
ON THE EFFICIENT PARALLEL COMPUTATION OF LEGENDRE
TRANSFORMS∗

MÁRCIA A. INDA† , ROB H. BISSELING‡ , AND DAVID K. MASLEN§

SIAM J. SCI. COMPUT. c© 2001 Society for Industrial and Applied Mathematics
Vol. 23, No. 1, pp. 271–303

Abstract. In this article, we discuss a parallel implementation of efficient algorithms for compu-
tation of Legendre polynomial transforms and other orthogonal polynomial transforms. We develop
an approach to the Driscoll–Healy algorithm using polynomial arithmetic and present experimental
results on the accuracy, efficiency, and scalability of our implementation. The algorithms were im-
plemented in ANSI C using the BSPlib communications library. We also present a new algorithm
for computing the cosine transform of two vectors at the same time.

Key words. orthogonal polynomials, Legendre polynomials, BSP, parallel computation, com-
putational harmonic analysis

AMS subject classifications. 65T50, 65Y05, 42C15

PII. S1064827599355864

1. Introduction. Discrete Legendre transforms (DLTs) are widely used tools
in applied science, commonly arising in problems associated with spherical geome-
tries. Examples of their application include spectral methods for the solution of
partial differential equations, e.g., in global weather forecasting [3, 9], shape analysis
of molecular surfaces [16], statistical analysis of directional data [18], and geometric
quality assurance [17].

A direct method for computing a discrete orthogonal polynomial transform such
as the DLT transform for N data values requires a matrix-vector multiplication of
O(N2) arithmetic operations, though several authors [2, 28] have proposed faster
algorithms based on approximate methods. In 1989, Driscoll and Healy introduced an
exact algorithm that computes such transforms in O(N log2 N) arithmetic operations
[13, 14, 15]. They implemented the algorithm and analyzed its stability, which depends
on the specific orthogonal polynomial sequence used.

Discrete polynomial transforms are computationally intensive, so for large prob-
lem sizes the ability to use multiprocessor computers is important, and at least two
papers discussing the theoretical parallelizability of the algorithm have already been
written [19, 32]. We are, however, unaware of any parallel implementation of the
Driscoll–Healy algorithm at the time of writing.

In this paper, we derive a new parallel algorithm that has a lower theoretical
time complexity than those of [19, 32], and we present a full implementation of this

∗Received by the editors May 12, 1999; accepted for publication (in revised form) February 9,
2001; published electronically June 19, 2001. Parts of this work appeared in preliminary form in
Proceedings of the ECMWF Workshop “Towards TeraComputing—The Use of Parallel Processors
in Meteorology,” W. Zwieflhofer and N. Kreitz, eds., World Scientific, River Edge, NJ, 1999, pp.
87–108. Computer time on the Cray T3E was provided by HPaC, Delft with funding by NCF, The
Netherlands. Computer time on the IBM SP was provided by SARA, Amsterdam.

http://www.siam.org/journals/sisc/23-1/35586.html
†FOM Institute for Atomic and Molecular Physics (AMOLF), Kruislaan 407, 1098 SJ Amsterdam,

The Netherlands (inda@amolf.nl) and Instituto de Matemática, Universidade Federal do Rio Grande
do Sul, Av. Bento Gonçalves 9500, 91509-900 Porto Alegre, RS, Brazil. The work of this author was
supported by a doctoral fellowship from CAPES, Brazil.

‡Department of Mathematics, Utrecht University, P.O. Box 80010, 3508 TA Utrecht, The Nether-
lands (Rob.Bisseling@math.uu.nl).

§Susquehanna Partners, G.P., 401 City Avenue, Suite 220, Bala Cynwyd, PA 19004 (david@
maslen.net).

271

272 M. A. INDA, R. H. BISSELING, AND D. K. MASLEN

algorithm. Another contribution is the method used to derive the algorithm. We
present a method based on polynomial arithmetic to clarify the properties of orthogo-
nal polynomials used by the algorithm and to remove some unnecessary assumptions
made in [13, 14, 15].

The remainder of this paper is organized as follows. In section 2, we describe some
important properties of orthogonal polynomials and orthogonal polynomial trans-
forms, and we present a derivation of the Driscoll–Healy algorithm. In section 3, we
introduce the bulk synchronous parallel (BSP) model and describe a basic parallel
algorithm and its implementation. In section 4, we refine the basic algorithm by
introducing an intermediate data distribution that reduces the communication to a
minimum. In section 5, we present results on the accuracy, efficiency, and scalability
of our implementation. We conclude with section 6 and two appendices describing
a generalization of the algorithm and the precomputation of the data needed by the
algorithm.

2. The Driscoll–Healy algorithm.

2.1. Orthogonal polynomials. A sequence of polynomials p0, p1, p2, . . . is said
to be an orthogonal polynomial sequence on the interval [−1, 1] with respect to the
weight function ω(x), if deg pi = i, and

∫ 1

−1
pi(x)pj(x)ω(x)dx = 0 for i "= j,

∫ 1

−1
pi(x)2ω(x)dx "= 0 for i ≥ 0.

The weight function ω(x) is nonnegative and integrable on (−1, 1).
Let x0, . . . , xN−1 be a sequence of distinct real numbers called sample points, and

let f0, . . . , fN−1 be a sequence of real values. Then there exists a unique polynomial
f of degree less than N such that

f(xj) = fj , j = 0, . . . , N − 1.(2.1)

This polynomial can be obtained by Lagrangian interpolation.
The expansion transform corresponding to the orthogonal polynomial sequence

{pk} computes the coefficients ck in the expansion

f =
N−1∑

k=0

ckpk,(2.2)

where f is a polynomial given by function values fj in the sample points xj . (Note that
we do not require any special relation between the sample points and the orthogonal
polynomials.) The inverse expansion transform evaluates f at the sample points xj ,
and this can be done by straightforward substitution:

fj =
N−1∑

k=0

ckpk(xj), j = 0, . . . , N − 1.(2.3)

In matrix-vector notation, the latter transform can be written as f = Pc, where
f = (f0, . . . , fN−1) and c = (c0, . . . , cN−1) are column vectors, and the matrix P
is defined by Pjk = pk(xj). The matrix P is invertible, and P−1 represents the

PARALLEL LEGENDRE TRANSFORM 273

expansion transform. In general, P need not be orthogonal, and hence its inverse and
transpose need not be the same.

Example 2.1 (discrete Chebyshev transform (DChT)). The Chebyshev polyno-
mials of the first kind are the sequence of orthogonal polynomials defined recursively
by

Tk+1(x) = 2x · Tk(x) − Tk−1(x), T0(x) = 1, T1(x) = x.(2.4)

These are orthogonal with respect to the weight function ω(x) = π−1(1 − x2)−
1
2 on

[−1, 1], and they satisfy Tk(cos θ) = cos kθ for all real θ.
The DChT is the expansion transform for the Chebyshev polynomials at the Cheby-

shev points. The Chebyshev points are the roots of TN , and they are given by

xN
j = cos

(2j + 1)π

2N
, j = 0, . . . , N − 1.(2.5)

We denote the Chebyshev transform by a tilde. More specifically, the coefficient of Tk

in the Chebyshev expansion of a polynomial f is denoted by f̃k.
The inverse Chebyshev transform can straightforwardly be written as

fj =
N−1∑

k=0

f̃kTk(x
N
j) =

N−1∑

k=0

f̃k cos
(2j + 1)kπ

2N
, j = 0, . . . , N − 1.(2.6)

Furthermore, it can be shown that the Chebyshev transform itself is given by

f̃k =
εk
N

N−1∑

j=0

fjTk(x
N
j) =

εk
N

N−1∑

j=0

fj cos
(2j + 1)kπ

2N
, k = 0, . . . , N − 1,(2.7)

where

εk =

{
1 if k = 0,
2 if k > 0.

(2.8)

In this work, we will study a slightly more general transform which includes
weights. Given an orthogonal polynomial sequence {pk}, a sequence of sample points
x0, . . . , xN−1, and a sequence of numbers w0, . . . , wN−1 called sample weights, we
define the discrete orthogonal polynomial transform of a data vector (f0, . . . , fN−1) to
be the vector of sums (f̂0, . . . , f̂N−1), where

f̂k = f̂(pk) =
N−1∑

j=0

wjfjpk(xj).(2.9)

The matrix of the discrete orthogonal polynomial transform (2.9) for the special case
with sample weights 1 is PT .

Example 2.2 (discrete cosine transform (DCT)). The DCT, or DCT-II in the
terminology of [35], is the discrete orthogonal polynomial transform for the Chebyshev
polynomials, with sample weights 1 and with the Chebyshev points as sample points.
Thus, the matrix representing the DCT is PT . Since the matrix representing the
DChT is P−1, the DCT is the inverse transpose of the DChT. The relation is even
closer: by comparing (2.9) for the DCT with (2.7) for the DChT we see that the DChT
is equivalent to a DCT followed by a multiplication of the kth coefficient by εk

N .

274 M. A. INDA, R. H. BISSELING, AND D. K. MASLEN

A DCT can be carried out in O(N logN) arithmetic operations using a fast
Fourier transform (FFT) [1, 35] or using the recent algorithm of Steidl and Tasche
[33]. Such an O(N logN) algorithm is called a fast cosine transform (FCT). This
also provides us with a fast Chebyshev transform (FChT). We use an upper bound of
the form αN log2 N + βN for the number of floating point operations (flops) for one
FChT of size N , or its inverse. The lower order term is included because we are often
interested in small size transforms, for which this term may be dominant.

