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1 Introduction

Consider for any k ∈ Z≥2 the polynomial pk(X) = (X + 1)k −Xk − 1. Factorisation of pk in
Q[X] for the first few values of k very soon suggests that we have obvious divisors when k is
in a given residue class modulo 6,

k even: X

k ≡ 3(mod 6): X(X + 1)

k ≡ 5(mod 6): X(X + 1)(X2 + X + 1)

k ≡ 1(mod 6): X(X + 1)(X2 + X + 1)2

The proof is a very easy exercise. The following problem was raised by J.Sanders from CWI,
Amsterdam in connection with hierarchies of solutions of the Korteweg-de Vries equation,

Question 1.1 Show that for any k, l ∈ Z with l > k > 1 we have that gcd(pk, pl) contains
only the trivial divisors mentioned above.

This question was posed as a challenge problem during the MEGA-conference. The prize, a
large cake, was to be divided among the submitters towards a solution of the problem. This
explains the name of this article. It turned out that it is not very easy to say something non-
trivial about this problem, so the number of submissions to the problem was very small indeed,
one. The prize winner subsequently made himself very popular among his local neighbourhood
by organising a cake party. Let us now turn to the problem.
A quick computer test for 1 < k < 100 leads one to believe the following conjecture,

Conjecture 1.2 Write pk = tkqk, where tk is one of the trivial divisors mentioned above.
Then qk is irreducible in Q[X].

If we would be able to prove this conjecture the solution to the original question would be very
simple. Unfortunately no such proof could be found until now and I have no idea whether
the solution of this conjecture can be considered easy or not. Lacking such a proof we shall
solve the question by a very heavy handed method based on techniques from diophantine
approximation.
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2 The zeros

Before going over to the solution of the problem we like to make a few remarks on the position
of the zeros of the polynomials pk since this seems to have some interest by itself. First a
lemma,

Lemma 2.1 The number of distinct zeros z of pk on the unit circle such that z2 + z + 1 6= 0
is at least [2k/3]− [k/3]− 1.
In particular if k 6= 2, 3, 5, 7 there exists a zero z on the unit circle such that |z + 1| < 0.5.

Proof. Substitute X = eit in pk. After some rewriting we obtain

(2 cos
t

2
)k = 2 cos k

t

2
.

Note that the left hand side is ≤ 1 in absolute value if π
3 ≤

t
2 ≤

2π
3 . We now count the number

N of values of t in this interval for which cos k t
2 has value ±1. Since the values 1,−1 occur in

alternating fashion the number of zeros in this interval should then be at least N − 1. Note
that cos k t

2 = ±1 if and only if t/2 = πm/k for some m ∈ Z. Together with the condition
π
3 ≤

t
2 ≤

2π
3 this implies k/3 ≤ m ≤ 2k/3. Hence N ≥ [2k/3]− [k/3].

To prove the second part, we take m to be the smallest integer larger than or equal to k/2.
For the moment assume k > 20. Clearly there is a zero eit with πm/k < t/2 < π(m + 1)/k.
Hence π(m/k − 1/2) < (t − π)/2 < π((m + 1)/k − 1/2). Because of our choice of m we find
that there exists a t with 0 < t− π < 3π/k. When k > 20 this implies |eit + 1| < 3π/k < 0.5.
The remaining cases can be checked by hand. 2

For odd k the location of the zeros is now more or less clear. In this case we see that if z is a
zero, the same holds for −1− z and 1/z. Under the group generated by these transformations
the images of the unit circle |z| = 1 are |z + 1| = 1 and <z = −1/2. From the lemma above
we saw that about one third of the zeros are on the unit circle. The other zeros are on the
circle |z + 1| = 1 and the line <z = −1/2.
For even k the situation is slightly more complicated. In this case we can prove that there are
no zeros on |z + 1| = 1 except z = 0. To see this let z = eit − 1 and substitute in pk(z) = 0.
We obtain, 2i sin k t

2 = (2i sin t
2)k. Since k is even the right hand side of the equation is real

and the left hand side imaginary. Hence sin t/2 = 0 and we find t = 0, which implies z = 0.
However, starting with w0 a k-th root of unity such that |w0−1| < 1 we see that the recurrence

wr+1 = w0

(
k

√
1 + (wr − 1)k

)
very quickly converges to a solution of wk − (w − 1)k − 1 = 0.

