
BSPlib

The BSP Programming Library

Jonathan M. D. Hill1

Bill McColl1

Dan C. Stefanescu2,3

Mark W. Goudreau4

Kevin Lang5

Satish B. Rao5

Torsten Suel6

Thanasis Tsantilas7

Rob Bisseling8

1University of Oxford
2Harvard University

3Suffolk University
4University of Central Florida

5NEC Research Institute, Princeton
6Bell Laboratories, Lucent Technologies

7Columbia University
8Utrecht University

http://www.bsp-worldwide.org/

May 1997

ANSI C Examples

1

Introduction

Since the earliest days of computing it has been clear that, sooner or later, sequential com-

puting would be superseded by parallel computing. This has not yet happened, despite the

availability of numerous parallel machines and the insatiable demand for increased comput-

ing power. For parallel computing to become the normal form of computing we require a

model which can play a similar role to the one that the von Neumann model has played in

sequential computing. The emergence of such a model would stimulate the development of a

new parallel software industry, and provide a clear focus for future hardware developments.

For a model to succeed in this role it must offer three fundamental properties:

scalability - the performance of software and hardware must be scalable from a single pro-

cessor to several hundreds of processors.

portability - software must be able to run unchanged, with high performance, on any general

purpose parallel architecture.

predictability - the performance of software on different architectures must be predictable

in a straightforward way.

It should also, ideally, permit the correctness of parallel programs to be determined in a way

which is not much more difficult than for sequential programs.

Recent research on Bulk Synchronous Parallel (BSP) algorithms, architectures and lan-

guages has shown that the BSP model can achieve all of these requirements [7, 3, 6, 2, 1, 5].

The BSP model decouples the two fundamental aspects of parallel computation, commu-

nication and synchronisation. This decoupling is the key to achieving universal applicability

across the whole range of parallel architectures. A BSP computation consists of a sequence

of parallel supersteps. Each superstep is subdivided into three ordered phases consisting of:

(1) simultaneous local computation in each process, using only values stored in the memory

of its processor; (2) communication actions amongst the processes, causing transfers of data

between processors; and (3) a barrier synchronisation, which waits for all of the communic-

ation actions to complete, and which then makes any data transferred visible in the local

memories of the destination processes.

This approach to parallel programming is applicable to all kinds of parallel architec-

ture: distributed memory architectures, shared memory multiprocessors, and networks of

workstations. It provides a consistent, and very general, framework within which to develop

portable parallel software for scalable parallel architectures.

In the following sections we describe BSPlib, a small communications library for pro-

gramming in an SPMD (Single Program Multiple Data) manner. The main features of BSPlib

are two modes of communication, one capturing a BSP oriented message passing approach,

and the other reflecting a one-sided direct remote memory access (DRMA) paradigm. A higher

level library, outlined in Appendix A, provides various specialised collective communication

operations. These are not considered as part of the core library, as they can be easily realised

in terms of the core.

2

Library Contents

Class Operation Meaning Page

Initialisation bsp_begin Start of SPMD code 3

bsp_end End of SPMD code 3

bsp_init Simulate dynamic processes 5

Halt bsp_abort One process halts all 7

Enquiry bsp_nprocs Number of processes 8

bsp_pid Find my process identifier 8

bsp_time Local time 8

Superstep bsp_sync Barrier synchronisation 10

DRMA bsp_push_reg Make area globally visible 12

bsp_pop_reg Remove global visibility 12

bsp_put Copy to remote memory 14

bsp_get Copy from remote memory 18

BSMP bsp_set_tagsize Choose tag size 22

bsp_send Send to remote queue 23

bsp_qsize Number of messages in queue 24

bsp_get_tag Getting the tag of a message 25

bsp_move Move from queue 26

High Performance bsp_hpput Unbuffered versions 14

bsp_hpget of communication 18

bsp_hpmove primitives 28

Table of Examples

Class Highlights Description Page

Initialisation bsp_begin Hello world 4

bsp_init Hello world 5

Superstep bsp_sync Hello world 10

DRMA bsp_push_reg Reverse p values in p processes 16

bsp_put Global data distribution 16

bsp_get Global data distribution 19

bsp_hpget All-sum of n values where n > p 20

BSMP bsp_send/bsp_move Sparse vector broadcast 26

BSPlib / bsp_begin, bsp_end 3

Initialisation

Like many other communications libraries, BSPlib adopts a Single Program Multiple Data

(SPMD) programming model. The task of writing an SPMD program will typically involve

mapping a problem that manipulates a data structure of sizeN into p instances of a program

that each manipulate an N/p sized block of the original domain. The role of BSPlib is to

provide the infrastructure required for the user to take care of the data distribution, and

any implied communication necessary to manipulate parts of the data structure that are on a

remote process. An alternative role for BSPlib is to provide an architecture independent target

for higher-level libraries or programming tools that automatically distribute the problem

domain among the processes.

Starting and finishing SPMD code

In C

void bsp_begin(int maxprocs);

void bsp_end(void)

In Fortran

SUBROUTINE bspbegin(maxprocs)

INTEGER, intent(IN)::maxprocs

SUBROUTINE bspend()

Parameters

maxprocs is the number of processes requested by the user.

Explanation

Processes are created in a BSPlib program by the operations bsp_begin1 and bsp_end.

They bracket a piece of code to be run in an SPMD manner on a number of processors. There

can only be one instance of a bsp_begin/bsp_end pair within a program. If bsp_begin

and bsp_end are the first and last statements in a program, then the entire BSPlib compu-

tation is SPMD. An alternative mode is available where a single process starts execution and

determines the number of parallel processes required for the calculation. See Page 5 for

details.

1as a naming convention, C procedures have underscores within them, whereas in Fortran we use the same

name without any underscores.

