of the point P except for ξ and η where we substitute $\xi(t)$ and $\eta(t)$. In this way we obtain a function $\psi(t)$ in $t \in D$ which assumes a maximum in t = 0. Notice that $\psi(t)$ is harmonic in the real and imaginary part of t. A harmonic function assuming a maximum in the interior of its domain is necessarily constant. Hence $\psi(t)$ is constant. But in that case we can continue $\xi(t)$ and $\eta(t)$ analytically until either one of them hits the unit circle. In that new point the value of Ψ is again $\psi(0)$, i.e. maximal. We continue this procedure for other coordinates, if necessary, until we have found an optimal point all of whose coordinates have absolute value one with at most one exception. Π

Lemma 3.3 Let $\alpha, \beta, \gamma > 0$. Let m be the unique minimum of the function

$$u\log\frac{\gamma u}{u+v} + v\log\frac{v}{u+v}$$

under the constraints $u, v \ge 0$, $\alpha u + \beta v = 1$. Then e^{-m} is the unique real root larger than 1 of $\gamma^{-1}x^{-\alpha} + x^{-\beta} = 1$.

Proof. Put x = v/(u+v) and 1 - x = u/(u+v). Then

$$u = \frac{1-x}{\beta x + \alpha(1-x)} \qquad v = \frac{x}{\beta x + \alpha(1-x)}$$

and $x \in [0, 1]$. We must minimize

$$f(x) = \frac{(1-x)\log(\gamma(1-x)) + x\log x}{\beta x + \alpha(1-x)}$$

on [0, 1]. Differentiate with respect to x,

$$f'(x) = \frac{-\beta \log(\gamma(1-x)) + \alpha \log x}{(\beta x + \alpha(1-x))^2}.$$

This vanishes if $(\gamma(1-x))^{\beta} = x^{\alpha}$. Since x is strictly increasing and 1-x strictly decreasing there is a unique solution $x_0 \in]0, 1[$. Choose $\rho > 0$ such that $x_0 = \rho^{-\beta}$. Then, $\gamma(1-x) = \rho^{-\alpha}$ and thus we see that ρ satisfies $1 - \rho^{-\beta} = \gamma^{-1}\rho^{-\alpha}$. It remains to verify that $f(x_0) = -\log \rho$, which is straightforward.

Proof of Theorem. We apply Lemma 3.1 to the hypersurface X given by the multihomogeneous polynomial $F(\mathbf{x}) \in \mathbf{Z}[\mathbf{x}]$ with multidegrees d_1, \ldots, d_r . For the G_k we take the coordinates x_{ij} and the function

$$\tilde{F}(\mathbf{x}) = F(x_{ij}^{-1}) \prod x_{ij}^{d_{ij}}$$

where d_{ij} is the degree of F in x_{ij} . Let $\mu, \nu_{ij} \ge 0$. Let $\Phi(\mathbf{x})$ be the function $\mu \log |\tilde{F}(\mathbf{x})| + \sum_{i,j} \nu_{ij} \log |x_{ij}|$ on $X(\mathbf{C})$. Let $\tilde{d}_i = -d_i + \sum_j d_{ij}$ be the degree of \tilde{F} in \mathbf{x}_i and suppose

$$w_i = \mu \tilde{d}_i + \sum_j \nu_{ij}, \qquad \lambda = -\max_{\mathbf{x} \in X(\mathbf{C})_1} \Phi(\mathbf{x}).$$

Then Lemma 3.1 states that (2) holds for all $\mathbf{x} \in X(\overline{\mathbf{Q}})$ with $x_{ij} \neq 0$ and $F(x_{ij}^{-1}) \neq 0$.

Let us take $w_i = n_i + 1$ for all *i*. Although there are many other choices for the weights w_i , this choice gives us the particularly simple shape of our main theorem. It remains to choose μ, ν_{ij} in such a way that λ becomes positive and as large as possible. We choose

$$u_{ij} = 1 - \frac{\tilde{d}_i}{n_i + 1}\mu \text{ if } i \notin I$$

and

$$\nu_{i,0} = 1 - \frac{\tilde{d}_i - d_{i,1}}{2}\mu, \quad \nu_{i,1} = 1 - \frac{\tilde{d}_i + d_{i,1}}{2}\mu \text{ if } i \in I.$$

Let us determine $\max_{\mathbf{x}\in X(\mathbf{C})_1} \Phi(\mathbf{x})$. By Lemma 3.2 this maximum is attained at a point all of whose coordinates, with possibly one exception, lie on the unit circle. Suppose that $|x_{i_0j_0}| \leq 1$ and that $|x_{ij}| = 1$ for all $(i, j) \neq (i_0, j_0)$. Suppose first that $(i_0, j_0) \notin E$. Then,

$$\begin{split} \tilde{F}(x_{ij})| &= |F(x_{ij}^{-1})| \cdot |\prod_{i,j} (x_{ij})^{d_{ij}}| \\ &= |F(x_{i_0j_0}^{-1}, \overline{x_{ij}})| \cdot |x_{i_0j_0}|^{d_{i_0j_0}} \\ &= |F(x_{i_0j_0}^{-1}, \overline{x_{ij}}) - F(\overline{x_{ij}})| \cdot |x_{i_0j_0}|^{d_{i_0j_0}} \\ &\leq c_{i_0j_0}|\frac{1}{x_{i_0j_0}} - \overline{x_{i_0j_0}}| \max(|x_{i_0j_0}|^{-1}, |x_{i_0j_0}|)^{d_{i_0j_0} - 1} \cdot |x_{i_0j_0}|^{d_{i_0j_0}} \\ &= c_{i_0j_0}(1 - |x_{i_0j_0}|^2) \end{split}$$

