
PARALLEL FAST LEGENDRE TRANSFORM�M�ARCIA ALVES DE INDAMathematics Department, Utrecht UniversityBudapestlaan 6, Utrecht, 3584 CD, The NetherlandsROB H. BISSELINGMathematics Department, Utrecht UniversityBudapestlaan 6, Utrecht, 3584 CD, The NetherlandsandDAVID K. MASLENMathematics Department, Dartmouth CollegeHanover, NH 03755, U.S.A.ABSTRACTWe discuss a parallel implementation of a fast algorithm for the discrete poly-nomial Legendre transform. We give an introduction to the Driscoll-Healyalgorithm using polynomial arithmetic, and present experimental results onthe e�ciency and accuracy of our implementation. The algorithms wereimplemented in ANSI C using the BSPlib communications library. Further-more, we present a new algorithm for computing the Chebyshev transformof two vectors at the same time.1. IntroductionThe discrete polynomial Legendre transform, DLT, is a widely used tool in appliedscience, where it commonly arises in problems associated with spherical geometries.In weather forecasting, the DLT appears inside the discrete spherical harmonic trans-form used in global spectral weather models.3, 7Given two sequences of numbers x0; : : : ; xN�1 and w0; : : : ; wN�1 called samplepoints and sample weights, respectively, we may de�ne the discrete polynomial Le-gendre transform of a data vector (f0; : : : fN�1) to be the vector of sums (f̂0; : : : f̂N�1),given by f̂l = f̂ (Pl) = N�1Xj=0 fjPl(xj)wj; (1)�To appear in the proceedings of the ECMWF Workshop \Towards TeraComputing - The Useof Parallel Processors in Meteorology", Nov. 1998, Reading, UK, published by World Scienti�cPublishing Co, 1999. 1

where Pl is the lth Legendre polynomial de�ned by the three-term recurrencePl+1(x) = 2l + 1l + 1 x � Pl � ll + 1Pl�1; P0(x) = 1; P1(x) = x: (2)A direct method for computing a DLT of N data values requires a matrix-vectormultiplication of O(N2) arithmetic operations, though several authors2, 15 have pro-posed faster algorithms based on approximate methods. In 1989, Driscoll and Healyintroduced an exact algorithm that computes a DLT in O(N(logN)2) arithmeticoperations; they implemented the algorithm and analyzed its stability.9, 10In the present article we describe a parallel implementation of the Driscoll-Healyalgorithm. Such an algorithm is useful for solving large problem sizes. At leasttwo reports discussing the theoretical parallelizability of the algorithm have alreadybeen written.11, 18 We are, however, unaware of any parallel implementations of theDriscoll-Healy algorithm at the time of writing.The remainder of this paper is organized as follows. In Section 2, we outlinea derivation of the Driscoll-Healy algorithm based on polynomial arithmetic. Fullproofs are omitted; these will be given in a future expanded article. In Section 3,we introduce the bulk synchronous parallel (BSP) model, and describe our parallelalgorithm and its implementation. In Section 4, we present results on the e�ciency,accuracy and scalability of the programs. We conclude in Section 5.2. The Driscoll-Healy AlgorithmThe Driscoll-Healy algorithm computes the DLT at any set of N sample points,in O(N(logN)2) arithmetic operations. The core of this algorithm consists of analgorithm to compute the DLT in the special case where the sample points are theChebyshev points, i.e., xj = xNj = cos (2j+1)�2N is the j-th root of the N th Chebyshevpolynomial TN de�ned recursively byTk+1(x) = 2x � Tk(x)� Tk�1(x); T0(x) = 1; T1(x) = x; (3)and where the sample weights are identically 1N . For simplicity we restrict ourselvesto this special case, and furthermore we assume that N is a power of 2.Our derivation of the Driscoll-Healy algorithm relies on the interpretation of theinput data fj of the transform Eq. (1) as the function values of a polynomial f ofdegree less than the problem size N . Thus f is de�ned to be the unique polynomialof degree less than N such thatf(xNj) = fj; for j = 0; : : : N � 1: (4)Using this notation one can derive the relationf � Pl+m = Ql;m � (f � Pl) +Rl;m � (f � Pl�1) (5)directly from the generalized three-term recurrence for the Legendre polynomialsPl+m = Ql;m � Pl +Rl;m � Pl�1: (6)2

Here, Ql;m; Rl;m are the associated polynomialsy for the Legendre polynomial se-quence,4, 5 de�ned by the following recurrences on m, which are shifted versions ofthe recurrence Eq (2) for Pl.Ql;m(x) = (Al+m�1x+Bl+m�1)Ql;m�1(x) + Cl+m�1Ql;m�2(x);Ql;1(x) = Alx+Bl; Ql;0(x) = 1;Rl;m(x) = (Al+m�1x+Bl+m�1)Rl;m�1(x) + Cl+m�1Rl;m�2(x);Rl;1(x) = Cl; Rl;0(x) = 0: (7)The Driscoll-Healy algorithm is a divide and conquer algorithm. Its divide struc-ture is based on the following strategy:� Start by computing f � P0 and f � P1 at the points xNj for 0 � j < N .� At stage 1, use Eq. (5) with l = 1 and m = N2 � 1 or m = N2 , to computef �PN2 = Q1;N2 �1�(f �P1)+R1;N2 �1�(f �P0) and f �PN2 +1 = Q1;N2 �(f �P1)+R1;N2 �(f �P0).� In general, at each stage k; 1 � k < log2N , similarly as before use Eq. (5) withl = 2q(N=2k) + 1, 0 � q < 2k�1, and m = N=2k � 1; N=2k , to compute thepolynomial pairsf � P N2k ; f � P N2k +1; f � P 3N2k ; f � P 3N2k +1; � � � ; f � P (2k�1)N2k ; f � P (2k�1)N2k +1.� At stage log2N , compute all the sums 1N PN�1j=0 f(xNj)Pl(xNj) using the functionvalues f(xNj)Pl(xNj) that were computed at the previous stages.The conquer property of the Driscoll-Healy algorithm is achieved using truncationoperators which truncate the Chebyshev expansion of the polynomials involved. Letf = Pk�0 bkTk be a polynomial, of any degree, written in the basis of Chebyshevpolynomials, and let n be a positive integer. The truncation operator Tn applied tof is de�ned by Tnf = n�1Xk=0 bkTk: (8)Thus, Tnf is obtained from f by discarding terms of degree n or higher in the ex-pansion of f in terms of Chebyshev polynomials.It can be proven13 that the DLT of f of size N is given byf̂l = T1(f � Pl); 0 � l < N: (9)The Driscoll-Healy algorithm proceeds in a fashion determined by the basic dividestrategy but it computes truncated polynomialsZKl = TK(f � Pl)for various values of l and K, instead of the original polynomials f � Pl. This is doneby using truncated versions of the generalized three-term recurrence Eq. (5) for theyThe associated polynomials should not be confused with the associated Legendre functions,which in general are not polynomials. 3