BSPlib / bsp_init 4

Example

A trivial BSPlib program is shown below. The program starts as many parallel processes as

there are available, each of which prints the string “Hello BSP Worldwide”.

void main(void) {

bsp_begin(bsp_nprocs());

printf("Hello BSP Worldwide from process %d of %d\n",

bsp_pid(),bsp_nprocs());

bsp_end();

}

The example illustrates the minimum requirements of BSPlib with respect to I/O. When

a number of processes print a message on either standard output or standard error, the

messages are multiplexed to the users terminal in a non-deterministic manner. All other types

of I/O (e.g., user input and file access) are only guaranteed to work correctly if performed by

process zero. Therefore this example prints p strings in an arbitrary order.

Notes

1. An implementation of BSPlib may spawn less than maxprocs processes. The actual

number of processes started can be found by the enquiry function bsp_nprocs().

2. There can only be a single bsp_begin/bsp_end pair within a BSPlib program. This

excludes the possibility of starting, stopping, and then restarting parallel tasks within

a program, or any form of nested parallelism.

3. The process withbsp_pid()=0 is a continuation of the thread of control that initiated

bsp_begin. This has the effect that all the values of the local and global variables

prior to bsp_begin are available to that process.

4. After bsp_begin, the environment from process zero is not inherited by any of the

other processes, i.e., those with bsp_pid() greater than zero. If any of them require

part of zero’s state, then the data must be transferred from process zero.

5. bsp_begin has to be the first statement of the procedure which contains the state-

ment. Similarly, bsp_end has to be the last statement in the same procedure.

6. If the program is not run in a purely SPMD mode, then bsp_init has to be the first

statement executed by the program.

7. bsp_begin(bsp_nprocs()) can be used to request the same number of processes

as there are processors on a parallel machine.

8. All processes must execute bsp_end for a BSPlib program to complete successfully.

BSPlib / bsp_init 5

Simulating dynamic processes

In C

void bsp_init(void(*spmdproc)(void),int argc,char **argv)

In Fortran

SUBROUTINE bspinit(spmdproc)

INTERFACE

SUBROUTINE spmdproc

END INTERFACE

Parameters

spmdproc is the name of a procedure that contains bsp_begin and bsp_end as its first

and last statements.

Explanation

An alternative mode of starting BSPlib processes is available where a single process starts

execution and determines the number of parallel processes required for the calculation. The

initial process can then spawn the required number of processes using bsp_begin. Execu-

tion of the spawned processes continues in an SPMD manner, until bsp_end is encountered

by all the processes. At that point, all but process zero is terminated, and process zero is

left to continue the execution of the rest of the program sequentially.

One problem with trying to provide this alternative mode of initialisation is that some

parallel machines available today2 do not provide dynamic process creation. As a solution

to this problem we simulate dynamic spawning in the following way: (1) the first statement

executed by the BSPlib program is bsp_init which takes as its argument a name of a

procedure; (2) the procedure named in bsp_init contains bsp_begin and bsp_end as

its first and last statements.

Example

int nprocs; /* global variable */

void spmd_part(void) {

bsp_begin(nprocs);

printf("Hello BSP Worldwide from process %d of %d\n",

bsp_pid(),bsp_nprocs());

bsp_end();

}

void main(int argc, char *argv[]) {

2almost all distributed memory machines, e.g. IBM SP2, Cray T3E, Meiko CS-2, Parsytec GC, Hitachi SR2001.

BSPlib / bsp_init 6

bsp_init(spmd_part,argc,argv);

nprocs=ReadInteger();

spmd_part();

}

Unlike the previous example, when the above program is executed a single process will

begin execution and read a number from standard input that specifies the number of parallel

processes to be spawned. The desired number of processes will then be spawned within the

procedure spmd_part, and each process will print the string “Hello BSP Worldwide”.

BSPlib / bsp_abort 7

Halt

The following function provides a simple mechanism for raising errors in BSPlib programs.

A single process in a potentially unique thread of control can halt an entire BSPlib program.

One process stops all

In C

void bsp_abort(char *format,...);

In Fortran

SUBROUTINE bspabort(err_string)

CHARACTER(*), intent(IN)::err_string

Parameters

format is a C-style format string as used byprintf. Any other arguments are interpreted

in the same way as the variable number of arguments to printf.

err_string is a single string that is printed when the Fortran routine is executed. All

computation ceases after a call to bsp_abort.

Explanation

The function can be used to print an error message followed by a halt of the entire BSPlib

program. The routine is designed not to require a barrier synchronisation of all processes.

Notes

1. If more than one process calls bsp_abort in the same superstep, then either one, all,

or a subset of the processes that called bsp_abort may print their format string to

the terminal before stopping the BSPlib computation.

BSPlib / bsp_nprocs 8

Enquiry

The BSPlib enquiry functions are local operations that do not require communication among

the processes. They return information concerning: (1) the number of parallel processes

involved in a BSPlib calculation; (2) a unique process identifier of the SPMD process that

called the enquiry function; and (3) access to a high-precision clock.

Number of processes

In C

int bsp_nprocs(void);

In Fortran

INTEGER FUNCTION bspnprocs()

Explanation

If the function bsp_nprocs is called before bsp_begin, then it returns the number of

processors which are available. If it is called after bsp_begin it returns p, the actual

number of processes allocated to the program, where 1 ≤ p ≤ maxprocs , and maxprocs is

the number of processes requested in bsp_begin. Each of the p processes created by

bsp_begin has a unique value m in the range 0 ≤m ≤ p − 1.

Finding my process identifier

In C

int bsp_pid(void);

In Fortran

INTEGER FUNCTION bsppid()

Explanation

The function bsp_pid returns the integerm that uniquely identifies the process executing

the function.

