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1 Introduction

Let us first recall Lehmer’s conjecture [Le] on lower bounds for the height of an algebraic
number which was stated in 1933. Let K be an algebraic number field of degree D over Q.
For any valuation v we denote Dv = [Kv : Qv], where Kv,Qv are the completions of K,Q
with respect to v. For archimedean v we normalise the valuation by |xv| = |x|Dv/D where |.|
is the ordinary complex absolute value. When v is non-archimedean we take |p|v = p−Dv/D

where p is the unique rational prime such that |p|v < 1. The height of an algebraic number
α ∈ K is defined by

H(α) =
∏
v

max(1, |x|v)

Because of our normalisation H(α) does not depend on the choice of the field K in which α
is contained. We can now state Lehmer’s conjecture.

Conjecture 1.1 There exists a number c > 1 such that for any algebraic number α, not a
root of unity and of degree D we have

H(α)D ≥ c.

Presumably c = 1.1762808 . . ., which is the larger real root of x10 + x9 − x7 − x6 − x5 − x4 −
x3 + x+ 1.

The best unconditional result so far follows from work of Dobrowolski, Cantor and Louboutin
[Lo], stating that there exists γ > 0 such that

H(α)D ≥ 1 + γ

(
log logD

logD

)3

.

It came as a great surprise when S.Zhang [Zh] showed in 1992 that there does exist a
number c1 > 1 such that

H(α)H(1− α) ≥ c1

for all α ∈ Q such that α 6= 0, 1, 1
2 ±

1
2

√
−3. This was proved by using Arakelov intersection

theory on P1. It was almost immediately realised by one of us (see [Za]) that an elementary
proof could be given which at the same time yields the best possible c1, namely

√
η where
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η = (1 +
√

5)/2, the golden ratio. The minimum is attained when α is minus a fifth root of
unity. In [Za] there is also a generalisation of the following sort. For any K-rational point
P = (P0 : P1 : . . . : Pn) in n-dimensional projective space Pn we define the height by

H(P ) =
∏
v

max(|P0|v, . . . , |Pn|v).

In particular the height of an algebraic number α is nothing but the projective height of
(1 : α) ∈ P1(K). Then it is shown in [Za] that for any (x0 : x1 : x2) ∈ P2(Q) such that
x0 + x1 + x2 = 0, x0x1x2 6= 0 and (x0 : x1 : x2) 6= (1 : ω±1 : ω∓1), (ω3 = 1), we have

H(x0, x1, x2) ≥ c2

where c2 is the larger real root of x6 − x4 − 1. The minimum is attained when the xi are the
roots of x3 + x− 1.

Inspired by [Za], H.P.Schlickewei and E.Wirsing [SW] showed the following result. Consider
the line L : λx + µy + νz = 0 in P2 with λµν 6= 0. Suppose that λ + µ + ν = 0. Then, for
any two points P1, P2 ∈ L(Q) with non-zero coordinates and such that (1 : 1 : 1), P1, P2 are
distinct, we have

H(P1)H(P2) > exp(1/2400) = 1.00041 . . .

This result was applied by Schlickewei [Schl] to estimating numbers of solutions of three term
S-unit equations in a strikingly successful way. Although very useful, the derivation of the
Schlickewei-Wirsing result did not look optimal. It is the goal of this paper to remedy this
situation and also give a generalisation which encompasses the previous results. We finish the
introduction by giving a description of our general setup and main result.

Consider a hypersurface S of multidegree d1, . . . , dr on Pn1×· · ·×Pnr given by a polynomial
F with coefficients in Z. Denote the coordinates of Pni by xi = (xi0, xi1, . . . , xini). The degree
of F in the variable xij is denoted by dij . We define d̃i = −di +

∑
j dij .

