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Abstract. A case study is presented demonstrating the application of the Mondriaan package for
sparse matrix partitioning to the field of cryptology. An important step in an integer factorisation
attack on the RSA public-key cryptosystem is the solution of a large sparse linear system with 0/1
coefficients, which can be done by the block Lanczos algorithm proposed by Montgomery. We par-
allelise this algorithm using Mondriaan partitioning and discuss the high-level components needed.
A speedup of 8 is obtained on 16 processors of a Silicon Graphics Origin 3800 for the factorisation
of an integer with 82 decimal digits, and a speedup of 7 for 98 decimal digits.
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1. Introduction

The security of the widely used RSA public-key cryptosystem [18] is based on the fact that finding
the prime factors of a large integer is extremely time-consuming. The state-of-the-art in integer
factorisation methods tells us how large the keys used in RSA must be to withstand attacks based on
trying to find the prime factors for a given public-key value.

On May 9, 2005, Bahr et al. [1] announced a new record factorisation: with help of te Riele
and Montgomery they factorised the 200 decimal-digit number originally posed as the RSA-200
challenge in 1991. This factorisation used the Number Field Sieve (NFS) [15], which is currently
the best factorisation method for large integers. In practice, the NFS almost always finds a nontrivial
factor of a composite number within a few attempts. The two most time-consuming parts of this
method are the sieving step and the matrix step.

The sieving step took from December 2003 to December 2004, and was done by farming out
jobs to a variety of computers, taking a total of 55 CPU years (at the equivalent speed of a 2.2
GHz Opteron processor). The matrix step is more tightly coupled and needs more memory since it
involves a large sparse matrix, with 64 million rows and columns and 11 x 10° nonzeros for RSA-
200. Therefore, it must be carried out on a parallel computer. The matrix step took about three
months on a cluster of 80 Opterons. The linear system of the matrix step was solved by a block
Wiedemann algorithm [5]. An alternative method would be the block Lanczos algorithm proposed
by Montgomery [16].

In the present work, we will discuss the high-level components needed in a parallel computation
of the matrix step, such as Mondriaan matrix partitioning. We focus on the block Lanczos algorithm,
but the same high-level components are also needed for the block Wiedemann algorithm.



2. Preliminaries

2.1. RSA algorithm

The RSA algorithm was invented in 1977 [18] and it has become one of the most widely used
public-key systems. The basic idea of RSA is that there is no efficient algorithm to find nontrivial
prime factors of a large composite number. However, it is easy to take two large prime numbers and
compute their product.

To explain how RSA works, we need some preliminaries from number theory (see e.g. [6, Chap.
31]). We omit the proofs for the sake of brevity.

Definition 1 Let x,y be integers and n a natural number. Then x and y are called congruent
modulo n, if z — y is divisible by n. This is denoted by x = y (mod n).

For example 23 = 10 (mod 13) and 15 = 7 (mod 8).

The relation = (mod n) is an equivalence relation (i.e., it is reflexive, symmetric, and transitive),
and therefore induces equivalence classes in the usual manner. For a given n, the number of equiv-
alence classes is exactly n. We may simply represent each equivalence class by a single element,
giving the set of equivalence classes Z,, = {0, 1,...,n — 1}. Addition, subtraction, and multiplica-
tion of the equivalence classes is defined with the help of these representative elements. With these
operations, the set Z,, becomes a commutative ring.

Definition 2 Let n be a natural number. Then, the multiplicative ring of Z,,, denoted by Z?, is the
set of elements a € Z,, for which there is an element b € Z,, such that ab = 1 (mod n).

Definition 3 The number of elements of Z? is denoted by ¢(n), and ¢ is called Euler’s totient
function.

For example, Z§ = {1,2,4,5,7,8} and ¢(9) = 6.
The next lemma tells us how to calculate ¢ in two special cases.

Lemma 1 Ifpisaprime number, thenZy = {1,2,...,p—1} and therefore ¢(p) = p—1. If n = pq,
where p and ¢ are distinct odd primes, then ¢(n) = ¢(p)o(q) = (p — 1)(¢ — 1).

Furthermore, we need the following theorem.
Theorem 1 (Lagrange) Let n be an integer and b € Z,,. Then v = 1 (mod n).
A well-known corollary is:

Corollary 1 (Fermat’s Little Theorem) Let p be a prime number and b € Z,. Then *~! = 1 (mod
p).

Now, we are in a position to discuss the details of RSA encryption and decryption. The first step is
to choose two (large) prime numbers p and ¢, and to calculate n = pq. Because of the primality of p
and ¢, we have

¢(n) = o(p)olq) = (p—1)(g = 1).

Given ¢(n), we choose an arbitrary element e € L) Since e is in the multiplicative ring, there
must exist an inverse d = e~! ¢ Zy ., As always in asymmetric cryptography, we have two keys:
a public key and a secret key. Here in RSA, the public key is (n, €), while the secret key is d. After



the computation of the secret key d, we do not need p and ¢ anymore; for safety reasons, we discard
them.

If Alice wants to send a plaintext x to Bob, she encrypts = with y = z¢. Bob receives from
Alice the cyphertext, and decrypts with his secret key d by computing y¢. Bob obtains the original
plaintext, because by the definition of d there is a nonnegative integer & such that ed = k¢(n) + 1,
and then by the Lagrange Theorem y¢ = (2¢)? = 2°? = 2**(W+! = 1(mod n) = =, provided n is
sufficiently large.

The question is now, why spy Oscar cannot read the message x easily. Oscar knows that Alice
applied RSA for encryption; he also knows the public key (n, e) and has the coded text. His “only”
work is to find the secret key d. To find d, he needs to know ¢(n), but ¢(n) cannot be found
efficiently without knowing the two primes p and ¢. Therefore, Oscar has to find p and ¢, or in other
words, he has to factor the composite number n, which cannot be done with an efficient algorithm.

