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1 Introduction

Let H be a finitely generated subgroup of rank r in (C∗)2. Denote by G the Q-closure of H, i.e.
the subgroup of (C∗)2 consisting of all pairs a = (a1, a2) ∈ (C∗)2 such that aN = (aN

1 , aN
2 ) ∈ H

for some N ∈ N. We are interested in an upper bound for the number of solutions (x, y) ∈ G
of the equation

x + y = 1 (1)

A special case of (1) is obtained if we restrict x and y to the group of so-called S-units in an
algebraic number field K. Here S is assumed to be a finite set of places of K including all
infinite ones. Supposing that d = [K : Q], s = #S and letting a, b ∈ K∗ be fixed, J.H.Evertse
[3, Theorem 1] showed that

ax + by = 1 (2)

has not more than 3× 7d+2s solutions. Since s ≥ d/2 this implies that (2) has at most 3× 74s

solutions. We can apply this result to equation (1). However, the estimate will depend on
the degree of the field containing H, and on s, the number of places for which the elements of
H have non-trivial valuation. Note that for fixed r the number s may have arbitrarily large
values.

We shall be interested in bounds which depend only on r. The first such uniform result
for a general subgroup G of (C∗)2 was given in [5]. There the bound

2226+36r2

was derived for the number of solutions of equation (1). This was improved in [6] to

213r+63rr.

In this paper we obtain

Theorem 1.1 Let G be the Q-closure of a finitely generated subgroup of (C∗)2 of rank r.
Then the equation

x + y = 1, (x, y) ∈ G

has not more than 28r+8 solutions.
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Note that this bound, apart from the numerical constants, has the same shape as Evertse’s
upper bound.

It is well known that a particular application of Theorem 1.1 deals with the multiplicity of
binary recurrences. Let {um}m∈Z be a sequence of complex numbers satisfying the recurrence
relation

um+2 = ν1um+1 + ν0um

with ν0, ν1 ∈ C, ν0 6= 0. Suppose that we have initial values (u0, u1) 6= (0, 0). Write f(z) =
z2 − ν1z − ν0. Let α, β be its zeros. Note that ν0 6= 0 implies α, β 6= 0. Let us assume that
α 6= β. Then there exist a, b ∈ C such that

um = aαm + bβm

Given c ∈ C we are interested in the number of solutions m ∈ Z of um = c. Note that the
cases a, b or c equal to zero are uninteresting since they have either at most one solution or
infinitely many trivial ones. So we assume they are non-zero. Divide on both sides by c, and
from now on we shall be interested in the equation

λαx + µβx = 1 in x ∈ Z, (3)

where λµαβ 6= 0. We shall also assume that α, β are not both roots of unity.
As a fine point we add that if α, β are roots of unity, then the set

{(αx, βx)| x solution of (3)}

consists of at most two elements. This is a consequence of the fact that there exist precisely
two triangles in the complex plane two of whose sides have lengths |λ|, |µ|, whose third side is
the segment [0, 1] and such that the side of length |λ| ends in 0.

Straightforward application of Theorem 1.1 with the group H generated by (λ, µ) and
(α, β) shows that (3) has not more than 224 solutions. However, one can do much better,

Theorem 1.2 Under the assumptions just mentioned the equation

λαx + µβx = 1 in x ∈ Z

has at most 61 solutions.

As a curiosity we mention that the equation with the largest number of solutions known is

θ2 − θ3

θ2 − θ1

(
θ1

θ3

)x

+
θ1 − θ3

θ1 − θ2

(
θ2

θ3

)x

= 1

where the θi are the zeros of X3 − 2X2 + 4X − 4. The solutions are x = 0, 1, 4, 6, 13, 52. It
would be interesting to have examples with more than 6 solutions, if they exist.

