PARALLEL FAST LEGENDRE TRANSFORM*

MARCIA ATVES DE INDA
Mathematics Department, Utrecht University
Budapestlaan 6, Utrecht, 3584 CD, The Netherlands

ROB H. BISSELING
Mathematics Department, Utrecht University
Budapestlaan 6, Utrecht, 3584 CD, The Netherlands

and

DAVID K. MASLEN
Mathematics Department, Dartmouth College
Hanover, NH 03755, U.5.A.

ABSTRACT

We discuss a parallel implementation of a fast algorithm for the discrete poly-
nomial Legendre transform. We give an introduction to the Driscoll-Healy
algorithm using polynomial arithmetic, and present experimental results on
the efficiency and accuracy of our implementation. The algorithms were
implemented in ANSI C using the BSPlib communications library. Further-
more, we present a new algorithm for computing the Chebyshev transform
of two vectors at the same time.

1. Introduction

The discrete polynomial Legendre transform, DLT, is a widely used tool in applied
science, where it commonly arises in problems associated with spherical geometries.
In weather forecasting, the DIT appears inside the discrete spherical harmonic trans-
form used in global spectral weather models.®”

Given two sequences of numbers xq,...,xn_1 and wq,...,wy_1 called sample
points and sample weights, respectively, we may define the discrete polynomial Le-
gendre transform of a data vector (fo, ... fy—1) to be the vector of sums (fo, .. .fN,1),
given by

N—1
fr=1(P) =" fiPia;w;. (1)

*To appear in the proceedings of the EOCMWF Workshop “Towards TeraComputing - The Use
of Parallel Processors in Meteorology”, Nov. 1998, Reading, UK, published by World Scientific
Publishing Co, 1999.

;

where P, is the I'" Legendre polynomial defined by the three-term recurrence

Prq(x) = QII—I—;]]T - P = H—L]Plh Po(z)=1, Pi(x)==. (2)

A direct method for computing a DIT of N data values requires a matrix-vector
multiplication of O(N?) arithmetic operations, though several authors®'? have pro-
posed faster algorithms based on approximate methods. In 1989, Driscoll and Healy
introduced an exact algorithm that computes a DIT in O(N(log N)?) arithmetic
operations; they implemented the algorithm and analyzed its stability.®'°

In the present article we describe a parallel implementation of the Driscoll-Healy
algorithm. Such an algorithm is useful for solving large problem sizes. At least
two reports discussing the theoretical parallelizability of the algorithm have already
been written.'"'® We are, however, unaware of any parallel implementations of the
Driscoll-Healy algorithm at the time of writing.

The remainder of this paper is organized as follows. In Section 2, we outline
a derivation of the Driscoll-Healy algorithm based on polynomial arithmetic. Full
proofs are omitted; these will be given in a future expanded article. In Section 3,
we introduce the bulk synchronous parallel (BSP) model, and describe our parallel
algorithm and its implementation. In Section 4, we present results on the efficiency,
accuracy and scalability of the programs. We conclude in Section 5.

2. The Driscoll-Healy Algorithm

The Driscoll-Healy algorithm computes the DIT at any set of N sample points,
in O(N(log N)?) arithmetic operations. The core of this algorithm consists of an
algorithm to compute the DLT in the special case where the sample points are the
Chebyshev points, i.e., z; = T;V — cos ZZEDT i the j-th root of the N Chebyshev

. 2N
polynomial Ty defined recursively by

Tepr () =22 - Te(z) — Tpv(x), To(x)=1, Ti(x) ==, (3)

and where the sample weights are identically 1ﬁ For simplicity we restrict ourselves
to this special case, and furthermore we assume that N is a power of 2.

Our derivation of the Driscoll-Healy algorithm relies on the interpretation of the
input data f; of the transform Eq. (1) as the function values of a polynomial f of
degree less than the problem size N. Thus f is defined to be the unique polynomial
of degree less than N such that

f("//';v):f77 forj=0,...N —1. (4)
Using this notation one can derive the relation
[Prom = Q- (f - P) + Bi - (f - Pia) (5)
directly from the generalized three-term recurrence for the Legendre polynomials
Py = Qrum - P+ Ry - Py (6)

2

Here, Qy.,, R, are the associated polynomials™ for the Tegendre polynomial se-
quence,®? defined by the following recurrences on m, which are shifted versions of
the recurrence Eq (2) for P.
Ql,m,(m) - (Al+m,f1 T+ Bl+m,f1)Ql,m,f1 (T) + Cl+m,f1 Ql,m,72(m)7
Qii(r) = A+ B, Quolx) =1,
Bl,m(T) — (Al—l—m,f] T+ Bl—l—mf1)Rl,mf1 (T) + Cl-l—mf1 Rl,m72(m)7
Rm(.”l?) = Cl, RI,O(W) = 0.

The Driscoll-Healy algorithm is a divide and conquer algorithm. Tts divide struc-

(7)

ture is based on the following strategy:

Start by computing f - Py and f- Py at the points T;V for0 <j3 < N.

At stage 1, use Eq. (5) with Il =1 and m = g —lorm= gj to compute
ng = QL?fo(f'P])_l_R],g—] (fPO) and .f'P§+1 = QL?N'(JC'R)+R1,3N'(.f'P0)-
o In general, at each stage k, 1 < k <log, N, similarly as before use Eq. (5) with
I =2¢(N/2") +1,0 < ¢ < 2" and m = N/2F — 1, N/2*, to compute the
polynomial pairs

f PQEka f PQﬂk+1; f Pz_fa f Pz_f_ma af P(?’“—1)N7 f P(Qk;};)]\]_l_]-

ok
At stage log, N, compute all the sums < E;\:(J f(T;V)P](T;V) using the function

values f(T;V)P](T;V) that were computed at the previous stages.

The conquer property of the Driscoll-Healy algorithm is achieved using truncation
operators which truncate the Chebyshev expansion of the polynomials involved. Let
f = > 150b:Ti be a polynomial, of any degree, written in the basis of Chebyshev
polynomials, and let n be a positive integer. The truncation operator 7, applied to

fis defined by

T.f = Zkak- (8)
k=0

Thus, 7T, f is obtained from [by discarding terms of degree n or higher in the ex-
pansion of f in terms of Chebyshev polynomials.
It can be proven'? that the DLT of f of size N is given hy

fi=Ti(f P), 0<I<N. (9)

The Driscoll-Healy algorithm proceeds in a fashion determined by the basic divide
strategy but it computes truncated polynomials

ZIK - ’TI\(]C : Pl)

for various values of [and K, instead of the original polynomials f- F. This is done
by using truncated versions of the generalized three-term recurrence Eq. (5) for the

TThe associated polynomials should not be confused with the associated TLegendre functions,
which in general are not polynomials.
3

polynomials 7/
e =TelZ% - Qur + 7221 - Rik] (10)
Il gy = Tl 2 - Quicy + 225 - Rl (11)

These equations are obtained from Eq. (5) and judicious application of the following
property of the truncation operator

Lemma 2.1. Let [and Q be polynomials. Then
Trm(f- Q) =Tr—wl(Trf) - Ql, if deg@ <m < L.