polynomials ZKl : ZKl+K = TK [Z2Kl �Ql;K + Z2Kl�1 �Rl;K] (10)ZKl+K�1 = TK [Z2Kl �Ql;K�1 + Z2Kl�1 �Rl;K�1]: (11)These equations are obtained from Eq. (5) and judicious application of the followingproperty of the truncation operatorLemma 2.1. Let f and Q be polynomials. ThenTL�m(f �Q) = TL�m[(TLf) �Q]; if degQ � m � L:The Driscoll-Healy algorithm is shown as Algorithms 1 and 2. Its input is thepolynomial f = ZN0 , and the output is the sequence of f̂l = T1(f � Pl) = Z1l . A briefexplanation of its main features is given in the following subsections.Algorithm 1 Driscoll-Healy algorithm.INPUT f = (f0; : : :fN�1): Real vector to be transformed with N a power of 2.OUTPUT f̂ = (f̂0; : : : ; f̂N�1): Discrete orthogonal polynomial transform of f .STAGES0. Compute the Chebyshev representation of ZN0 and ZN1 .(a) (z00 ; : : : ; z0N�1) Chebyshev(f0; : : : ; fN�1).(b) (z10 ; : : : ; z1N�1) Chebyshev(f0xN0 ; : : : ; fN�1xNN�1).k. for k = 1 to log2N=M doK N=2kfor l = 1 to N � 2K + 1 step 2K do(a) Compute the Chebyshev representation of ZKl+K and ZKl+K�1.(zl+K0 ; : : : ; zl+KK�1; zl+K�10 ; : : : ; zl+K�1K�1) RecurrenceKl (zl0; : : : ; zl2K�1; zl�10 ; : : : ; zl�12K�1)(b) Compute the Chebyshev representation of ZKl and ZKl�1.Discard (zlK ; : : : ; zl2K�1) and (zl�1K ; : : : ; zl�12K�1).log2N=M + 1. Compute remaining values.for l = 1 to N �M + 1 step M dof̂l�1 = zl�10f̂l = zl0for m = 1 to M � 2 dof̂l+m = zl0q0l;m + zl�10 r0l;m + 12Pmn=1(zlnqnl;m + zl�1n rnl;m).2.1. Data Representation and InitializationTruncation of a polynomial requires no computation if the polynomial is repre-sented by the coe�cients of its expansion in Chebyshev polynomials. Therefore we4

use the Chebyshev coe�cients zln de�ned byZKl = K�1Xn=0 zlnTn; (12)to represent all the polynomials ZKl appearing in the algorithm. Such a representationof a polynomial is called the Chebyshev representation.The input polynomial f of degree less than N is given as the vector f = (f0; : : : ; fN�1)of values fj = f(xNj). This is called the point value representation of f . In stage 0we must convert ZN0 = TN (f � P0) = f � P0 and ZN1 = TN(f � P1) to their Chebyshevrepresentation.We do this using the Chebyshev transform of size N ,~fk = �kN N�1Xj=0 fjTk(xNj) = �kN N�1Xj=0 fj cos (2j + 1)k�2N ; 0 � k < N: (13)where �0 = 1, and �k = 2 if k > 0. Its inverse is de�ned byfj = N�1Xk=0 ~fkTk(xNj) = N�1Xk=0 ~fk cos (2j + 1)k�2N ; 0 � j < N: (14)The Chebyshev transform of sizeN and its inverse convert a polynomial of degree lessthan N from point value representation to Chebyshev representation and vice versa.Both transforms can be carried out in O(N log2N)
ops using a fast cosine transform,FCT, algorithm (see e.g. Ahmed, Natarajan and Rao,1 Steidl and Tasche,19 vanLoan21).Note that f � P0 = f is a polynomial of degree less than N but f � P1 = f � xmay have degree N , rather than N � 1. In the last case, a simple argument showsthat a Chebyshev transform of size N (rather than N + 1) applied in the pointsfjP1(xNj) = fjxNj su�ces to compute ZN1 .2.2. Intermediate Stages: Carrying on the RecurrenceTo carry on the recurrence in an e�cient way we use the procedure described in Al-gorithm 2. This procedure replaces the polynomial multiplications in the recurrencesEq. (10) and Eq. (11) by a di�erent operation. For example, instead of computingZ2Kl � Ql;K it computes the Lagrange interpolation polynomial S2K(Z2Kl � Ql;K), i.e.,the polynomial of degree less than 2K that agrees with Z2Kl � Ql;K at the pointsx2K0 ; : : : ; x2K2K�1. Correctness of the modi�ed procedure can be proven by combiningproperties of the Lagrange operators S and the truncation operators T .2.3. Terminating the ComputationAt late stages in the Driscoll-Healy algorithm, the work required to apply therecursion amongst the ZKl is larger than that required to �nished the computation5

Algorithm 2 Recurrence algorithm using the Chebyshev transformCALL RecurrenceKl (~f0; : : : ; ~f2K�1; ~g0; : : : ; ~g2K�1)INPUT ~f = (~f0; : : : ; ~f2K�1) and ~g = (~g0; : : : ; ~g2K�1): First 2K Chebyshev coe�cients ofinput polynomials Z2Kl and Z2Kl�1. K is a power of 2.OUTPUT ~u = (~u0; : : : ; ~uK�1) and ~v = (~v0; : : : ; ~vK�1): First K Chebyshev coe�cients ofoutput polynomials ZKl+K and ZKl+K�1.STEPS1. Transform ~f and ~g to point-value representation.(f0; : : : ; f2K�1) Chebyshev�1(~f0; : : : ; ~f2K�1)(g0; : : : ; g2K�1) Chebyshev�1(~g0; : : : ; ~g2K�1).2. Perform the recurrence.for j = 0 to 2K � 1 douj Ql;K(x2Kj) fj +Rl;K(x2Kj) gjvj Ql;K�1(x2Kj) fj +Rl;K�1(x2Kj) gj ,3. Transform u and v to Chebyshev representation.(~u0; : : : ; ~u2K�1) Chebyshev(u0; : : : ; u2K�1)(~v0; : : : ; ~v2K�1) Chebyshev(v0; : : : ; v2K�1).4. Discard (~uK ; : : : ; ~u2K�1) and (~vK ; : : : ; ~v2K�1).using a naive matrix-vector multiplication. It is then more e�cient to take linearcombinations of the vectors ZKl computed so far to obtain the �nal result.Let qnl;m, rnl;m denote the Chebyshev coe�cients of the polynomials Ql;m and Rl;mrespectively, so that Ql;m = mXn=0 qnl;mTn; Rl;m = m�1Xn=0 rnl;mTn: (15)The problem of �nishing the computation at the end of stage k = log2N=M , whenK = M , is equivalent to �nding f̂l = zl0, for 0 � l < N , given the data zln, zl�1n ,0 � n < M , l = 1;M + 1; : : : ; N �M + 1. Our method of �nishing the computationuses Lemma 2.2, which follows.Lemma 2.2. 1. If l � 1 and 0 � m < M , thenf̂l+m = 12 mXn=1(zlnqnl;m + zl�1n rnl;m) + (zl0q0l;m + zl�10 r0l;m):2. qnl;m = 0, if n�m is odd, and rnl;m = 0, if n�m is even.6