The first result in the situation of Theorem 1.2 with a universal bound was derived in [4]
with the bound 2223

.
The improvements we give in the current paper in comparison with [4],[5] and [6] depend

upon two ingredients. First we use an explicit version of Thue’s method via hypergeometric
polynomials as given in [1], whereas the previous papers are based on a quantitative version of
Roth’s Theorem. To get bounds that do not depend upon degrees of number fields involved,
previously a result from [7] was used on lower bounds for heights of solutions of equations.
Here we apply the strongly improved bound given in Corollary 2.4 of [2].
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2 Lemmas on algebraic numbers

First we fix our notations concerning heights. Let K be an algebraic number field of degree
d over Q. For any valuation v we write dv = [Kv : Qv], where Kv,Qv are the completions of
K,Q with respect to v. For archimedean v we normalise the valuation by |x|v = |x|dv/d where
|.| is the ordinary complex absolute value. When v is non-archimedean we take |p|v = p−dv/d

where p is the unique rational prime such that |p|v < 1. The height of an algebraic number
α ∈ K∗ is defined by

H(α) =
∏
v

max(1, |x|v)

Because of our normalisation H(α) does not depend on the choice of the field K in which α is
contained. More generally, for any n + 1-tuple (x0, x1, . . . , xn) ∈ Kn, not all xi zero we define

H(x0, x1, . . . , xn) =
∏
v

max(|x0|v, . . . , |xn|v).

Note that by the product formula we have H(λx0, . . . , λxn) = H(x0, . . . , xn) for any λ ∈ K∗,
so we can view this height as a height on the K-rational points of the projective space Pn. In
particular we have H(α) = H(1, α).

We start with an easy Lemma.

Lemma 2.1 Let a, a′, b, b′, A, B ∈ Q∗ and c, c′ ∈ Q be such that ab′ 6= a′b and

aA + bB = c, a′A + b′B = c′

Then, H(A,B, 1) ≤ 2H(a, b, c)H(a′, b′, c′).

Proof. Fix a number field K in which all numbers involved are contained. For each infinite
valuation v let rv = 2dv/d and let rv = 1 if v is finite. Notice that

∏
v rv = 2.

One easily finds that

A =
bc′ − b′c

∆
, B =

a′c− ac′

∆
where ∆ = a′b− ab′. Hence

H(A,B, 1) = H(bc′ − b′c, a′c− ac′, ba′ − ab′)
=

∏
v

max(|bc′ − b′c|v, |a′c− ac′|v, |ba′ − ab′|v)

≤
∏
v

rv max(|a|v, |b|v, |c|v) max(|a′|v, |b′|v, |c′|v)

= 2H(a, b, c)H(a′, b′, c′)

2

As a corollary we get

Corollary 2.2 Let a, b, A,B ∈ Q∗ be such that a 6= b and

A + B = 1, aA + bB = 1

Then, H(A,B, 1) ≤ 2H(a, b, 1).
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The next lemma follows from an explicit version of Thue’s method using hypergeometric
polynomials.

Lemma 2.3 Let a, b, A,B ∈ Q∗ and ρ ∈ N be such that

A + B = 1, aA2ρ + bB2ρ = 1

Then, H(A,B, 1) ≤ 21/ρcH(a, b, 1)1/ρ, where c = 6
√

3.

Proof. We infer from Lemma 6 of [1] that there exist three polynomials Pρ, Qρ, Rρ of degree
≤ ρ such that

z2ρPρ(z) + (1− z)2ρQρ(z) = Rρ(z), ∀z ∈ C

bPρ(A) 6= aQρ(A)

and
H(Pρ(A), Qρ(A), Rρ(A)) ≤ (6

√
3)ρH(A)ρ.

Substitute z = A in the polynomial identity. Application of the previous lemma with
A2ρ, B2ρ instead of A,B and c = 1, a′ = Pρ(A), b′ = Qρ(A), c′ = Rρ(A) yields,

H(A,B, 1)2ρ ≤ 2H(a, b, 1)H(Pρ(A), Qρ(A), Rρ(A))
≤ 2cρH(a, b, 1)H(A)ρ ≤ 2cρH(a, b, 1)H(A,B, 1)ρ

Divide on both sides by H(A,B, 1)ρ and take ρ-th roots to obtain our Lemma. 2

The following lemma is due to an improvement of [7] by Corollary 2.4 in [2].

Lemma 2.4 Let λ, µ ∈ Q∗ and suppose that λ + µ = 1. Let (pi, qi), i = 1, 2 be two solutions
in Q of λp + µq = 1 such that the pairs (p1, q1), (p2, q2) and (1, 1) are all distinct. Then,

H(p1, q1, 1)H(p2, q2, 1) ≥ 1.0942711 . . .