Example 2.3 (DLT). The Legendre polynomials are orthogonal with respect to
the uniform weight function 1 on [−1, 1], and they may be defined recursively by

Pk+1(x) =
2k + 1

k + 1
x · Pk(x) − k

k + 1
Pk−1(x), P0(x) = 1, P1(x) = x.(2.10)

The Legendre polynomials are one of the most important examples of orthogonal
polynomials, as they occur as zonal polynomials in the spherical harmonic expansion of
functions on the sphere. Our parallel implementation of the Driscoll–Healy algorithm,
to be described later, focuses on the case of Legendre polynomials. For efficiency
reasons, we sample these polynomials at the Chebyshev points. In this paper, we
call the discrete orthogonal polynomial transform for the Legendre polynomials, with
sample weights 1/N and with the Chebyshev points as sample points, the DLT.

One of the important properties of orthogonal polynomials we will use is the
following lemma.

Lemma 2.4 (Gaussian quadrature). Let {pk} be an orthogonal polynomial se-
quence for a nonnegative integrable weight function ω(x), and let zN0 , . . . , zNN−1 be
the roots of pN . Then there exist numbers wN

0 , . . . , wN
N−1 > 0, such that for any

polynomial f of degree less than 2N we have

∫ 1

−1
f(x)ω(x)dx =

N−1∑

j=0

wN
j f(zNj).

The numbers wN
j are unique and are called the Gaussian weights for the sequence

{pk}.
Proof. See, e.g., [10, Theorem 6.1].
Example 2.5. The Gaussian weights for the Chebyshev polynomials with weight

function π−1(1 − x2)−
1
2 are wN

j = 1/N . So for any polynomial f of degree less than
2N we have

1

π

∫ 1

−1

f(x)dx√
1 − x2

=
1

N

N−1∑

j=0

f(xN
j),(2.11)

where xN
j = cos (2j+1)π

2N are the Chebyshev points.
Another property of orthogonal polynomials that we will need is the existence

of a three-term recurrence relation, such as (2.4) for the Chebyshev polynomials and
(2.10) for the Legendre polynomials.

Lemma 2.6 (three-term recurrence). Let {pk} be an orthogonal polynomial se-
quence for a nonnegative integrable weight function. Then {pk} satisfies a three-term
recurrence relation

pk+1(x) = (Akx + Bk)pk(x) + Ckpk−1(x),(2.12)

where Ak, Bk, Ck are real numbers with Ak "= 0 and Ck "= 0.

PARALLEL LEGENDRE TRANSFORM 275

Proof. See, e.g., [10, Theorem 4.1].
The Clebsch–Gordan property follows from, and is similar to, the three-term

recurrence.
Corollary 2.7 (Clebsch–Gordan). Let {pk} be an orthogonal polynomial se-

quence with a nonnegative integrable weight function. Then for any polynomial Q of
degree m we have

pk ·Q ∈ spanR{pk−m, . . . , pk+m}.

Proof. Rewrite the recurrence (2.12) in the form x · pk = A−1
k (pk+1 − Bkpk −

Ckpk−1), and use induction on m.
Iterating the three-term recurrence also gives a more general recurrence between

polynomials in an orthogonal polynomial sequence. Define the associated polynomials
Ql,m, Rl,m for the orthogonal polynomial sequence {pl} by the following recurrences
on m, which are shifted versions of the recurrence for pl. See, e.g., [4, 5].

Ql,m(x) = (Al+m−1x + Bl+m−1)Ql,m−1(x) + Cl+m−1Ql,m−2(x),
Ql,0(x) = 1, Ql,1(x) = Alx + Bl,
Rl,m(x) = (Al+m−1x + Bl+m−1)Rl,m−1(x) + Cl+m−1Rl,m−2(x),
Rl,0(x) = 0, Rl,1(x) = Cl.

(2.13)

Lemma 2.8 (generalized three-term recurrence). The associated polynomials sat-
isfy degQl,m = m, degRl,m ≤ m− 1, and for l ≥ 1 and m ≥ 0,

pl+m = Ql,m · pl + Rl,m · pl−1.(2.14)

Proof. Equation (2.14) follows by induction on m with the case m = 1 being the
original three-term recurrence (2.12).

In the case where the pl are the Legendre polynomials, the associated polynomials
should not be confused with the associated Legendre functions, which in general are
not polynomials.

2.2. Derivation of the Driscoll–Healy algorithm. The Driscoll–Healy algo-
rithm [13, 14] allows one to compute orthogonal polynomial transforms at any set of
N sample points, in O(N log2 N) arithmetic operations. The core of this algorithm
consists of an algorithm to compute orthogonal polynomial transforms in the special
case where the sample points are the Chebyshev points and the sample weights are
1/N . For simplicity we restrict ourselves to this special case, and, furthermore, we
assume that N is a power of 2. In Appendix A, we sketch extensions to more general
problems.

Using the relation

f · pl+m = Ql,m · (f · pl) + Rl,m · (f · pl−1),(2.15)

derived from the three-term recurrence (2.14), we may formulate a strategy for com-
puting all the polynomials f · pl, 0 ≤ l < N , in log2 N stages.

• At stage 0, compute f · p0 and f · p1.
• At stage 1, use (2.15) with l = 1 and m = N/2 − 1 or m = N/2 to compute

f · pN
2

= Q1,N2 −1 · (f · p1) + R1,N2 −1 · (f · p0),

f · pN
2 +1 = Q1,N2

· (f · p1) + R1,N2
· (f · p0).

• In general, at each stage k, 1 ≤ k < log2 N , similarly as before, use (2.15)
with l = 2q(N/2k)+1, 0 ≤ q < 2k−1, and m = N/2k−1 or N/2k, to compute
the polynomial pairs

276 M. A. INDA, R. H. BISSELING, AND D. K. MASLEN

f · p N
2k
, f · p N

2k
+1; f · p 3N

2k
, f · p 3N

2k
+1; · · · ; f · p (2k−1)N

2k

, f · p (2k−1)N

2k
+1

.

The problem with this strategy is that computing a full representation of each
polynomial f ·pl generates much more data at each stage than is needed to compute the
final output. To overcome this problem, the Driscoll–Healy algorithm uses Chebyshev
truncation operators to discard unneeded information at the end of each stage. Let
f =

∑
k≥0 bkTk be a polynomial, of any degree, written in the basis of Chebyshev

polynomials, and let n be a positive integer. Then the truncation operator Tn applied
to f is defined by

Tnf =
n−1∑

k=0

bkTk.(2.16)

The important properties of Tn are given in Lemma 2.9.
Lemma 2.9. Let f and Q be polynomials. Then the following hold.

1. T1f =
∫ 1
−1 f(x)ω(x)dx, where ω(x) = π−1(1 − x2)−

1
2 .

2. If m ≤ n, then TmTn = Tm.
3. If degQ ≤ m ≤ n, then Tn−m(f ·Q) = Tn−m[(Tnf) ·Q].

Proof. Part 1 follows from the orthogonality of Chebyshev polynomials, as T1f
is just the constant term of f in its expansion in Chebyshev polynomials. Part 2 is
a trivial consequence of the definition of truncation operators. For part 3 we assume
that f =

∑
k≥0 bkTk is a polynomial and that degQ ≤ m ≤ n. By Corollary 2.7, Tk ·Q

is in the linear span of Tk−m, . . . , Tk+m, so Tn−m(Tk ·Q) = 0 for k ≥ n. Therefore,

Tn−m(f ·Q) = Tn−m




∑

k≥0

bkTk ·Q



 = Tn−m

(
n−1∑

k=0

bkTk ·Q
)

= Tn−m[(Tnf)·Q].

As a corollary of part 1 of Lemma 2.9, we see how we can retrieve the discrete
orthogonal polynomial transform from the f · pl’s computed by the strategy above by
using a simple truncation.

Corollary 2.10. Let f be the unique polynomial of degree less than N such that
f(xN

j) = fj, 0 ≤ j < N . Let {pl} be an orthogonal polynomial sequence. Then

f̂l = T1(f · pl), 0 ≤ l < N,

where the f̂l form the discrete orthogonal polynomial transform of f of size N with
respect to the sample points xN

j and sample weights 1/N .
Proof. This follows from the definition of discrete orthogonal polynomial trans-

forms, the Gaussian quadrature rule (2.11) for Chebyshev polynomials applied to the
function f · pl, and Lemma 2.9,

f̂l =
1

N

N−1∑

j=0

f(xN
j)pl(x

N
j) =

1

π

∫ 1

−1

f(x)pl(x)√
1 − x2

dx = T1(f · pl).

The key property of the truncation operators Tn is the “aliasing” property (part 3
of Lemma 2.9), which states that we may use a truncated version of f when computing
a truncated product of f and Q. For example, if we wish to compute the truncated
product T1(f · pl) with l, deg f < N then, because deg pl = l, we may apply part 3 of
Lemma 2.9 with m = l and n = l + 1 to obtain

f̂l = T1(f · pl) = T1[(Tl+1f) · pl].