3. The Parallel Algorithm and its ImplementationWe designed our parallel algorithm using the BSP model. The BSP model gives asimple and e�ective way to produce portable parallel algorithms: it does not dependon a speci�c computer architecture and it provides a simple cost function that enablesus to choose between algorithms without actually having to implement them.In the following subsections, we �rst give a brief description of the BSP model andthen we present the framework in which we develop our parallel algorithm, includingthe data structures and data distributions used; this leads to a basic parallel algo-rithm. Finally, we re�ne the basic algorithm by introducing an intermediate datadistribution that reduces the communication to a minimum.3.1. The Bulk Synchronous Parallel ModelIn the BSP model,20 a computer consists of a set of p processors, each with its ownmemory, connected by a communication network that allows processors to access theprivate memories of other processors. In this model, algorithms consist of a sequenceof supersteps. In the variant of the model we use, a superstep is either a number ofcomputation steps, or a number of communication steps, both followed by a globalsynchronization barrier. Using supersteps imposes a sequential structure on parallelalgorithms, and this greatly simpli�es the design process. A BSP computer can becharacterized by four global parameters:� p, the number of processors� s, the computing speed in
op/s� g, the communication time per data element sent or received, measured in
optime units� l, the synchronization time, also measured in
op time units.Algorithms can be analyzed by using the parameters p; g, and l; the parameter sjust scales the time. The time of a computation superstep is simply w + l, wherew denotes the maximum amount of work (in
ops) of any processor. The time of acommunication superstep is hg+ l, where h is the maximumnumber of data elementssent or received by any processor. Such a communication superstep is called an h-relation. The total execution time of an algorithm (in
ops) can be obtained byadding the times of the separate supersteps. This yields an expression of the forma+ bg + cl. For further details and some basic techniques, see Bisseling.6BSPlib12 is a recently de�ned standard library which enables parallel programmingin BSP style. The de�nition of BSPlib was completed in May 1997. Implementationsare available for many di�erent machines, including the Cray T3E, SGI Origin, theIBM SP2, Parsytec Explorer, PCs running the Linux operating system or WindowsNT, and also for networks of workstations communicating via Ethernet and TCP/IPor UDP/IP. Programs written in BSPlib can be run on all of these platforms withoutchanging one line of code. BSPlib is available for the languages C, C++, Fortran77 and Fortran 90. Thus, it is an attractive and e�cient alternative to well-known7

communication libraries such as MPI and PVM. Moreover, BSPlib is easy to learnbecause it comprises only 20 primitives.3.2. Data Structures and Data DistributionsEach processor in the BSP model has its own private memory, so the design of aBSP algorithm requires choosing how to distribute the elements of the data structuresused in it over the processors. The divide and conquer structure of the Driscoll-Healyalgorithm suggests both the data structures and data distributions to be used.At each stage k, 1 � k � log2N=M , the number of intermediate polynomial pairsdoubles as the number of expansion coe�cients halves. At the start of stage 1, wehave two polynomials of degree N�1; at the end of stage 1, we have four polynomialsof degree N=2� 1, etc. Thus, at every stage of the computation, all the intermediatepolynomials can be stored in two arrays of size N . We use an array f to store theChebyshev coe�cients of the polynomials Z2Kl and an array g to store the coe�cientsof Z2Kl+1, for l = 0; 2K; : : : ;N � 2K, with K = N=2k in stage k. We also need someextra work space to compute the coe�cients of the polynomials Z2Kl+K and Z2Kl+K+1.For this we use two auxiliary arrays of length N , u and v.The data
ow of the algorithm, see Fig. 1, suggests to distribute all the vectorsby blocks, i.e., to assign one block of consecutive vector elements to each processor.This works well if p is a power of two, as we will assume from now on. Formally, theblock distribution is de�ned as follows.De�nition 3.1 (Block Distribution). Let f be a vector of size N . We say that f isblock distributed over p processors if for all j, the element fj is stored in Proc(j div b)and has local index j 0 = j mod b, where the block size is b = dN=pe.Note that if both N and p are powers of two, the block size is b = N=p.Now we explain how to store and distribute the precomputed data used in therecurrence. To perform the recurrence of stage k, we need to have the values of thepolynomialsQl+1;K, Ql+1;K�1, Rl+1;K , and Rl+1;K�1, for l = 0; 2K; : : : ;N�2K, at thepoints x2Kj = cos (2j+1)�4K , 0 � j < 2K. We store these values in two two-dimensionalarrays Q and R, each of size 2 log2 NM �N . Each pair of rows in Q stores data neededfor one stage k, byQ[2k � 2; l + j] = Ql+1;K(x2Kj) and Q[2k � 1; l + j] = Ql+1;K�1(x2Kj); (16)for l = 0; 2K; : : : ;N�2K, j = 0; 1; : : : ; 2K�1, where K = N=2k . Thus, polynomialsQl+1;K are stored in row 2k � 2 and polynomials Ql+1;K�1 in row 2k � 1. This isdepicted in Fig. 2. The polynomials Rl+1;K and Rl+1;K�1 are stored in the same wayin array R. Note that the indexing of the implementation arrays starts at zero.To make the recurrence completely local, the values from R and Q must be avail-able locally. This can be achieved by distributing each row of these arrays by theblock distribution, so that R[i; j];Q[i; j] 2 Proc(j div Np).8