The Driscoll-Healy algorithm is shown as Algorithms 1 and 2. Tts input is the

polynomial f = 7V, and the output is the sequence of f; =Ti(f-P)= 7] A brief
explanation of its main features is given in the following subsections.

Algorithm 1 Driscoll-Healy algorithm.

INPUT f = (fo,...fn-1): Real vector to be transformed with N a power of 2.

OUTPUT f= (’]207 .. .,fN,1): Discrete orthogonal polynomial transform of f.
STAGES
(). Compute the Chebyshev representation of Z(])V and Z1N.
(a) (20,...,2% ;) « Chebyshev(fo, ..., fnv_1)-
(b) (20y--vs2n) & Chebyshev(fozl, .. .,fN,m?%i]).
k. for k=1 to logy, N/M do
K « N/2F
for/=1to N —2K + 1 step 2K do
(a) Compute the Chebyshev representation of Z[i,(and Z[i,‘:].

I+K I+K . JI+K-1 I+ K -1
(zo™" o 20 2 e 2l)
K.l I} .- -1
— Recurrence]* (24, ..., 25, 13 2o s+ 12950 1)
(b) Compute the Chebyshev representation of Zlf‘ and Zl,:r
. I ! -1 -1
Discard (zp, ..., 255) and (25, .. 250 ¢)-

logy N/M + 1. Compute remaining values.

for/i=1to N - M + 1 step M do
.7?71:2(])71

fi =2}

for m=1to M — 2 do

£ _ 1.0 [-1_0 1 m I n -1 n
fl-l—m, - ZOql,m, + <0 rl,m, + 2 Zn:1 (anl,m, + Zn rl,m,)‘

2.1. Data Representation and Initialization

Truncation of a polynomial requires no computation if the polynomial is repre-

sented by the coefficients of its expansion in Chebyshev polynomials. Therefore we
4

use the Chebyshev coefficients 2! defined by

K—-1

72N =Y "=, (12)

n=0

to represent all the polynomials Z/* appearing in the algorithm. Such a representation
of a polynomial is called the Chebyshev representation.

The input polynomial f of degree less than N is given as the vectorf = (fo,..., fn_1)
of values f; = (T;V) This is called the point value representation of f. In stage 0
we must convert 7 = Tn(f - Po) = f - Py and ZY = Tn(f - Pi) to their Chebyshev
representation.

We do this using the Chebyshev tmnsform of size N,

N—1
: (27 + 1)k

:%’E:fjﬂ(m —“§ fioos LT 7+) , 0<k<N. (13)
7=0

where ¢g = 1, and ¢, = 2 if &£ > 0. ITts inverse is defined by

= (25 +])k
— Z fka(.?/: Z fk cos —-— J , 0<j7<N. (14)
k=0

The Chebyshev transform of size N and its inverse convert a polynomial of degree less
than N from point value representation to Chebyshev representation and vice versa.
Both transforms can be carried out in O(N log, N) flops using a fast cosine transform,
FCT, algorithm (see e.g. Ahmed, Natarajan and Rao,' Steidl and Tasche,'? van
Loan?!").

Note that f - Fy = f is a polynomial of degree less than N but f- P = - =
may have degree N, rather than N — 1. In the last case, a simple argument shows
that a Chebyshev transform of size N (rather than N + 1) applied in the points
fiP (T;V) = fﬂ';\f suffices to compute 7V

2.2. Intermediate Stages: Carrying on the Recurrence

To carry on the recurrence in an efficient way we use the procedure described in Al-
gorithm 2. This procedure replaces the polynomial multiplications in the recurrences
FEq. (10) and Eq. (11) by a different operation. For example, inq‘read of computing
72N Qi it computes the Lagrange interpolation polynomial Sy (7N - Qii), i.e.,
the polynomial of degree less than 2K that agrees with 7N - Q; % at the points
a2V 22 . Correctness of the modified procedure can be proven by combining

properties of the Lagrange operators S and the truncation operators 7.

2.3. Terminating the Computation

At late stages in the Driscoll-Healy algorithm, the work required to apply the

recursion amongst the 7N is larger than that required to finished the computation
5

Algorithm 2 Recurrence algorithm using the Chebyshev transform

CALL Recurrencel (fo,..., fak_1; Joy---sGak—1)

INPUT f= (]507 .. .Mfgf(,]) and g = (go, . - -, g2x—1): First 2K Chebyshev coefficients of
input polynomials ZIQK and Z,Qﬁ K is a power of 2.

OUTPUT u= (ig,...,0x—1) and v = (99, ..., 0x_1): First K Chebyshev coefficients of
output polynomials 7[5 ;- and 7}

+K I+K—1-
STEPS

1. Transform f and g to point-value representation.

(fo,---, fa—1) < Chebyshev'(fo,..., far—1)

(9o, - -, g2k 1) < Chebyshev™' (o, ..., Gar—1)-
2. Perform the recurrence.

for j=0to 2K — 1 do

wi = Quic(x3) fi + Rire(227) g
v = Qur 1 (22%) fi+ Rix 1 (237) g5,
3. Transform u and v to Chebyshev representation.
(thgy - - -y tlgrc—1) Chebyshev(ug, ..., uor_1)
(Do, - - ., V2rc—1) + Chebyshev(vo, ..., vax—1).

4. Discard (ig, ... d2x—1) and (0x, ..., Do —1).

using a naive matrix-vector multiplication. It is then more efficient to take linear
combinations of the vectors Z/* computed so far to obtain the final result.

Let g7, r[,,, denote the Chebyshev coefficients of the polynomials Q,,, and Ry,
respectively, so that

m m—1
Ql,m = Z qzmTwa Rl,m - Z r;zmTw (]5)
n=0 n=0

The problem of finishing the computation at the end of stage k& = log, N/M, when
K = M., is equivalent to finding f; = 2z, for 0 < 1 < N, given the data 2z, 2!

n b

0<n<M,I=1M+1,....N —M-+1. Our method of finishing the computation

uses Lemma 2.2, which follows.