By application of this Lemma with λ = x0, µ = y0 and pi = xi/x0, qi = yi/y0 we obtain,

Corollary 2.5 Let (x0, y0), (x1, y1), (x2, y2) be three distinct solutions of x + y = 1 in x, y ∈
Q∗. Then,

max
i=1,2

(max(H(xi/x0),H(yi/y0)) ≥ 1.022777 . . .

3 Normed vector spaces

Let m ∈ N. For any subgroup H ⊂ (Q∗)m we let the Q-closure of H be the set of all
a ∈ (Q∗)m such that aN ∈ H for some N ∈ N. Let G be the Q-closure of a finitely generated
subgroup of (Q∗)m of rank r. Let T be the torsion subgroup of G. Then G/T = G ⊗Z Q
has the natural structure of a Q-vector space of dimension r. Consider the logarithmic height
function h(x) = log H(x). The function

||(x1, . . . , xm)|| = max
i=1,...,m

h(xi)

provides a natural norm on G⊗ZQ as Q-vector space. By continuity we can extend this norm
to the real vector space VG = G⊗Z R.
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Lemma 3.1 The (semi)-norm ||.|| is positive definite on VG.

Proof. Let us write down the semi-norm ||.|| in an explicit way. Suppose the Q-generators
of G are given by

ai = (ai1, . . . , aim), i = 1, . . . , r.

Any element of G can be written, modulo roots of unity, as x = (x1, . . . xm) =
∏r

i=1(ai1, . . . , aim)ei

for some ei ∈ Q. Hence, using h(a) = (1/2)
∑

v | log(|a|v)|,

||x|| = max
j=1,..,m

h(
r∏

i=1

aei
ij )

= max
j=1,..,m

(1/2)
∑
v

∣∣∣∣∣
r∑

i=1

ei log(|aij |v)
∣∣∣∣∣ .

Extending ||.|| to the reals is now straightforward, simply extend ei to R. We also remark
that if we take the ei integral, the components of x all lie in the same number field, hence the
non-trivial elements of the group generated (over Z) by the ai have a norm uniformly bounded
below by a positive constant, γ, say.

We now prove positive definiteness of ||.||. Suppose there exists y ∈ VG, non-zero, such that
||y|| = 0. This implies that there exist ei ∈ R, not all zero, such that |

∑r
i=1 ei log(|aij |v)| = 0

for all valuations v and all j. Using Dirichlet’s box principle we can then show that to any
ε > 0 there exist integers mi, not all zero, such that |

∑r
i=1 mi log(|aij |v)| < ε for all v and

j. This contradicts the existence of the uniform lower bound γ. Hence ||y|| = 0 implies that
ei = 0 for all i, as desired. 2

From now on we suppose that G ⊂ (Q∗)2. We want to bound the number of solutions of
the equation

x + y = 1, (x, y) ∈ G (M)

Consider the natural projection p : G → VG

Lemma 3.2 Let (x0, y0), (x1, y1), (x2, y2) be three distinct solutions of (M). Then their images
under p cannot be all equal.

Proof. If all three images would be the same then xi/x0 and yi/y0 would be roots of unity
for i = 1, 2. But this is impossible in view of Corollary 2.5. 2

Let M be the image under p of the solution set of (M). Then the number of solutions to
(M) is bounded by 2(#M).

We now restate the lemmas of the previous section in terms of the set M ⊂ VG. In the
derivations we use the fact that max(H(a),H(b)) ≤ H(a, b, 1) ≤ max(H(a),H(b))2.

Corollary 2.2 becomes,

Lemma 3.3 Let w1,w2 be distinct points of M. Then,

||w1|| ≤ log 2 + 2||w2 −w1||

Lemma 2.3 becomes,
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Lemma 3.4 Let w1,w2 be distinct points of M and ρ ∈ N. Then,

||w1|| ≤ log c +
1
ρ
(log 2 + 2||w2 − 2ρw1||)

Corollary 2.5 becomes,

Lemma 3.5 Let w0,w1,w2 be distinct points of M. Then,

max(||w1 −w0||, ||w2 −w0||) ≥ 0.022522 . . .

It will turn out that the cardinality of any set satisfying the inequalities in the above three
lemmas can be bounded in terms of the dimension of VG.