copy copy copy copy

PA
R

A
L

L
E

L
SE

Q
U

E
N

T
IA

L...
ZNN=2ZN=20ZN=2N=4ZN=40ZN=80 ZN=8N=8 ZN=4N=4ZN=43N=8ZN=82N=8 ZN=83N=8 ZN=84N=8 ZN=85N=8 ZN=86N=8 ZN=87N=8ZN=42N=4ZN=45N=8ZN=23N=4ZN=2N=2 ZN=47N=8ZN=43N=4ZN=8N=16 ZN=83N=16 ZN=85N=16 ZN=87N=16 ZN=811N=16 ZN=813N=16 ZN=815N=16ZN=89N=16
ZN0 communicate communicateZN=4N=8communicate communicate Proc(2) Proc(3)Proc(0) Proc(1)Stage1234 fuufuf

ufVector
Figure 1. Data storage and data distribution in the parallel FLT algorithmfor four processors. The Chebyshev coe�cients of the intermediate polyno-mials are stored in four arrays. Array f contains the polynomials Z2Kl whichare already available at the start of the stage. Array u contains the polyno-mials Z2Kl+K which become available at the end of the stage. Similarly, arraysg and v contain the next higher polynomials Z2Kl+1 and Z2Kl+K+1, respectively;these arrays are not depicted. Each array is divided into four local subarraysby using the block distribution. Each processor has one subarray.K;K � 1l = 1l = 1l = 1k321 Proc(0) Proc(2) Proc(3)Proc(1)3231161587 j = 0; : : : ; 63j = 0; : : : ; 31 j = 0; : : : ; 31l = 33l = 17 l = 33 l = 49j = 0; : : : ; 15 j = 0; : : : ; 15 j = 0; : : : ; 15 j = 0; : : : ; 15Figure 2. Data structure and distribution of the precomputed data neededin the recurrence with N = 64, M = 8 and p = 4. Data are stored in twotwo-dimensional arrays Q and R. Each pair of rows in an array stores thedata needed for one stage k.The termination coe�cients qnl;m and rnl;m, for l = 1;M +1; 2M +1; : : : ; N �M +1,m = 1; 2; : : : ;M � 2 and n = 0; 1; : : : ;m are stored in a two-dimensional array T ofsize N=M � (M(M � 1)=2 � 1). The coe�cients for one value of l are stored in row(l�1)=M of T. Each row has the same internal structure, as follows. The coe�cientsare stored in increasing order of m. The coe�cients with the same m are ordered byincreasing n. This format is similar to that commonly used to store lower triangularmatrices. For each n and m, either qnl;m = 0 or rnl;m = 0, and hence we only need tostore the value that can be nonzero. Since this depends on whether n�m is even or9

odd, we obtain an alternating pattern of qnl;m and rnl;m. Figure 3 illustrates this datastructure. r0 r1 r2q1 q0 q2 r0 q1 q3 q0 r1 q2 r3 q4 r0 q5r4q3q1 r2 q0 r1 q2 q6r5q4r3r0 r1 r2q1 q0 q2 r0 q1 q3 q0 r1 q2 r3 q4 r0 q5r4q3q1 r2 q0 r1 q2 q6q4 r5r3r0 r1 r2q1 q0 q2 r0 q1 q3 q0 r1 q2 r3 q4 r0 q5r4q3q1 r2 q0 r1 q2 q6r5q4r3r0 r1 r2q1 q0 q2 r0 q1 q3 q0 r1 q2 r3 q4 r0 q5r4q3q1 r2 q0 r1 q2 q6r5q4r0 r1 r2q1 q0 q2 r0 q1 q3 q0 r1 q2 r3 q4 r0 q5r4q3q1 r2 q0 r1 q2 q6r5q4r3r0 r1 r2q1 q0 q2 r0 q1 q3 q0 r1 q2 r3 q4 r0 q5r4q3q1 r2 q0 r1 q2 q6r5q4r3r0 r1 r2q1 q0 q2 r0 q1 q3 q0 r1 q2 r3 q4 r0 q5r4q3q1 r2 q0 r1 q2 q6r5q4r3r0 r1 r2q1 q0 q2 r0 q1 q3 q0 r1 q2 r3 q4 r0 q5r4q3q1 r2 q0 r1 q2 q6r5q4r3 Proc(2)Proc(3)Proc(1)Proc(0)r3m = 1 m = 2 m = 3 m = 4 m = 5 m = 6l = 57l = 49l = 41l = 33l = 25l = 17l = 1l = 9Figure 3. Data structure of the precomputed data needed for terminationwith N = 64, M = 8 and p = 4. The coe�cients qnl;m and rnl;m, for l =1;M + 1; 2M + 1; : : : ; N �M + 1, m = 1; 2; : : : ;M � 2, and n = 0; 1; : : : ; mare stored in a two-dimensional array T. In the picture, rn denotes rnl;m andqn denotes qnl;m.The termination stage becomes local if M � N=p, so that the input and outputvectors are local. The necessary precomputed data must then also be available locally.This means that each row of T must be assigned to one processor, namely to theprocessor that holds the subvectors for the corresponding value of l. The distributionT[i; j] 2 Proc(i div NpM) achieves this. As a result, theN=M rows of T are distributedin consecutive blocks of rows.3.3. The Basic Parallel AlgorithmNow we formulate our basic parallel algorithm. For this we introduce the followingconventions:� Processor identi�cation. The total number of processors is p. The processoridenti�cation number is s, with 0 � s < p.� Supersteps. The labels on the left-hand side indicate a superstep and itstype: (Cp) computation superstep, (Cm) communication superstep, (CpCm)subroutine containing both computation and communication supersteps. Inprinciple, each superstep ends with an explicit synchronization (In an actualimplementation, synchronizations can sometimes be saved). The supersteps arenumbered as textual supersteps. Of course, supersteps inside loops are executedrepeatedly, even though they are numbered only once.� Indexing. All the indices are global. This means that array elements have aunique index which is independent of the processor that owns it. This enablesus to describe variables and gain access to arrays in an unambiguous manner,even though the array is distributed and each processor has only part of it.10