Local wall-clock time

In C

double bsp_time(void);

BSPlib / bsp_time 9

In Fortran

DOUBLE PRECISION FUNCTION bsptime()

Explanation

The function bsp_time provides access to a high-precision timer—the accuracy of the

timer is implementation specific. The function is a local operation of each process, and

can be issued at any point after bsp_begin. The result of the timer is the time in seconds

since bsp_begin. The semantics of bsp_time is as though there were bsp_nprocs()

timers, one per process. BSPlib does not impose any synchronisation requirements between

the timers on different processes.

BSPlib / bsp_sync 10

Superstep

A BSPlib calculation consists of a sequence of supersteps. During a superstep each process

can perform a number of computations on data held locally at the start of the superstep

and may communicate data to other processes. Any communications within a superstep

are guaranteed to occur by the end of the superstep, where all processes synchronise at a

barrier—BSPlib has no form of subset synchronisation.

Barrier synchronisation

In C

void bsp_sync(void);

In Fortran

SUBROUTINE bspsync()

Explanation

The end of one superstep and the start of the next is identified by a call to the library proced-

urebsp_sync. Communication initiated during a superstep is not guaranteed to occur until

bsp_sync is executed; this is even the case for the unbuffered variants of communication.

Example

Unlike the previous examples, the following program attempts (it is not guaranteed3) to serial-

ise the printing by ensuring each process prints its output in turn. This is done by performing

p iterations, each separated by a barrier synchronisation, where process i prints “Hello BSP

Worldwide” during iteration i.

void main(void) {

int i;

bsp_begin(bsp_nprocs());

for(i=0; i<bsp_nprocs(); i++) {

if (bsp_pid()==i)

printf("Hello BSP Worldwide from process %d of %d\n",

i,bsp_nprocs());

fflush(stdout);

bsp_sync();

}

bsp_end();

}

3there is no way of guaranteeing that output data will be flushed to a file at the end of the superstep.

BSPlib / bsp_sync 11

Direct Remote Memory Access

One way of performing data communication in the BSP model is to use Direct Remote Memory

Access (DRMA) communication facilities. Some parallel programming libraries require that

the data structures used in DRMA operations have to be held at statically allocated memory

locations. BSPlib does not have this restriction, which enables communication in certain

heterogeneous environments, and allows communication into any type of contiguous data

structure including stack or heap allocated data. This is achieved by only allowing a process

to manipulate certain registered areas of a remote memory which have been previously made

available by the corresponding processes. In this registration procedure, processes use the

operation bsp_push_reg to announce the address of the start of a local area which is

available for global remote use.

The operation bsp_put deposits locally held data into a registered remote memory

area on a target process, without the active participation of the target process. The operation

bsp_get reaches into the registered local memory of another process to copy data values

held there into a data structure in its own local memory.

Allowing a process to arbitrarily manipulate the memory of another process, without

the involvement of that process, is potentially dangerous. The mechanisms we propose here

exhibit different degrees of safety depending upon the buffering requirements of the com-

munication operations. The right choice of buffering depends upon the class of applications

and the desired goals, and has to be made by the user.

There are four forms of buffering with respect to the DRMA operations:

Buffered on destination: Writing data into registered areas will happen at the end of the

superstep, once all remote reads have been performed.

Unbuffered on destination: Data communication into registered areas can take effect at any

time during the superstep. Therefore, for safety, no process should change the destin-

ation data structures used during the course of the superstep.

Buffered on source: If the source data structure is in the memory of the process that issues

a communication action (i.e., a put), then a copy of the data is made at the time the

communication action is issued; the source data structure can therefore be changed by

the user immediately after communications are issued. Alternatively, if the source data

structure is on a remote process (i.e., a get), then the data is read on the remote process

at the end of the superstep, before any remote writes are performed.

Unbuffered on source: The data transfer resulting from a call to a communication operation

may occur at any time between the time of issue and the end of the superstep. Therefore,

for safety, no process should change the source data structures used during the course

of the superstep.

The various buffering choices are crucial in determining the safety of the communication

operation, i.e., the conditions which guarantee correct data delivery as well as its effects on the

processes involved in the operation. However, it should be noted that even the most cautious

choice of buffering mode does not completely remove non-determinism. For example, if

more than one process transfers data into overlapping memory locations, then the result at

BSPlib / bsp_push_reg 12

the overlapping region will be nondeterministically chosen; it is implementation dependent

which one of the many “colliding” communications should be written into the remote memory

area.

Registration

In C

void bsp_push_reg(const void *ident, int size);

void bsp_pop_reg(const void *ident);

In Fortran

SUBROUTINE bsppushreg(ident,size)

<TYPE>, intent(IN) :: ident

INTEGER, intent(IN):: size

SUBROUTINE bsppopreg(ident)

<TYPE>, intent(IN) :: ident

Parameters

ident is a previously initialised variable denoting the address of the local area being re-

gistered or de-registered.

size is a positive integer denoting the extent, in bytes, of the area being registered for use

in bounds checking within the library.

Explanation

A BSPlib program consists of p processes, each with its own local memory. The SPMD struc-

ture of such a program produces p local instances of the various data structures used in the

program. Although these p instances share the same name, they will not, in general, have

the same physical address. Due to stack or heap allocation, or due to implementation on

a heterogeneous architecture, one might find that the p instances of variable x have been

allocated at up to p different addresses.

To allow BSPlib programs to execute correctly we require a mechanism for relating these

various addresses by creating associations called registrations. A registration is created when

each process calls bsp_push_reg and, respectively, provides the address and the extent

of a local area of memory. Both types of information are relevant as processes can create new

registrations by providing the same addresses, but different extents. The semantics adopted

for registration enables procedures called within supersteps to be written in a modular way

by allowing newer registrations to temporarily replace older ones. However, the scheme

adopted does not impose the strict nesting of push-pop pairs that is normally associated with

a stack. This provides the benefits of encapsulation provided by a stack, whilst providing

BSPlib / bsp_push_reg 13

the flexibility associated with a heap-based discipline. In line with superstep semantics,

registration takes effect at the next barrier synchronisation.