We need some additional lemmas on coverings of convex bodies. The first is straightfor-
ward,

Lemma 3.6 Let V be an m-dimensional normed real vector space with norm ||.||. Let R >
δ > 0. Consider the ball B of radius R around the origin and suppose it contains a set U such
that ||u1 − u2||| ≥ δ for any two distinct u1,u2 ∈ U . Then #U ≤ (1 + 2R/δ)m.

Proof. Let V0 be the volume of the unit ball {x‖ ||x|| < 1}. Around any point u ∈ U we
consider the open ball Bu = {x| ||x− u|| ≤ δ/2. Since these balls are disjoint their union fills
up a region of volume (#U)(δ/2)mV0 in the ball of radius R+ δ/2. The latter ball has volume
(R + δ/2)mV0. Hence (#U)(δ/2)m ≤ (R + δ/2)m and our Lemma follows. 2

Lemma 3.7 Let Ψ be a convex symmetric body in Rr. By λΨ we denote the convex body
obtained by multiplying the points of Ψ by λ. Then, for any λ > 1, the set λΨ can be covered
by (4 + 2λ)r translated copies of Ψ.

The proof of this Lemma can be found in [6, Lemma 7.2]. However, we really need the
following corollary.

Corollary 3.8 Let V be an r-dimensional normed real vector space with norm ||.||. Let ε > 0.
Then there is a finite set E ⊂ V of unit vectors such that every v ∈ V can be written
as v = ||v||e + v′ with e ∈ E and ||v′|| ≤ ε||v||. Moreover, E can be chosen such that
#E < (4 + 4/ε)r.

Proof. Let B be the unit ball with respect to ||.||. According to Lemma 3.7 the ball B can be
covered by (4 + 4/ε)r translates of (ε/2)B. Consider such a covering and let ∆ be the subset
of (ε/2)-balls which have non-trivial intersection with the boundary of B. Clearly the balls in
∆ give a covering of the boundary of B. For the set E we take the unit vectors c/||c|| where
c runs over the centers of the (ε/2)-balls in ∆.

Now let v ∈ Rr be arbitrary. Let c be the center of the (ε/2)-ball in ∆ which contains
v/||v|| and let e = c/||c||. Notice that ||c− e|| = |1− ||c|| | ≤ ε/2. Hence,

|| v
||v||

− e|| ≤ || v
||v||

− c||+ ||c− e|| ≤ ε/2 + ε/2 = ε.

Thus we find ||v − ||v||e|| ≤ ε||v||, e ∈ E and our corollary follows. 2
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4 Proof of Theorem 1.1

Let Σ be a subset of a normed vector space V satisfying

1. ||w1|| ≤ log 2 + 2||w2 −w1|| for any two distinct w1,w2 ∈ Σ

2. There exists c1 such that ||w1|| ≤ c1 + 1
ρ(log 2 + 2||w2 − 2ρw1||) for any two distinct

w1,w2 ∈ Σ and any ρ ∈ N.

3. There exists c0 > 0 such that max(||w1 −w0||, ||w2 −w0||) ≥ c0 for any three distinct
w0,w1,w2 ∈ Σ.

Proposition 4.1 Let c2 = max(2 log 2, c1 + log 2/20). Then,

#Σ ≤ 1
2

(
44 + 2

c2

c0

)r+1

where r is the dimension of V .

Proof. Let ε be a real number such that 0 < ε < 0.1. Let e be a unit vector in V and consider
the cone

Ce = {v ∈ V | v = ||v||e + v′, ||v′|| ≤ ε||v||}
Let

c3(ε) =
c2

1− 10ε
.

We will show that for any two w1,w2 ∈ Σ ∩ Ce with c3(ε) < ||w1|| ≤ ||w2|| we have

(5/4)||w1|| ≤ ||w2|| ≤ (1 + 4/ε)||w1|| (4)

Suppose first w1,w2 ∈ Σ ∩ Ce and ||w1|| ≤ ||w2|| < (5/4)||w1||. Write wi = ||wi||e + w′
i.

Then, from the first inequality on Σ we infer,

||w1|| ≤ log 2 + 2||(||w2|| − ||w1||)e + w′
2 −w′

1||
≤ log 2 + 2(||w2|| − ||w1||) + 2ε(||w2||+ ||w1||)
≤ log 2 + 2(1/4)||w1||+ 2ε(9/4)||w1||

We obtain,

||w1|| ≤
2 log 2
1− 9ε

≤ c3(ε).