PARALLEL LEGENDRE TRANSFORM 277

Thus we need to know only the first l + 1 Chebyshev coefficients of f to compute f̂l.
The Driscoll–Healy algorithm follows the strategy described at the start of this

section, but it computes truncated polynomials

ZK
l = TK(f · pl)(2.17)

for various values of l and K, instead of the original polynomials f · pl. The input is
the polynomial f , and the output is f̂l = T1(f · pl) = Z1

l , 0 ≤ l < N .
Each stage of the algorithm uses truncation operators to discard unneeded infor-

mation, which keeps the problem size down. Instead of using the generalized three-
term recurrence (2.15) directly, each stage uses truncated versions. Specifically, (2.15)
with m = K − 1,K and part 3 of Lemma 2.9 with m = K and n = 2K imply the
following recurrences for the ZK

l :

ZK
l+K−1 = TK [Z2K

l ·Ql,K−1 + Z2K
l−1 ·Rl,K−1],(2.18)

ZK
l+K = TK [Z2K

l ·Ql,K + Z2K
l−1 ·Rl,K].(2.19)

The algorithm proceeds in log2 N + 1 stages, as shown in Algorithm 2.1. The organi-
zation of the computation is illustrated in Figure 2.1.

Algorithm 2.1 Polynomial version of the Driscoll–Healy algorithm.

INPUT (f0, . . . , fN−1): Polynomial defined by fj = f(xN
j); N is a power of 2.

OUTPUT (f̂0, . . . , f̂N−1): Transformed polynomial with f̂l = T1(f · pl) = Z1
l .

STAGES
0. Compute ZN

0 ← f · p0 and ZN
1 ← TN (f · p1).

k. for k = 1 to log2 N − 1 do
K ← N

2k

for l = 1 to N − 2K + 1 step 2K do
(a) Use recurrence (2.18) and (2.19) to compute new polynomials.

ZK
l+K−1 ← TK

(
Z2K
l ·Ql,K−1 + Z2K

l−1 ·Rl,K−1

)

ZK
l+K ← TK

(
Z2K
l ·Ql,K + Z2K

l−1 ·Rl,K

)

(b) Truncate old polynomials.
ZK
l−1 ← TKZ2K

l−1
ZK
l ← TKZ2K

l

log2 N . for l = 0 to N − 1 do
f̂l ← Z1

l

2.3. Data representation and recurrence procedure. To complete our de-
scription of the Driscoll–Healy algorithm, we still need to specify how to represent
the polynomials in the algorithm and to describe the methods used to multiply two
polynomials and to apply the truncation operators TK . This is done in the following
subsections.

2.3.1. Chebyshev representation of polynomials. Truncation of a polyno-
mial requires no computation if the polynomial is represented by the coefficients of its
expansion in Chebyshev polynomials. Therefore, we use the Chebyshev coefficients
zln defined by

ZK
l =

K−1∑

n=0

zlnTn(2.20)

278 M. A. INDA, R. H. BISSELING, AND D. K. MASLEN

4 6 8
stage 4: output

stage 3

stage 2

stage 1

stage 0

1

4

8

2

16

K

0 2 l10 12 14

Fig. 2.1. Computation of the truncated polynomials ZK
l for N = 16. Each bar represents the

polynomials ZK
l for one value of l. The height of the bar represents the initial number of Chebyshev

coefficients. At each stage, the number of coefficients is reduced as indicated by the gray scales.

to represent all the polynomials ZK
l appearing in the algorithm. Such a representation

of a polynomial is called the Chebyshev representation.
The input polynomial f of degree less than N is given as the vector f = (f0, . . . , fN−1)

of values fj = f(xN
j). This is called the point-value representation of f . In stage 0,

we convert ZN
0 = TN (f · p0) = f · p0 and ZN

1 = TN (f · p1) to their Chebyshev rep-
resentations. For f · p0 this can be done by a Chebyshev transform on the vector of
function values with the input values multiplied by the constant p0. For f · p1 we also
use a Chebyshev transform of size N , even though f · p1 may have degree N , rather
than N − 1. This poses no problem, because applying part 4 of Lemma 2.11 from the
next subsection with h = f · p1 and K = N proves that f · p1 agrees with ZN

1 at the
sampling points xN

j . Stage 0 becomes the following.

Stage 0. Compute the Chebyshev representation of ZN
0 and ZN

1 .
(a) (z0

0 , . . . , z
0
N−1) ← Chebyshev(f0p0, . . . , fN−1p0)

(b) (z1
0 , . . . , z

1
N−1) ← Chebyshev(f0p1(xN

0), . . . , fN−1p1(xN
N−1))

Stage 0 takes a total of 2αN log2 N + 2βN + 2N flops, where the third term
represents the 2N flops needed to multiply f with p0 and p1.

2.3.2. Recurrence using Chebyshev transforms. To apply the recurrences
(2.18) and (2.19) efficiently, we do the following.

1. Apply inverse Chebyshev transforms of size 2K to bring the polynomials
Z2K
l−1, Z

2K
l into point-value representation at the points x2K

j , 0 ≤ j < 2K.
2. Perform the multiplications and additions.
3. Apply a forward Chebyshev transform of size 2K to bring the result into

Chebyshev representation.
4. Truncate the results to degree less than K.

This procedure replaces the polynomial multiplications in the recurrences (2.18)
and (2.19) by a slightly different operation. Because the multiplications are made in
only 2K points, whereas the degree of the resulting polynomial could be 3K − 1, we
must verify that the end result is the same. To describe the operation formally, we
introduce the Lagrange interpolation operators Sn for positive integers n. For any
polynomial h, the Lagrange interpolation polynomial Snh is the polynomial of degree

PARALLEL LEGENDRE TRANSFORM 279

less than n which agrees with h at the points xn
0 , . . . , x

n
n−1. The important properties

of Sn are given in Lemma 2.11.
Lemma 2.11. Let g and h be polynomials. Then the following hold.

1. If deg h < n, then Snh = h.
2. Sn(g · h) = Sn((Sng) · (Snh)).
3. Let m ≤ n. If deg h ≤ m + n, then Tn−mh = Tn−mSnh.
4. If deg h = n, then Snh = Tnh.

Proof. Parts 1 and 2 are easy. To prove part 3 assume that deg h ≤ m + n. By
long division, there is a polynomial Q of degree at most m such that h = Snh+Tn ·Q.
Applying Tn−m and using part 3 of Lemma 2.9, we obtain

Tn−mSnh = Tn−mh− Tn−m[Tn ·Q] = Tn−mh− Tn−m[(TnTn) ·Q] = Tn−mh,

since TnTn = 0. For part 4 we note that degSnh < n, and we use part 3 with m = 0
to obtain Snh = TnSnh = Tnh.

From the recurrences (2.18) and (2.19) and part 3 of Lemma 2.11 with m = K
and n = 2K, it follows that

ZK
l+K−1 = TK [S2K(Z2K

l ·Ql,K−1) + S2K(Z2K
l−1 ·Rl,K−1)],(2.21)

ZK
l+K = TK [S2K(Z2K

l ·Ql,K) + S2K(Z2K
l−1 ·Rl,K)].(2.22)

These equations are exactly the procedure described above. The inner loop of stage
k of Algorithm 2.1 becomes the following.

(a) Compute the Chebyshev representation of ZK
l+K−1 and ZK

l+K .

(zl+K−1
0 , . . . , zl+K−1

K−1 ; zl+K
0 , . . . , zl+K

K−1)

← RecurrenceKl (zl−1
0 , . . . , zl−1

2K−1; zl0, . . . , z
l
2K−1)

(b) Compute the Chebyshev representation of ZK
l−1 and ZK

l .

Discard (zl−1
K , . . . , zl−1

2K−1) and (zlK , . . . , zl2K−1)

Algorithm 2.2 describes in detail the recurrence procedure, which takes 4(α · 2K
log2 2K + β · 2K) + 12K = 8αK log2 K + (8α + 8β + 12)K flops.

2.4. Early termination. At late stages in the Driscoll–Healy algorithm, the
work required to apply the recursion amongst the ZK

l is larger than that required
to finish the computation using a naive matrix-vector multiplication. It is then more
efficient to use the vectors ZK

l computed so far directly to obtain the final result, as
follows.

Let qnl,m and rnl,m denote the Chebyshev coefficients of the polynomials Ql,m and
Rl,m, respectively, so that

Ql,m =
m∑

n=0

qnl,mTn, Rl,m =
m−1∑

n=0

rnl,mTn.(2.23)

The problem of finishing the computation at the end of stage k = log2(N/M),
when K = M , is equivalent to finding f̂l = zl0 for 0 ≤ l < N , given the data zln,
zl−1
n , 0 ≤ n < M , l = 1,M + 1, 2M + 1, . . . , N − M + 1. Our method of finishing

the computation is to use part 1 of Lemma 2.12, which follows. Part 2 of this lemma
can be used to halve the number of computations in the common case, where the
polynomial recurrence (2.12) has a coefficient Bk = 0 for all k.

280 M. A. INDA, R. H. BISSELING, AND D. K. MASLEN

Algorithm 2.2 Recurrence procedure using the Chebyshev transform.

CALL RecurrenceKl (f̃0, . . . , f̃2K−1; g̃0, . . . , g̃2K−1).

INPUT f̃ = (f̃0, . . . , f̃2K−1) and g̃ = (g̃0, . . . , g̃2K−1): First 2K Chebyshev coefficients of input

polynomials Z2K
l−1 and Z2K

l ; K is a power of 2.

OUTPUT ũ = (ũ0, . . . , ũK−1) and ṽ = (ṽ0, . . . , ṽK−1): First K Chebyshev coefficients of output

polynomials ZK
l+K−1 and ZK

l+K .

STEPS
1. Transform f̃ and g̃ to point-value representation.