2.2. The principle of factorisation algorithms

In this subsection, we describe the basic idea of factorisation algorithms that have been developed
to find arbitrary large prime factors, such as the NFS. The sieving step in the factorisation of a large
number n tries to find many pairs (a;, b;), j =0, ...,ny — 1, of integers such that a; = b; (mod n)
and a; and b; are the product of squares and small primes. Let p; be the ith prime, i.e., p; = 2,ps =
3,ps = 5, etc. and let py = —1. Then we can write each a; uniquely as a finite product

a; = Hp:‘nijv (1)

where m;; is a nonnegative integer. Note that a; is square if and only if all exponents m;; are even.
Define a matrix A by a;; = m,;; mod 2. The matrix A is sparse because integers have only a limited
number of prime factors. Define a similar matrix B for the integers b;.

The matrix step tries to construct a subset of pairs (a;, b;), j € S, suchthat [ [, ¢ a; and [, b;
are both square. Assume this succeeds, and write o® = [[,.qa; and 3% = [,.4b;. We have
(a—PB)(a+p8) = a*—3% = 0 (mod n). Therefore, a— 3 may contain a factor of n. If gcd(a3,n) = 1,
then ged(a — 3, ), which is a factor of n, has a good chance of being a nontrivial factor, in which
case we are done. For an extensive discussion of sieving algorithms, see e.g. the book by Crandall
and Pomerance [7].

If we write S = {j : 0 <j < nyandz; =1}, where x is an integer vector of length n, with 0/1
components x;, we see that the two products Hjes a; and Hjes b; are square if and only if Ax =0
and Bx = 0, where all computations are carried out modulo 2, i.e., in the finite field GF(2). Let the
ny X no mMatrix C' represent the two simultaneous linear systems,

A
- [ A } |
Thus, we need to solve Cx = 0, or in other words, find the nullspace N (C'). The following example
illustrates the whole procedure.

EXAMPLE 1 Let us take the small composite number n = 33. We would like to factor 33
and find its nontrivial prime factors 3 and 11. Table 1 gives the pairs (a;, b;) and their prime factors
found by a certain sieving step. Since we are only interested in the products being square or not,
the exponents are simplified by taking them modulo 2. The resulting 0/1-elements are entered into

a matrix C', with the top three rows representing the prime factorisations for the a;, and the bottom
four rows those for the b,,



a 25 | 32 1 28 | 40 | 35 | 2560 | 128 | 125 | 343
p=2 0 d 0 21310 9 7 0 0
p=>5 2 0 0 0|11 1 0 3 0
p="7 0 0 0 1 101 0 0 0 3

b 8| —-1|-32| -5 | 7|2 |-14]—-4]-7|-20

p=—-1] 1 1 1 1 107|0 1 1 1 1
p=2 3 0 5 0101 1 2 0 2
p=23 0 0 0 11070 0 0 0 1
p="7 0 0 0 01110 1 0 1 0

Table 1
The prime factorisations of a set of congruent pairs (a;, b;). An entry in row s and column j repre-
sents the exponent m;; of the corresponding prime factor p; in a; (top) or b; (bottom).

0100101100
0000111010
0001010001
C=|1111001111 @)
1010011000
0001000001
(00001010 10|

The vector x = [0,0,0,1,0,0,0,0,0,1]7 is a solution of Cx = 0; the product Cx is the sum
of column 3 and column 9, taken mod 2. (Note that the column numbering starts at 0.) These
columns represent the pairs (a3, b3) = (28,—5) and (ag, by) = (343, —20). Thus S = {3,9},
a =98, and 3 = 10. Note that gcd(a 3, n) = gcd(980, 33) = 1. This solution is successful because
ged(a — B, n) = gcd(88, 33) = 11, which is a nontrivial factor of the composite number 33.

It is also possible, especially for large numbers, that there are several solution vectors x. Here,
another solution is x = [1,1,1,0,0,0,0,1,0,0]X. This solution has S = {0,1,2,7}, a® = 25- 32 -
1-128 = 102400 and hence o« = 320, 8 = 32, so that gcd(af3,n) = gcd(10240,33) = 1, and
ged(a — B, n) = gecd(288, 33) = 3, resulting in the factor 3.

2.3. Finding the nullspace of a sparse matrix

In the matrix step of the NFS algorithm, the linear system C'x = 0 has to be solved, where C' is of
size ny X no. Here, ny is the total number of prime factors considered, each prime factor occurring at
most twice (once for the a; and once for the b;), and also considering —1 as a prime factor (needed
at most once). Furthermore, n, is the total number of pairs found during the sieving step. We usually
have n; < nj, because each prime can be a prime factor of several ; and b;. Because there are many
pairs, the matrix C' has many columns, and often it is huge. It is a sparse matrix, i.e., many of its
elements are zero, which is due to the fact that most primes are not divisors of a given pair (a;, b;).

In linear algebra, the classic method to solve C'x = 0 is by direct Gaussian elimination (GE),
which has a runtime O(n?) for an n x n system. GE is efficient for small matrices, but here it
would be too slow because of the size of C. Therefore, we rather apply iterative methods, which
have the advantage that they involve the matrix only in a multiplicative way, so that it does not
change and hence remains sparse. In direct methods such as GE, the matrix fills with new nonzeros
during the computation. Note that we consider the iterative methods as exact solvers, computing the



5

full n iterations, instead of as approximate solvers, which is common in linear system solving for
floating-point numbers.

Suitable iterative solvers are e.g. the Conjugate Gradient (CG) and the Lanczos methods, which
solve the linear system Ax = b for a symmetric and positive definite matrix A; see [11] for a
detailed discussion. In our case, we have b = 0. CG and Lanczos both need one matrix—vector
multiplication per iteration and three vector inner products. The only difference is that CG uses two
subtractions of vectors, while Lanczos calculates one subtraction and one addition of two vectors.
Thus the costs are the same in terms of high-level operations. We choose the Lanczos algorithm,
because of the availability of the block version by Montgomery [16].