A registration association is destroyed when each process calls bsp_pop_reg and

provides the address of its local area participating in that registration. A runtime error will

be raised if these addresses (i.e., one address per process) do not refer to the same registration

association. In line with superstep semantics, de-registration takes effect at the next barrier

synchronisation.

One interpretation of the registration mechanism is that there is a sequence of registra-

tion slots that are accessible by all the processes. If each process executes

bsp_push_reg(identi , sizei)

then the entry 〈〈ident0 , size0〉, . . . , 〈identp−1, sizep−1〉〉 is added to the front of the sequence

of registration slots. The intent of registration is to make it simple to refer to remote storage

areas without requiring their locations to be explicitly known. A reference to a registered

area in a bsp_put or bsp_get is translated to the address of the corresponding remote

area in its most recent registration slot. For example, if tgt l is used in a put executed on

process l,

bsp_put(r , src, tgt l,offset ,nbytes)

and the registration sequence4 is ss ++ [s] ++ ss, where entry s is the most recent entry

containing tgt l (i.e., the lth element of s is 〈tgt l,nl〉, and there is no entry s in ss such that

the lth element of s is 〈tgt l,ml〉), then the effect is to transfer nbytes of data from the data

structure starting at address src on process l into the contiguous memory locations starting

at tgtr + offset on process r , where the base address tgtr comes from the same registration

slot s as tgt l. Rudimentary bounds checking may be performed on the communication, such

that a runtime error can be raised if offset + nbytes > nr .

The effect of the de-registration

bsp_pop_reg(identl)

is that given the registration sequence ss ++ [〈〈ident0 , size0〉, . . . , 〈identp−1, sizep−1〉〉] ++ ss,

and suppose that there does not exist an entry s in ss such that the lth element of s is

〈identl,ml〉, then the registration sequence is changed to ss ++ ss at the start of the next

superstep. A runtime error will be raised if differing processes attempt to de-register a dif-

ferent registration slot during the same de-registration. For example, if process p0 registers

x twice, and process p1 registers x followed by y , then a runtime error will be raised if both

processes attempt to de-register x. This error is due to the active registration for x referring

to a different registration slot on each process.

Notes

1. bsp_push_reg takes effect at the end of the superstep. DRMA operations may use

the registered areas from the start of the next superstep.

4the operator ++ is used to concatenate two sequences together.

BSPlib / bsp_put 14

2. DRMA operations are allowed to use memory areas that have been de-registered in the

same superstep, as bsp_pop_reg only takes effect at the end of a superstep.

3. Communication into unregistered memory areas raises a runtime error.

4. Registration is a property of an area of memory and not a reference to the memory.

There can therefore be many references (i.e., pointers) to a registered memory area.

5. If only a subset of the processes are required to register data because a program may

have no concept of a commonly named memory area on all processes, then all processes

must call bsp_push_reg although some may register the memory area NULL5. This

memory area is regarded as unregistered.

6. While registration is designed for “full duplex” communication, a process can do half

duplex communication by, appropriately, registering an area of size 0.

7. It is an error to provide negative values for the size of the registration area.

8. Since on each process static data structures are allocated at the same address6, the

registration slot in such cases will have the form:

〈〈ident0, n0〉, . . . , 〈ident0, np−1〉〉
︸ ︷︷ ︸

p copies

Even though static data structures are allocated at the same address, they still have to

be registered.

Copy to remote memory

In C

void bsp_put(

int pid, const void *src,

void *dst, int offset, int nbytes);

void bsp_hpput(

int pid, const void *src,

void *dst, int offset, int nbytes);

5the array bspunregisteredmay be used by Fortran programmers.
6this is not always the case, as some optimising C compilers un-static statics.

BSPlib / bsp_put 15

In Fortran

SUBROUTINE bspput(pid,src,dst,offset,nbytes)

INTEGER, intent(IN):: pid, offset, nbytes

<TYPE>, intent(IN) :: src

<TYPE>, intent(OUT):: dst

SUBROUTINE bsphpput(pid,src,dst,offset,nbytes)

INTEGER, intent(IN):: pid, offset, nbytes

<TYPE>, intent(IN) :: src

<TYPE>, intent(OUT):: dst

Parameters

pid is the identifier of the process where data is to be stored.

src is the location of the first byte to be transferred by the put operation. The calculation

of src is performed on the process that initiates the put.

dst is the location of the first byte where data is to be stored. It must be a previously

registered area.

offset is the displacement in bytes from dst where src will start copying into. The

calculation of offset is performed by the process that initiates the put.

nbytes is the number of bytes to be transferred from src into dst. It is assumed that

src and dst are addresses of data structures that are at least nbytes in size. The

data communicated can be of arbitrary size. It is not required to have a size which is a

multiple of the word size of the machine.

Explanation

The aim of bsp_put and bsp_hpput is to provide an operation akin to memcpy(3C)

available in the Unix <string.h> library. Both operations copy a specified number of

bytes, from a byte addressed data structure in the local memory of one process into con-

tiguous memory locations in the local memory of another process. The distinguishing factor

between these operations is provided by the buffering choice.

The semantics buffered on source, buffered on destination is used for bsp_put com-

munications. While the semantics is clean and safety is maximised, puts may unduly tax the

memory resources of a system. Consequently, BSPlib also provides a high performance put

operation bsp_hpput whose semantics is unbuffered on source, unbuffered on destination.

The use of this operation requires care as correct data delivery is only guaranteed if: (1) no

communications alter the source area; (2) no subsequent local computations alter the source

area; (3) no other communications alter the destination area; and (4) no computation on the

remote process alters the destination area during the entire superstep. The main advant-

age of this operation is its economical use of memory. It is therefore particularly useful for

applications which repeatedly transfer large data sets.