(f0, . . . , f2K−1) ← Chebyshev−1(f̃0, . . . , f̃2K−1)
(g0, . . . , g2K−1) ← Chebyshev−1(g̃0, . . . , g̃2K−1)

2. Perform the recurrence.
for j = 0 to 2K − 1 do

uj ← Ql,K−1(x2K
j) gj + Rl,K−1(x2K

j) fj
vj ← Ql,K(x2K

j) gj + Rl,K(x2K
j) fj

3. Transform u and v to Chebyshev representation.
(ũ0, . . . , ũ2K−1) ← Chebyshev(u0, . . . , u2K−1)
(ṽ0, . . . , ṽ2K−1) ← Chebyshev(v0, . . . , v2K−1)

4. Discard (ũK , . . . , ũ2K−1) and (ṽK , . . . , ṽ2K−1).

Lemma 2.12.
1. If l ≥ 1 and 0 ≤ m < M , then

f̂l+m =
m∑

n=0

1

εn
(zlnq

n
l,m + zl−1

n rnl,m).(2.24)

2. If pl satisfies a recurrence of the form pl+1(x) = Alxpl(x) + Clpl−1(x), then

qnl,m = 0 if n−m is odd, and

rnl,m = 0 if n−m is even.

Proof. Applying TM−m to both sides of (2.15) and using part 3 of Lemma 2.9
with n = M gives ZM−m

l+m = TM−m(ZM
l ·Ql,m + ZM

l−1 ·Rl,m). Truncating again, now

using T1, we see that f̂l+m = Z1
l+m is the constant term of the Chebyshev expansion

of ZM
l ·Ql,m + ZM

l−1 ·Rl,m. To find this constant term expressed in the Chebyshev
coefficients of ZM

l , ZM
l−1 and of Ql,m, Rl,m, we substitute the expansions (2.20) and

(2.23) and rewrite the product of sums by using the identity Tj ·Tk = 1
2 (T|j−k|+Tj+k).

For the second part, we assume that pl satisfies the given recurrence. Then Ql,m is
odd or even according to whether m is odd or even, and Rl,m is even or odd according
to whether m is odd or even, which can be verified by induction on m. This implies
that the Chebyshev expansion of Ql,m must contain only odd or even coefficients,
respectively, and the reverse must hold for Rl,m.

Assuming that the assumptions of part 2 of the lemma are valid, i.e., each term
of (2.24) has either qnl,m = 0 or rnl,m = 0, and that the factor 1/εn has been absorbed
in the precomputed values qnl,m and rnl,m, the total number of flops needed to compute

f̂l+m is 2m + 1.

2.5. Complexity of the algorithm. Algorithm 2.3 gives the sequential Driscoll–
Healy algorithm in its final form. The total number of flops can be computed as
follows. Stage 0 takes 2αN log2 N + (2β + 2)N flops. Stage k invokes N/(2K) times

PARALLEL LEGENDRE TRANSFORM 281

the recurrence procedure, which has cost 8αK log2 K +(8α+8β+12)K flops, so that
the total cost of that stage is 4αN log2 K + (4α + 4β + 6)N flops. Adding the costs
for K = N/2, . . . ,M gives 2αN [log2

2 N − log2
2 M] + (2α + 4β + 6)N [log2 N − log2 M]

flops. In the last stage, output values have to be computed for m = 1, . . . ,M − 2, for
each of the N/M values of l. This gives a total of N

M

∑M−2
m=1 (2m + 1) = NM − 2N

flops. Summing the costs gives

TDriscoll−Healy =N [2α(log2
2 N − log2

2 M) + (4α + 4β + 6) log2 N(2.25)

− (2α + 4β + 6) log2 M + M + 2β].

Algorithm 2.3 Driscoll–Healy algorithm.

INPUT f = (f0, . . . , fN−1): Real vector with N a power of 2.

OUTPUT f̂ = (f̂0, . . . , f̂N−1): Discrete orthogonal polynomial transform of f .

STAGES
0. Compute the Chebyshev representation of ZN

0 and ZN
1 .

(a) (z0
0 , . . . , z

0
N−1) ← Chebyshev(f0p0, . . . , fN−1p0)

(b) (z1
0 , . . . , z

1
N−1) ← Chebyshev(f0p1(xN

0), . . . , fN−1p1(xN
N−1))

k. for k = 1 to log2
N
M do

K ← N
2k

for l = 1 to N − 2K + 1 step 2K do
(a) Compute the Chebyshev representation of ZK

l+K−1 and ZK
l+K

(zl+K−1
0 , . . . , zl+K−1

K−1 ; zl+K
0 , . . . , zl+K

K−1)

← RecurrenceKl (zl−1
0 , . . . , zl−1

2K−1; zl0, . . . , z
l
2K−1)

(b) Compute the Chebyshev representation of ZK
l−1 and ZK

l .

Discard (zl−1
K , . . . , zl−1

2K−1) and (zlK , . . . , zl2K−1)

log2
N
M + 1. Compute the remaining values.

for l = 1 to N −M + 1 step M do
f̂l−1 ← zl−1

0
f̂l ← zl0
for m = 1 to M − 2 do

f̂l+m ← zl0q
0
l,m + zl−1

0 r0l,m + 1
2

∑m

n=1
(zlnq

n
l,m + zl−1

n rnl,m)

The optimal stage at which to halt the Driscoll–Healy algorithm and complete the
computation using Lemma 2.12 depends on α and β and can be obtained theoretically.
The derivative of (2.25) as a function of M equals zero if and only if

M ln2 2 − 4α lnM = (2α + 4β + 6) ln 2.(2.26)

In our implementation α = 2.125 and β = 5; thus the minimum is M = 128.
In practice, the optimal choice of M will depend not only on the number of flops
performed, but also on the architecture of the machine used. The machine-tuned
basic linear algebra subprograms (BLAS) exploit the memory hierarchy of a computer,
and using the BLAS may cause a shift in the optimal value for M . For example,
early termination can be implemented by using a level 2 BLAS operation for matrix-
vector multiplication, which is more efficient than the level 1 vector operations of a
straightforward implementation of the Driscoll–Healy algorithm. This will increase
the optimal value for M .

3. The basic parallel algorithm and its implementation. We designed our
parallel algorithm using the BSP model, which provides a simple and effective way of
developing portable parallel algorithms. The BSP model does not favor any specific

282 M. A. INDA, R. H. BISSELING, AND D. K. MASLEN

computer architecture, and it includes a simple cost function that enables us to choose
between algorithms without actually having to implement them.

In the following subsections, we give a brief description of the BSP model, and
then we present the framework in which we develop our parallel algorithm, including
the data structures and data distributions used. This leads to a basic parallel algo-
rithm. From now on we concentrate on the DLT instead of the more general discrete
orthogonal polynomial transform.

3.1. The BSP model. In the BSP model [34], a computer consists of a set of
p processors, each with a private memory, connected by a communication network
that allows processors to access the memories of other processors. In the model,
algorithms consist of a sequence of supersteps. In the variant of the model we use, a
superstep is either a number of computation steps or a number of communication steps.
Global synchronization barriers (i.e., places of the algorithm where all processors must
synchronize with each other) precede and/or follow a communication superstep. Using
supersteps imposes a sequential structure on parallel algorithms, and this greatly
simplifies the design process.

A BSP computer can be characterized by four global parameters: p, the number
of processors; s, the computing speed in flop/s; g, the communication time per data
element sent or received, measured in flop time units; and l, the synchronization time,
also measured in flop time units. Algorithms can be analyzed by using the parameters
p, g, and l; the parameter s just scales the time. In this work, we are able to avoid
all synchronizations at the end of computation supersteps. Therefore, the time of a
computation superstep is simply w, the maximum amount of work (in flops) of any
processor. The time of a communication superstep is hg+ l, where h is the maximum
number of data elements sent or received by any processor. The total execution
time of an algorithm (in flops) can be obtained by adding the times of the separate
supersteps. This yields an expression of the form a + bg + cl. For further details
and some basic techniques, see [6]. BSPlib [21] is a standard library which enables
parallel programming in BSP style. Available implementations are the Oxford BSP
toolset [22] and the Paderborn University BSP library [8].

3.2. Data structures and data distributions. At each stage k, 1 ≤ k ≤
log2

N
M , the number of intermediate polynomial pairs doubles as the number of expan-

sion coefficients halves. Thus, at every stage of the computation, all the intermediate
polynomials can be stored in two arrays of size N . We use an array f to store the
Chebyshev coefficients of the polynomials Z2K

l and an array g to store the coefficients
of Z2K

l+1 for l = 0, 2K, . . . , N − 2K with K = N/2k in stage k. We also need some
extra work space to compute the coefficients of the polynomials Z2K

l+K and Z2K
l+K+1.

For this we use two auxiliary arrays, u and v, of size N .
The data flow of the algorithm (see Figure 3.1) suggests that we distribute all

the vectors by blocks, i.e., assign one block of consecutive vector elements to each
processor. This works well if p is a power of two, which we will assume from now
on. Since both N and p are thus powers of two, each processor obtains exactly N/p
elements. For the general case, the block distribution is defined as follows.

Definition 3.1 (block distribution). Let f be a vector of size N . We say that f is
block distributed over p processors if, for all j, the element fj is stored in Proc(j div b)
and has local index j′ = j mod b, where b = 'N/p(is the block size.

The precomputed data required to perform the recurrence of stage k are stored
in two-dimensional arrays Q and R, each of size 2 log2(N/M)×N . Each pair of rows

PARALLEL LEGENDRE TRANSFORM 283

copy copycopycopy

PA
RA

LL
EL

SE
Q

U
EN

TI
A

L

....
.

..

.
.

...