3. Sequential Lanczos algorithm

3.1. Lanczos algorithm for solving real symmetric linear systems

In this section, we describe how the Lanczos algorithm determines the solution for a linear system
Ax = b, where A is a symmetric and positive definite matrix of size n x n. We closely follow the
the exposition of Montgomery [16]. The Lanczos algorithm constructs an A-orthogonal and linearly
independent set of vectors wq, wy,. .., w,,_1, Where the space spanned by these vectors contains the
solution x for Ax = b. Aswe will see, the Lanczos algorithm has the advantage that the computation
of these vectors at each iteration step can be simplified to a three-term recurrent formula providing
an opportunity to save computing time and memory.

The Lanczos iteration can simply be written down in the following general form

wy = b,
i1 T A2
wi AW,
w;, = Aw,;_; EOCUW] (¢ >0), wherec;; = WJTAWj ) (3)
]:

Notice that c;; is well-defined because A is positive definite. The iteration will break down at some
step m when w,, = 0.

First, we remark that the vectors wy, wy,..., w,,_; are A-orthogonal: vviTij =0 forall i # j,
which can be proven by induction. From the A-orthogonality and positive definiteness of A it follows
that wo, ..., w,,_1 are linearly independent. Since the whole space has dimension n, the iteration
above stops in at most n steps, i.e., m < n.

Second, if ¢ > j + 2 then by construction and the symmetry of A it holds that ¢,; = 0. Therefore,
the definition of w; simplifies to the three-term recurrence

w; = Aw,;_ — Cii—1Wi—1 — C;;—2W;_2 (Z > 1), (4)

which requires much less computational work.
Define a vector x by

3

W]Tb
X = w; . (5)

T
W Aw;

Il
o

J

Aswib/(w] Aw;) is a scalar for each j, we can write Ax as

Ax=3 2 Aw; . (6)
J



Therefore, Ax — b € span{Awg, Awy, ..., Aw,,_1, b}. Since Aw; € span{wg, wy,..., w; 1} for
i=0,...,m—1DbyEquation (3),and b = w, we have Ax—b € span{wg, wy,...,w,,}. Because
w,, = 0, this gives

Ax — b € span{wg, Wy, ..., W,,_1}. @)

Since w/ (Ax —b) =0, forj = 0,...,m — 1, Equation (7) implies that (Ax — b)”(Ax — b) = 0,
meaning that x is the exact solution of Ax = b.

3.2. Block Lanczos algorithm of Montgomery for solving symmetric linear systems over GF(2)

In this subsection, we briefly summarise the block Lanczos algorithm of Montgomery [16] for
solving symmetric linear systems over GF(2). This algorithm generalises the Lanczos recursion of
the previous subsection to work with subspaces instead of vectors. For this purpose, we need the
following definitions.

Definition 4 Let V and W be subspaces of GF(2)™. Then, V and W are called A-orthogonal
subspaces if viAw = 0 forall v € V, w € W. This is written as VT AW = 0.

Definition 5 A subspace YW C GF(2)" is said to be A-invertible if it has a basis W of column
vectors such that W7 AW is invertible.

In the above definition, it does not matter which basis we choose, because every two bases can be
transformed into each other with an invertible transformation.

Working with subspaces in the Lanczos algorithm means that instead of constructing a sequence
of vectors wo, wy, ..., w,,_1, We construct a sequence of subspaces Wy, W1, ..., W,,,_1 with the
following properties:

W;  is A-invertible |
WIAW; =0 (i #J) ,
AW CW, where W =Wy + W) +---+W,,_1 . (8)
Let 1W; form a basis of the subspace W;. Then

-1
x =y W;(WS AW;)"'W/b 9)

J

3

Il
o

solves Ax = b over GF(2). Note that the solution x of the block Lanczos algorithm corresponds to
the solution of the Lanczos algorithm for subspaces of dimension 1, see Equation (5).

The following procedure guarantees that the generated subspaces W; satisfy the three conditions
of Equation (8). We obtain subspace W; from an auxiliary matrix V;. First, we take an initial matrix
Vi of size n x N, where N is the computer word size (usually 32 or 64 bit). Now, let W consist of
as many columns of Vj as possible, subject to the requirement that W, is A-invertible. We proceed
by building a matrix V4, also of size n x IV, which is A-orthogonal to W,. Next, we construct 1
from columns of V; just as above. In general, at step ¢, we build a matrix V; which is A-orthogonal
to all earlier W;, and we build W; from V;. Then, WV, is the subspace with basis IV;.

The selection of the columns from V; is expressed by an N x N; matrix .S;, such that W, = V;.S,.
Here, IV, is the number of selected columns, N; < N. Each column of S; contains exactly one entry
1 and all other entries in the column are zeros: (.5;);, = 1 if we wish to select column j from V; as



column k in W;. We select columns at most once, meaning that each row of .S; has at most one entry
1. It can be shown that SZ.TSi = Iy, Which isthe V x N identity matrix.

Now we describe how to construct V;, at step ¢, given the basis V; which is A-orthogonal to
Wo, Wh, ..., W;_y and the basis W; of selected columns from V;. Let

Vien = AWST +V, — Z W;Ciy1; (i >0), with
=0

Ciry = (WIAW)'WSAAWST + V) (10)

This is a generalisation of Equation (3); for more details and proofs, see [16]. We stop with the
iteration when at some step m we get VL AV,, = 0. By construction, W; satisfies the first two
properties of Equation (8); a proof of the third property can be found in [16].