Choose a subset I of {i| ni = 1} and let E be the set {(i, 0)| i ∈ I}, to which we refer as
exceptional index pairs. For any polynomial with coefficients in Z we denote by ||P || the sum
of the absolute values of the coefficients. We define

cij =

∣∣∣∣∣
∣∣∣∣∣ ∂F∂xij

∣∣∣∣∣
∣∣∣∣∣ , cF = max

(i,j) 6∈E
cij

The advantage of having the exceptional set E is that the value of cF may be smaller than
the one we would get by taking the maximum over all pairs (i, j). In the first example in [Za]
this enables us to get the optimal lower bound for the product H(α)H(1−α). By δ we denote
the maximum of the numbers maxi∈I(d̃i + di,1)/2 and maxi6∈I

d̃i
ni+1 .

Theorem 1.2 For each point (x1, . . . ,xr) ∈ Pn1(Q) × · · · × Pnr(Q) such that F (xij) = 0,
xij 6= 0 for all i, j and F (x−1

ij ) 6= 0 we have

H(x1)n1+1 · · ·H(xr)nr+1 ≥ ρ,

where ρ is the unique real root larger than 1 of x−2 + c−1
F x−δ = 1.
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During the preparation of this paper W.M.Schmidt informed us that in [Schm] he had
already proved a theorem very similar to ours in the case where one works in (P1)r. The
logarithm of the lower bound given in [Schm] is 1/(24f+2rH), where f is the total degree of F
and H the maximum of all coefficients. Although the basic starting point in this paper and
[Schm] is the same, we nevertheless found that the principle of our approach and the better
values of the constants have some interest.

2 Applications

Before proving the theorem we describe a few consequences. First of all consider r algebraic
numbers α1, . . . , αr whose sum is a rational integer N . We like to interpret the r-tuple as a
point (1 : α1) × · · · × (1 : αr) ∈ (P1)r. For the set I of our theorem we choose {1, . . . , r}.
Letting F be the homogeneous version of x1 + · · ·+ xr −N one easily checks that ci = 1 for
all i. Note that the coefficient N in F does not appear in the ci because of our choice of I.
So we get cF = 1. Moreover, ni = 1 and di = 1 for all i. Hence δ = 1. Thus we find,

Corollary 2.1 Let α1 . . . , αr ∈ Q∗, N ∈ Z be such that α1+· · ·+αr = N and α−1
1 +· · ·+α−1

r 6=
N . Then,

H(α1) · · ·H(αr) ≥
√
η

where η is the golden ratio.

Note that when r ≥ 4 the lower bound is actually attained for the r-tuple −ζ5, 1 +
ζ5, 1, ζr−2, . . . , ζ

r−3
r−2 where ζk denotes a primitive k-th root of unity. When we take for the

αi the conjugates of an algebraic number α of degree D we get the following consequence.

Corollary 2.2 Let α ∈ Q∗ be such that trace(α) is integral and trace(α) 6= trace(α−1). Then
H(α)D ≥ √

η.

However, this result is already contained in a result of C.Smyth [Sm] which states that
H(α)D ≥ θ for every non-reciprocal α ∈ Q∗. Here θ is the real root of x3 − x− 1.

We now consider r algebraic numbers αi whose sum is 1 and give a lower bound for
H(1, α1, . . . , αr). The polynomial F can be written x1 + · · · + xr − x0 and we have cF =
1, d1 = 1. Furthermore, δ = r/(r + 1).

Corollary 2.3 For any α1, . . . , αr ∈ Q∗ such that α1 + · · ·+αr = 1 and α−1
1 + · · ·+α−1

r 6= 1
we have

H(1, α1, . . . , αr) ≥ ρ.

where ρ is the real root larger than 1 of 1 = x−2r−2 + x−r.

