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M. Kontsevich and D.Zagier

Mathematics unlimited — 2001 and beyond,
pp 771 - 808, Springer Verlag, Berlin

These are the slides of a lecture held at the
Luminy meeting on Diophantine Approxima-
tion on May 6-11, 2002. We discuss only that
part of the above mentioned paper which con-
cerns algebraic independence of periods. On
this matter the authors make an interesting
conjecture which we shall explain and provide
some additional examples for.

Of course reading the other part of the paper
(section 3) is also highly recommended. It is a
beautiful and rich paper.



Definition 1 A period is a complex number
whose real and imaginary part are values of ab-
solutely convergent integrals of rational func-
tions with rational coefficients, over domains
in R™ given by polynomial (in)equalities with
rational coefficients.

Examples

V2 = dx

2x2<1

T = // dxdy
r2+4y2<1

2 dx

log(2) = s

((3) = ///O<ac<y<z<l (fx—dgj;;j/z

Products of periods are again periods.




More examples

Periods and quasi-periods on an elliptic curve
E:y2=x3—|—aac2—|—bx—|—c:

dx xdx

Cy7 c vy

Mahler measure of a Laurent polynomial P:
dibl dx

,UJ(P):/.../ |Og|P(x1,...,ajn)|—..._n

|zi|=1 T1 Tn

1

Euler Beta-integral: Let a =r/N,b = s/N and
define

(a)l (b)
ra+b)
where y& = gN—-7(1 — z)N—s.

1dx

0 ¥y

1
B(a,b) := /O 241 (1—2)0"1dz =

In particular, I'(p/q)? is a period for any p,q €
N, e.g. IMN'(1/3)3 = B(1/3,1/3)B(2/3,1/3).
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Notation: P denotes the set of Q-linear com-
binations of all periods and P denotes the set

1
Ul
T_1(27TZ')T

Fact: P is a countable set.

QcPccC

Problem Construct a number not belonging
to P

Question e € P 7 What about 1/m and Euler’s
constant?

Bonus example (Beilinson-Deninger-Scholl).
Let f be a modular form of weight k£ > 2 de-
fined over Q. Then L(f,m) € P for all integers
m.



Period relation 1 log(4) = 2log(2)

4 dx
log(4) = .
. 2 dx 4 dx
Nz >
2 2
= [t 9T _ 5 10g(2)
1 x 1 x

Period relation 2: 6¢(2) = n2 (Calabi)

I—// 1 d:z:dy
1—xy./zy

and note I = 3((2). On the other hand, sub-
stitute

51 4 7n? 51+ &2

1+ Ve

r=¢

and deduce

1_2/ L+8Af1jz'_%‘




Rules for passing from one period to the other
1) Additivity

[[G@ +g@)iz = [ f@yds+ [ gz
/abf(zc)da: = /acf(zc)da: -+ /be(x)da:.

2) Change of variables, if y = f(x) is invertible
change of variables

f(b) b ,
[ry Py = [ F(5@) 1 @)da.

3) Newton-Leibniz (Stokes in general):

b
| @z = 1) - 1(a).

Conjecture (version 1) If a period has two in-
tegral representations, then one can pass from
one formula to the other using only rules 1),2),3)
in which all functions and domains of integra-
tion are algebraic with coefficients in Q.



Period relation 3 (Zagier)

11
plz+y+16+1/2+1/y) = gu(fﬂ+y+5+1/x+1/y).

Period relation 4 (Legendre)
E :y? = 23+ az® 4+ bz + ¢ and wi,wa, 11,7
periods and quasi-periods of E. Then

W1t — Wohn1 — 271.

Sketch of proof (non-standard): Integrate

dx dx
Tq L N 2
Y1 Yo

on E x E over a 2-cycle homologous to the
diagonal of £ x E.