Similar to the standard Lanzcos algorithm, the computation of V;,; can be reduced to a simpler
formula, in this case a four-term recurrence

Vigr = AW}SZ-T + Vi = WiCi1i — Wit Cigr1im1 — WiaCig o (1> 1), (11)
Write WINV = S,(WT AW;)~1ST = S;(STVT AV;S;)~1ST. Then, we can rewrite Equation (11) as

Viei = AViSiSI 4+ ViDiy1 + Vie1 By + VioFyyq, with

Diyi = Iy — W™V AVS,ST + VI AV)),

E = —W™WUTAVS,ST,

Fin = ~WIW (I VI AV WINY) (VA2 0808+ VE AVL)SiST . (12)

3.3. Block Lanczos algorithm for our application

In this section, we explain, how to use the block Lanczos algorithm for our matrix C'. To find
(part of) the nullspace N (C) of C', we can apply the block Lanczos algorithm as proposed by Mont-
gomery [16]. Since this algorithm is only suitable for symmetric matrices, it is appliedto A = CTC
in such a way that it finds a nullspace N (CTC) that is as large as possible. Here, C* denotes the
transpose of the matrix C. There is no need to form the product C7'C explicitly: multiplication by
CT(C is carried out as multiplication by C followed by multiplication by C'*. Furthermore, it suffices
to store only C'. Since A(C) C N(CTC'), we hope to be able to find some vector x € N'(C); this
can be done by a postprocessing procedure [16] after the block Lanczos algorithm, which is outlined
in the next subsection.

The block Lanczos algorithm is applied to solve C'CX = CTCY, where X and Y are ny x N
matrices. The solution matrix X contains a set of /V columns, each representing a solution x. This
way, we obtain N solutions in one run of the algorithm. The value of NV is chosen as the word size
of an integer on the computer used, say N = 32. This choice enables storage of the complete matrix
X in a single one-dimensional integer array of length n,. It also allows the use of efficient bitwise
operations in the algorithm. The matrix Y is chosen as a random bit matrix. The aim of this approach
is to obtain many independent solutions of C7'Cx = 0, given by the columns of the matrix X — Y.

Algorithm 1 summarises the steps of the block Lanczos algorithm. At the first occurrence of a
matrix in the algorithm, its size is given as a superscript, e.g. V2>, Matrix subscripts denote the
order in a sequence of matrices, e.g. V;. All multiplication operations are explicitly shown by using
an asterisk or a circled asterisk, e.g. C' ® V on line 15. The result matrix is then written as C'V.
A circled asterisk denotes a multiplication involving a sparse matrix; this operation is emphasised
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because the matrix is then usually large. There is no need to store both V and V'T; only one of
the two matrices suffices. The matrix Cond; represents the termination condition; SS! = S;ST
represents a set of N; < N columns selected from V.

The function generateWS generates new matrices Wi'nV and SST. To do this, it needs to compute
the inverse of W AW, = STVICTCV,S; = SI Cond;S;, where Cond,; is given as input and S; is
computed at the same time as output. The standard method from linear algebra for computing an
inverse of an V x N matrix B is to perform Gauss—Jordan elimination simultaneously on B and on
Iy, retrieving Iy and B~ at the end. This involves row swaps in both matrices.

If a column has no nonzeros available as the next pivot for the elimination, the column is skipped,
and this is registered in S;. At the end, this yields the new matrix S;. The old matrix S;_; is
used as input to compute an initial ordering with the old columns (those included in the previous
iteration) numbered last. In an implementation, the matrix S; is stored instead of the product SST =
S;ST; actually, it can be stored most efficiently as a vector. The function generateWs only involves
computations on small N x N matrices.

Algorithm 1 The sequential block Lanczos algorithm.
Input: matrices C™*"2 and Y"2*V,
Output: matrices X™2*¥ and V2>V 'such that CTCX = CTCY and VICTCV,, = 0.
Call: [X,V,,] =blockLanczos(C,Y, N, ny,ns).
1. Initialise:
1a. Wlnv NxN Wlnv NxN _
lb Vn2><N Vn2XN -0
1c. Cv,"llxN =0

1d. KN =0
le. S57_NN =1y
1f. XN =

2.V N =CT® (C®Y)
3.0Vgr N =C eV
4. C’ondNXN (CVy)T * CV
5.1=0
while Cond; # 0 do
7. WiV SST] = generateWS(Cond;, SST |, N, i)
8. X = X +Vix (W (VT x1p))
9. CTCVZ-”QXN =CTeCV,
10. K; = ((CV)T * (C ® (CTCV;))) * SST + Cond,

11, DngN = Iy — WV s K;

12. BN = —W'“}’ * (Cond; * SST)
13. FN = W'nv s« (Iy — Cond;_y  WMW) 5 K, « SST
14. Vi1 = CTOVi% SST + Vix Dijy + Viiy % Ejyy + Vig * Fipy
15.CVipn=C® Vi
16. Condl-ﬂ = (C‘/;'+1>T * C‘/qul
17.i=1+1
18. Return X and V,,, = V..




3.4. Computation of the nullspace

The main algorithm for finding the nullspace of a given matrix C' is presented as Algorithm 2.
The algorithm starts by selecting a random n, x N bit matrix Y. When generating the columns y
of this matrix, it is checked that they satisfy y?CTCy ## 0. If not, they are replaced by another
randomly chosen column. This increases the probability of success of the whole process. We then
use the block Lanczos algorithm to find the solution space X, of CTCX = CTCY and a space V,,
of N vectors vy, ..., vy_y With v CTCv; = 0 for all i, j. We define the matrix Z of size ny x 2N
and compute C'Z. We then compute a basis U of the nullspace of C'Z. Since CTC(X, —Y) = 0,
we know that the columns of X, — Y are contained in this nullspace, but our hope is to find more
solutions because V.Z.CTCV,, = 0. This is the reason for extending X, — Y with V,,, to Z. Since
the size of C'Z is ny x 2NV, its nullspace has dimension at most 2.V, so that U contains at most 2.V
basis vectors, each of length 2NV. This nullspace can easily be obtained by Gaussian elimination,
because the matrix C'Z only has a small number of columns (in contrast to the original matrix C').
Because C(ZU) = (CZ)U = 0, the basis of ZU is included in the nullspace of C', and hence gives
the desired solution space.

Algorithm 2 Algorithm for finding part of the nullspace.
Input: matrix C"1*"2,
Output: matrix X™2*" with CX = 0.
1. Select a random bit matrix Y 72>V
2. [Xo, Vi) = blockLanczos(C, Y, N, ny,ns)
3. Zm22N = [X( — Y, V]
4, C7m* N = [C® (Xo—Y),C® V)
5. U?N*k = N(CZ)
6. ZU™*F = Z x U
7. Return X™2*" = pasis of matrix ZU.