� Vectors and Subroutine calls. All the vectors (or one-dimensional arrays)are indicated in boldface. To specify part of a vector we write its �rst elementin boldface, e.g., fj; the vector size is explicitly written as a parameter.� Communication. Communication between processors is indicated usinggj Put(pid; n; fi)This operation puts n elements of vector f , starting from element i, into pro-cessor pid and stores them there in vector g starting from element j.� Copying a vector. The operationgj Copy(n; fi)denotes the copy of n elements of vector f , starting from element i, to a vectorg starting from element j.� Subroutine name ending in 2. Subroutines with a name ending in 2 performan operation on 2 vectors instead of one. For example(fi;gj) Copy2(n;uk;vl)is an abbreviation for fi Copy(n;uk)gj Copy(n;vl)� Truncation. The operationf BSP Trunc(s; p; s0; s1; p1; N;K;u)denotes the truncation of all the N=(2K) polynomials stored in f and u bycopying the �rst K Chebyshev coe�cients of the polynomials stored in u intothe memory space of the last K Chebyshev coe�cients of the correspondingpolynomials stored in f . A group of p1 processors starting from Proc(s0) worktogether to truncate one polynomial; s1 with 0 � s1 < p1 denotes the localprocessor number within the group. Note that s0 + s1 = s. When p1 = 1 oneprocessor is in charge of the truncation of one or more polynomials. Algorithm 3gives a description of this operation. In Fig. 1, this operation is depicted byarrows.� Fast Chebyshev transform. The subroutineBSP FChT(s0; s1; p1; sign; n; f)replaces the input vector f of size n by its Chebyshev transform if sign = 1or by its inverse Chebyshev transform if sign = �1. A group of p1 processorsstarting from Proc(s0) work together; s1 with 0 � s1 < p1 denotes the localprocessor number within the group. For a group size p1 = 1, this subroutinereduces to the sequential fast Chebyshev transform algorithm.The basic template for the fast Legendre transform is presented as Algorithm 4. Ateach intermediate stage k, 1 � k � log2N=M , there are 2k�1 independent problems,one for each l. For k � log2 p, there are more processors than problems, so that the11

Algorithm 3 Truncation using the block distribution.CALL f BSP Trunc(s; p; s0; s1; p1; N;K;u).DESCRIPTIONif p1 = 1 thenfor l = sNp to (s+1)Np � 2K step 2K dofl+K Copy(K;ul)else if s1 < p1=2 thenfsNp +K Put(s+ p12 ; Np ;usNp)processors will have to work in groups. Each group of p1 = p=2k�1 > 1 processorshandles one subvector of size 2K, K = N=2k; each processor handles a block of2K=p1 = N=p vector components. In this case, the l-loop has only one iteration,namely l = s0N=p, and the j-loop has N=p iterations, starting with j = s1N=p, sothat the indices l+ j start with (s0 + s1)N=p = sN=p, and end with (s0 + s1)N=p+N=p � 1 = (s + 1)N=p � 1. Inter-processor communication is needed, but it occursonly in two instances:� Inside the parallel FChTs (in supersteps 2, 5, 7). This communication will bediscussed separately, in the following subsections.� At the end of each stage (in supersteps 3, 8).For k � log2 p + 1, the length of the subvectors involved becomes 2K � N=p.In that case, p1 = 1, s0 = s, and s1 = 0, and each processor has one or moreproblems to deal with, so that the processors can work independently and withoutcommunication. Note that the index l runs only over the local values sN=p, sN=p +2K; : : : ; (s+ 1)N=p � 2K, instead of over all values of l.The original stages 0 and 1 of Algorithm 1 are combined into one stage and thenperformed e�ciently, as follows. First, in superstep 1, the polynomials ZN1 , ZNN=2 andZNN=2+1 are computed directly from the input vector f . This is possible because thepoint-value representation of ZN1 = TN(f �P1) = TN (f � x) needed by the recurrencesis the vector of fj � xNj ; 0 � j < N , see Subsection 2.1. Note that the values R[i; j] +Q[i; j]xNj for i = 0; 1 can be precomputed and stored so that the recurrences onlyrequire one multiplication by fj. In superstep 2, polynomials ZN=20 = f ; ZN=21 =g; ZN=2N=2 = u, and ZN=2N=2+1 = v are transformed to Chebyshev representation; and thentruncated, in superstep 3, in order to obtain the input for stage 2.The main loop works as follows. In superstep 4, the polynomials Z2Kl , with K =N=2k and l = 0; 2K; : : : ;N � 2K, are copied from the array f into the auxiliaryarray u, where they are transformed into the polynomials Z2Kl+K in supersteps 5 to7. (Similarly, the polynomials Z2Kl+1 are copied from g into v and then transformedinto the polynomials Z2Kl+K+1.) Note that f corresponds to the lower value of l, so12

Algorithm 4 Basic parallel template for the fast Legendre transform.CALL BSP FLT(s; p;N;M; f).ARGUMENTSs: Processor identi�cation (0 � s < p).p: Number of processors (p is a power of 2 with p � N=2).N : Transform size (N is a power of 2 with N � 4).M : Termination block size (M is a power of 2 with M � min(N=2; N=p)).f : (Input) f = (f0; : : : ; fN�1): Real vector to be transformed.(Output) f = (f̂0; : : : ; f̂N�1): Transformed vector.Block distributed: fj 2 Proc(j div Np).STAGE 1:(1Cp) for j = sNp to (s+1)Np � 1 dogj xNj fjuj (R[0; j] +Q[0; j]xNj)fjvj (R[1; j] +Q[1; j]xNj)fj(2CpCm) BSP FChT2(0; s; p; 1; N; f ;g)BSP FChT2(0; s; p; 1; N;u;v)(3Cm) (f ; g) BSP Trunc2(s; p; 0; s; p; N;N=2;u;v)STAGE k:for k = 2 to log2N=M do(4Cp) K N=2kp1 max(p=2k�1; 1)s0 (s div p1)p1s1 s mod p1(usNp ;vsNp) Copy2(Np ; fsNp ; gsNp)for l = s0Np to (s0 + 1)Np � 2Kp1 step 2Kp1 do(5CpCm) BSP FChT2(s0; s1; p1;�1; 2K;ul;vl)(6Cp) for j = s1Np to s1Np + 2Kp1 � 1 doa1 R[2k � 2; l+ j]ul+j +Q[2k � 2; l+ j]vl+ja2 R[2k � 1; l+ j]ul+j +Q[2k � 1; l+ j]vl+jul+j a1vl+j a2(7CpCm) BSP FChT2(s0; s1; p1; 1; 2K;ul;vl)(8Cm) (f ; g) BSP Trunc2(s; p; s0; s1; p1;N;K;u;v)STAGE log2N=M + 1:(9Cp) for l = sNp to (s+1)Np �M step M dofl Terminate(l;M; fl; gl) 13