Lemma 2.2. 1. IfI>1 and 0 <m < M, then

.

A 1
fH—Tn = 5 Z(ZLQZM + 2717717“;7’7”) + (Z(])QI(jm + Z(l)i1r?,m,)‘

n=1

2. q/,, =0, if n —m is odd, and i, =0, if n. — m is even.

6

3. The Parallel Algorithm and its Implementation

We designed our parallel algorithm using the BSP model. The BSP model gives a
simple and effective way to produce portable parallel algorithms: it does not depend
on a specific computer architecture and it provides a simple cost function that enables
us to choose between algorithms without actually having to implement them.

In the following subsections, we first give a brief description of the BSP model and
then we present the framework in which we develop our parallel algorithm, including
the data structures and data distributions used; this leads to a basic parallel algo-
rithm. Finally, we refine the basic algorithm by introducing an intermediate data
distribution that reduces the communication to a minimum.

3.1. The Bulk Synchronous Parallel Model

In the BSP model,?® a computer consists of a set of p processors, each with its own
memory, connected by a communication network that allows processors to access the
private memories of other processors. In this model, algorithms consist of a sequence
of supersteps. In the variant of the model we use, a superstep is either a number of
computation steps, or a number of communication steps, both followed by a global
synchronization barrier. Using supersteps imposes a sequential structure on parallel
algorithms, and this greatly simplifies the design process. A BSP computer can be
characterized by four global parameters:

e p, the number of processors

e s, the computing speed in flop/s

e ¢. the communication time per data element sent or received, measured in flop
time units

e /. the synchronization time, also measured in flop time units.

Algorithms can be analyzed by using the parameters p, g, and [; the parameter s
just scales the time. The time of a computation superstep is simply w + [, where
w denotes the maximum amount of work (in flops) of any processor. The time of a
communication superstep is hg+1, where h is the maximum number of data elements
sent or received by any processor. Such a communication superstep is called an h-
relation. The total execution time of an algorithm (in flops) can be obtained hy
adding the times of the separate supersteps. This yields an expression of the form
a + bg + cl. For further details and some basic techniques, see Bisseling.®

BSPIib'? is a recently defined standard library which enables parallel programming
in BSP style. The definition of BSPlib was completed in May 1997. Implementations
are available for many different machines, including the Cray T3FE, SGI Origin, the
IBM SP2, Parsytec Explorer, PCs running the Linux operating system or Windows
NT, and also for networks of workstations communicating via Ethernet and TCP /TP
or UDP/TP. Programs written in BSPlib can be run on all of these platforms without
changing one line of code. BSPIlib is available for the languages C, C4++, Fortran

77 and Fortran 90. Thus, it is an attractive and efficient alternative to well-known
7

communication libraries such as MPI and PVM. Moreover, BSPlib is easy to learn
because it comprises only 20 primitives.

3.2. Data Structures and Data Distributions

Fach processor in the BSP model has its own private memory, so the design of a
BSP algorithm requires choosing how to distribute the elements of the data structures
used in it over the processors. The divide and conquer structure of the Driscoll-Healy
algorithm suggests both the data structures and data distributions to be used.

At each stage k, 1 < k <log, N/M, the number of intermediate polynomial pairs
doubles as the number of expansion coefficients halves. At the start of stage 1, we
have two polynomials of degree N —1; at the end of stage 1, we have four polynomials
of degree N/2 — 1, etc. Thus, at every stage of the computation, all the intermediate
polynomials can be stored in two arrays of size N. We use an array f to store the
Chebyshev coefficients of the polynomials Z2* and an array g to store the coefficients

of Z,T], for | = 0,2K,... ,N — 2K, with K = N/2% in stage k. We also need some

extra work space to compute the coefficients of the polynomials ZIT}\" and Zfl‘}‘,y+1.
For this we use two auxiliary arrays of length N, u and v.

The data flow of the algorithm, see Fig. 1, suggests to distribute all the vectors
by blocks, i.e., to assign one block of consecutive vector elements to each processor.
This works well if p is a power of two, as we will assume from now on. Formally, the

block distribution is defined as follows.

Definition 3.1 (Block Distribution). Let f be a vector of size N. We say that f is
block distributed over p processors if for all j, the element f; is stored in Proc(j divd)
and has local index 3/ = 7 mod b, where the block size is b= [N/p].

Note that if both N and p are powers of two, the block size is b = N/p.
Now we explain how to store and distribute the precomputed data used in the
recurrence. To perform the recurrence of stage k, we need to have the values of the

polynomials QHLTQ Q1. 5-1, Ripr w0, and Ripy gy, for 1l =0,2K, ... | N=2K at the
?K = coS %, 0 <7 < 2K. We store these values in two two-dimensional

arrays Q and R, each of size 21og, % x N. Fach pair of rows in Q stores data needed

points x

for one stage k, by
QI2k — 2.0+ j] = Quax(}") and Q2k — 1.1+ j] = Qi (#3%). (16)

forl =0,2K,... ,N—2K,j=0,1,... ,2K 1, where K = N/2F. Thus, polynomials
Q41,5 are stored in row 2k — 2 and polynomials Qry1 k-1 in row 2k — 1. This is
depicted in Fig. 2. The polynomials R4y x and R4y g—1 are stored in the same way
in array R. Note that the indexing of the implementation arrays starts at zero.

To make the recurrence completely local, the values from R and Q must be avail-
able locally. This can be achieved by distributing each row of these arrays by the
block distribution, so that Rli, 7], Q[z, j] € Proc(y div %)

8

Stage Vector Proc(0) Proc(1) Proc(2) Proc(3)

1 f zN
n 72 o
communicate communicate |
-
/ / é
N/2 N/2
2 f Z ZN/2 &
N/2 N/2
" 7 N4 Zan/a
N/4 N/4 N/4 N/4
3 f Zq 7 NJa Zon/a Zan/a
N/4 N/4 N/4 N/4
n v 73n/8 75N /8 7an/8
E
4 f N/8 N/8 N/8 N/8 N/8 N/8 N/8 N/8 Z
Za ZN/& ‘oN/8 737\1/3 ‘aN/8 757\1/3 ZsN/s 777\1/3 %
N/8& N/8& N/8& N/8& N/8& N/8& N/8& N/8& o
n ZN/m 737\1/15 ‘5N/16 ‘TN/16 ‘oN/16 an\r/m Z13N/15 Zml\f/m %

Fiaurrk 1. Data storage and data distribution in the parallel FI.T algorithm
for four processors. The Chebyshev coefficients of the intermediate polyno-
mials are stored in four arrays. Array f contains the polynomials ZIQK which
are already available at the start of the stage. Array u contains the polyno-

mials ZIT}\" which become available at the end of the stage. Similarly, arrays
2K

g and v contain the next higher polynomials 7" and ZT}\"H’ respectively;
these arrays are not depicted. Each array is divided into four local subarrays
by using the block distribution. FEach processor has one subarray.

k K, K —1 Proc(0) Proc(1) Proc(2) Proc(3)
1 32 1=
31 5 =0,...,63
2 16 1= = 83
15 5 =0,...,31 5 =0,...,31
3 & 1= 1=17 = 83 1 49
7 5 =0,...,158 5 =0,...,15 ;=0,...,15 ;=0,...,15

Ficgurk 2. Data structure and distribution of the precomputed data needed
in the recurrence with N = 64, M = 8 and p = 4. Data are stored in two
two-dimensional arrays Q and R. Each pair of rows in an array stores the
data needed for one stage k.