ZN
N/2

Z
N/2
0

Z
N/2
N/4

Z
N/4
0

Z
N/8
0

Z
N/8
N/8

Z
N/4
N/4

Z
N/4
3N/8

Z
N/8
2N/8

Z
N/8
3N/8

Z
N/8
4N/8

Z
N/8
5N/8

Z
N/8
6N/8

Z
N/8
7N/8

Z
N/4
2N/4

Z
N/4
5N/8

Z
N/2
3N/4

Z
N/2
N/2

Z
N/4
7N/8

Z
N/4
3N/4

Z
N/8
N/16

Z
N/8
3N/16

Z
N/8
5N/16

Z
N/8
7N/16

Z
N/8
11N/16

Z
N/8
13N/16

Z
N/8
15N/16

Z
N/8
9N/16

ZN
0

communicate communicate

Z
N/4
N/8

communicate communicate

Stage

1

2

3

4 f

u

u

f

u

f

u

f

Vector proc. 0 proc. 2 proc. 3proc. 1

Fig. 3.1. Main data structure and data distribution in the parallel fast Legendre transform
(FLT) algorithm for p = 4. Arrays f and g contain the Chebyshev coefficients of the polynomials
Z2K
l and Z2K

l+1, which are already available at the start of the stage. Arrays u and v contain Z2K
l+K

and Z2K
l+K+1, which become available at the end of the stage. Arrays g and v are not depicted. Each

array is divided into four local subarrays by using the block distribution.

k

3

2

1

j = 0, . . . , 63

j = 0, . . . , 31 j = 0, . . . , 31

j = 0, . . . , 15 j = 0, . . . , 15 j = 0, . . . , 15 j = 0, . . . , 15

l = 0

l = 0

l = 0 l = 16 l = 32 l = 48

l = 32

proc. 0 proc. 1 proc. 2 proc. 3

31

32

15

16

7

8

K − 1, K

Fig. 3.2. Data structure and distribution of the precomputed data needed in the recurrence with
N = 64, M = 8, and p = 4. Data are stored in two-dimensional arrays Q and R; one such array is
shown. Each pair of rows in an array stores the data needed for one stage k.

in Q stores data needed for one stage k by

Q[2k − 2, l + j] = Ql+1,K−1(x
2K
j),(3.1)

Q[2k − 1, l + j] = Ql+1,K(x2K
j)

for l = 0, 2K, . . . , N − 2K, j = 0, 1, . . . , 2K − 1, where K = N/2k. Thus polynomials
Ql+1,K−1 are stored in row 2k− 2, and polynomials Ql+1,K are stored in row 2k− 1.
This is shown in Figure 3.2. The polynomials Rl+1,K−1 and Rl+1,K are stored in
the same way in array R. Note that the indexing of the implementation arrays
starts at zero. Each row of Q and R is distributed by the block distribution, i.e.,
Q[i, j],R[i, j] ∈ Proc(j div N

p), so that the recurrence is a local operation.
The termination coefficients qnl,m and rnl,m for l = 1,M+1, 2M+1, . . . , N−M+1,

m = 1, 2, . . . ,M − 2, and n = 0, 1, . . . ,m are stored in a two-dimensional array T of
size N/M × (M(M − 1)/2 − 1). The coefficients for one value of l are stored in row
(l− 1)/M of T. Each row has the same internal structure: the coefficients are stored
in increasing order of m, and coefficients with the same m are ordered by increasing
n. (This format is commonly used to store lower triangular matrices.) By part 2 of

284 M. A. INDA, R. H. BISSELING, AND D. K. MASLEN

r2q1 q0 q2 r0 q1 q3 q0 r1 q2 r3 q4 r0 q5r4q3q1 r2 q0 r1 q2 q6r5q4r3

r1r0 r2q1 q0 q2 r0 q1 q3 q0 r1 q2 r3 q4 r0 q5r4q3q1 r2 q0 r1 q2 q6r5q4r3

r1r0 r2q1 q0 q2 r0 q1 q3 q0 r1 q2 r3 q4 r0 q5r4q3q1 r2 q0 r1 q2 q6r5q4r3

r0 r1 r2q1 q0 q2 r0 q1 q3 q0 r1 q2 r3 q4

r0

q5r4q3q1 r2 q0 r1 q2 q6r5q4r3

r1r0 r2q1 q0 q2 r0 q1 q3 q0 r1 q2 r3 q4 r0 q5r4q3q1 r2 q0 r1 q2 q6r5q4r3

r0 r1 r2q1 q0 q2 r0 q1 q3 q0 r1 q2 r3 q4 r0 q5r4q3q1 r2 q0 r1 q2 q6r5q4r3

r0 r1 r2q1 q0 q2 r0 q1 q3 q0 r1 q2 r3 q4 r0 q5r4q3q1 r2 q0 r1 q2 q6r5q4r3

r0 r1 r2q1 q0 q2 r0 q1 q3 q0 r1 q2 r3 q4 r0 q5r4q3q1 r2 q0 r1 q2 q6r5q4r3

r1

proc. 3

proc. 2

proc. 1

proc. 0

r0

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

l = 57

l = 49

l = 41

l = 33

l = 25

l = 17

l = 1

l = 9

Fig. 3.3. Data structure and distribution of the precomputed data for termination with N = 64,
M = 8, and p = 4. The coefficients qnl,m and rnl,m are stored in a two-dimensional array T. In the

picture, qn denotes qnl,m, and rn denotes rnl,m.

Lemma 2.12, either qnl,m = 0 or rnl,m = 0 for each n and m, so we need to store only
the value that can be nonzero. Since this depends on whether n−m is even or odd,
we obtain an alternating pattern of qnl,m’s and rnl,m’s. Figure 3.3 illustrates this data
structure.

The termination stage can be kept local if M ≤ N/p. This requires that each row
of T is assigned to one processor, namely, to the processor that holds the subvectors
for the corresponding value of l. Each column of T is in the block distribution,
i.e., T[i, j] ∈ Proc(i div N

pM). As a result, the N/M rows of T are distributed in
consecutive blocks of rows.

3.3. The basic parallel algorithm. To formulate our basic parallel algorithm,
we introduce the following conventions and subroutines.

Processor identification. The total number of processors is p. The processor
identification number is s with 0 ≤ s < p.

Supersteps. Labels indicate a superstep and its type: (Comp) computation su-
perstep, (Comm) communication superstep, and (CpCm) subroutine containing both
computation and communication supersteps. Global synchronizations are stated ex-
plicitly. Supersteps inside loops are executed repeatedly, though they are numbered
only once.

Indexing. All the indices are global. This means that array elements have a
unique index which is independent of the processor that owns it. This enables us to
describe variables and gain access to arrays in an unambiguous manner, even though
the array is distributed and each processor has only part of it.

Vectors and subroutine calls. All vectors are indicated in boldface. To specify part
of a vector we write its first element in boldface, e.g., fj; the vector size is explicitly
written as a parameter.

Communication. Communication between processors is done by using

gj ← Put(pid, n, fi).

This operation puts n elements of vector f , starting from element i, into processor
pid and stores them there in vector g starting from element j.

Copying a vector. The operation

gj ← Copy(n, fi)

denotes the copy of n elements of vector f , starting from element i, to a vector g
starting from element j.

PARALLEL LEGENDRE TRANSFORM 285

Subroutine name ending in 2. Subroutines with a name ending in 2 perform an
operation on two vectors instead of one. For example,

(fi,gj) ← Copy2(n,uk,vl)

is an abbreviation for

fi ← Copy(n,uk)

gj ← Copy(n,vl).

FChT. The subroutine

BSP FChT(s0, s1, p1, sign, n, f)

replaces the input vector f of size n by its Chebyshev transform if sign = 1, or by its
inverse Chebyshev transform if sign = −1. A group of p1 processors starting from
processor s0 work together; s1 with 0 ≤ s1 < p1 denotes the processor number within
the group. The original processor number equals s = s0 + s1. For a group of size
p1 = 1, this subroutine reduces to the sequential FChT.

Truncation. The subroutine

f ← BSP Trunc(s0, s1, p1, n,u)

truncates two polynomials of degree less than n which are stored as vectors f and u of
length n. The subroutine copies the first half of u into the second half of f . A group
of p1 processors starting from processor s0 work together, similar to the BSP FChT
operation. For a group of size p1 = 1, the subroutine reduces to a sequential truncation
of one or more complete polynomials. In Figure 3.1, the truncation operation is
depicted by arrows. Algorithm 3.1 describes subroutine BSP Trunc2 which carries out
two truncation operations simultaneously. In doing so, we save one synchronization.

Algorithm 3.1 Truncation procedure for the FLT.

CALL (f ,g) ← BSP Trunc2(s0, s1, p1, n,u,v).

DESCRIPTION
if p1 = 1 then

1Comp Sequential truncation.
(fn

2
,gn

2
) ← Copy2(n

2 ,u,v)

else
2Comm Parallel truncation.

if s1 < p1
2 then

(fs1 n
p1

+n
2
,gs1

n
p1

+n
2

) ← Put2(s0 + s1 + p1
2 , n

p1
,us1

n
p1

,vs1
n
p1

)

Synchronize

286 M. A. INDA, R. H. BISSELING, AND D. K. MASLEN

Algorithm 3.2 Basic parallel algorithm for the FLT.

CALL BSP FLT(s, p,N,M, f).