BSPlib / bsp_put 16

Example

The reverse function shown below highlights the interaction between registration and

put communications. This example defines a simple collective communication operation, in

which all processes have to call the function within the same superstep. The result of the

function on process iwill be the value of the parameterx from processbsp nprocs()−i−1.

int reverse(int x) {

bsp_push_reg(&x,sizeof(int));

bsp_sync();

bsp_put(bsp_nprocs()-bsp_pid()-1,&x,&x,0,sizeof(int));

bsp_sync();

bsp_pop_reg(&x);

return x;

}

By the end of the first superstep, identified by the firstbsp_sync, all the processes will have

registered the parameter x as being available for remote access by any subsequent DRMA op-

eration. During the second superstep, each process transfers its local copy of the variable

x into a remote copy on process bsp nprocs() − bsp pid() − 1. Although communica-

tions occur to and from the same variable within the same superstep, the algorithm does not

suffer from problems of concurrent assignment because of the buffered on source, buffered

on destination semantics of bsp_put. This buffering ensures conflict-free communication

between the outgoing communication from x, and any incoming transfers from remote pro-

cesses. The popregister at the end of the function reinstates the registration properties that

were active on entry to the function at the next bsp_sync encountered during execution.

Example

The procedure put_array shown below has a semantics defined by the concurrent assign-

ment:

∀i ∈ {0, . . . ,n− 1} xs[xs[i]] := xs[i]

Conceptually, the algorithm manipulates a global array xs of n elements that are distributed

among the processes. The role of BSPlib is to provide the infrastructure for the user to take

care of the data distribution, and any implied communication necessary to manipulate parts

of the data structure that are on a remote process. Therefore, if the user distributes the

global array in a block-wise manner7 with each process owning an n/p chunk of elements,

then the BSPlib communications necessary to perform the concurrent assignment are shown

below.

void put_array(int *xs, int n) {

int i,pid,local_idx,n_over_p= n/bsp_nprocs();

if ((n % bsp_nprocs()) != 0)

bsp_abort("{put_array} n=%d not divisible by p=%d",

7i.e., process zero gets elements 0 to n/p − 1, process one gets n/p to 2n/p − 1, etc.

BSPlib / bsp_get 17

n,bsp_nprocs());

bsp_push_reg(xs,n_over_p*sizeof(int));

bsp_sync();

for(i=0;i<n_over_p;i++) {

pid = xs[i]/n_over_p;

local_idx = xs[i]%n_over_p;

bsp_put(pid,&xs[i],xs,local_idx*sizeof(int),sizeof(int));

}

bsp_sync();

bsp_pop_reg(xs);

}

The procedure highlights the use of bsp_abort and the offset parameter in bsp_put.

Each process’s local section of the arrayxs is registered in the first superstep. Next, n/p puts

are performed, in which the global numbering used in the distributed array (i.e., indices in the

range 0 through to n− 1), are converted into pairs of process identifier and local numbering

in the range 0 to n/p − 1. Once the conversion from the global scheme to process-id/local

index has been performed, elements of the array can be transferred into the correct index

on a remote process. It should be noted that if the value of the variable pid is the same

as bsp_pid(), then a local assignment (i.e., memory copy) will occur at the end of the

superstep.

Notes

1. The destination memory area used in a put has to be registered. It is an error to com-

municate into a data structure that has not been registered.

2. The source of a put does not have to be registered.

3. If the destination memory area dst is registered with size x, then it is a bounds error

to perform the communication bsp put(pid,src,dst, o,n) if o +n > x.

4. A communication of zero bytes does nothing.

5. A process can communicate into its own memory if pid = bsp pid(). However, for

bsp_put, due to the buffered at destination semantics, the memory copy only takes

effect at the end of the superstep.

6. The process numbering and offset parameter start from zero, even for the FORTRAN

bindings of the operations.

BSPlib / bsp_get 18

Copy from remote memory

In C

void bsp_get(

int pid, const void *src, int offset,

void *dst, int nbytes);

void bsp_hpget(

int pid, const void *src, int offset,

void *dst, int nbytes);

In Fortran

SUBROUTINE bspget(pid,src,offset,dst,nbytes)

INTEGER, intent(IN):: pid, offset, nbytes

<TYPE> intent(IN) :: src

<TYPE> intent(OUT) :: dst

SUBROUTINE bsphpget(pid,src,offset,dst,nbytes)

INTEGER, intent(IN):: pid, offset, nbytes

<TYPE> intent(IN) :: src

<TYPE> intent(OUT) :: dst

Parameters

pid is the identifier of the process where data is to be obtained from.

src is the location of the first byte from where data will be obtained. src must be a previ-

ously registered memory area.

offset is an offset fromsrcwhere the data will be taken from. The calculation of offset

is performed by the process that initiates the get.

dst is the location of the first byte where the data obtained is to be placed. The calculation

of dst is performed by the process that initiates the get.

nbytes is the number of bytes to be transferred from src into dst. It is assumed that

src and dst are addresses of memory areas that are at least nbytes in size.

Explanation

The bsp_get and bsp_hpget operations reach into the local memory of another process

and copy previously registered remote data held there into a data structure in the local

memory of the process that initiated them.

The semantics buffered on source, buffered on destination is used for bsp_get commu-

nications. This semantics means that the value taken from the source on the remote process

by the get, is the value available once the remote process finishes executing all its superstep

BSPlib / bsp_get 19

computations. Furthermore, writing the value from the remote process into the destination

memory area on the initiating process only takes effect at the end of the superstep after all

remote reads from any other bsp_get operations are performed, but before any data is

written by any bsp_put. Therefore, computation and buffered communication operations

within a superstep can be thought to occur in the following order:

1. local computation is performed; also, when a bsp_put is excecuted, the associated

source data is read;

2. the source data associated with all bsp_gets are read;

3. data associated with any bsp_put or bsp_get are written into the destination data

structures.