The termination coefficients ¢, and 7, for I =1, M +12M +1,....N—M+1,
m=1,2,...,M —2and n=0,1,...,m are stored in a two-dimensional array T of
size N/M x (M(M —1)/2 —1). The coefficients for one value of [are stored in row
(I—1)/M of T. Fach row has the same internal structure, as follows. The coefficients
are stored in increasing order of m. The coefficients with the same m are ordered by
increasing n. This format is similar to that commonly used to store lower triangular
matrices. For each n and m, either ¢/, = 0 or r7', = 0, and hence we only need to
store the value that can be nonzero. Since this depends on whether n — m is even or

9

odd, we obtain an alternating pattern of ¢, and r . Figure 3 illustrates this data

structure.
m=1 m=2 m = 3 m = 4 m =15 m =6

0 1 0o 1 2 |0 1 2 3 0o 1 2 3 4 |0 1 2 3 4 5|0 1 2 3 4 5 6

=1 |r ¢ g r g r g r7 gq g r qg> r’ g r g r° g’ r g 9 r g v g r g
Proc(0)

0 1 0o 1 2 |0 1 2 3 0o 1 2 3 4 |0 1 2 3 4 5|0 1 2 3 4 5 6

I=9 |09 Jo r g g r7 g g r g7 r g g v g7 " g7 g7 v g7 r7 g" r g

0 1 0o 1 2 |0 1 2 3 0o 1 2 3 4 |0 1 2 3 4 5|0 1 2 3 4 5 &

I=17r"q |jg r q° |r" g r° g g r g° r g v g v g” r" g7 |g r g r" g r° g
01 0o .1 .2 [0 _1 2 3 0,1 .2 .3 .4 |0 1 2 .3 4 .5 |0 1 .2 3 _4 5 _6 Proc(1)

I=25r"q |g r g r g r° g g’ r g° r’ g rg r® " " g7 g v g7 r? " r® g

0 _1 0o 1 2 |0 1 2 3 0o 1 2 3 4 |0 1 2 3 4 5[0 1 2 3 4 5 &

I =33r qg g r g v g r gq g r g> r’ g r' g r- g’ r g 9 r gq r' g r° g
Proc(2)

0 _1 0o 1 2 |0 1 2 3 0o 1 2 3 4 |0 1 2 3 4 5[0 1 2 3 4 5 &

I=41r" g Jg° r g° r g r° g g r g° r g r g r° g” r" g° |g° r g r" g" r° g

1 =490 g1 g0 .1 g2 |0 1 .2 .3 [0 1 .2 3 4 [0 1 .2 .3 .4 .5 [0 .1 2 3 4 5 6
Proc(3
;= 57 p0 gl 0o 1 2 |0 1 2 3 0o 1 2 3 4 |0 1 2 3 4 5|0 1 2 3 4 5 &)

570" g fg r g | g r° g g r g° r g r g r° g” r" g” |g° r g r" g r° g

Fiaurrk 3. Data structure of the precomputed data needed for termination
with N = 64, M = 8 and p = 4. The coefficients ¢/, and r/ . for [=
I M+1,2M+1,.... N-M+1,m=1,2,.... M -2, andn=0,1,...,m
are stored in a two-dimensional array T. In the picture, r” denotes r, and
q" denotes q’, . ’

The termination stage becomes local if M < N/p, so that the input and output
vectors are local. The necessary precomputed data must then also be available locally.
This means that each row of T must be assigned to one processor, namely to the
processor that holds the subvectors for the corresponding value of [. The distribution
T[7, 7] € Proc(i div piM) achieves this. Asa result, the N/M rows of T are distributed

in consecutive blocks of rows.

3.3. The Basic Parallel Algorithm

Now we formulate our basic parallel algorithm. For this we introduce the following
conventions:

e Processor identification. The total number of processors is p. The processor
identification number is s, with 0 < s < p.

e Supersteps. The labels on the left-hand side indicate a superstep and its
type: (Cp) computation superstep, (Cm) communication superstep, (CpCm)
subroutine containing both computation and communication supersteps. In
principle, each superstep ends with an explicit synchronization (In an actual
implementation, synchronizations can sometimes be saved). The supersteps are
numbered as textual supersteps. Of course, supersteps inside loops are executed
repeatedly, even though they are numbered only once.

e Indexing. All the indices are global. This means that array elements have a
unique index which is independent of the processor that owns it. This enables
us to describe variables and gain access to arrays in an unambiguous manner,

even though the array is distributed and each processor has only part of it.
10

e Vectors and Subroutine calls. All the vectors (or one-dimensional arrays)
are indicated in boldface. To specify part of a vector we write its first element
in boldface, e.g., f;; the vector size is explicitly written as a parameter.

e Communication. Communication between processors is indicated using

g; « Put(pid,n,f;)

This operation puts n elements of vector f, starting from element 7, into pro-
cessor pid and stores them there in vector g starting from element j.
e Copying a vector. The operation

g;j « Copy(n,f;)

denotes the copy of n elements of vector f, starting from element 7, to a vector
g starting from element j.