In fact, the difference of this solution with w0 is of the order |w0 − 1|k. When k is large, this
tends to be a very small number. Plotting the zeros of pk for even k with a computer one
indeed observes that, with a few exceptions, about one third of the zeros is indistiguishably
close to |z + 1| = 1. Since we still have the symmetry z → 1/z the same remark holds for the
line <z = −1/2.
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3 Diophantine approximation

In the following statements we will use the concept of height of an algebraic point in projective
space. Let K be an algebraic number field, i.e. a finite field extension of the rational numbers.
A valuation on K is a multiplicative norm on the elements of K. As is well known there
exist infinite or archimedean valuations (finitely many) and finite, or non-archimedean ones
(infinitely many). We normalise the valuations as follows. For any finite valuation we take
|p|v = p−dv/d. Here p is the rational prime corresponding to the valuation, d is the degree of
the extension K and dv the degree of Kv over the p-adic numbers. Here Kv the completion of
K with respect to the valuation. For infinite valuations we use the normalisation |x|v = |x|dv/d,
where |.| denotes the ordinary absolute value. For any a ∈ K∗ we have the so-called product
formula ∏

v

|a|v = 1.

The height of an n-tuple (a1, . . . , an) ∈ Kn is defined by

H(a1, . . . , an) =
∏
v

max(|a1|v, . . . , |an|v).

Due to the product formula we have the property that H(a1, . . . , an) = H(λa1, . . . , λan) for
any λ ∈ K∗. Hence the height is a measure on projective space.
For future use we record the following properties which are easy to prove from the definition.
For any k ∈ Z≥1 we have H(ak

1, . . . , a
k
n) = H(a1, . . . , an)k. Secondly, H(a−1

1 , . . . , a−1
n ) ≤

H(a1, . . . , an)n−1.
Let us now turn to the results from diophantine approximation.

Lemma 3.1 Let a, b, A,B ∈ Q∗ such that a 6= b, A + B = 1 and aA + bB = 1. Then
H(A,B, 1) ≤ 2H(a, b, 1).

This is a lemma with a very elementary proof and can be found in [BS, Corollary 2.2]. The
following lemma is [BS, Lemma 2.3] and its proof uses hypergeometric polynomials. This is
a method which derives from famous work of A.Thue (1909) on rational approximation of
algebraic numbers.

Lemma 3.2 Let a, b, A,B ∈ Q∗ and r ∈ N such that A + B = 1 and aA2r + bB2r = 1. Then
H(A,B, 1) ≤ 21/rcH(a, b, 1)1/r where c = 6

√
3.

The following lemma can be found in [Za] or [BZ]. At first it was found as a consequence
of Arakelov intersection theory on P1 by S.Zhang in 1992. Very soon D.Zagier gave a very
elementary but ingenious proof.

Lemma 3.3 Let A,B ∈ Q∗ such that A + B = 1 and AB 6= 1. Then H(A,B, 1) ≥ 1.21.

The final ingredient is a recent improvement by Laurent, Mignotte, Nesterenko [LMN] of a
result of A.O.Gel’fond in the theory of linear forms in logarithms.
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Lemma 3.4 Let α1, α2 be non-zero algebraic numbers and let D be the degree of the field
generated by α1, α2. Let b1, b2 be rational integers. Choose A such that

A ≥ max(log H(αi, 1), | log αi|/D, 1/D)

and let b′ = (|b1|+ |b2|)/DA. Then,

log |b1 log α1 − b2 log α2| ≥ −30.9D4 max
(

log b′,
21
D

,
1
2

)2

(log A)2.

Here we can take for log αi any determination.

Finally we need a statement which is not really in the literature.

Lemma 3.5 Let a, b, A,B ∈ Q∗, a 6= b and n ∈ N. Suppose A−B = 1 and aAn − bBn = 1.
Then H(A,B, 1) ≤ 216H(a, b, 1).

Proof. For even n we use Lemma 3.2 with n = 2r and −B instead of B to obtain H(A,B, 1) ≤
22/n6

√
3H(a, b, 1)2/n. Since n ≥ 2 we get H(A,B, 1) ≤ 12

√
3H(a, b, 1).

When n is odd and ≥ 5 we again apply Lemma 3.2 with n− 1 = 2r to find

H(A,B, 1) ≤ 22/n−16
√

3H(aA, bB, 1)2/n−1 (1)
≤ 21/26

√
3H(a, b, 1)1/2H(A,B, 1)1/2 (2)

Hence H(A,B, 1) ≤ 2(6
√

3)2H(a, b, 1) = 216H(a, b, 1).
When n = 1 we simply use Lemma 3.1.
The case that remains is n = 3. We note the following identities,

1 = (1− 3B + 6B2)A3 − (1 + 3A + 6A2)B3 (3)
−A−B = (1−B)A3 + (1 + A)B3 (4)

Since ∣∣∣∣ 1− 3B + 6B2 −(1 + 3A + 6A2)
1−B 1 + A

∣∣∣∣ = 12

we have either∣∣∣∣ 1− 3B + 6B2 −(1 + 3A + 6A2)
a b

∣∣∣∣ 6= 0 or
∣∣∣∣ 1−B 1 + A

a b

∣∣∣∣ 6= 0

Application of [BS, Lemma 2.1] implies

H(A3, B3, 1) ≤ 2H(a, b, 1)M

where
M = max(H(1−B, 1 + A,A + B),H(1− 3B + 6B2, 1 + 3A + 6A2, 1))

A straightforward calculation shows that M ≤ 18H(A2, B2, 1) Hence H(A3, B3, 1) ≤ 2H(a, b, 1)·
18H(A,B, 1)2. Thus we find that H(A,B, 1) ≤ 36H(a, b, 1). 2
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4 Solution of the problem

We shall rephrase the problem into the following shape.