ARGUMENTS
s: Processor identification; 0 ≤ s < p.
p: Number of processors; p is a power of 2 with p < N .
N : Transform size; N is a power of 2 with N ≥ 4.
M : Termination block size; M is a power of 2 with M ≤ min(N/2, N/p).
f = (f0, . . . , fN−1): Real vector of size N (block distributed).

OUTPUT f ← f̂ .

DESCRIPTION
1Comp Stage 1: Initialization.

for j = sN
p to (s+1)N

p − 1 do

gj ← xN
j fj

uj ← (Q[0, j] · xN
j + R[0, j]) · fj

vj ← (Q[1, j] · xN
j + R[1, j]) · fj

2CpCm Stage 1: Chebyshev transform.
BSP FChT2(0, s, p, 1, N, f ,g)
BSP FChT2(0, s, p, 1, N,u,v)

3CpCm Stage 1: Truncation.
(f ,g) ← BSP Trunc2(0, s, p,N,u,v)

for k = 2 to log2
N
M do

K ← N
2k

p1 ← max(p
2k−1 , 1)

s0 ← (s div p1)p1

s1 ← s mod p1

4Comp Stage k: Copy.
(usN

p
,vsN

p
) ← Copy2(N

p , fsN
p
,gsN

p
)

for l = s0
N
p to (s0 + 1)N

p − 2K
p1

step 2K
p1

do

5CpCm Stage k: Inverse Chebyshev transform.
BSP FChT2(s0, s1, p1,−1, 2K,ul,vl)

6Comp Stage k: Recurrence.
for j = s1

N
p to s1

N
p + 2K

p1
− 1 do

a1 ← Q[2k − 2, l + j] · vl+j + R[2k − 2, l + j] · ul+j

a2 ← Q[2k − 1, l + j] · vl+j + R[2k − 1, l + j] · ul+j

ul+j ← a1
vl+j ← a2

7CpCm Stage k: Chebyshev transform.
BSP FChT2(s0, s1, p1, 1, 2K,ul,vl)

8CpCm Stage k: Truncation.
(f ,g) ← BSP Trunc2(s0, s1, p1, 2K,ul,vl)

9Comp Stage log2
N
M + 1: Termination.

for l = sN
p to (s+1)N

p −M step M do

fl ← Terminate(l,M, fl,gl)

The basic parallel algorithm for the FLT is presented as Algorithm 3.2. At each
stage k ≤ log2(N/M) of the algorithm, there are 2k−1 independent problems. For
k ≤ log2 p, there are more processors than problems, so the processors will have to
work in groups. Each group of p1 = p/2k−1 > 1 processors handles one subvector
of size 2K, K = N/2k; each processor handles a block of 2K/p1 = N/p vector
components. In this case, the l-loop has only one iteration, namely, l = s0 ·N/p, and
the j-loop has N/p iterations, starting with j = s1 ·N/p, so that the indices l+j start
with (s0 + s1)N/p = s ·N/p and end with (s0 + s1)N/p+N/p− 1 = (s+ 1)N/p− 1.
Interprocessor communication is needed, but it occurs only in two instances:

PARALLEL LEGENDRE TRANSFORM 287

• inside the parallel FChTs (in supersteps 2, 5, 7); see section 4;
• at the end of each stage (in supersteps 3, 8).

For k > log2 p, the length of the subvectors involved becomes 2K ≤ N/p. In
that case, p1 = 1, s0 = s, and s1 = 0, and each processor has one or more complete
problems to deal with, so that the processors can work independently and without
communication. Note that the index l runs only over the local values sN/p, sN/p+2K,
. . ., (s + 1)N/p− 2K instead of over all values of l.

The original stages 0 and 1 of Algorithm 2.3 are combined into one stage and then
performed efficiently as follows. First, in superstep 1, the polynomials ZN

1 , ZN
N/2, and

ZN
N/2+1 are computed directly from the input vector f . This is possible because the

point-value representation of ZN
1 = TN (f · P1) = TN (f · x) needed by the recurrences

is the vector of fj · xN
j , 0 ≤ j < N ; see subsection 2.3.1. In superstep 2, polyno-

mials ZN
0 = f , ZN

1 = g, ZN
N/2 = u, and ZN

N/2+1 = v are transformed to Chebyshev
representation; then, in superstep 3, they are truncated to obtain the input for stage 2.

The main loop works as follows. In superstep 4, the polynomials Z2K
l , with

K = N/2k and l = 0, 2K, . . . , N − 2K, are copied from the array f into the auxiliary
array u, where they are transformed into the polynomials Z2K

l+K in supersteps 5–7.
Similarly, the polynomials Z2K

l+1 are copied from g into v and then transformed into the
polynomials Z2K

l+K+1. Note that u corresponds to the lower value of l, so that in the
recurrence the components of u must be multiplied by values from R. In superstep 8,
all the polynomials are truncated by copying the first K Chebyshev coefficients of
Z2K
l+K into the memory space of the last K Chebyshev coefficients of Z2K

l . The same
happens to polynomials Z2K

l+K+1 and Z2K
l+1.

The termination procedure, superstep 9, is a direct implementation of Lemma 2.12
using the data structure T described in subsection 3.2. Superstep 9 is a computation
superstep, provided the condition M ≤ N/p is satisfied. This usually holds for the
desired termination block size M . In certain situations, however, one would like to
terminate even earlier, with a block size larger than N/p. This extension is discussed
in [23].

4. Improvements of the parallel algorithm.

4.1. FChT of two vectors, FChT2. The efficiency of the FLT algorithm de-
pends strongly on the FCT algorithm used to perform the Chebyshev transform.
There exists a substantial amount of literature on this topic and many implementa-
tions of sequential FCTs are available; see, e.g., [1, 29, 30, 33]. Parallel algorithms or
implementations have been less intensively studied; see [31] for a recent discussion.

In the FLT algorithm, the Chebyshev transforms always come in pairs, which led
us to develop an algorithm that computes two Chebyshev transforms at the same time.
The new algorithm is based on the FCT algorithm given by Van Loan [35, Algorithm
4.4.6] and the standard algorithm for computing the FFTs of two real input vectors
at the same time (see, e.g., [29]). The new algorithm employs a complex FFT, which
is advantageous in the sequential case because as a separate module the complex
FFT can easily be replaced, for instance, by a newer, more efficient FFT. Even in
the parallel case, where the parallel FFT module needs to be modified to reduce the
communication cost of the FLT, we can still make use of the techniques developed for
the parallel complex FFT and reuse parts of the FFT code; see subsection 5.4.

The Chebyshev transform is computed as follows. Let x and y be the input
vectors of length N . We view x and y as the real and imaginary parts of a complex
vector (x + i y). The algorithm has three phases. Phase 1, the packing of the input

288 M. A. INDA, R. H. BISSELING, AND D. K. MASLEN

data into an auxiliary complex vector z of length N , is a simple permutation:
{

zj = (x2j + i y2j),
zN−j−1 = (x2j+1 + i y2j+1), 0 ≤ j < N/2.

(4.1)

In phase 2, the complex FFT creates a complex vector Z of length N :

Zk =
N−1∑

j=0

zje
2πijk

N , 0 ≤ k < N.(4.2)

This phase takes 4.25N log2 N flops if we use a radix-4 algorithm [35]. Finally, in
phase 3 we obtain the Chebyshev transform by

(x̃k + iỹk) =
εk
2N

(e
πik
2N Zk + e−

πik
2N ZN−k), 0 ≤ k < N.(4.3)

The value ZN in (4.3) is defined as ZN = Z0 by periodic extension of (4.2). Phase 3
is efficiently performed by computing the components k and N−k together and using
symmetry properties. The cost of phase 3 is 10N flops. The total cost of the FChT2
algorithm is thus 4.25N log2 N + 10N , giving an average α = 2.125 and β = 5 for a
single transform.

The verification that (4.1)–(4.3) indeed produce the Chebyshev transform is best
made in two steps. First, we prove that

e
πik
2N Zk =

N/2−1∑

j=0

[(x2j + iy2j)e
πik(4j+1)

2N + (x2j+1 + iy2j+1)e
−πik(4j+3)

2N],(4.4)

and

e−
πik
2N ZN−k =

N/2−1∑

j=0

[(x2j + iy2j)e
−πik(4j+1)

2N + (x2j+1 + iy2j+1)e
πik(4j+3)

2N].(4.5)

Second, we add (4.4) to (4.5) and multiply the result by εk
2N to obtain the desired

equality (2.7).
The inverse Chebyshev transform is obtained by inverting the procedure described

above. The phases are performed in the reverse order, and the operation of each phase
is replaced by its inverse. The cost of the inverse FChT algorithm is the same as that
of the FChT algorithm.

Efficient parallelization of this algorithm requires breaking open the parallel FFT
inside the FChT2 and merging parts of the FFT with the surrounding computations.
We explain this process in the following subsection.

4.2. Parallel FFT within the scope of the parallel FChT2. The FFT is
a well-known method for computing the discrete Fourier transform (4.2) of a com-
plex vector of length N in O(N logN) operations. It can concisely be written as a
decomposition of the Fourier matrix FN ,

FN = AN · · ·A8A4A2PN ,(4.6)

where FN is an N ×N complex matrix, PN is an N ×N permutation matrix corre-
sponding to the so-called bit reversal permutation, and the N × N matrices AL are
defined by

AL = IN/L ⊗BL, L = 2, 4, 8, . . . , N,(4.7)

PARALLEL LEGENDRE TRANSFORM 289

which is shorthand for a block-diagonal matrix diag(BL, . . . , BL) with N/L copies of
the L×L matrix BL on the diagonal. The matrix BL is known as the L×L butterfly
matrix.