Subroutine name ending in 2. Subroutines with a name ending in 2 perform
an operation on 2 vectors instead of one. For example

(fi, i) < Copy2(n,uk,v1)
is an abbreviation for
f; « Copy(n,uy)
g — Copy(nv)

Truncation. The operation

f « BSP_Trunc(s, p,s0,s1,pl, N, K, u)

denotes the truncation of all the N/(2K) polynomials stored in f and u hy
copying the first K Chebyshev coefficients of the polynomials stored in u into
the memory space of the last K Chebyshev coefficients of the corresponding
polynomials stored in f. A group of pl processors starting from Proc(s0) work
together to truncate one polynomial; sl with 0 < s1 < pl denotes the local
processor number within the group. Note that s0 4+ sl = s. When pl = 1 one
processor is in charge of the truncation of one or more polynomials. Algorithm 3
gives a description of this operation. In Fig. 1, this operation is depicted by
arrows.

e Fast Chebyshev transform. The subroutine
BSP_FChT(s0,s1,pl,sign,n,f)

replaces the input vector f of size n by its Chebyshev transform if sign = 1
or by its inverse Chebyshev transform if sign = —1. A group of pl processors
starting from Proc(s0) work together; s1 with 0 < s1 < pl denotes the local
processor number within the group. For a group size pl = 1, this subroutine
reduces to the sequential fast Chebyshev transform algorithm.

The basic template for the fast Legendre transform is presented as Algorithm 4. At
each intermediate stage k, 1 < k < log, N/M, there are 2"~! independent problems,

one for each [. For k <log, p, there are more processors than problems, so that the
11

Algorithm 3 Truncation using the block distribution.

CALL f + BSP_Trunc(s,p, s0,sl,pl, N, K, u).
DESCRIPTION
if p1 = 1 then
for | = s% to (s—l—])% — 2K step 2K do
firk < Copy(K,w)

else
if s1 < p1/2 then
fs§+K + Put(s+ %, %, usg)
processors will have to work in groups. Fach group of pl = p/2*~' > 1 processors
handles one subvector of size 2K, K = N/2*; each processor handles a block of

2K /pl = N/p vector components. In this case, the [-loop has only one iteration,
namely [= sON/p, and the j-loop has N/p iterations, starting with j = s1N/p, so
that the indices [+ j start with (sO+s1)N/p = sN/p, and end with (s0+ s1)N/p +
N/p—1=(s+1)N/p — 1. Inter-processor communication is needed, but it occurs
only in two instances:

o Inside the parallel FChTs (in supersteps 2, 5, 7). This communication will be
discussed separately, in the following subsections.
o At the end of each stage (in supersteps 3, 8).

For k > log,p + 1, the length of the subvectors involved becomes 2K < N/p.
In that case, pl = 1, s0 = s, and s1 = 0, and each processor has one or more
problems to deal with, so that the processors can work independently and without
communication. Note that the index [runs only over the local values sN/p, sN/p +
2K, ... (s+ 1)N/p — 2K, instead of over all values of /.

The original stages 0 and 1 of Algorithm 1 are combined into one stage and then
performed efficiently, as follows. First, in superstep 1, the polynomials Z ¥, Z]]\\,T/Q and

Z]]\\,T/QH are computed directly from the input vector f. This is possible because the

point-value representation of ZY = Tx(f - Py) = Tn(f - #) needed by the recurrences
is the vector of f; - T;V7 0 <j < N, see Subsection 2.1. Note that the values R[7, 7] +

Q[hj]"r;\f for 2 = 0,1 can be precomputed and stored so that the recurrences only

require one multiplication by f;. In superstep 2, polynomials Z(])V/Q = f, Z1N/2 =
N/ N2

8, 7Ny = W, and INjap1 — V are transformed to Chebyshev representation; and then
truncated, in superstep 3, in order to obtain the input for stage 2.

The main loop works as follows. In superstep 4, the polynomials 72%, with K =
N/2% and [= 0,2K,...,N — 2K, are copied from the array f into the auxiliary

array u, where they are transformed into the polynomials ZITK in supersteps H to
2K

7. (Similarly, the polynomials 77/ are copied from g into v and then transformed

into the polynomials Zfl‘}‘,y+1 .) Note that f corresponds to the lower value of /, so

12

Algorithm 4 Basic parallel template for the fast Legendre transform.

CALL BSP_FLT(s,p, N, M, f).
ARGUMENTS
s: Processor identification (0 < s < p).
p: Number of processors (p is a power of 2 with p < N/2).
N: Transform size (N is a power of 2 with N > 4).
M: Termination block size (M is a power of 2 with M < min(N/2, N/p)).
f: (Input) £ = (fo,..., fnv—1): Real vector to be transformed.
(Output) f = (fo, .. .,fN,1): Transformed vector.
Block distributed: f; € Proc(j div %)

STAGE 1:
(19P) for j = s% to (s—l—])% —1do
gj = f;
uj + (R[0, 71+ Q[0, j12}) f;
vi — (R[1, 714+ Q1. jla) f;
(20PCm) BSP_FChT2(0,5,p,1, N, f, g)
BSP_FChT2(0,s,p, 1, N,u,v)
(3™ (f,g) « BSP_Trunc2(s, p,0,s,p, N, N/2,u,v)

STAGE Fk:
for k =2 to logy, N/M do
(49P) K + N/2F
pl « max(p/2571, 1)
50 « (s div pl)pl
s1 + s mod pl
(un, ven) = Copy2(X fin, g)
forpl = ;())M to (s0+1)X ’ 2—Kpstep 2K do
T ‘ P pl pl
(5PEm) BSP_FChT2(s0, 51, pl, —1,2K, uj, v))
(6°P) for j = sl % to sl % + 217,1(—1do
al « R[2k — 2,1+ jluiy; + Q[2k — 2,1 + jluy;
a2 — R[22k — 1,14 jlup; + Q[2k — 1,1+ jluy;
Ui — al
Vi — a2
(70PCm) BSP_FChT2(s0, 51, p1,1, 2K, uy, vy)
(8¢™) (f,g) « BSP_Trunc2(s, p, s0, sl,pl, N, K, u,v)

STAGE log, N/M + 1:
(QOD) for | = s% to (s—l—])% — M step M do
fi « Terminate(l, M, fi, g1)

13

that in the recurrence the components of f must be multiplied by values from R.
In superstep 8, all the polynomials are truncated by copying the first K Chebyshev

coefficients of ZIT}\" into the memory space of the last K Chebyshev coefficients of
7R

The termination procedure (superstep 9) is described separately as Algorithm 5.

Algorithm 5 Termination procedure for the fast Legendre transform.

CALL Terminate(l/, M,f, g)
INPUT

[Block identifier.