4. High-level components for parallel computation
The block Lanczos algorithm requires the following major high-level components:
1. sparse matrix—vector multiplication;
2. sparse matrix partitioning;
3. vector partitioning;
dense vector inner-product computation;

AXPY operation (‘A times X Plus Y, with XY vectors and A a scalar);

o o &

global-local indexing mechanism.

These components can be viewed as building blocks that occur in many different applications; for
instance, they occur in both the block Lanczos algorithm and the block Wiedemann algorithm for
the matrix step, but also in most iterative linear system solvers.
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Figure 1. Parallel sparse matrix—vector multiplication y = Cx for the matrix C' from Example 1.
The matrix is partitioned for two processors, shown in grey and black. The input and output vectors
are treated as dense; their component values are shown. (It is convenient to depict the vector x above
the matrix, as a row vector, even though it is a column vector.) The matrix is treated as sparse; only
its nonzeros (i.e., values 1) are owned by processors. Top: vertical arrows denote communication
of input values x; in phase (i). Bottom: each processor in a row obtains a local result by adding
products C;;x; in phase (ii). This result is depicted in the leftmost matrix element that the processor
owns in a row. These results are communicated to the owner of y; in phase (iii), and added to give
the result y; in phase (iv).

4.1. Sparse matrix—vector multiplication

The sparse matrix C' or its transpose is multiplied by a vector on lines 2, 3, 9, 10, 15 of Algo-
rithm 1. Here, the sparse bit matrix C' is multiplied by an n, x N bit matrix, which can be viewed
as N multiplications by a bit vector of length n,, or the transpose matrix C7" is multiplied by an
ny x N bit matrix. The parallel component required is a four-phase algorithm, consisting of: (i)
communication of the components of the input vectors to exactly those processors that need them;
(ii) local matrix—vector multiplication; (iii) communication of local results to the owner of the cor-
responding output vector component; and (iv) finally addition of these results. Figure 1 illustrates
the parallel sparse matrix—vector multiplication in the simple case of a single vector, with N = 1.
For more details, see [2, Chap. 4]. This parallel algorithm for sparse matrix—vector multiplication
improves upon that used by Montgomery [17] in his parallel version of the block Lanczos algorithm
because in our approach the communication exploits the sparsity of the matrix C; in [17], however,
the amount of communication is as large as for a dense matrix. The algorithm should work for every
possible distribution of the matrix and the input and output vectors. Note that the algorithm is a
generalisation of the regular sparse matrix—vector multiplication to the multi-vector case.
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4.2. Sparse matrix partitioning

A sparse matrix can be partitioned by any of the available sparse matrix partitioners based on
multilevel hypergraph partitioners, such as hMetis [12], Mondriaan [22], Parkway [19], PaToH [4],
or Zoltan [8,9]. Parkway and Zoltan are able to perform the partitioning itself in parallel. In the
present work, we use the sequential partitioner Mondriaan.

The Mondriaan sparse matrix partitioner works by recursive bisection, splitting the current subma-
trix into two submatrices, either by rows or by columns. Both directions are tried, and the direction
causing the least communication volume (total number of data words sent) is chosen. As a result,
a subset of the rows (or columns) is assigned to one part and the remainder to the other part. This
procedure is repeated until the desired number p of submatrices is obtained.

The Mondriaan partitioner tries to assign an equal number of matrix nonzeros to all processors,
with a tolerance ¢ specified as input by the user, with the goal of achieving a good load balance in the
sparse matrix—vector multiplication. The partitioner guarantees that the number of nonzeros nz(C..)
of processor r satisfies

nz(C)

nz(Cy) < (14¢€) o (13)

forr=0,...,p— 1.

At each split into two parts during the recursive partitioning procedure, a suitable tolerance ¢ is
determined for that split. Since there is a trade-off between load imbalance and communication cost,
0 is chosen as large as possible while leaving sufficient freedom for subsequent splits. For p = 29,
the default choice for a first splitis § = ¢/q. This choice lets the number of nonzeros of the largest
part grow each time by a factor 1 + 9, hence yielding a total growth of (1 +§)?~1+¢j =1+e.

An important feature of Mondriaan that helps to keep the communication volume low is that the
value of 4 is dynamically adjusted after each split. A matrix part with a larger number of nonzeros
needs a stricter growth control and hence a smaller ¢ in subsequent splits than a part with fewer
nonzeros.

Another important feature is that the partitioning detects automatically in which direction to
perform a split. This cannot always be predicted a priori, although for the first split of integer-
factorisation matrices one may argue that the vertical direction is preferred (due to the logarithmi-
cally decreasing density of primes). This is illustrated in Fig. 2, where a vertical split of the initial
matrix C' with n; = 179 and n, = 210 into two parts causes fewer communications since the nonze-
ros are concentrated in the few dense rows at the top (which will inevitably be spread over both
parts), leaving many possibilities to avoid communication for the other rows. In contrast, a horizon-
tal split would cause communications for many columns. The matrix is then split again, until p = 4
parts are obtained. All splits of Fig. 2 are in the vertical direction. A detailed look at the picture con-
firms that all nonzeros in one matrix column have indeed the same colour/grey shade, meaning that
they are owned by the same processor. After repeated splits, the situation for the current submatrix
may be different so that the other direction is preferred; the software detects this.

A single split of a submatrix is carried out by translating the submatrix into a hypergraph. If the
split is by column, then each submatrix column j becomes a vertex j in the hypergraph, and row
i becomes a hyperedge containing all the vertices j with a;; # 0. (A hyperedge in a hypergraph
is a subset of the vertices, of any cardinality; this is a generalisation of an edge in a graph, which
IS a subset of exactly two vertices.) The matrix partitioning problem thus becomes a hypergraph
partitioning problem, which is solved efficiently using a multilevel scheme.