This matrix decomposition naturally leads to the radix-2 FFT algorithm [11, 35].
In a radix-2 FFT of size N , the input vector z is permuted by PN and then multiplied
successively by all the matrices AL. The multiplications are carried out in log2 N
stages, each with N/L times a butterfly computation. One butterfly computation
modifies L/2 pairs (zj , zj+L/2) at distance L/2 by adding a multiple of zj+L/2 to zj
and subtracting the same multiple.

Parallel radix-2 FFTs have already been discussed in the literature; see, e.g., [25].
For simplicity, we restrict ourselves in our exposition to FFT algorithms where p ≤√
N . This class of algorithms uses the block distribution to perform the short distance

butterflies with L ≤ N/p and the cyclic distribution to perform the long distance
butterflies with L > N/p. Figure 4.1(a) gives an example of the cyclic distribution,
which is defined as follows.

Definition 4.1 (cyclic distribution). Let z be a vector of size N . We say that
z is cyclically distributed over p processors if, for all j, the element zj is stored in
Proc(j mod p) and has local index j′ = j div p.

Using such a parallel FFT algorithm, we obtain a basic parallel FChT2 algorithm
for two vectors x and y of size N .

1. PACK vectors x and y as the auxiliary complex vector z by permuting them,
using (4.1).

2. TRANSFORM vector z using an FFT of size N .
(a) Perform a bit reversal permutation in z.
(b) Perform the short distance butterflies of size L = 2, 4, . . . , N/p.
(c) Permute z to the cyclic distribution.
(d) Perform the long distance butterflies of size L = 2N/p, 4N/p, . . . , N .
(e) Permute z to the block distribution.

3. EXTRACT the transforms from vector z and store them in vectors x and y.
(a) Permute z to put components j and N − j in the same processor.
(b) Compute the new values of z using (4.3).
(c) Permute z to block distribution, and store the result in vectors x and y.

The time complexity of this basic algorithm will be reduced by a sequence of
improvements as detailed in the following subsections.

4.2.1. Combining permutations. By breaking open the FFT phase inside the
parallel FChT2 algorithm, we can combine the packing permutation (1) and the bit
reversal (2(a)), thus saving one complete permutation of BSP cost 2N

p g+ l. The same

can be done for (2(e)) and (3(a)).

4.2.2. Increasing the symmetry of the cyclic distribution. We can elim-
inate permutation (2(e))/(3(a)) completely by restricting the number of processors
slightly further to p ≤

√
N/2 and permuting the vector z in phase (2(e)) from block

distribution to a slightly modified cyclic distribution, the zig-zag cyclic distribution,
shown in Figure 4.1(b) and defined as follows.

Definition 4.2 (zig-zag cyclic distribution). Let z be a vector of size N . We
say that z is zig-zag cyclically distributed over p processors if, for all j, the element
zj is stored in Proc(j mod p) if j mod 2p < p and in Proc(−j mod p) otherwise, and
has local index j′ = j div p.

In this distribution, both the components j and j + L/2 needed by the butterfly

290 M. A. INDA, R. H. BISSELING, AND D. K. MASLEN

12840 16
(a)

(b)

282420 proc. 0
proc. 1

proc. 3
proc. 2

Fig. 4.1. (a) Cyclic distribution and (b) zig-zag cyclic distribution for a vector of size 32
distributed over four processors.

operations with L > N/p and the components j and N − j needed by the extract
operation are in the same processor; thus we avoid the permutation (2(e))/(3(a))
above, saving another 2N

p g + l in BSP costs.

4.2.3. Reversing the stages for the inverse FFT. To be able to apply the
same ideas to the inverse transform we perform the inverse FFT by reversing the
stages of the FFT and inverting the butterflies, instead of taking the more common
approach of using the same FFT algorithm but replacing the powers of e

2πi
N by their

conjugates. Thus we save 6N
p g+3l, both in the Chebyshev transform and its inverse.

4.2.4. Reducing the number of flops. Wherever possible we take pairs of
stages A2LAL together and perform them as one operation. The butterflies have the
form B2L(I2 ⊗ BL), which is a 2L × 2L matrix consisting of 4 × 4 blocks, each an
L/2 × L/2 diagonal submatrix. This matrix is a symmetrically permuted version of
the radix-4 butterfly matrix [35]. This approach gives both the efficiency of a radix-
4 FFT algorithm and the flexibility of treating the parallel FFT within the radix-2
framework; for example, it is possible to redistribute the data after any number of
stages and not only after an even number. The radix-4 approach reduces α from 2.5 to
2.125. An additional benefit of radix-4 butterflies is better use of the cache memory:
34 flops are performed on a quadruple of data, instead of 10 flops on a pair of data.
Thus 8.5 flops are carried out per data word loaded into the cache, instead of five
flops. This effect may be even more important than the reduction in flop count.

Since we do not use the upper half of the Chebyshev coefficients computed in the
forward transform, we can alter the algorithm to avoid computing them. This saves
4N flops in (4.3).

4.3. Main loop. The discussion that follows is only relevant in the parallel part
of the main loop, i.e., stages k ≤ log2 p, so we will restrict ourselves to these stages.
Recall that in these stages a group of p1 = p/2k−1 > 1 processors handles only one
subproblem of size 2K = 2N/2k corresponding to l = s0

N
p .

4.3.1. Modifying the truncation/copy operation. It is possible to reorga-
nize the main loop of the FLT algorithm such that the end of stage k and the start
of stage k + 1 are merged into one, more efficient procedure. The current sequence of
operations is as follows.

1. Permute from zig-zag cyclic to block distribution in stage k.
2. Truncate at the end of stage k.
3. Copy at the beginning of stage k + 1.
4. Permute from block to zig-zag cyclic distribution in stage k + 1.

In the new approach, we aim at removing permutations 1 and 4 by keeping the
data in the zig-zag cyclic distribution of stage k during part of stage k + 1 as well.
In the following discussion, we treat only operations on the arrays f and u because
the operations on g and v are similar. The values of K and p1 used in the discussion
are those of stage k. Now assume that the second half of the 2K elements of fl has

PARALLEL LEGENDRE TRANSFORM 291

been discarded. Recall that the second half of ul has not even been computed; see
subsection 4.2.4. Therefore, fl and ul are now in the zig-zag cyclic distribution of
K elements (instead of 2K) over p1 processors. The new sequence of operations,
illustrated in Figure 4.2, is as follows.

1. Prepare a working copy of the data needed at stage k + 1.
(a) Copy vector ul of size K into vector ul+K.
(b) Copy vector fl of size K into vector ul.

2. Redistribute the data needed at stage k + 2.
(a) Put the first K/2 elements of vector ul into vector fl in the zig-zag cyclic

distribution over the first p1

2 processors.
(b) Put the first K/2 elements of vector ul+K into vector fl+K in the zig-zag

cyclic distribution over the next p1

2 processors.
The synchronization at the end of the redistribution can be removed by buffering
and delaying the communications until the next synchronization. The new approach
reduces the BSP cost of the truncation/copy operation from 6N

p g + 3l to N
p g.

communicatecommunicate

copycopy

u15u7u0f15

fl

f7f0 ul+K

fl+Kfl

ul

(1a)

(2a)

(1b)

f15f0

(2b)

u7u0f0 f7

proc. 3proc. 1

proc. 0 proc. 2

Fig. 4.2. New truncation/copy operation of vectors fl and ul for K = 16 and p1 = 4.

As a result, vectors ul and ul+K contain all the data needed at stage k + 1,
and vectors fl and fl+K contain half the data needed at stage k + 2; stage k + 1
will produce the other half. We now verify that the operations on ul and ul+K

at the start of stage k + 1 remain local and hence do not require communication.
The first operation is the inverse of operation (4.3), which acts on an array of size
K. The pairs (ul+j , ul+K−j) and (ul+K+j , ul+2K−j) involved in this operation are
indeed local. After that, the long distance butterflies of the inverse FFT have to be
performed, and then the short distance ones have to be performed. The short distance
butterflies, of size L ≤ K/(p1/2), will be done after a suitable redistribution as in
the original algorithm, using the block distribution over p1/2 processors. The long
distance butterflies operate on pairs (ul+j , ul+j+L/2) and (ul+K+j , ul+K+j+L/2) with

L ≥ 4K/p1. The restriction p ≤
√
N/2 implies p1 ≤

√
K and hence 2p1 ≤ 2K/p1,

which means that the period of the zig-zag cyclic distribution over p1 processors does
not exceed the minimum butterfly distance. As a result, the pairs involved are local.

4.3.2. Moving the bit reversal to the precomputation. Another major
improvement is to avoid the packing/bit reversal permutation (1)/(2(a)) in the FChT2
just following the recurrence and its inverse preceding the recurrence, thus saving
another 4N

p g + 2l in communication costs. This is done by storing the recurrence

coefficients permuted by the packing/bit reversal permutation. This works because
one permutation is the inverse of the other, so that the auxiliary vector z is in the
same ordering immediately before and after the permutations.

292 M. A. INDA, R. H. BISSELING, AND D. K. MASLEN

4.4. Time complexity. After all the improvements, the total communication
and synchronization cost is approximately (5N

p log2 p)g + (2 log2 p)l. Only two com-
munication supersteps remain: the zig-zag cyclic to block redistribution inside the
inverse FFT, which can be combined with the redistribution of the truncation, and
the block to zig-zag cyclic redistribution inside the FFT. To obtain this complexity,
we ignored lower order terms and special cases occurring at the start and the end of
the algorithm.