that in the recurrence the components of f must be multiplied by values from R.In superstep 8, all the polynomials are truncated by copying the �rst K Chebyshevcoe�cients of Z2Kl+K into the memory space of the last K Chebyshev coe�cients ofZ2Kl .The termination procedure (superstep 9) is described separately as Algorithm 5.Algorithm 5 Termination procedure for the fast Legendre transform.CALL Terminate(l;M; f ; g)INPUTl: Block identi�er.M : Termination block size (M is a power of 2; l mod M = 0).f = (f0; : : : ; fM�1): Chebyshev coe�cients of polynomial ZMl .g = (g0; : : : ; gM�1): Chebyshev coe�cients of polynomial ZMl+1.OUTPUT h = (h0; : : : ; hM�1): hi = f̂l+i; 0 � i < M .STEPS h0 f0h1 g0b 0for m = 1 to M � 3 step 2 dohm+1 f0T[l; b] + 12g1T[l; b+ 1]hm+2 g0T[l; b+m+ 1] + 12f1T[l; b+m+ 2]for n = 2 to m� 1 step 2 dohm+1 hm+1 + 12 (fnT[l; b+ n] + gn+1T[l; b+ n + 1])hm+2 hm+2 + 12 (gnT[l; b+ n +m+ 1] + fn+1T[l; b+ n+m+ 2])hm+2 hm+2 + 12gm+1T[l; b+ n +m+ 3]b b+ 2m+ 33.4. Fast Chebyshev TransformThe e�ciency of the FLT algorithm strongly depends on the FCT algorithm usedto perform the Chebyshev transform. There exists a substantial amount of lit-erature on this topic and many implementations of sequential FCTs are available(see e.g. Press et al.16 and Steidl and Tasche19). Parallel algorithms or implementa-tions have been less intensively studied, see Shalaby17 for a recent discussion.In the FLT algorithm, the Chebyshev transforms always come in pairs, which ledus to develop an algorithm that computes two Chebyshev transforms at the sametime. This algorithm is based on the FCT algorithm 4.4.6 of van Loan21 and thestandard algorithm for computing the FFTs of two real input vectors at the sametime (see e.g. Press et al.16).The algorithm has the following structure:1. PACK the two input vectors as one auxiliary complex vector.14

2. TRANSFORM the auxiliary vector using an FFT3. EXTRACT the desired Chebyshev transforms from the transformed auxiliaryvector.The Chebyshev transforms are computed as follows. Let x and y be the inputvectors of length N . We view x and y as the real and imaginary part of a complexvector (xj + i yj), 0 � j < N . Phase 1, the packing of the input data into theauxiliary complex vector z of lenght N is just a simple permutation,� zj = (x2j + i y2j)zN�j�1 = (x2j+1 + i y2j+1); for 0 � j < N=2: (17)In phase 2, the complex FFT creates a complex vector Z of length N;Zk = N�1Xj=0 zje 2�ijkN ; for 0 � k < N: (18)(Note that we de�ne the discrete Fourier transform with a positive sign in the expo-nent.) Finally, in phase 3 we obtain the Chebyshev transform by8>><>>: ~xk = �kNRe�12e�ik2N (Zk + ZN�k)�~yk = �kNRe�� i2e�ik2N (Zk � ZN�k)� ; for 0 � k < N; (19)where �kN is the normalization factor needed to get the Chebyshev transform from thecosine transform.The inverse Chebyshev transform is obtained by inverting the procedure describedabove. The phases are performed in the reverse order, and the operation of eachphase is replaced by its inverse. Phase 3 is inverted by packing ~x and ~y into theauxiliary complex vector Z:8<: Z0 = N(~x0 + i ~y0);Zk = N�k e��ik2N ((~xk + i ~yk) + i(~xN�k + i ~yN�k)) ; for 1 � k < N: (20)In phase 2, an inverse complex FFT is computed,zk = 1N N�1Xj=0 Zje� 2�ijkN ; for 0 � k < N: (21)The desired transforms are stored as the real and imaginary parts of z respectively,but in a di�erent ordering. The inverse of phase 1 is again a permutation.� x2j = Re(zj)x2j+1 = Re(zN�j�1); y2j = Im(zj)y2j+1 = Im(zN�j�1); for 0 � j < N=2: (22)15

If we use a radix-4 algorithm21 to perform the FFT, the
op count for this FChT2algorithm is 2:125N log2N + 8N � 16 against 2:125N log2N + 8:25N � 22 for per-forming two FChTs one after the other. Theoretically it is only a small improvementalthough in practice we found the gain to be substantial.An e�cient parallelization of this algorithm within the framework of the FLTalgorithm involves breaking open the parallel FFT inside the FChT and mergingparts of the FFT with the surrounding computations. In the following subsectionswe give a brief explanation of the parallelization process.3.5. Fast Fourier TransformThe FFT is a well-known method for computing the discrete Fourier transformEq. (18) of a complex vector of length N in O(N logN) operations. It can conciselybe written as a decomposition of the Fourier matrix FN ,FN = AN � � �A4A2PN ; (23)where FN is an N �N complex matrix, PN is an N �N permutation matrix corre-sponding to the so-called bit reversal permutation, and the N �N matrices AK arede�ned by AK = IN=K
BK; for K = 2; 4; : : : ; N; (24)which is shorthand for a block-diagonal matrix diag(BK ; : : : ; BK) with N=K copiesof the K �K matrix BK on the diagonal. The matrix BK is known as the K �Kbutter
y matrix. This matrix in turn can be written asBK = � IK=2
K=2IK=2 �
K=2 � : (25)Here, the matrix IK=2 is the K=2�K=2 identity matrix and
K=2 is the K=2 �K=2diagonal matrix
K=2 = diag(1; e 2�iN ; e 4�iN ; : : : ; e (N�2)�iN): (26)This matrix decomposition naturally leads to an algorithm, which is commonly calledthe radix-2 FFT .8, 21Performing a Fourier transform on a vector z of length N is equivalent to multi-plying it with the Fourier matrix FN . This can best be done by �rst permuting andthen multiplying the vector successively by all the matrices AK. The multiplicationsare thus carried out in log2N stages, each with N=K times a butter
y computation.One butter
y computation modi�es K=2 pairs (zj; zj+K=2) by adding a multiple ofzj+K=2 to zj and subtracting the same multiple.The main choice in developing a parallel FFT is the data distribution for eachstage of the computation. It is natural to start with the block distribution, sincethis renders all butter
y computations local, as long as K � N=p. In that case, thebutter
y matrices are multiplied with a vector block of length K which is completelycontained within the local block of the processor, which has length N=p. (Note that16