M': Termination block size (M is a power of 2; I mod M = 0).
f = (fo,---, far—1): Chebyshev coefficients of polynomial ZM.
g = (go,---,9m—1): Chebyshev coefficients of polynomial le\ﬁr

OUTPUT h = (ho,....,hyr—1): hi = fizi, 0<i< M.
STEPS

ho < fo
hi < go
b+ 0
for m=1to M — 3 step 2 do
Pmto < goT[l,b+m+ 1]+ 2 f1T[b+ m + 2]
for n =2 to m — 1 step 2 do
Bt 4= hogr 4+ 5 (FaTl1 0+ 0] + gy T[1L b 4 0+ 1])
Ptz = hgo + 5 (¢TI b+ 04+ m+ 1]+ for1 T[L b+ 0+ m + 2])
Btz < hmto + 3Gmi1 T b+ n + m + 3]
be—b+2m+3

3.4. Fast Chebyshev Transform

The efficiency of the FI'T algorithm strongly depends on the FCT algorithm used
to perform the Chebyshev transform. There exists a substantial amount of lit-
erature on this topic and many implementations of sequential FCOTs are available
(see e.g. Press et al.'® and Steidl and Tasche'?). Parallel algorithms or implementa-
tions have been less intensively studied, see Shalaby'” for a recent discussion.

In the FI.T algorithm, the Chebyshev transforms always come in pairs, which led
us to develop an algorithm that computes two Chebyshev transforms at the same
time. This algorithm is based on the FCT algorithm 4.4.6 of van Loan?' and the
standard algorithm for computing the FFTs of two real input vectors at the same
time (see e.g. Press ef al.'®).

The algorithm has the following structure:

1. PACK the two input vectors as one auxiliary complex vector.
14

2. TRANSFORM the auxiliary vector using an FFT
3. EXTRACT the desired Chebyshev transforms from the transformed auxiliary
vector.

The Chebyshev transforms are computed as follows. Let x and y be the input
vectors of length N. We view x and y as the real and imaginary part of a complex
vector (2; +1 y;), 0 < 7 < N. Phase 1, the packing of the input data into the
auxiliary complex vector z of lenght N is just a simple permutation,

2= (74 ‘I‘ 7 Yo,

{ § = i ¥ i) for 0<j< N/2. (17)
N1 = (Taiqn + 1 y40),

In phase 2, the complex FFT creates a complex vector Z of length N,

N1
Zp = Z Zje?wk, for 0 < k < N. (18)

J=0

(Note that we define the discrete Fourier transform with a positive sign in the expo-
nent.) Finally, in phase 3 we obtain the Chebyshev transform by

B] ik —
.7~7k = %RP (56’27\];(21f + ZNk))
, for 0 <k < N, (19)

vk

Ur = %R,e (%eg;‘f(zk — 7Nk)>

e
) N
cosine transform.

where £ is the normalization factor needed to get the Chebyshev transform from the

The inverse Chebyshev transform is obtained by inverting the procedure described
above. The phases are performed in the reverse order, and the operation of each
phase is replaced by its inverse. Phase 3 is inverted by packing x and y into the
auxiliary complex vector Z:

N x . . . (20)
Zk:(_e 2N (($k+1yk>+l(ml\f—k+lyN—k))7 for 1 <k < N.
-k

In phase 2, an inverse complex FFT is computed,

N-1
] 2mwizk
%= E()Zje Nk, for 0 <k < N. (21)
=

The desired transforms are stored as the real and imaginary parts of z respectively,
but in a different ordering. The inverse of phase 1 is again a permutation.

{ 2 = Re(z;) y2; = Im(z;)
7241 = Re(an—j1) Yoy = Tmzy_j1)’
15

for 0<j5< N/2. (22)

If we use a radix-4 algorithm?' to perform the FFT, the flop count for this FChT?2
algorithm is 2.125N log, N + 8 N — 16 against 2.125N log, N 4 8.25N — 22 for per-
forming two FCh'Ts one after the other. Theoretically it is only a small improvement
although in practice we found the gain to be substantial.

An efficient parallelization of this algorithm within the framework of the FILT
algorithm involves breaking open the parallel FFT inside the FChT and merging
parts of the FFT with the surrounding computations. In the following subsections
we give a brief explanation of the parallelization process.

3.5. Fast Fourier Transform

The FFT is a well-known method for computing the discrete Fourier transform
FEq. (18) of a complex vector of length N in O(N log N) operations. It can concisely
be written as a decomposition of the Fourier matrix Fy,

where Fy is an N x N complex matrix, Py is an N x N permutation matrix corre-
sponding to the so-called bit reversal permutation, and the N x N matrices Ax are

defined by
Ak = I @ Bi, for K =24, N, (24)

which is shorthand for a block-diagonal matrix diag(Br, ..., Bx) with N/K copies
of the K x K matrix By on the diagonal. The matrix By is known as the K’ x K
butterfly matriz. This matrix in turn can be written as

[R'/Q QR’/Q
B = . 25
! [[R'/Q *QI\"/Q ()

Here, the matrix [/o is the K/2 x K/2 identity matrix and Qp/y is the K/2 x K /2
diagonal matrix
. 2ms 4mi (N—=2)ri
Opyp =diag(l,e ™ eV ... e ¥). (26)
This matrix decomposition naturally leads to an algorithm, which is commonly called
the radiz-2 FFT %2

Performing a Fourier transform on a vector z of length N is equivalent to multi-

plying it with the Fourier matrix Fiv. This can best be done by first permuting and
then multiplying the vector successively by all the matrices Ax. The multiplications
are thus carried out in log, NV stages, each with N/K times a butterfly computation.
One butterfly computation modifies K/2 pairs (z;, zj1x/2) by adding a multiple of
z;yKk/2 to z; and subtracting the same multiple.

The main choice in developing a parallel FFT is the data distribution for each
stage of the computation. It is natural to start with the block distribution, since
this renders all butterfly computations local, as long as K" < N/p. In that case, the
butterfly matrices are multiplied with a vector block of length K which is completely

contained within the local block of the processor, which has length N/p. (Note that
16

blocks are always properly aligned, since the K and N/p are both powers of two.)
As a result, the first log, N — log, p stages are local.

To finish the computation, it is convenient to use the cyclic distribution, which is
formally defined as follows.

Definition 3.2. (Cyclic distribution). Let z be a vector of size N. We say that z is
cyclically distributed over p processors if for all j, the element z; is stored in Proc(y
mod p) and has local index j' = jdivp.

For the cyclic distribution, the butterflies are local provided K > 2p. In that case,
the pair of components to be modified is at distance K/2 > p and hence p is a divisor
of K/2; therefore both components j and 7 + K/2 are on the same processor. As a
result, the last log, N — log, p stages are local.