The multilevel method first merges similar vertices during a coarsening phase, to reduce the prob-
lem to a much smaller size. All vertices are merged pairwise, and this procedure is repeated at several
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Figure 2. Matrix npgs30 corresponding to a sparse linear system Cx = 0 (mod 2) obtained by
the Multi-Polynomial Quadratic Sieve (MPQS) method for a 30-decimal integer. The 179 x 210
matrix C' has nz(C') = 1916 nonzero elements. Each matrix row represents a prime; each column a
pair of integers (a;, b;). The primes are sorted in increasing order, where each prime may occur at
most twice. The matrix has been partitioned for p = 4 processors of a parallel computer, shown in
different colours/grey shades, by using the Mondriaan package [22]. The imbalance allowed in the
number of nonzeros is e = 3%. Also shown is a partitioning of the input vector (above the matrix)
and output vector (left) for a sparse matrix—vector multiplication y = C'x. Matrix source: courtesy
of Richard Brent.

levels. Two vertices are similar if they occur together in many hyperedges. The resulting smaller
hypergraph is then partitioned using either a greedy method or more sophisticated methods, such
as the Kernighan-Lin [13] and Fiduccia—Mattheyses [10] algorithms, and then the merged vertices
are taken apart in a refinement phase, also consisting of several levels. The partitioning is further
improved during this phase by small adjustments at each level.

Figure 2 shows a global view for p = 4 of the partitioned example matrix C'. Because submatrices
need not be contiguous, but can be scattered, the resulting matrix partitioning may seem highly
irregular in this global view, and even more so if both dimensions are split, as happens for p = 8.
Still, the matrix can be viewed as comprising disjoint local submatrices that together fit exactly in the
space of the original matrix; this is called the Mondriaan structure. Figure 3 illustrates this structure
by showing a local view of a partitioning for p = 8. Here, the first split is vertical, the following split
of the left part is also vertical, and that of the right part horizontal. The direction of the remaining
splits can be read from the picture. In each split, the current submatrix is bipartitioned by permuting
some rows or columns to one side, and the remainder to the other side. If a row or column is empty,
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Figure 3. Matrix npqs 30 from Fig. 2 now partitioned for p = 8 processors by using the Mondriaan
package. The imbalance allowed is e = 3%. The matrix is shown in local view, with each nonempty
block representing the nonzeros assigned to one processor. The empty blocks are created by the
partitioning; they represent row parts or column parts without nonzeros, and these are removed
before splitting further.

it is removed and put in a block in the middle. Large empty blocks in the result mean successful
partitioning with low communication volume. An arbitrary partitioning of the nonzeros of the matrix
will in general not have a Mondriaan structure. For an extensive discussion, see [2, Ch. 4].

4.3. Vector partitioning

A vector can be partitioned by algorithms that try to balance the communication load of the sparse
matrix—vector multiplication. Such a partitioning is incorporated in the Mondriaan package, and an
improved version is described in [3]. (An alternative method for vector partitioning, which tries
to minimise the total number of messages sent, is presented in [20]; this metric is important for
a message-passing model of communication.) Note that in the block Lanczos algorithm we have
two types of vectors: those of length n; and those of length n,. The two types can be partitioned
independently, taking the result of the preceding matrix partitioning into account. This independence
allows the improvements of [3] to be applied. For instance, if the number of processors owning a
matrix column is at most two, the input vector of length n, can be partitioned optimally. This will
yield the best possible communication balance given the matrix partitioning. (Note that this balance
may still not be perfect.) Figure 2 shows the partitioned input vector of length 210 above the matrix
and the partitioned output vector of length 179 to the left of the matrix.
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4.4. Dense vector inner-product computation

An inner product of two dense vectors is computed on lines 4, 8, 10, 16. It is easiest to do this if
all vectors of the same length have the same distribution. The vector partitioning in Mondriaan does
not take the number of components assigned to each processor into account, although in practice this
number is not too badly balanced among the processors. A possible extension would be to perform
the vector partitioning for multiple objectives, including balancing the inner-product computation.

4.5. AXPY operation

The AXPY is a well-known level 1 operation [14] from the Basic Linear Algebra Subprograms
(BLAS). In iterative linear system solvers, it has the form y := ax + y, where x and y are vectors
and « is a scalar. Its double-precision version is called DAXPY. In Algorithm 1, the AXPY operation
occurs on lines 8 and 14. For instance, on line 8, we can view the multiplication of the n, x NV bit
matrix V; by an N x N matrix as the multiplication of an integer vector of length n, by a small
object, analogous to a scalar. An AXPY is carried out in parallel by replicating the scalar so that
every processor has a copy and letting each processor multiply the local part of the vector by the
scalar.

4.6. Global-local indexing mechanism

A mechanism to connect global and local indices is needed at the start of the block Lanczos al-
gorithm. After the matrix and vectors have been distributed, the processors know which matrix
elements and vector components they own, but they do not know where to obtain the components
of the input vector they need in the matrix—vector multiplication, or where to send contributions for
output vectors. The solution to this problem is that the global address of every vector component is
first stored at a location that can be inspected by all processors. This location is called the notice
board in BSPedupack [2], or the data directory in Zoltan [9], which provides many additional ser-
vices besides partitioning. For example, the address of component z; with global index j of a vector
x can be found at processor j mod p at local index | j/p|, where p is the number of processors; thus,
the addresses are distributed cyclically. After the address has been retrieved at the start of the block
Lanczos algorithm, the current value of vector component z; can be obtained from that address each
time it is needed.

4.7. Remainder

All remaining parts of Algorithm 1 are less important. Matrices of size N x N are small (only N
integers) and can easily be communicated and replicated. For instance, the computations of lines 7,
11, 12, 13 are carried out redundantly by every processor, i.e., in a replicated fashion, and the same
holds for the multiplications of NV x N matrices occurring on lines 8 and 10.