blocks are always properly aligned, since the K and N=p are both powers of two.)As a result, the �rst log2N � log2 p stages are local.To �nish the computation, it is convenient to use the cyclic distribution, which isformally de�ned as follows.De�nition 3.2. (Cyclic distribution). Let z be a vector of size N . We say that z iscyclically distributed over p processors if for all j, the element zj is stored in Proc(jmod p) and has local index j 0 = j div p.For the cyclic distribution, the butter
ies are local provided K � 2p. In that case,the pair of components to be modi�ed is at distance K=2 � p and hence p is a divisorof K=2; therefore both components j and j +K=2 are on the same processor. As aresult, the last log2N � log2 p stages are local.Our approach for the parallel FFT is to start with the block distribution and afterlog2N � log2 p stages switch to the cyclic distribution. (Note that this is equivalentto permuting the vector z.) This can be done if log2N � log2 p � 12 log2N (i.e.,p � pN). If, however, p > pN , the use of the block distribution is exhausted beforewe can use the cyclic distribution. In that case, other intermediate distributions mustbe used, see McColl.14We perform the inverse transform by reversing the stages of the algorithm andinverting the butter
ies, instead of taking the more common approach of using thesame algorithm, but replacing the powers of e 2�iN by their conjugates and multiplyingby an rescaling factor. This choice enables us to eliminate certain permutations, seethe next subsection.3.6. Optimization of the Main LoopBreaking open the FChT module allows us to radically reduce the amount ofcommunication involved in the parallel FLT algorithm. As a consequence, the amountof local copy operations and computations is also reduced, but to a lesser extent.The original modular parallel algorithm for the FChT of two vectors x and y ofsize N block distributed over p processors, p � pN , has the following structure:1. PACK vectors x and y as the auxiliary complex vector z by permuting themusing Eq. (17).2. TRANSFORM vector z using an FFT of size N .(a) Perform a bit-reversal permutation in z.(b) Perform the butter
ies of size 2; 4; : : : N=p.(c) Permute z to the cyclic distribution.(d) Perform the butter
ies of size 2N=p; 4N=p; : : : ;N .(e) Permute z to the block distribution.3. EXTRACT the transforms from vector z and store them in vectors x and y.(a) Permute z to put components j and N � j in the same processor.(b) Compute the new values of z using Eq. (19).(c) Permute z to block distribution and store the result in vectors x and y.17

(b)

(a)

0 4 8 12 16 20 24 28
Proc(0)

Proc(2)

Proc(3)

Proc(1)Figure 4. (a) Cyclic distribution and (b) zig-zag cyclic distribution for avector of size 32 distributed over 4 processors.In our optimized version where modularity is not an issue, we restrict the numberof processors slightly further to p � pN=2 and permute the vector z from blockdistribution to a slightly modi�ed cyclic distribution de�ned as follows.De�nition 3.3. (Zig-zag cyclic distribution). Let z be a vector of size N . We saythat z is zig-zag cyclically distributed over p processors if for all j, the element zj isstored in Proc(j mod p) if j mod 2p < p and in Proc(�j mod p), if j mod 2p � pand has local index j 0 = j div p.With this distribution both the components j and j +K=2, with 2N=p � K � N ,needed by the butter
y operations and the components j and N � j needed by theextract operation are in the same processor; thus we can avoid the permutationsperformed in phases (2e) and (3a) above. The same happens, though in reversedorder, in the pack/transform phases of the parallel inverse FChT. Figure 4 illustratesthe cyclic and zig-zag cyclic distributions.By giving up the block distribution in the main loop of the FLT algorithm andinstead maintaining the vectors fl;gl;ul; and vl of size 2K in the zig-zag cyclic dis-tribution of p1 processors, we can also save the permutations to convert from zig-zagcyclic to block distribution in phase (3c) of the FChT and from block to zig-zag cyclicdistribution in the corresponding phase of the inverse FChT. To achieve this we re-place the truncation operation, Algorithm 3, by a new truncation operation, namelythe redistribution of vectors fl;gl;ul; and vl, now of size K, from the zig-zag cyclicdistribution with p1 processors to the zig-zag cyclic distribution with p1=2 processors,storing the lower halves of vectors ul and vl in the upper halves of vectors fl;gl. Notethat the initialization step must also be modi�ed in order to give the input vectorsof stage 2 in the zig-zag cyclic distribution of p=2 processors.Furthermore, the optimized algorithm avoids the packing (1) and bit-reversal (2a)in the FChT just following the recurrence and their corresponding inverses in theinverse FChT preceding the recurrence. This is done by storing the recurrence coef-�cients permuted by the packing (1) and bit-reversal (2a) permutations. This worksbecause the last two permutations form the inverse of the �rst two, so that the auxil-iary vector z is in the same ordering immediately before and after the permutations.After all the optimizations, the total communication and synchronization cost is(6Np log2 p + 2Np)g + (3 log2 p + 1)l. This means that we reduced communicationsand synchronizations by more than a factor of two. (The basic algorithm has acommunication and synchronization cost of 14Np log2 p g + 7 log2 p l.)18

Since we do not use the upper half of the Chebyshev coe�cients computed in theforward transform, we can alter the algorithm to avoid computing them. To makeour code more competitive we used a modi�ed radix-2 algorithm. Wherever possiblewe take pairs of stages A2KAK together and perform them as one operation. Thebutter
ies have the form B2K(I2
 BK), which is a 2K � 2K matrix consisting of4� 4 blocks, each a K=2�K=2 diagonal submatrix. (This matrix is a symmetricallypermuted version of the radix-4 butter
y matrix.21) This approach gives the e�ciencyof a radix-4 FFT algorithm, and the
exibility of treating the parallel FFT withinthe radix-2 framework; for example, it is possible to redistribute after any number ofstages, and not only after an even number of them.Supposing N and p are powers of 4, i.e., we can always take pairs of stages together,the total cost of the optimized algorithm is:TFLT = 4:25Np (log2N)2+26:25Np log2N�(4:25(log2M)2+26:25 log2M+M)Np +�6Np log2 p+ 2Np � g + (3 log2 p+ 1) l:4. Experimental ResultsIn this section, we present results on the accuracy and scalability of the implemen-tation of the Legendre transform algorithm for various sizes N . We set M = 2, i.e.,no early termination. We implemented the algorithm in ANSI C using the BSPlibcommunications library. The test runs were made on a Cray T3E with up to 64processors, each having a theoretical peak speed of 600 M
op/s.We tested the accuracy of our implementation by measuring the error obtainedwhen transforming an arbitrary input vector f with elements uniformly distributedbetween 0 and 1. Table 1 shows the relative errors obtained for various problem sizes.The relative errors were computed via the expressionjĵf � f̂�jjmaxjĵf jjmax ;where f̂ is the exact transform (computed by a quadruple precision direct Legendretransform) and f̂� the FLT; jj � jjmax indicates the max norm.Table 1 Estimated relative errors for the FLT algorithm.N relative error1024 7:8 � 10�148192 1:3 � 10�1365536 2:6 � 10�1219