Our approach for the parallel FFT is to start with the block distribution and after
log, N — log, p stages switch to the cyclic distribution. (Note that this is equivalent
to permuting the vector z.) This can be done if logy, N — log, p > %log2 N (i.e.,

p < \/ﬁ) If, however, p > V/N, the use of the block distribution is exhausted before
we can use the cyclic distribution. In that case, other intermediate distributions must
be used, see McColl.'*

We perform the inverse transform by reversing the stages of the algorithm and
inverting the butterflies, instead of taking the more common approach of using the
same algorithm, but replacing the powers of e by their conjugates and multiplying
by an rescaling factor. This choice enables us to eliminate certain permutations, see
the next subsection.

3.6. Optimization of the Main Loop

Breaking open the FChT module allows us to radically reduce the amount of
communication involved in the parallel FI.T algorithm. As a consequence, the amount
of local copy operations and computations is also reduced, but to a lesser extent.

The original modular parallel algorithm for the FChT of two vectors x and y of
size N block distributed over p processors, p < /N, has the following structure:

1. PACK vectors x and y as the auxiliary complex vector z by permuting them
using Fq. (17).
2. TRANSFORM vector z using an FFT of size V.
(a) Perform a bit-reversal permutation in z.
(b) Perform the butterflies of size 2,4,... N/p.
(¢) Permute z to the cyclic distribution.
()

Perform the butterflies of size 2N/p,4N/p,..., N.

(e) Permute z to the block distribution.
3. EXTRACT the transforms from vector z and store them in vectors x and y.
(a) Permute z to put components j and N — j in the same processor.
(b) Compute the new values of z using Eq. (19).
(¢) Permute z to block distribution and store the result in vectors x and y.

17

8 12 16 20 24 28
I [| Proc(0)

4

o | i N] ot
I Proc(2)

o I M MHE MHE s

Ficure 4. (a) Cyclic distribution and (b) zig-zag cyclic distribution for a

vector of size 32 distributed over 4 processors.

In our optimized version where modularity is not an issue, we restrict the number
of processors slightly further to p < /N/2 and permute the vector z from block
distribution to a slightly modified cyclic distribution defined as follows.

Definition 3.3. (7ig-zag cyclic distribution). Let z be a vector of size N. We say
that z is zig-zag cyclically distributed over p processors if for all 7, the element z; is
stored in Proc(j mod p) if 7 mod 2p < p and in Proc(—7 mod p), if 7 mod 2p > p
and has local index 7' = jdivp.

With this distribution both the components 7 and j + K /2, with 2N/p < K < N,
needed by the butterfly operations and the components 7 and N — j needed by the
extract operation are in the same processor; thus we can avoid the permutations
performed in phases (2e) and (3a) above. The same happens, though in reversed
order, in the pack/transform phases of the parallel inverse FCh'T. Figure 4 illustrates
the cyclic and zig-zag cyclic distributions.

By giving up the block distribution in the main loop of the FI'T algorithm and
instead maintaining the vectors i, g1, uj, and vy of size 2K in the zig-zag cyclic dis-
tribution of pl processors, we can also save the permutations to convert from zig-zag
cyclic to block distribution in phase (3¢) of the FChT and from block to zig-zag cyclic
distribution in the corresponding phase of the inverse FChT. To achieve this we re-
place the truncation operation, Algorithm 3, by a new truncation operation, namely
the redistribution of vectors fi, g, uy, and vy, now of size K, from the zig-zag cyclic
distribution with pl processors to the zig-zag cyclic distribution with pl/2 processors,
storing the lower halves of vectors uy and vy in the upper halves of vectors f}, g1. Note
that the initialization step must also be modified in order to give the input vectors
of stage 2 in the zig-zag cyclic distribution of p/2 processors.

Furthermore, the optimized algorithm avoids the packing (1) and bit-reversal (2a)
in the FChT just following the recurrence and their corresponding inverses in the
inverse FCh'T preceding the recurrence. This is done by storing the recurrence coef-
ficients permuted by the packing (1) and bit-reversal (2a) permutations. This works
because the last two permutations form the inverse of the first two, so that the auxil-
iary vector z is in the same ordering immediately before and after the permutations.

After all the optimizations, the total communication and synchronization cost is
(6%]052;2}7 + 2%).(] + (3logyp 4+ 1)l. This means that we reduced communications
and synchronizations by more than a factor of two. (The basic algorithm has a
communication and synchronization cost of]4% logyap g+ Tlog,pl.)

18

Since we do not use the upper half of the Chebyshev coefficients computed in the
forward transform, we can alter the algorithm to avoid computing them. To make
our code more competitive we used a modified radix-2 algorithm. Wherever possible
we take pairs of stages Ay Ax together and perform them as one operation. The
butterflies have the form Byx (/s @ Bk), which is a 2K x 2K matrix consisting of
4 x 4 blocks, each a K/2 x K /2 diagonal submatrix. (This matrix is a symmetrically
permuted version of the radix-4 butterfly matrix.?') This approach gives the efficiency
of a radix-4 FFT algorithm, and the flexibility of treating the parallel FFT within
the radix-2 framework; for example, it is possible to redistribute after any number of
stages, and not only after an even number of them.

Supposing N and p are powers of 4, i.e., we can always take pairs of stages together,
the total cost of the optimized algorithm is:

N N N
Twrr = 4.25—(logy N)?+26.25— log, N — (4.25(log, M)?+26.25log, M+ M)— +
p p p

N N
6?]09;2174’2? g+ (3logyp+ 1)L

4. Experimental Results

In this section, we present results on the accuracy and scalability of the implemen-
tation of the Legendre transform algorithm for various sizes N. We set M = 2, i.e.,
no early termination. We implemented the algorithm in ANST C using the BSPIib
communications library. The test runs were made on a Cray T3FE with up to 64
processors, each having a theoretical peak speed of 600 Mflop/s.

We tested the accuracy of our implementation by measuring the error obtained
when transforming an arbitrary input vector f with elements uniformly distributed
between () and 1. Table 1 shows the relative errors obtained for various problem sizes.
The relative errors were computed via the expression

¢ A*
[— £l
IR =1 lmar
[0

b

where f is the exact transform (computed by a quadruple precision direct Legendre
transform) and f* the FLT; || - ||,50, indicates the max norm.

Table 1 Estimated relative errors for the FLI.T algorithm.

N | relative error
1024 | 7.8 x 107 ™
8192 | 1.3 x10°'?

65536 | 2.6 x 1072

19

We tested the scalability of our parallel implementation using our sequential im-
plementation as basis for comparison. Though we broke open the modules of the
algorithm, it is still possible (with a certain amount of work) to replace the FFT
subroutine by a highly optimized or even a machine specific, assembler coded, FFT
subroutine in both the sequential and the parallel versions. This would yield an even
faster program.