Algorithm 2 uses the same high-level components as Algorithm 1 and some additional compu-
tations. On line 3, the matrix Y is subtracted from the matrix X,. This operation is purely local,
since these bit matrices are stored in the same way, namely as an integer vector of length n,. On line
4, two sparse matrix—vector multiplications are carried out. On line 5, the Gaussian elimination for
finding the nullspace is performed in parallel by converting the system to row echelon form, using an
algorithm with complete pivoting based on a parallel algorithm for LU decomposition with partial
pivoting and a row distribution (see [2, Ch. 2]). Here, each matrix row is actually stored in two
integers. On line 6, the dense ny, x 2N matrix Z is multiplied by the 2V x k& matrix U, with £ < 2V.
This can be done by viewing U asa 2N x 2N matrix (padded with 2N — k zero columns), splitting it
into four submatrices of size N x N and applying four AXPY operations and two vector additions.
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5. Cost analysis

To analyse the cost of our algorithm, we first consider the costs of the separate high-level compo-
nents. Following the bulk synchronous (BSP) model [21], we can express the cost of a component
in the form

T =a+bg + cl, (14)

where a represents the computation time, b the maximum number of data words (of /V bits) a pro-
cessor has to send or receive, and ¢ the number of global synchronisations required. Usually, com-
puting times are measured in the time of a floating-point operation (flop). Since we are interested in
integer operations (iop) here, we take the iop as our unit of time. Furthermore, g and [ are machine-
dependent parameters representing the communication and synchronisation characteristics of the
computer, respectively. The value of g is the average time needed to send one data word into the
communication network, or to receive one word, in a situation of continuous network traffic. The
value of [ is the time of a global synchronisation.

The most expensive component is the sparse matrix-vector multiplication. A very crude approxi-
mation (see [2, Section 4.4]) would be

nz(C)  ny+ngy
+
P VP

where we assume that the nonzeros of the matrix C' are well spread over the processors and the
matrix distribution is two-dimensional and square, so that in particular each matrix row and column
is assigned to ,/p processors. Phase (ii) of the matrix-vector multiplication requires an exclusive OR
(XOR) operation on a pair of integers for every nonzero in C that is stored locally on a processor,
giving a term nz(C')/p. This is because in the sequential computation of C' ® V/, for every ¢;; =
1, row 7 of the current matrix C'V has to be XOR-ed with row j of V. Phases (i) and (iii) are
communication phases which require a global synchronisation at the end, hence the term 2[. In
the worst case, the n, /p local components of the vector V' each have to be sent to the other /p — 1
processors containing a matrix column. In phase (iv), the integers received are added into the current
vector C'V by a bitwise AND operation. The cost of this phase is much less than that of the preceding
communication of the data. This cost analysis of the matrix-vector multiplication is just an estimate
based on several strong assumptions. In practice, the true cost will be determined by the success
of the matrix and vector partitioners. Good partitioners will limit the communication cost bg while
balancing the computations. The partitioning shown in Fig. 2 for p = 4 has cost 491 + 62¢g + [; here,
only phases (i) and (ii) are needed. The partitioning shown in Fig. 3 for p = 8 has cost 245+ 66g+ 2.
The sequential cost is 1916.

The second largest cost contribution is that of the inner product computations, which are of the
form U = V7T « W, where V, W are integer vectors of length n = n; or n = n,, representing
bit matrices of size n x N. A sequential algorithm for this operation is given by Algorithm 3. In
the parallel version, every processor computes its own N x N matrix by using Algorithm 3 for
those indices £ that it owns. This costs nN/p integer XOR operations, if the computation load is
balanced. Note that the zero/nonzero pattern of a vector V' changes from iteration to iteration in the
block Lanczos algorithm, and hence the balance fluctuates. This cannot be solved by better static
partitioning of the matrix C' or the vectors involved. The resulting p bit matrices are summed to give
the final result. Each bit matrix is stored as NV integers. These can be sent to all processors, and
added redundantly by XOR operations in time pN + (p — 1) Ng + (. (For large N, this can be further

g+ 21, (15)

TMatvec ~
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reduced by a two-phase approach to about N + 2N g + 21, see [2, Ch. 2]). The total time is

niN
ﬂnprod S ? +pN + (p - 1)Ng + l (16)

Algorithm 3 Dense multiplication of bit matrices.

Input: matrices V"N, WnxN,
Output: matrix UN*N = VT x W,
U=0
fori=0,...,N —1do
fork=0,...,n—1 do
if v,; = 1 then
forj=0,...,N—1 do
uz; = uz; XOR wy;

The computation cost of an AXPY operation is the same as that of an inner-product computa-
tion, and it is carried out in a similar way. No communication is necessary, however, because we
assume the V x N matrix involved is already available locally. (It is produced by other redundant
computations.) Thus,

nN
Taxpy < e (17)

The remaining computations are small. The cost of a multiplication of two N x N matrices is
TScalar = N2- (18)

Note that these N? integer operations involve N? bit operations. We call this multiplication a scalar
operation, because we view the small matrices involved as a scalar object. The cost of the function
generateWs is at most 3V2, since it involves a complete sweep through an N x 2N system and a
multiplication S; x ST

The total cost of our computation is mainly determined by the cost of the main loop of the block
Lanczos algorithm, i.e. lines 7-17 of Algorithm 1. Thus, the total cost of one iteration is

ﬂter ~ 3TMatvec + 3,-Z—‘Inprod + 5TAXPY + 12TScalar- (19)

This cost is dominated by the cost of the three sparse matrix—vector multiplications.

6. Numerical experiments

We performed numerical experiments on up to 16 processors of the Silicon Graphics Origin 3800
at the computing centre SARA in Amsterdam. We used two matrices, c82 and c98a, produced
by the MPQS method during the factorisation of composite integers with 82 and 98 decimal digits,
respectively. For problems of this size, MPQS is faster than NFS. The matrices originating in MPQS
are similar to those of NFS and representative of the wider class of sieving matrices. The properties
of these matrices are given in Table 2.
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Name | ny N9y nz(C)
c82 | 16307 | 16338 | 507716
c98a | 56243 | 56274 || 2075889

Table 2
The properties of the two test matrices: size n; x n, and number of nonzeros nz(C').