A high-performance version of get, bsp_hpget, provides the unbuffered on source,

unbuffered on destination semantics in which the two-way communication can take effect at

any time during the superstep.

Example

The procedure get_array is the dual of put_array defined earlier. The procedure is

semantically equivalent to the concurrent assignment:

∀i ∈ {0, . . . ,n− 1} xs[i] := xs[xs[i]]

void get_array(int *xs, int n) {

int i,pid,local_idx,n_over_p=n/bsp_nprocs();

if (n % bsp_nprocs())

bsp_abort("{get_array} %d not divisible by %d",

n,bsp_nprocs());

bsp_push_reg(xs,n_over_p*sizeof(int));

bsp_sync();

for(i=0;i<n_over_p;i++) {

pid = xs[i]/n_over_p;

local_idx = xs[i]%n_over_p;

bsp_get(pid,xs,local_idx*sizeof(int),&xs[i],sizeof(int));

}

bsp_sync();

bsp_pop_reg(xs);

}

In this example buffering is necessary as processes need to read data before it is over-

written. Thus, for a given array element xs[i], all reads generated by bsp_gets are

performed ahead of the writes generated by any buffered operation, including those due to

the bsp_get of the process on which xs[i] resides.

BSPlib / bsp_get 20

Example

The function bsp_sum defined below is a collective communication (i.e., all processes have

to call the function), such that when process i calls the function with an array xs containing

nelemi elements, then the result on all the processes will be the sum of all the arrays from

all the processes.

int bsp_sum(int *xs, int nelem) {

int *local_sums,i,j,result=0;

for(j=0;j<nelem;j++) result += xs[j];

bsp_push_reg(&result,sizeof(int));

bsp_sync();

local_sums = calloc(bsp_nprocs(),sizeof(int));

if (local_sums==NULL)

bsp_abort("{bsp_sum} no memory for %d int",bsp_nprocs());

for(i=0;i<bsp_nprocs();i++)

bsp_hpget(i,&result,0,&local_sums[i],sizeof(int));

bsp_sync();

result=0;

for(i=0;i<bsp_nprocs();i++) result += local_sums[i];

bsp_pop_reg(&result);

free(local_sums);

return result;

}

The function contains three supersteps. In the first, the local array xs of each process

is summed and assigned to the variable result. This variable is then registered for com-

munication in the subsequent superstep. Next, each local result is broadcast into the

bsp pid()
th

element of local_sums on every process. Unlike the previous examples,

an unbuffered communication is used in preference to a buffered bsp_get because the

variable result is not used in any local computation during the same superstep as the

communication. In the final superstep of the algorithm, each process returns the sum of the

p values obtained from each process.

Notes

1. The source memory area used in a get has to be registered. It is an error to fetch from

a data structure that has not been registered.

2. The destination of a get does not have to be registered.

3. If the source memory area src is registered with size x, then it is a bounds error to

perform the communication bsp get(pid,src, o,dst, n) if o+n > x.

4. A communication of zero bytes does nothing.

BSPlib / bsp_get 21

5. A process can read from its own memory if pid = bsp pid(). However, due to the

buffered at destination semantics of bsp_get, the memory copy only takes effect at

the end of the superstep; i.e, the source data is read and then written at the end of the

superstep.

BSPlib / bsp_set_tagsize 22

Bulk Synchronous Message Passing

Direct Remote Memory Access is a convenient style of programming for BSP computations

which can be statically analysed in a straightforward way. It is less convenient for com-

putations where the volumes of data being communicated in supersteps are irregular and

data dependent, and where the computation to be performed in a superstep depends on the

quantity and form of data received at the start of that superstep. A more appropriate style

of programming in such cases is bulk synchronous message passing (BSMP).

In BSMP, a non-blocking send operation is provided that delivers messages to a system

buffer associated with the destination process. The message is guaranteed to be in the des-

tination buffer at the beginning of the subsequent superstep, and can be accessed by the

destination process only during that superstep. If the message is not accessed during that

superstep it is removed from the buffer. In keeping with BSP superstep semantics, the mes-

sages sent to a process during a superstep have no implied ordering at the receiving end;

a destination buffer may therefore be viewed as a queue, where the incoming messages are

enqueued in arbitrary order and are dequeued (accessed) in that same order. Note that al-

though messages are typically identified with tags, BSPlib provides no tag-matching facility

for the out-of-order access of specific incoming messages.

In BSPlib, bulk synchronous message passing is based on the idea of two-part messages,

a fixed-length part carrying tagging information that will help the receiver to interpret the

message, and a variable-length part containing the main data payload. We will call the fixed-

length portion the tag and the variable-length portion the payload. The length of the tag is

required to be fixed during any particular superstep, but can vary between supersteps. The

buffering mode of the BSMP operations is buffered on source, buffered on destination. We note

that this buffering classification is a semantic description; it does not necessarily describe

the underlying implementation.

Choose tag size

In C

void bsp_set_tagsize (int *tag_nbytes);

In Fortran

SUBROUTINE bspsettagsize(tag_nbytes)

INTEGER, intent(INOUT) :: tag_nbytes

Parameters

tag_nbytes on entry to the procedure, specifies the size of the fixed-length portion of

every message in the subsequent supersteps; the default tag size is zero. On return

from the procedure, tag_nbytes is changed to reflect the previous value of the tag

size.

BSPlib / bsp_send 23

Explanation

Allowing the user to set the tag size enables the use of tags that are appropriate for the

communication requirements of each superstep. This should be particularly useful in the

development of subroutines either in user programs or in libraries.