Table 2 shows the timing results obtained for the sequential and parallel versions
executed on up to 64 processors. It is better to analyze these results in terms of
absolute speedups, S = t(seq)/t(p), i.e., the time needed to run the sequential
program divided by the time needed to run the parallel program on p processors. Our
goal is to achieve ratios as close to p as possible. Figure 5 shows the performance
ratios obtained for various input sizes on up to 64 processors.

Table 2 Timing data for BSP_FLT on a Cray T3E. All times are given in milliseconds.
N seq p=1 p=2 p=4 p=8 p=16 p=32 p==64
512 1.71 1.89 1.23 0.80 0.58 0.61
1024 3.95 4.36 2.70 1.57 1.08 0.84
8192 50.60 65.70 33.60 17.40 8.71 5.16 3.38 3.34
65536 | 1130.— 1250.— 664.— 336.— 162.— 71.10 36.10 20.30

FLT speedups on the CRAY T3E

64.0 TT T T
16.0 ——
60 o0l . i
>
48.0 | 80 7 7 -
- 40 - —:
S 400 I 8
’\\ 0.0 L L L
53 12 4 8 16
&
E 320 - A
o
>
k]
)
Q 240 4
]
16.0 ° P!
o —eN=512
=—aN=1024
8.0 - *—®N=8192 7
A—A N=65536
ideal
0.0 L L L L
124 8 16 32 64

number of processors (p)

Fiaurrk 5. Scalability of the program BSP_FL.T on a Cray T3E
20

It is clear that for a large problem size (N = 65536) the speedup is close to ideal,
e.g., S = 56 on 64 processors. For smaller problems, reasonable speedups can he
obtained using 8 or 16 processors, but beyond that the communication time becomes
dominant.

5. Conclusions and Future Work

As part of this work, we developed and implemented a sequential algorithm for
the discrete Legendre transform, based on the Driscoll-Healy algorithm. We helieve
this implementation to be quite competitive for large problem sizes. Its complexity
O(N(log, N)?) is considerably lower than the O(N?) matrix-vector multiplication
algorithms which are still much in use today for the computation of Legendre trans-
forms. The new algorithm is a promising approach for compute-intensive applications
such as weather forecasting.

The main aim of this work was to develop and implement a parallel Legendre
transform algorithm. Our experimental results show that the performance of our
parallel algorithm scales well with the number of processors, for medium to large
problem sizes. The overhead of our parallel program consists mainly of communi-
cation, and this is limited to three redistributions of the data vector in each of the
first log, p stages of the algorithm. Two of these redistributions are already required
by an FFT and an inverse FFT, indicating that this is close to optimal. Our par-
allelization approach was first to derive a basic algorithm that uses block and cyclic
data distributions, and then to optimize this algorithm by removing permutations
and redistributions wherever possible. To facilitate this we proposed a new data
distribution, which we call the zig-zag cyclic distribution.

Within the framework of this work, we also developed a new algorithm for the
simultaneous computation of two Chebyshev transforms. This is useful in the context
of the FI.T because the Chebyshev transforms always come in pairs, but such a double
fast Chebyshev transform (and the corresponding double fast cosine transform) also
has many applications in its own right. OQur algorithm has the additional benefit of
easy parallelization.

We view the present FLT as a good starting point for the use of fast Legendre
algorithms in practical applications. However, to make our FLT algorithm directly
useful in such applications further work must be done: an inverse FI.T must be devel-
oped, the FI'T must be adapted to the more general case of the spherical harmonic
transform, and alternative choices of sampling points must be made possible.

6. Acknowledgements

We thank CAPES, Brazil, for supporting Inda with a doctoral fellowship and NCF,

The Netherlands, for funding the computer time on the Cray T3E.
21

7. References

=

12.

13.

14.

15.

16.

17.

18.

19.
20.
21.

w o —

N. Ahmed, T. Natarajan, and K. Rao, IKEFE Trans. Comput. 23 (1974) 90.

B. Alpert and V. Roklin, STAM J. Sci. Statist. Comput. 12 (1991) 158.

S. Barros and T. Kauranne, Parallel Computing 20 (1994), 1335.

P. Barrucand and D. Dickinson, On the Associated Legendre Polynomials, in
Orthogonal Fxpansions and Their Continuous Analogues, (Southern Tllinois Uni-
versity Press, Carbondale, T1., 1968).

S. Belmehdi, J. Comput. Appl. Math. 32 (1990) 311.

Berlin, 1997), p. 46.
G. L. Browning, J. J. Hack and P. N. Swarztrauber, Mon. Wea. Rev. 117 (1989)
1058.

. J. WL Cooley and J. W. Tukey, Math. Comp. 19 (1965) 297.
. J. Driscoll and D. Healy, Adv. in Appl. Math., 15 (1994) 202.
10.
11.

J. R. Driscoll; D. Healy, and D. Rockmore. STAM J. Comput. 26 (1997) 1066.
D. Healy, S. Moore, and D. Rockmore, Efficiency and Stability Issues in the Nu-
merical Computation of Fourier Transforms and Convolutions on the 2-Sphere,
(Technical Report PCS-TR94-222, Dept. of Math. and Com. Sci., Dartmouth
College, NH, 1994).

J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B.
Rao, T. Suel, T. Tsantilas, and R. H. Bisseling, Parallel Computing 24 (1998)
1947.

D. K. Maslen, A Polynomial Approach to Orthogonal Polynomial Transforms,
(Preprint MP1/95-9, Max-Planck-Institut fiir Mathematik, Bonn, Germany,
1995).

W.F. McColl, Future Generation Computer Systems, 12 (1996) 265.

S. Orszag, in Science and Computers, ed. G. Rota, (Academic Press, NY 1986),
p- 23.

W. Press, S. Teukolsky, W. Vetterling and B. Flannery, Numerical Recipes in C:
The Art of Scientific Computing, second edition, (Cambridge University Press,
Cambridge, UK, 1992).

N. Shalaby, Parallel Discrete Cosine Transforms: Theory and Practice, (Tech-
nical report TR-34-95, Center for Research in Computing Technology, Harvard
University, Cambridge, MA| 1995).

N. Shalaby and S.I.. Johnsson, Hierarchical Load Balancing for Parallel Fast
Legendre Transforms, (8th STAM Conference on Parallel Processing for Scientific
Computation, 1997).

G. Steidl and M. Tasche, Mathematics of Computation, 56 (1991) 281.

I.. Valiant, Communications of the ACM 33 (1990) 103.

C. Van Loan, Computational Frameworks for the Fast Fourier Transform, (Soci-

ety for Industrial and Applied Mathematics, STAM| Philadelphia 1992).

22