As pointed out in the introduction, this result is optimal when r = 2. For r > 2 this is not
true any more. When r = 3 for example we find the lower bound 1.14613 . . . (which improves
the bound exp(1/402) = 1.00249 . . . from [SW]). However the lowest height we could find was
H = 1.15096 . . . when the αi are the zeros of x3 − x2 + 1. On the other hand the asymptotic
behaviour of ρ as a function of r looks optimal. It is not hard to show that ρr+1 → η as r →∞
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while on the other hand the zeros α0, . . . , αr of xr+1 − x− 1 satisfy H(α0, . . . , αr)r+1 → 2 as
r →∞.

We now consider the Schlickewei-Wirsing result. Suppose we have a line L : λx + µy +
νz = 0 in P2 with λµν 6= 0. Let P1, P2, P3 ∈ L(Q) be three distinct points with non-zero
coordinates. Letting Pi = (xi : yi : zi) (i = 1, 2, 3) we get the relation

∆ :=

∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣ = 0.

We want a lower bound of H(P1)H(P2)H(P3). Our polynomial F is now the determinant
form ∆. First we point out that

∆̃ :=

∣∣∣∣∣∣
x−1

1 y−1
1 z−1

1

x−1
2 y−1

2 z−1
2

x−1
3 y−1

3 z−1
3

∣∣∣∣∣∣ 6= 0.

Suppose ∆̃ = 0. Then there exist α, β, γ, not all zero, such that αx−1
i + βy−1

i + γz−1
i = 0 for

i = 1, 2, 3. Hence αyizi +βzixi +γxiyi = 0 (i = 1, 2, 3). The conic C : αyz+βzx+γxy = 0 is
reducible if and only if αβγ = 0. So, if γ = 0 for example, we get αxi + βyi = 0 for i = 1, 2, 3.
But this contradicts ν 6= 0. So C is an irreducible conic. But then P1, P2, P3 lie both on C
and L which is impossible since |C ∩ L| ≤ 2. We must conclude that ∆̃ 6= 0. We can now
apply our Theorem with r = 3, n1 = n2 = n3 = 2, d1 = d2 = d3 = 1, cF = 2 and I = ∅.

Corollary 2.4 Consider the line L : λx+ µy+ νz = 0 in P2 with λµν 6= 0. Let P1, P2, P3 ∈
L(Q) be three distinct points with non-zero coordinates. Then,

H(P1)H(P2)H(P3) ≥ ρ,

where ρ is the real root larger than 1 of 1 = ρ−6 + (1/2)ρ−2.

The numerical value of ρ is 1.09427 . . . which compares favourably with the value 1.00041 . . .
from [SW] or 1.019 . . . from [Sch]. Moreover this result was applied successfully to equations
of the form x + y = 1 with x, y unknows in a finitely generated multiplicative group and to
multiplicity estimates for binary recurrences in [BS].

3 Proof of Theorem 1.2

The proof is based on the following observation, which is a direct generalisation of [Za]. Let
X be a closed subvariety of Pn1 × · · · × Pnr defined over Q. We denote the coordinates by
x = (x1, . . . ,xr) with xi = (xi0, . . . , xini). Denote by X(C)1 the intersection of X(C) with
the polydisc {x : |xij | ≤ 1 ∀i, j}. We also give ourselves a collection of multihomogeneous
polynomials Gk(x) ∈ Z[x] of multidegrees (dk1, . . . , dkr)

Lemma 3.1 Let νk ≥ 0 for all k and set

wi =
∑
k

νkdki, λ = − max
x∈X(C)1

{∑
k

νk log |Gk(x)|
}
. (1)
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Then for any point x = (x1, . . . ,xr) ∈ X(Q) with
∏

k Gk(x) 6= 0 we have

r∏
i=1

H(xi)wi ≥ eλ. (2)

Proof. Suppose that x ∈ X(K) with Gk(x) 6= 0 for all k. Here K is an algebraic number
field of degree D, say. For any valuation v of K we let Dv = [Kv : Qv]. Then the inequality

r∑
i=1

wi log(max
j
|xij |v) ≥

∑
k

νk log |Gk(x)|v +
{ Dv

D λ if v|∞
0 if v 6 |∞

holds for all places v of K, because by the homogeneity condition (1) we may assume that
maxj |xij |v = 1 for all i and the inequality follows from the definition of λ if v is infinite and is
straightforward if v is finite. The lemma follows by summing over all v and using the product
formula. 2

The following Lemma is saves us a considerable amount of effort in the determination of
λ for the sake of the previous Lemma.