The procedure must be called collectively by all processes. A change in tag size takes

effect in the following superstep; it then becomes valid.

Notes

1. The tag size of outgoing messages is prescribed by the tag size that is valid in the

current superstep.

2. The tag size of messages in the system queue is prescribed by the tag size that was

valid in the previous superstep.

3. bsp_set_tagsize must be called by all processes with the same argument in the

same superstep. In this respect, it is similar to bsp_push_reg.

4. bsp_set_tagsize takes effect in the next superstep.

5. Given a sequence of bsp_set_tagsize within the same superstep, then the value

of the last of these will be used as the tag size for the next superstep.

6. The default tag size is 0.

Send to remote queue

In C

void bsp_send(

int pid, const void *tag,

const void *payload, int payload_nbytes);

In Fortran

SUBROUTINE bspsend(pid,tag, payload,payload_nbytes)

INTEGER, intent(IN) :: pid, payload_nbytes

<TYPE>, intent(IN) :: tag

<TYPE>, intent(IN) :: payload

Parameters

pid is the identifier of the process where data is to be sent.

tag is a token that can be used to identify the message. Its size is determined by the value

specified in bsp_set_tagsize.

BSPlib / bsp_qsize 24

payload is the location of the first byte of the payload to be communicated.

payload_nbytes is the size of the payload.

Explanation

The bsp_send operation is used to send a message that consists of a tag and a payload to

a specified destination process. The destination process will be able to access the message

during the subsequent superstep. The bsp_send operation copies both the tag and the

payload of the message before returning. The tag and payload variables can therefore

be changed by the user immediately after the bsp_send. Messages sent by bsp_send are

not guaranteed to be received in any particular order by the destination process. This is the

case even for successive calls of bsp_send from one process with the same value for pid.

Notes

1. The size of the tag used in bsp_send will depend upon either the size of tag that was

active in the previous superstep, or the size specified by the last bsp_set_tagsize

issued in the previous superstep.

2. If the payload size is zero, then a message that only contains the tag will be sent.

Similarly, if the tag size is zero, then a message just containing the payload will be sent.

If both the tag and payload are zero, a message that contains neither tag nor payload

will be sent.

3. If the tag size is zero, then the tag argument may be NULL. Similarly, if the payload

size is zero, then the payload argument may be NULL.

Number of messages in queue

In C

void bsp_qsize(int *nmessages, int *accum_nbytes);

In Fortran

SUBROUTINE bspqsize(nmessages,accum_nbytes)

INTEGER, intent(OUT) :: nmessages,accum_nbytes

Parameters

nmessages becomes the number of messages sent to this process using bsp_send in

the previous superstep.

accum_nbytes is the accumulated size of all the message payloads sent to this process.

BSPlib / bsp_get_tag 25

Explanation

The function bsp_qsize is an enquiry function that returns the number of messages that

were sent to this process in the previous superstep and have not yet been consumed by a

bsp_move. Before any message is consumed by bsp_move, the total number of messages

received will match those sent by any bsp_send operations in the previous superstep. The

function also returns the accumulated size of all the payloads of the unconsumed messages.

This operation is intended to help the user to allocate an appropriately sized data structure

to hold all the messages that were sent to a process during a superstep.

Notes

1. bsp_qsize returns the number of messages in the system queue at the point the

operation is called; the number returned therefore decreases after any bsp_move op-

eration.

Getting the tag of a message

In C

void bsp_get_tag(int *status, void *tag)

In Fortran

SUBROUTINE bspgettag(status, tag)

INTEGER, intent(OUT) :: status

<TYPE>, intent(OUT) :: tag

Parameters

status becomes −1 if the system queue is empty. Otherwise it becomes the length of

the payload of the first message in the queue. This length can be used to allocate an

appropriately sized data structure for copying the payload using bsp_move.

tag is unchanged if the system queue is empty. Otherwise it is assigned the tag of the first

message in the queue.

Explanation

To receive a message, the user should use the procedures bsp_get_tag and bsp_move.

The operation bsp_get_tag returns the tag of the first message in the queue. The size of

the tag will depend upon the value set by bsp_set_tagsize.

BSPlib / bsp_move 26

Move from queue

In C

void bsp_move(void *payload, int reception_nbytes);

In Fortran

SUBROUTINE bspmove(payload,reception_nbytes)

<TYPE>, intent(OUT) :: payload

INTEGER, intent(IN) :: reception_nbytes

Parameters

payload is an address to which the message payload will be copied. The system will then

advance to the next message.

reception_nbytes specifies the size of the reception area where the payload will be

copied into. At most reception_nbytes will be copied into payload.

Explanation

The operation bsp_move copies the payload of the first message in the system queue into

payload, and removes that message from the queue.

Note that bsp_move serves to flush the corresponding message from the queue, while

bsp_get_tag does not. This allows a program to get the tag of a message (as well as the

payload size in bytes) before obtaining the payload of the message. It does, however, require

that even if a program only uses the fixed-length tag of incoming messages the program must

call bsp_move to get successive message tags

Example

In the algorithm shown below, an n element vector distributed into n/p chunks on p pro-

cesses undergoes a communication whereby all the nonzero elements from all the p chunks

are broadcast to all the processes. Due to the sparse nature of the problem, the commu-

nication pattern is well suited to BSMP as the amount and placement of data is highly data

dependent.

int all_gather_sparse_vec(float *dense,int n_over_p,

float **sparse_out,

int **sparse_ivec_out){

int global_idx,i,j,tag_size,

nonzeros,nonzeros_size,status, *sparse_ivec;

float *sparse;

tag_size = sizeof(int);

bsp_set_tagsize(&tag_size);

BSPlib / bsp_move 27

bsp_sync();

for(i=0;i<n_over_p;i++)

if (dense[i]!=0.0) {

global_idx = (n_over_p * bsp_pid())+i;

for(j=0;j<bsp_nprocs();j++)

bsp_send(j,&global_idx,&dense[i],sizeof(float));