Put $|x_{i_0j_0}|^2 = \xi$. We see that the maximum of Φ is

|-

$$\max_{\xi \in [0,1]} \mu \log(c_{i_0 j_0}(1-\xi)) + (\nu_{i_0 j_0}/2) \log \xi$$

This maximum is attained at $\xi = \nu_{i_0j_0}/(\nu_{i_0j_0} + 2\mu)$ and its value is

$$\mu \log \frac{2\mu c_{i_0j_0}}{\nu_{i_0j_0} + 2\mu} + \frac{\nu_{i_0j_0}}{2} \log \frac{\nu_{i_0j_0}}{\nu_{i_0j_0} + 2\mu}$$

Since we have $\nu_{i_0 j_0} \ge 1 - \delta \mu$, this maximum is bounded above by

$$\mu \log c_F \frac{2\mu}{(1-\delta\mu)+2\mu} + \frac{1-\delta\mu}{2} \log \frac{1-\delta\mu}{(1-\delta\mu)+2\mu}$$
(M)

We now determine the maximum when $(i_0, j_0) \in E$. In particular, $j_0 = 0$. So suppose we have $|x_{i_0,0}| \leq 1$ and $|x_{ij}| = 1$ for all other i, j. Writing down the dependence on $x_{i_0,0}, x_{i_0,1}$ explicitly and putting $z = x_{i_0,0}/x_{i_0,1}$, we find

$$\begin{split} \tilde{F}(x_{ij})| &= |F(x_{i_0,0}^{-1}, x_{i_0,1}^{-1}, x_{ij}^{-1})| \cdot |x_{i_0,0}|^{d_{i_0,0}} \\ &= |F(1, z, x_{ij}^{-1})| \\ &= |F(1, z, \overline{x_{ij}}) - F(1, 1/\overline{z}, \overline{x_{ij}}| \\ &\leq c_{i_0,1}|z - 1/\overline{z}\max(|z|, |z|^{-1})^{d_{i_0,1}-1} \\ &= c_{i_0,1}|1 - |z|^2| \cdot |z|^{-d_{i_0,1}} \end{split}$$

Put $\xi = |z|^2 = |x_{i_0,0}|^2$. We see that the maximum of Φ is

$$\max_{\xi \in [0,1]} \left[\mu \log(c_{i_0,1}(1-\xi)) - (d_{i_0,1}\mu/2) \log |\xi| + (\nu_{i_0,0}/2) \log |\xi| \right]$$

which equals

$$\mu \log \frac{2c_{i_0j_0}\mu}{\tilde{\nu}+2\mu} + \frac{\tilde{\nu}}{2} \log \frac{\tilde{\nu}}{\tilde{\nu}+2\mu}$$

where $\tilde{\nu} = \nu_{i_0,0} - d_{i_0,1}\mu/2$. Note that by our choice of $\nu_{i_0,0}$, $\tilde{\nu} = 1 - (\tilde{d}_{i_0} + d_{i_0,1})\mu/2 \ge 1 - \delta\mu$. Hence our maximum is again bounded by (M). Now use Lemma 3.3 with $\alpha = \delta, \beta = 2, \gamma = c_F$ to minimize (M) by letting μ vary. The assertion of our theorem follows immediately. \Box

4 References

- [BS] F.Beukers, H.P.Schlickewei, The equation x + y = 1 in finitely generated groups, to appear.
- [Le] D.H.Lehmer, Factorisation of certain cyclotomic functions, Ann. of Math. 34 (1933), 461-479
- [Lo] R.Louboutin, Sur la mesure de Mahler d'un nombre algébrique, C.R.Acad Sc. Paris 296 (1983), 707-708
- [Schm] W.M.Schmidt, Heights of algebraic points lying on curves or hypersurfaces, to appear in Proc. AMS.
 - [Schl] H.P.Schlickewei, Equations ax + by = 1, to appear in Ann. of Math.
 - [Sm] C.J.Smyth, On the product of the conjugates outside the unit circle of an algebraic integer, Bull.London Math. Soc. 3 (1971), 169-175
 - [SW] H.P.Schlickewei, E.Wirsing, Lower bounds for the heights of solutions of linear equations, preprint, Universität Ulm 1994
 - [Za] D.Zagier, Algebraic numbers close to both 0 and 1, Math. Computation 61 (1993), 485-491
 - [Zh] S.Zhang, Positive line bundles on arithmetic surfaces, Annals of Math.136 (1992), 569-587.