Lemma 3.2 Letting notations be as above, the function Ψ :=
∑
νk log |Gk(x)| assumes a

maximum in x ∈ X1(C) and it is attained at a point all of whose coordinates have absolute
value 1 with at most one exception.

Proof. Since the νk are positive, Ψ is bounded from above in X1(C). For ε > 0 sufficiently
small the set x ∈ X1(C) such that Ψ(x) ≥ log(ε) is compact and not empty. Hence it is clear
that Ψ, being continuous, assumes a maximum.

Now suppose that Ψ assumes a maximum at a point P where at least two coordinates have
absolute value < 1. Call these coordinates ξ, η and denote the values of these coordinates at
P by ξ0, η0. Substitute in F = 0 the values of all coordinates of P except ξ, η. The equation
F = 0 reduces to the equation of a curve f(ξ, η) = 0 containing the point ξ0, η0. By choosing
a branch of f = 0 at the point ξ0, η0 we find locally analytic functions ξ(t), η(t) such that
ξ(0) = ξ0, η(0) = η0 and f(ξ(t), η(t)) = 0 identically in a neighbourhood of t = 0. When f was
identically zero anyway, we can choose ξ(t), η(t) arbitrarily. Choose a disk D in the complex
t-plane around 0 such that |ξ(t)|, |η(t)| ≤ 1 for all t ∈ D. Specialise the arguments in Ψ to
the values of the point P except for ξ and η where we substitute ξ(t) and η(t). In this way
we obtain a function ψ(t) in t ∈ D which assumes a maximum in t = 0. Notice that ψ(t) is
harmonic in the real and imaginary part of t. A harmonic function assuming a maximum in
the interior of its domain is necessarily constant. Hence ψ(t) is constant. But in that case we
can continue ξ(t) and η(t) analytically until either one of them hits the unit circle. In that
new point the value of Ψ is again ψ(0), i.e. maximal. We continue this procedure for other
coordinates, if necessary, until we have found an optimal point all of whose coordinates have
absolute value one with at most one exception. 2

Lemma 3.3 Let α, β, γ > 0. Let m be the unique minimum of the function

u log
γu

u+ v
+ v log

v

u+ v
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under the constraints u, v ≥ 0, αu + βv = 1. Then e−m is the unique real root larger than 1
of γ−1x−α + x−β = 1.

Proof. Put x = v/(u+ v) and 1− x = u/(u+ v). Then

u =
1− x

βx+ α(1− x)
v =

x

βx+ α(1− x)

and x ∈ [0, 1]. We must minimize

f(x) =
(1− x) log(γ(1− x)) + x log x

βx+ α(1− x)

on [0, 1]. Differentiate with respect to x,

f ′(x) =
−β log(γ(1− x)) + α log x

(βx+ α(1− x))2
.

This vanishes if (γ(1− x))β = xα. Since x is strictly increasing and 1− x strictly decreasing
there is a unique solution x0 ∈]0, 1[. Choose ρ > 0 such that x0 = ρ−β. Then, γ(1− x) = ρ−α

and thus we see that ρ satisfies 1− ρ−β = γ−1ρ−α. It remains to verify that f(x0) = − log ρ,
which is straightforward. 2

Proof of Theorem. We apply Lemma 3.1 to the hypersurface X given by the multiho-
mogeneous polynomial F (x) ∈ Z[x] with multidegrees d1, . . . , dr. For the Gk we take the
coordinates xij and the function

F̃ (x) = F (x−1
ij )

∏
x

dij

ij

where dij is the degree of F in xij . Let µ, νij ≥ 0. Let Φ(x) be the function µ log |F̃ (x)| +∑
i,j νij log |xij | on X(C). Let d̃i = −di +

∑
j dij be the degree of F̃ in xi and suppose

wi = µd̃i +
∑
j

νij , λ = − max
x∈X(C)1

Φ(x).