}

bsp_sync();

bsp_qsize(&nonzeros,&nonzeros_size);

if (nonzeros>0) {

sparse = calloc(nonzeros,sizeof(float));

sparse_ivec = calloc(nonzeros,sizeof(int));

if (sparse==NULL || sparse_ivec==NULL)

bsp_abort("Unable to allocate memory");

for(i=0;i<nonzeros;i++) {

bsp_get_tag(&status,&sparse_ivec[i]);

if (status!=sizeof(float))

bsp_abort("Should never get here");

bsp_move(&sparse[i],sizeof(float));

}

}

bsp_set_tagsize(&tag_size);

*sparse_out = sparse;

*sparse_ivec_out = sparse_ivec;

return nonzeros;

}

The algorithm contains three supersteps. In the first superstep, the tag size of the mes-

sages in the subsequent supersteps is set to the size of an integer. The size of the tag prior

to the bsp_set_tagsize is remembered so that it can be reinstated at the end of the

procedure. Next, the nonzero elements of the vector are broadcast to each process using

bsp_send. The tag for each send operation is set to be the position of the vector element

within the global array of n elements; the payload of the message will be the nonzero ele-

ment. A bsp_sync is used to ensure that all the bsp_send operations are delivered to

the system queue on the remote processes, and then bsp_qsize is used to determine how

many messages arrived at each process. This information is used to allocate a pair of arrays

(one for array indices, and one for values), which have the messages copied into them by a

bsp_move operation.

Notes

1. The payload length is always measured in bytes

2. bsp_get_tag can be called repeatedly and will always copy out the same tag until a

BSPlib / bsp_hpmove 28

call to bsp_move.

3. If the payload to be received is larger than reception_nbytes, the payload will be

truncated.

4. If reception_nbytes is zero this simply “removes” the message from the system

queue. This should be efficient in any implementation of the library.

A lean method for receiving a message

In C

int bsp_hpmove(void **tag_ptr, void **payload_ptr);

Parameters

bsp_hpmove is a function which returns−1, if the system queue is empty. Otherwise it re-

turns the length of the payload of the first message in the queue and: (1) places a pointer

to the tag in tag_ptr; (2) places a pointer to the payload in payload_ptr; and (3)

removes the message (by advancing a pointer representing the head of the queue).

Explanation

The operation bsp_hpmove is a non-copying method of receiving messages that is available

in languages with pointers such as C, but not standard Fortran.

We note that since messages are referenced directly they must be properly aligned and

contiguous. This puts additional requirements on the library implementation that would not

be there without this feature, as it requires the availability of sufficient contiguous memory.

The storage referenced by these pointers remains valid until the end of the current superstep.

Collective communications 29

A Collective communications

Some message passing systems, such as MPI [4], provide primitives for various specialised

communication patterns which arise frequently in message passing programs. These include

broadcast, scatter, gather, total exchange, reduction, prefix sums (scan), etc. These standard

communication patterns also arise frequently in the design of BSP algorithms. It is important

that such structured patterns can be conveniently expressed and efficiently implemented in

a BSP programming system, in addition to the more primitive operations such as put and

get which generate arbitrary and unstructured communication patterns. The library we have

described can easily be extended to support such structured communications by adding

bsp_bcast, bsp_fold,bsp_scatter, bsp_gather,bsp_scan, bsp_exchange,

etc. as higher level operations. These will be implemented in terms of the core operations, or

directly on the architecture if that was more efficient. For modularity and safety, all collective

communications will have an implicit registration, within the routine, of any arguments that

are required to be communicated.

Collective communications 30

Acknowledgements

The work of Jonathan Hill and Bill McColl was supported in part by the EPSRC Portable Soft-

ware Tools for Parallel Architectures Initiative, as Research Grant GR/K40765 “A BSP Pro-

gramming Environment”, October 1995-September 1998.

The authors would like to thank Paul Crumpton, Alex Gerbessiotis, Tony Hoare, Antoine

Le Hyaric, Tim Lanfear, Bob McLatchie, Richard Miller, David Skillicorn, Bolek Szymanski and

Hong Xie for various discussions on BSP libraries. Thanks also to Jim Davies for improving

the typesetting in TEX.

References

[1] T. Cheatham, A. Fahmy, D. C. Stefanescu, and L. G. Valiant. Bulk synchronous parallel

computing - a paradigm for transportable software. In Proc. 28th Hawaii International

Conference on System Science, volume II, pages 268–275. IEEE Computer Society Press,

January 1995.

[2] Mark W. Goudreau, Kevin Lang, Satish B. Rao, Torsten Suel, and Thanasis Tsantilas. To-

wards efficiency and portability: Programming with the BSP model. In Proc. 8th Annual

ACM Symposium on Parallel Algorithms and Architectures, pages 1–12, June 1996.

[3] W. F. McColl. Scalable computing. In J van Leeuwen, editor, Computer Science Today:

Recent Trends and Developments, number 1000 in Lecture notes in Computer Science,

pages 46–61. Springer-Verlag, 1995.

[4] Message Passing Interface Forum. MPI: A message passing interface. In Proc. Supercom-

puting ’93, pages 878–883. IEEE Computer Society, 1993.

[5] Richard Miller. A library for Bulk Synchronous Parallel programming. In Proceedings of the

BCS Parallel Processing Specialist Group workshop on General Purpose Parallel Computing,

pages 100–108, December 1993.

[6] David Skillicorn, Jonathan M. D. Hill, and W. F. McColl. Questions and answers about BSP.

Scientific Programming, to appear 1997.

[7] Leslie G. Valiant. A bridging model for parallel computation. Communications of the ACM,

33(8):103–111, August 1990.