Suppose next that w1,w2 ∈ Σ ∩ Ce and ||w2|| > (1 + 4/ε)||w1||. Choose ρ ∈ N such that
||w2|| = (2ρ + δ)||w1|| with |δ| ≤ 1. Notice that ρ ≥ 2/ε. From the second inequality on Σ it
follows that

||w1|| ≤ c1 +
1
ρ
(log 2 + 2||δ||w1||e + w′

2 − 2ρw′
1||

≤ c1 + (log 2/20) +
2
ρ
(||w1||+ ε(||w2||+ 2ρ||w1||))

≤ c2 +
2
ρ
||w1||+ ε(8 + 4/ρ)||w1||

≤ c2 + ε||w1||+ 9ε||w1||
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We get
||w1|| ≤

c2

1− 10ε
≤ c3(ε)

We now put the above considerations together. Let N be the smallest integer such that
(5/4)N−1 > 1 + 4/ε. Suppose Ce contains N points w1, . . . ,wN larger than c3(ε). Suppose
they are ordered by size. Then, for each i, ||wi+1||/||wi| ≥ 5/4. This implies ||wN ||/||w1|| >
(5/4)N−1 > 1 + 4/ε which is impossible by inequality (4). Hence any cone Ce contains at
most N − 1 elements from Σ of norm ≥ c3(ε). According to Lemma 3.8 the space V can be
covered by (4 + 4/ε)r such cones and so the total number of points of Σ larger than c3(ε) can
be estimated by (N −1)(4+4/ε)r. Since ε < 0.1 it is not hard to see that N −1 < 2/ε. Hence
the number of large points is bounded by (2/ε)(4 + 4/ε)r.

It remains to count the elements of Σ with norm at most c3(ε). By the third inequality on
Σ a ball of radius c0 around a point of Σ contains at most one other element from Σ. Consider
a subset Σ′ of Σ such that a ball of radius c0 around any point of Σ′ contains no other point
of Σ′. We can do this in such a way that |Σ| ≤ 2|Σ′|. According to Lemma 3.6 the number of
points in Σ′ can be bounded from above by (1 + 2c3(ε)/c0)r. Thus we conclude,

|Σ| ≤ 2
ε

(
4 +

4
ε

)r

+ 2
(

2c3(ε)
c0

+ 1
)r

.

Now we choose ε such that 4/ε = 2c3(ε)/c0, i.e ε = (10 + 0.5c2/c0)−1. Our proposition
then follows immediately. 2

Proof of Theorem 1.1. By a specialisation argument as in [5] we may assume that G ⊂
(Q∗)2. We now complete the line of argument started in the Section (3). There we had the set
M. This set satisfies the conditions of Proposition 4.1 for the values c0 = 0.022522 . . . c1 =
log(6

√
3) = 2.3410 . . .. Hence the cardinality of M is bounded by 1

2 × 256r+1. Since the
number of solutions of (M) is bounded by 2#M our theorem follows. 2

5 Proof of Theorem 1.2

We first need a lemma

Lemma 5.1 Consider the equation λαx + µβx = 1 in x ∈ Z where λ, µ, α, β are as in the
Introduction and assumed to be algebraic numbers. Suppose we have the solutions x = 0, r, s, t.
Suppose that t ≥ 14s. Then,

s− 8.4r ≤ 9.1
log H(α, β, 1)

.

Proof. Application of Corollary 2.2 with A = λ, B = µ yields

H(λ, µ, 1) ≤ 2H(α, β, 1)r

Apply Lemma 2.3 with A = λαs, B = µβs and ρ such that t = 2sρ + δ, with 0 ≤ δ < 2s.
Note that ρ ≥ 7. We obtain,

H(λαs, µβs, 1) ≤ 21/ρcH(αδλ1−2ρ, βδµ1−2ρ)1/ρ

≤ 21/ρcH(α, β, 1)δ/ρH(λ−1, µ−1, 1)2−1/ρ
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Notice that