We tested the scalability of our parallel implementation using our sequential im-plementation as basis for comparison. Though we broke open the modules of thealgorithm, it is still possible (with a certain amount of work) to replace the FFTsubroutine by a highly optimized or even a machine speci�c, assembler coded, FFTsubroutine in both the sequential and the parallel versions. This would yield an evenfaster program.Table 2 shows the timing results obtained for the sequential and parallel versionsexecuted on up to 64 processors. It is better to analyze these results in terms ofabsolute speedups, Sabs = t(seq)=t(p), i.e., the time needed to run the sequentialprogram divided by the time needed to run the parallel program on p processors. Ourgoal is to achieve ratios as close to p as possible. Figure 5 shows the performanceratios obtained for various input sizes on up to 64 processors.Table 2 Timing data for BSP FLT on a Cray T3E. All times are given in milliseconds.N seq p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64512 1:71 1:89 1:23 0:80 0:58 0:61 { {1024 3:95 4:36 2:70 1:57 1:08 0:84 { {8192 50:60 65:70 33:60 17:40 8:71 5:16 3:38 3:3465536 1130:� 1250:� 664:� 336:� 162:� 71:10 36:10 20:30
12 4 8 16 32 64

number of processors (p)

0.0

8.0

16.0

24.0

32.0

40.0

48.0

56.0

64.0

sp
ee

du
p

(t
(s

eq
)/

t(
p)

)

FLT speedups on the CRAY T3E

1 2 4 8 16
0.0

4.0

8.0

12.0

16.0

N=512
N=1024
N=8192
N=65536
idealFigure 5. Scalability of the program BSP FLT on a Cray T3E20

It is clear that for a large problem size (N = 65536) the speedup is close to ideal,e.g., Sabs = 56 on 64 processors. For smaller problems, reasonable speedups can beobtained using 8 or 16 processors, but beyond that the communication time becomesdominant.5. Conclusions and Future WorkAs part of this work, we developed and implemented a sequential algorithm forthe discrete Legendre transform, based on the Driscoll-Healy algorithm. We believethis implementation to be quite competitive for large problem sizes. Its complexityO(N(log2N)2) is considerably lower than the O(N2) matrix-vector multiplicationalgorithms which are still much in use today for the computation of Legendre trans-forms. The new algorithm is a promising approach for compute-intensive applicationssuch as weather forecasting.The main aim of this work was to develop and implement a parallel Legendretransform algorithm. Our experimental results show that the performance of ourparallel algorithm scales well with the number of processors, for medium to largeproblem sizes. The overhead of our parallel program consists mainly of communi-cation, and this is limited to three redistributions of the data vector in each of the�rst log2 p stages of the algorithm. Two of these redistributions are already requiredby an FFT and an inverse FFT, indicating that this is close to optimal. Our par-allelization approach was �rst to derive a basic algorithm that uses block and cyclicdata distributions, and then to optimize this algorithm by removing permutationsand redistributions wherever possible. To facilitate this we proposed a new datadistribution, which we call the zig-zag cyclic distribution.Within the framework of this work, we also developed a new algorithm for thesimultaneous computation of two Chebyshev transforms. This is useful in the contextof the FLT because the Chebyshev transforms always come in pairs, but such a doublefast Chebyshev transform (and the corresponding double fast cosine transform) alsohas many applications in its own right. Our algorithm has the additional bene�t ofeasy parallelization.We view the present FLT as a good starting point for the use of fast Legendrealgorithms in practical applications. However, to make our FLT algorithm directlyuseful in such applications further work must be done: an inverse FLT must be devel-oped, the FLT must be adapted to the more general case of the spherical harmonictransform, and alternative choices of sampling points must be made possible.6. AcknowledgementsWe thank CAPES, Brazil, for supporting Inda with a doctoral fellowship and NCF,The Netherlands, for funding the computer time on the Cray T3E.21

7. References1. N. Ahmed, T. Natarajan, and K. Rao, IEEE Trans. Comput. 23 (1974) 90.2. B. Alpert and V. Roklin, SIAM J. Sci. Statist. Comput. 12 (1991) 158.3. S. Barros and T. Kauranne, Parallel Computing 20 (1994), 1335.4. P. Barrucand and D. Dickinson, On the Associated Legendre Polynomials, inOrthogonal Expansions and Their Continuous Analogues, (Southern Illinois Uni-versity Press, Carbondale, IL, 1968).5. S. Belmehdi, J. Comput. Appl. Math. 32 (1990) 311.6. R. H. Bisseling, in Lecture Notes in Computer Science 1196 (Springer-Verlag,Berlin, 1997), p. 46.7. G. L. Browning, J. J. Hack and P. N. Swarztrauber, Mon. Wea. Rev. 117 (1989)1058.8. J. W. Cooley and J. W. Tukey, Math. Comp. 19 (1965) 297.9. J. Driscoll and D. Healy, Adv. in Appl. Math., 15 (1994) 202.10. J. R. Driscoll, D. Healy, and D. Rockmore. SIAM J. Comput. 26 (1997) 1066.11. D. Healy, S. Moore, and D. Rockmore, E�ciency and Stability Issues in the Nu-merical Computation of Fourier Transforms and Convolutions on the 2-Sphere,(Technical Report PCS-TR94-222, Dept. of Math. and Com. Sci., DartmouthCollege, NH, 1994).12. J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B.Rao, T. Suel, T. Tsantilas, and R. H. Bisseling, Parallel Computing 24 (1998)1947.13. D. K. Maslen, A Polynomial Approach to Orthogonal Polynomial Transforms,(Preprint MPI/95-9, Max-Planck-Institut f�ur Mathematik, Bonn, Germany,1995).14. W.F. McColl, Future Generation Computer Systems, 12 (1996) 265.15. S. Orszag, in Science and Computers, ed. G. Rota, (Academic Press, NY 1986),p. 23.16. W. Press, S. Teukolsky, W. Vetterling and B. Flannery, Numerical Recipes in C:The Art of Scienti�c Computing, second edition, (Cambridge University Press,Cambridge, UK, 1992).17. N. Shalaby, Parallel Discrete Cosine Transforms: Theory and Practice, (Tech-nical report TR-34-95, Center for Research in Computing Technology, HarvardUniversity, Cambridge, MA, 1995).18. N. Shalaby and S.L. Johnsson, Hierarchical Load Balancing for Parallel FastLegendre Transforms, (8th SIAM Conference on Parallel Processing for Scienti�cComputation, 1997).19. G. Steidl and M. Tasche, Mathematics of Computation, 56 (1991) 281.20. L. Valiant, Communications of the ACM 33 (1990) 103.21. C. Van Loan, Computational Frameworks for the Fast Fourier Transform, (Soci-ety for Industrial and Applied Mathematics, SIAM, Philadelphia 1992).22