We implemented the parallel block Lanczos algorithm using the high-level components described
in Section 4. We partitioned the two test matrices and the corresponding vectors using the Mondriaan
package [22] version 1. The execution times of the parallel program with p = 1 for c82 and c98a
are 80 s and 1195 s, respectively. We only have a parallel version of the program available, so we
cannot use a sequential version to compare with. Thus, there will be some overhead in our reference
version, which is the parallel program run on one processor. The overhead mainly consists of global-
local index transformations and unnecessary calls to the synchronisation mechanism. This overhead
is expected to be small, because the index transformations are carried out in a preprocessing step,
and thus are removed from the main loop of the computation. Furthermore, the main loop contains
only a few synchronisations. For p = 1, all communications reduce to memory copies.

The relative speedup of the parallel program compared to the p = 1 case is given in Figure 4.
A speedup of 8 is obtained on 16 processors for c82, and a speedup of 7 for c98a. Note that
we achieve a higher speedup on the smaller problem, which is unusual, and which we find hard to
explain. Most likely, cache effects play a role here. (We have partially optimised our implementation
to make it cache friendly.) The speedups achieved are reasonable, but not optimal. One reason for
this is that the vector partitioning should be improved. The current tests used the vector partitioning
of Mondriaan version 1; for version 2, we expect an improvement.

Tables 3 and 4 show that the block Lanczos algorithm is indeed the most time-consuming part
of the whole computation, as predicted by the cost analysis in Section 5. The execution time grows
considerably with problem size: the larger problem c98a has 3.5 times more rows and columns than
the smaller problem ¢82, and 4 times more nonzeros, but the computation takes 15 times longer.
The time of the input phase is negligible, and it remains constant with an increase in p. This is
because the input phase is essentially sequential: the nonzeros and the identity of their owner (as
determined by the matrix partitioning) are read by one processor from the input file and then spread
over the processors. The postprocessing is also negligible, and its time decreases with an increase
in p. The scaling behaviour of the postprocessing is similar to that of the block Lanczos algorithm;
both are dominated by sparse matrix—vector multiplications.

We can try to understand the scaling behaviour of the sparse matrix—vector multiplication by
relating the theoretical BSP cost with experimental timings. For the smaller problem, c82, and for
p = 16, the BSP cost of a partitioning by the Mondriaan package (version 1.02) run with e = 3% is
32,683+ 8298¢g + 2. This value is quite close to the approximation 31, 732+ 8161¢ + 2/ obtained by
(15). This means that partitioning remains a hard problem for this matrix, since it does not perform
much better than a fixed two-dimensional, square matrix distribution. This can be improved if we
would manage to balance the communication better; here, more than a factor of two can in principle
still be gained.

Published parameter values of the parallel computer used are g = 122 and [ = 93488, see [2,
Table 3.3]. These benchmark values, however, are for nonoptimised communication, whereas our
implementation has been optimised. Furthermore, the sequential computing rate is for dense matrix
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Figure 4. Speedup of parallel block Lanczos algorithm for test matrices c82 and c98a.

computations; for sparse matrix computations the rate will be slower. As a final caveat, the sequential
rate has been measured for floating-point operations, whereas here we perform bit-wise operations
on integers. Most likely, the measured values are too high. Note that the speedup of about 8 achieved
implies that around 50% of the runtime is spent on communication and synchronisation, and 50% on
computation (assuming that the load balance is good). For a very precise prediction, the values of ¢
and [ must be measured for the application at hand, which we did not do. Still, using our cost model
we can get a first indication of parallel runtime and the relative cost of computation, communication,
and synchronisation, and their scaling behaviour.

7. Conclusions and future work

We have studied an application in the field of cryptology, the solution of sparse linear systems
in the binary field GF(2). We have identified important high-level components for this application
and discussed their parallel aspects. This application has some particular characteristics (e.g. the
computations modulo 2), but otherwise it stands for a much larger class of applications such as
iterative methods for the solution of linear systems and eigensystems. The identified high-level
components are important for this whole class.

We have obtained reasonable speedups for our test matrices on our parallel computer. Further
improvements should be possible. Here, it is possible to benefit directly from ongoing projects
for better matrix and vector partitioners such as Mondriaan [3,22], PaToH [4,20], and the parallel
partitioners Parkway [19], and Zoltan [8,9].

An issue that also emerged from this application is that we cannot balance the computational load
completely by preprocessing to find good matrix and vector partitionings. If we make use of the



19

p | Input | Lanczos | PP || Total
1] 1.15 78.27 | 0.47 || 79.90
2| 112 48.98 | 0.25 || 50.36
4| 1.13 28.57 | 0.15 || 29.85
8| 115 14.80 | 0.08 || 16.02
16 | 1.30 9.94|0.07 || 11.31

Table 3
Time (in s) of input phase, block Lanczos algorithm, postprocessing (PP), and total run time for the
matrix c82. The time is the average over three runs.

p | Input | Lanczos | PP Total
1 41| 1186.4 | 4.0 || 11945
2 4.0 755.8 | 1.9 761.7
41 3.9 575.5 | 0.6 | 580.0
8| 4.0 285.8 | 0.5 || 290.3
16 4.1 163.5 ] 0.2 167.8

Table 4
Time (in s) of input phase, block Lanczos algorithm, postprocessing (PP), and total run time for the
matrix c98a. The time is the average over three runs.

current bit pattern in the vectors and in the small V x N matrices (with V = 32) to avoid certain
unnecessary operations (cf. the if-statement in Algorithm 3), we save work but we also introduce a
dependence of the work load on the current state. This may well be the most important source of
load imbalance. It is a challenge to find a dynamic procedure to mitigate this effect.

Much research is carried out these days on higher-level tools for parallelisation. The high-level
components identified here could provide focus for these efforts. If the tools would help in develop-
ing efficient and flexible components for the block Lanczos algorithm, this would have an impact on
a wide range of applications.
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