H(α, β, 1)s ≤ H(λ−1, µ−1, 1)H(λαs, µβs, 1)
≤ 21/ρcH(α, β, 1)δ/ρH(λ−1, µ−1, 1)3−1/ρ

and use H(λ−1, µ−1, 1) ≤ H(λ, µ, 1)2 ≤ 4H(α, β, 1)2r to obtain

H(α, β, 1)s−δ/ρ ≤ 21/ρc26−2/ρH(α, β, 1)6r

< 64cH(α, β, 1)6r

Taking log’s and using log(64c) ≤ 6.5 yields

s− δ/ρ− 6r ≤ 6.5/ log(H(α, β, 1)

from which our Lemma is immediate via δ/ρ ≤ 2s/7. 2

Proof of Theorem 1.2. By Theorem 2 of [1] we may assume that α, β, λ, ν ∈ Q. Without
loss of generality we can also assume that

H(α, β, 1) ≤ H(α−1, β−1, 1).

Let q be the length of the shortest closed interval containing three solutions. Let n, n+p, n+
q be three such solutions. Application of Lemma 2.4 to the equation λαn+pX + µβn+pY = 1
yields

H(α, β, 1)q−pH(α−1, β−1, 1)p ≥ c4,

where c4 = 1.0942711 . . .. Hence H(α−1, β−1, 1)q ≥ c4.
Define γ = log 8/ log c4 and note that γ < 23.1.
Now let k < l < m < n be any four solutions. First of all application of Corollary 2.2 with

A = λαk, B = µβk yields
H(λαk, µβk, 1) ≤ 2H(α, β, 1)l−k (5)

In a similar way application of Corollary 2.2 with A = λαn, B = µβn yields

H(λαn, µβn, 1) ≤ 2H(α−1, β−1, 1)n−m (6)

Application of Lemma 2.1 with A = αk−n, B = βk−n yields

H(αk−n, βk−n, 1) ≤ 2H(λαn, µβn, 1)H(λαn−k+l, µβn−k+l, 1)
≤ 2H(λαn, µβn, 1)2H(αl−k, βl−k, 1)

With (6) and H(α, β, 1) ≤ H(α−1, β−1, 1) we get

H(α−1, β−1, 1)n−k ≤ 8H(α−1, β−1, 1)2(n−m)+l−k

Using our lower bound H(α−1, β−1, 1) ≥ c
1/q
4 we find that

n− 2m + l ≥ −γq hence n− l − γq ≥ 2(m− l − γq)

Denote the smallest solution by n0 and the second smallest by n1. Application of the inequality
with k = n0, l = n1 yields

n− n1 − γq ≥ 2(m− n1 − γq) (7)

for any two solutions m,n with n1 < m < n. We divide our solutions into three intervals,

9



• I1 = [n0, n1 + (0.9 + γ)q[

• I2 = [n1 + (0.9 + γ)q, n1 + (230 + γ)q[

• I3 = [n1 + (230 + γ)q,∞[

Since any interval of length < q contains at most two solutions, the interval I1 contains at
most 1 + 2([γ + 0.9] + 1) <= 49 solutions. Because of (7) the interval I2 contains at most 8
solutions.

We finally show that I3 contains at most 4 solutions. Suppose I3 contains 5 solutions,
the largest being denoted by N , the smallest by M . Furthermore we let k be a solution
such that there exists another solution l such that k < l < k + q. Because of (7) we find
k < n1 + (1 + γ)q. Since there exists at least one closed interval of length q containing three
solutions such a k exists and we may moreover assume that k ≥ n1. From (7) it follows that
(N−n1−γq) ≥ 16(M−n1−γq). Since k ≥ n1 this implies (N−k−γq) ≥ 16(M−k−γq) and
since N−k > M−k > 229q we get N−k ≥ (16−15γ/229)(M−k) > 14(M−k). Application
of Lemma 5.1 to the equation λαkαx + µβkβx = 1 with r = l− k, s = M − k, t = N − k yields

M − k − 8.4(l − k) ≤ 9.1
log H(α, β, 1)

.

Using the lower bound H(α, β, 1) ≥ c
1/2q
4 and l − k < q we get M − k < 211q, contradicting

M − k > 229q.
So we conclude that I3 contains at most 4 solutions, which leaves us with a total of at

most 49 + 8 + 4 = 61 solutions. 2
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