Then Lemma 3.1 states that (2) holds for all x ∈ X(Q) with xij 6= 0 and F (x−1
ij ) 6= 0.

Let us take wi = ni +1 for all i. Although there are many other choices for the weights wi,
this choice gives us the particularly simple shape of our main theorem. It remains to choose
µ, νij in such a way that λ becomes positive and as large as possible. We choose

νij = 1− d̃i

ni + 1
µ if i 6∈ I

and

νi,0 = 1− d̃i − di,1

2
µ, νi,1 = 1− d̃i + di,1

2
µ if i ∈ I.
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Let us determine maxx∈X(C)1 Φ(x). By Lemma 3.2 this maximum is attained at a point all of
whose coordinates, with possibly one exception, lie on the unit circle. Suppose that |xi0j0 | ≤ 1
and that |xij | = 1 for all (i, j) 6= (i0, j0). Suppose first that (i0, j0) 6∈ E. Then,

|F̃ (xij)| = |F (x−1
ij )| · |

∏
i,j

(xij)dij |

= |F (x−1
i0j0

, xij)| · |xi0j0 |di0j0

= |F (x−1
i0j0

, xij)− F (xij)| · |xi0j0 |di0j0

≤ ci0j0 |
1

xi0j0

− xi0j0 |max(|xi0j0 |−1, |xi0j0 |)di0j0
−1 · |xi0j0 |di0j0

= ci0j0(1− |xi0j0 |2)

Put |xi0j0 |2 = ξ. We see that the maximum of Φ is

max
ξ∈[0,1]

µ log(ci0j0(1− ξ)) + (νi0j0/2) log ξ

This maximum is attained at ξ = νi0j0/(νi0j0 + 2µ) and its value is

µ log
2µci0j0

νi0j0 + 2µ
+
νi0j0

2
log

νi0j0

νi0j0 + 2µ
.

Since we have νi0j0 ≥ 1− δµ, this maximum is bounded above by

µ log cF
2µ

(1− δµ) + 2µ
+

1− δµ

2
log

1− δµ

(1− δµ) + 2µ
(M)

We now determine the maximum when (i0, j0) ∈ E. In particular, j0 = 0. So suppose we
have |xi0,0| ≤ 1 and |xij | = 1 for all other i, j. Writing down the dependence on xi0,0, xi0,1

explicitly and putting z = xi0,0/xi0,1, we find

|F̃ (xij)| = |F (x−1
i0,0, x

−1
i0,1, x

−1
ij )| · |xi0,0|di0,0

= |F (1, z, x−1
ij )|

= |F (1, z, xij)− F (1, 1/z, xij |
≤ ci0,1|z − 1/zmax(|z|, |z|−1)di0,1−1

= ci0,1|1− |z|2| · |z|−di0,1

Put ξ = |z|2 = |xi0,0|2. We see that the maximum of Φ is

max
ξ∈[0,1]

[µ log(ci0,1(1− ξ))− (di0,1µ/2) log |ξ|+ (νi0,0/2) log |ξ|]

which equals

µ log
2ci0j0µ

ν̃ + 2µ
+
ν̃

2
log

ν̃

ν̃ + 2µ

where ν̃ = νi0,0 − di0,1µ/2. Note that by our choice of νi0,0, ν̃ = 1− (d̃i0 + di0,1)µ/2 ≥ 1− δµ.
Hence our maximum is again bounded by (M). Now use Lemma 3.3 with α = δ, β = 2, γ = cF
to minimize (M) by letting µ vary. The assertion of our theorem follows immediately. 2
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