Period relation 5 E; : y2 = z(z — 1)(z — k2).
Periods are given by K(k) and iK (k') where

k' =1/1 — k2 and

K= [T

1 2y

El/\/§ has CM by ZJ[i]. Choose k, be such
that E, has CM with End(E) = Z[ni]. For
example,

b1 =1/V2, by =3-2V3, ks = _(V3-1)(vV3-31/4).
Then,

K (ky)/K (kn) = n, K (kn)/K (k1) € Q.
Moreover for all k&,
111 2 K(k) 4+ K(K')
F(Z (L2 ) 2K(1/v2)

In particular, if we take k = ko, = 3 — 2¢/2,

111 3
F(4 ,9(11 — 8V2)° )=§(2+\/§).
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Definition 2 Let X be a smooth quasiprojec-
tive variety and n < dim(X). Let D C X be
an algebraic subvariety of dimension n— 1 with
normal crossings, and w a closed algebraic n-
form on X, all defined over Q. Let v be the
homology class of a singular n-chain on X(C)
with boundary contained in D(C). The inte-
gral [,w is called the numerical period of the
quadruple (X, D, w,v).

The space P of effective periods is defined
as the vector space over Q generated by the
symbols [(X, D,w,~v)] representing equivalence
classes modulo the following relations:

1. (linearity) [(X,D,w,~)] is linear in both w
and ~.

2. (change of variables) If f : (X1,D1) — (X»o, D»>)
is @ morphism of pairs defined over Q, v
9



relative n-cykel in X7 \ D1 and wo an alge-
braic closed n-form on X, then

[(X1,D1, ffwa,v1)] = [(X2, Do, wa, f«(71))].

3. (Stokes formula) Denote by D the normal-
isation of D, the variety D containing a
divisor with normal crossings D; coming
from the double points in D. If g is an

n — 1-form, closed on D, then

[(Xa Dvdﬁafy)] — [(Da D17/6|D78/7)]

We call the image of the evaluation homomor-
phism [(X,D,w,vy)] — Jyw from P to C the set
P of numerical periods.



Conjecture (version 2) The evaluation homo-
morphism P — P is an isomorphism.

I.e. Any polynomial relation between periods
can be obtained through manipulation of the
defining integrals.

Remark: In the Period paper, Definition 2 and

the Conjecture are only stated with w of top
degree n = dim(X).
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Wiustholz’ theorem. Let G be a commutative
algebraic group of dimension N defined over Q
and

o CN scVN/anz=a
a parametrization such that the local inverse
at the origin is given by

i (/P P P
— w1, Wo, ..., W
, 1/0 > /o N)

where w; form a basis of differential 1-forms
on G defined over Q. Let u = (u1,...,uy) €
CN, u # 0 be such that #(u) € G(Q). Let
L, be the set of Q-linear relations between
u1,...,uyn and suppose it is non-trivial. Con-

sider the linear subspace W, of CV defined by

Wy ={(21,...,2n) | I(21,...,2y) =0for alll € Ly}

Then Hy, := ¢(Wy) is a proper algebraic sub-
group of G, defined over Q.
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Corollary Suppose P € G(Q) and

P P P
al/O w1+a2/0 w2+-~'+aN/O wy =0

where aq,...,any € Q and the integration paths
[ from O to P are the same in each integral.
Then Wiustholz’ theorem implies that there ex-
ists a proper algebraic subgroup H C G with
[ C H and such that ajwi + - + aywy re-
stricted to H is a trivial 1-form. Of course
J& trivial = 0.