Theorem 4.1 Let θ ∈ Q such that θ(θ + 1)(θ2 + θ + 1) 6= 0, where ω = e2πi/3. Then there is
at most one integer n > 1 such that (θ + 1)n − θn − 1 = 0.

In the following propositions we give a step by step solution of the problem. We shall adhere
to the notations just introduced in our theorem.

Proposition 4.2 Suppose there exist two integers k, l with l > k > 1 such that (θ + 1)n −
θn − 1 = 0 for n = l, k. Then k < 85.

Proof. Put l = mk + d with 0 ≤ d < k. Now apply Lemma 3.5 with A = (θ + 1)k, B =
θk, a = (θ + 1)d, b = θd to find

H(θ + 1, θ, 1)k ≤ 216H(θ + 1, θ, 1)d.

Using Lemma 3.3 we get H(θ + 1, θ, 1) > 1.21, hence 1.21k−d ≤ 216. Hence k − d ≤ 28. Now
apply Lemma 3.5 with A = (θ + 1)k, B = θk, a = (θ + 1)d−k, b = θd−k to obtain

H(θ + 1, θ, 1)k ≤ 216H((θ + 1)d−k, θd−k, 1) (5)
≤ 216H(θ + 1, θ, 1)2(k−d) (6)
≤ 216H(θ + 1, θ, 1)56 (7)

So, 1.21k−56 ≤ 216 and we get k < 56 + 29 = 85. 2

Proposition 4.3 Let t be a complex number with absolute value 1 and suppose that |1+t| ≤ 1.
Suppose there exists n ∈ N such that (t + 1)n− tn− 1 = 0. Then there exists m ∈ Z such that

|nArg(t) + mπ| ≤ π

3
|1 + t|n.

Proof. Suppose we have a complex number z of absolute value 1 such that z = 1 + w with
|w| ≤ 1. A small geometrical picture then easily shows that |Arg(z)| ≤ π

3 |w|. This principle
applied to z = −tn yields |Arg(−tn)| ≤ π

3 |1+ t|n. Our Proposition now follows immediately. 2

Proposition 4.4 Let notations as in Theorem 4.1. Suppose there exist two integers k, l with
l > k > 1 such that (θ + 1)n − θn − 1 = 0 for n = l, k. Assume in addition that |θ| = 1 and
|θ + 1| < 0.5. Then l < 1014.

Proof. We already know that k < 85 and θ is a non-trivial zero of (X + 1)k − Xk − 1.
According to the Lemma above we have the inequality

|lArg(θ) + mπ| ≤ π

3
|1 + θ|l <

π

3

(
1
2

)l
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for some m ∈ Z. Note that we can assume |m| ≤ l. Let us now apply Lemma 3.4 with
log α1 = iArg(θ), log α2 = iπ and b1 = l, b2 = −m. We can take D < k, A = 3 and b′ ≤ 2l/3k.
Let us assume that l > 1010. Then Lemma 3.4 implies that

log|lArg(θ) + mπ| ≥ −30.9k4(log(2l/3k))2 · 9.

Together with the upper bound and the fact that 4 ≤ k < 85 this gives us

15 · 109(log(l/6)2 > log(π/3) + l log(2).

From this we obtain l < 1014. 2

Proof of Theorem 4.1. Suppose our equation has two solutions n = k, l with l > k > 1. We
already know that k < 85. Since for given k the non-trivial factor of pk is irreducible, we can
take for θ any non-trivial zero of pk. In particular we can take the zero with the properties
|θ| = 1 and |θ + 1| < 0.5. We then know that l < 1014 and moreover,

|lArg(θ)−mπ| ≤ π

3

(
1
2

)l

for some m ∈ Z. In particular this implies∣∣∣∣Arg(θ)
π

− m

l

∣∣∣∣ ≤ 1
3l2

.

A theorem of Legendre tells us that m/l is a convergent of the continued fraction of Arg(θ)/π.
So for each k < 85 we must find θ such that (θ + 1)k − θk − 1 = 0, |θ| = 1 and |θ + 1| < 0.5
and check all denominators of the convergents of the continued fraction of Arg(θ)/π. This is
a small task on a computer. The outcome of it establishes the proof of our Theorem. 2
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