Chudnovsky’s theorem Let E be a CM ellip-
tic curve defined over Q and let w be one of
its periods. Then the transcendence degree of
the field Q(w, ) over Q is 2.
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Gamma relations

Standard relations: (a is assumed rational)

M(a+ 1) =al (a)

sin(mwa)

M(a)l (1 —a) =
nﬁl - (a n E) _ (Qﬂ_)(n_l)/Qn—na-I—l/Qr(na).
k=0 n

Proof:

M)l (1) _ [ a-1pq _ y1-14, -1
N(a+ 1) _/O v )7 a

1 1
1 —2) Y

T
1( T )adaz
1—:10

a

©.@)

U
0 1—|—u

F(a)F(1—a) =

o o —

|
S5~
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Conjecture (Rohrlich): Any multiplicative re-
lation of the form

I] r(a)™ e rl/2 . Q, ma €Z

acQ
or its square, is generated by the above three
relations.

Example

(1/3)M(2/15 _
(1/3)r(2/ )eQ b Das
|‘(4/15)|‘(1/5)
Formal derivation: Denote product in conjec-

ture formally by >, mala] where a € Q/Z. Di-
vide by relations

[na] ~ [a] +[a+1/n]+ -+ [a+ (n —1)/n]
and

la] +[-a] ~ O

Then, 2[1/3] 4 2[2/15] — 2[4/15] — 2[1/5] ~ O
(exercise). Another exercise: [1/3] 4 [2/15] —
[4/15] — [1/5] # O
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Alternatively

r(1/3)r(2/15) - B(1/3,2/15)
Fa/15)r(1/5) < 27 Bajis.1/5) <
B(1/3,2/15) and B(4/15,1/5) are periods of
1-forms on Jacobian J; of y1® = 210(1 — 2)13

and J, of y1°> = z11(1 — 2)12.

Waustholz® theorem = J; x Jo contains non-
trivial algebraic subgroup, hence J; and J> con-
tain isogenous factor.
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Dilogarithm relations
oo Zn
Lio(z) = ) —
_ N
n=1
Note:
Liz(1) = 72/6, Lio(—1) = —72/12

Liz(1/2) = 7%/12 — (1/2) 10g?(1/2).

Introduce Roger’s function

Lo(2) = Lio(2) + %Iog 210g(1 — 2)
Then,

Lo(-2) + La(—1/2) = —7°/6
Lo(2) + Lo(1 — 2) = 72/6
72/2 = Lo(z) + La(y) + Lo(1 — zy)

1 — 1 —
+L2< x>+L2< y)
1 —xy 1 —xzy
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Numerical dilogarithm relations
L>((vV/5-1)/2) = 72/10, Lo((3—V5)/2) = n°/15
2Lo(y) + Lo(y?) = 4n2/21, v = 2cos(37/7)
6L5(1/3) — Lo(1/9) = 72 /3

3Lo(—1/6)—Ly(1/8)+Lo(1/9)+Lo(1/28) = —n°/12

General pattern: F number field and F the
free Z-module generated by the elements of
F*. Denote its elements by Y, n;[z;], a finite
sum with n; € Z and z; € F*. Then F* can be
considered as F modulo the relations [1] = 0
and [ab] = [a] 4 [b].

Theorem (Zagier): Suppose that
Szl All—2] =0 in (A°F*)®7Q
i

then 3, n;Lo(x;) € Q- 72
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Sample derivation:
6L>(1/3) — Lo(1/9) € Q- 7°

6[1/3] A1 —1/3] = [1/9] A[1 — 1/9]
= 6[1/3] A [2/3] — [1/9] A [8/9]

= —6[3] A ([2] — [3]) +[9] A ([8] —[9])
= —6[3]A[2] +6[3]A[2] =0

Conjecture (Zagier): Converse also holds.

In particular, all Q-linear relations between Lo-
values come from the functional equations.
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Let X be an algebraic variety over Q and let
Z be an algebraic cycle of dimension r on X.
Let w be a meromorphic 2r-form on X¢ of the
second kind, defined over Q. Then

/Zw e (2m)"Q.

" Grothendieck’s conjecture”: All period rela-
tions arise from algebraic cycles (or more gen-
erally: Hodge cycles).

See Yves André’s G-functions.

Exercise: Prove the above relation using the
basic manipulations of Kontsevich-Zagier.
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