The total cost of the optimized algorithm without early termination is

TFLT,par ≈ 4.25
N

p
log2

2 N +

(
5
N

p
log2 p

)
g + (2 log2 p) l.(4.8)

5. Experimental results and discussion. In this section, we present results
on the accuracy and scalability of the implementation of the Legendre transform
algorithm. We implemented the algorithm in ANSI C using the BSPlib library [21].
Our programs are completely self-contained, and we did not rely on any system-
provided numerical software such as BLAS, FFTs, etc. Nonetheless, we used an
optimized FFT package [27] to illustrate how to optimize the computation supersteps
of the code; see section 5.4. We tested our programs using the Oxford BSP toolset [22]
implementation of BSPlib running on two different machines:

1. a Cray T3E with up to 64 processors, each having a theoretical peak speed
of 600 Mflop/s, with double precision (64-bit) accuracy of 1.0 × 10−15;

2. an IBM RS/ 6000 SP with up to 8 processors, each having a theoretical peak
speed of 640 Mflop/s, which uses the more common IEEE 754 floating point arithmetic
with double precision accuracy of 2.2 × 10−16.

To make a consistent comparison of the results, we compiled all test programs
using the bspfront driver with options -O3 -flibrary-level 2 -bspfifo 10000
-fcombine-puts (on the IBM we had to add the option -fcombine-puts-buffer
256K,8M,256K) and measured the elapsed execution times on exclusively dedicated
CPUs using the system clock.

5.1. Accuracy. We tested the accuracy of our implementation by measuring the
error obtained when transforming a random input vector f with elements uniformly
distributed between 0 and 1. The relative error is defined as ||̂f∗ − f̂ ||2/||̂f ||2, where
f̂∗ is the FLT and f̂ is the exact DLT (computed by (2.9), using the stable three-term
recurrence (2.10) and quadruple precision); || · ||2 indicates the L2-norm.

Table 5.1 shows the relative errors of the sequential algorithm for various problem
sizes using double precision except in the precomputation of the last column, which is
carried out in quadruple precision. This could not be done for the Cray T3E because
quadruple precision is not available there. Note, however, that it is possible to pre-
compute the values on another computer. The results show that the error of the FLT
algorithm is comparable with the error of the DLT provided that the precomputed
values are accurate. Therefore, it is best to perform the precomputation in increased
precision. This can be done at little extra cost because the precomputation is done
only once and its cost can be amortized over many FLTs. See [19, 20] for a discussion
of other techniques that can be used to obtain more accurate results.

The errors of the parallel implementation are of the same order as in the sequential
case. The only part of the parallel implementation that differs from the sequential
implementation in this respect is the FFT, and then only if the butterfly stages cannot
be paired in the same way. Varying the termination block size between 2 and 128 also
does not significantly change the magnitude of the error.

PARALLEL LEGENDRE TRANSFORM 293

Table 5.1
Relative errors for the sequential FLT algorithm. (QP indicates that the precomputation is

carried out in quadruple precision.)

N Cray T3E IBM SP (IEEE 754)
DLT FLT DLT FLT FLT-QP

512 7.0 × 10−14 1.4 × 10−12 7.7 × 10−14 4.3 × 10−12 1.5 × 10−14

1024 3.5 × 10−13 2.1 × 10−11 3.0 × 10−13 3.1 × 10−11 2.3 × 10−13

8192 1.2 × 10−11 5.4 × 10−9 1.3 × 10−11 3.5 × 10−9 1.3 × 10−11

65536 2.7 × 10−10 5.5 × 10−7 2.7 × 10−10 9.4 × 10−8 1.6 × 10−10

Table 5.2
Execution time (in ms) of various sequential Legendre transform algorithms.

Cray T3E IBM SP
N DLT FLT FLT FLT DLT FLT FLT FLT

M = N
2 M = 64 M = 2 M = N

2 M = 64 M = 2
16 0.013 0.028 −− 0.078 0.018 0.016 −− 0.041
32 0.050 0.053 −− 0.187 0.046 0.030 −− 0.100
64 0.219 0.114 −− 0.436 0.182 0.069 −− 0.239

128 1.199 0.328 0.328 1.027 0.729 0.186 0.186 0.560
256 5.847 1.394 1.123 2.576 3.109 0.612 0.549 1.297
512 23.497 5.712 3.340 6.034 12.483 2.231 1.568 3.013

1024 93.702 21.559 8.525 14.147 49.917 8.141 3.966 6.889

5.2. Efficiency of the sequential implementation. We measured the effi-
ciency of our optimized FLT algorithm by comparing its execution time with the
execution time of the direct DLT algorithm (i.e., a matrix-vector multiplication). Ta-
ble 5.2 shows the times obtained by the direct algorithm and the FLT with various
termination values: M = N/2 is the maximum termination value that our program
can handle, and the resulting algorithm is similar to the seminaive algorithm [12];
M = 64 is the empirically determined value that makes the algorithm perform best
for N ≤ 8192 on the Cray T3E and for N ≤ 16384 on the IBM SP (for larger values
of N , the choice M = 128 gives slightly better results); M = 2 yields the pure FLT
algorithm without early termination.

The results show that for the choice M = N/2 the behavior of the FLT is similar
to that of the DLT. On the other extreme, the pure FLT algorithm with M = 2
becomes faster than the DLT algorithm at N = 128. Choosing the optimum value
M = 64 further improves the performance of the FLT. This optimum is close to the
theoretical optimum M = 128 calculated in section 2.4.

Another advantage of the FLT is its reduced need of storage space for the pre-
computed data. While the DLT must store O(N2) precomputed values, the FLT
needs to store only O(N logN) precomputed values. Furthermore, these values can
be computed in only O(N log2 N) operations using Algorithm B.1, which is presented
in Appendix B. Table 5.3 lists the storage and precomputation requirements for
the DLT and the FLT for various input sizes, assuming a precomputation cost of
4N(N − 2) for the direct transform and 12.75N log2

2 N + 76.25N log2 N for the fast
transform; cf. (B.3).

5.3. Scalability of the parallel implementation. We tested the scalability of
our optimized parallel implementation using our optimized sequential implementation
as basis for comparison.

Tables 5.4 and 5.5 show the execution times on the Cray T3E for up to 64 proces-

294 M. A. INDA, R. H. BISSELING, AND D. K. MASLEN

Table 5.3
Storage and precomputation requirements for the direct and FLT algorithms.

Storage space (in words) Precomputation cost (in flops)
N DLT FLT (M = 2) DLT FLT (M = 2)
16 256 96 896 8, 144
64 4, 096 640 15, 872 58, 656

256 65, 536 3, 584 260, 096 365, 056
1024 1, 048, 576 18, 432 4, 186, 112 2, 086, 400

Table 5.4
Execution times (in ms) for the FLT algorithm on a Cray T3E for M = 2 (top) and M = 64

(bottom).

N seq p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64
512 6.04 6.30 3.65 2.36 1.82 2.16 −− −−

1024 14.15 14.42 8.18 4.19 3.23 2.71 −− −−
8192 206.61 205.30 103.47 52.96 27.66 15.61 9.48 9.10

65536 4515.10 4518.30 2325.80 1180.00 569.47 244.02 126.74 67.17
512 3.37 3.58 2.29 1.67 −− −− −− −−

1024 8.53 8.84 5.34 3.28 2.47 −− −− −−
8192 151.49 155.10 77.50 40.64 21.69 12.93 8.48 8.26

65536 3670.10 3732.80 1932.00 970.58 469.07 194.77 102.26 54.60

sors and the IBM SP for up to eight processors, respectively. The tables list timing
results for the sequential and parallel algorithms with p <

√
N and M = 2, 64. The

table for the Cray starts at a lower value of N because on the Cray parallelism is
already advantageous for much smaller problem sizes. In general, the Cray T3E de-
livers better scalability than the IBM SP, but the execution on the IBM SP is faster.
Qualitatively, this is in accordance with the BSP parameters for these machines given
in Table 5.6: the parameters g and l are smaller for the Cray T3E, which means rel-
atively faster communication and synchronization, whereas the parameter s is larger
for the IBM SP, which means faster computation.

The BSP parameters presented in Table 5.6 reflect the way we implemented the
communication subroutines of our programs. Our implementations divide the com-
munication supersteps into three phases. In phase 1, the data are locally rearranged
in such a way that the elements to be sent to the same processor are packed together.
In phase 2, packets of data are exchanged between the processors. In phase 3, the data
are unpacked locally so that the elements get to their final destination. This scheme
generally saves communication time for regular communication patterns, because the
overhead of sending corresponding address information together with the actual data
is drastically reduced. Furthermore, we implemented the communication subroutines
using hpputs (high performance put operations that dispense with the use of buffers).
Therefore, the l and g values of Table 5.6 were measured for large data packets sent
by using hpputs. For more details, see [23, Appendix A].

Figure 5.1 shows the behavior of our algorithm in terms of flop rate per processor:

F (N, p) =
4.25N log2

2 N + 34.5N log2 N

p · T (N, p)
.(5.1)

Here, the numerator represents the number of flops of the basic sequential FLT al-
gorithm with only the two main terms included and without optimizations such as
early termination. This gives a convenient reference count for the FLT, similar to the

PARALLEL LEGENDRE TRANSFORM 295

Table 5.5
Execution times (in ms) for the FLT algorithm on an IBM SP for M = 2 (top) and M = 64

(bottom).

N seq p = 1 p = 2 p = 4 p = 8
8192 83.71 85.36 60.51 53.96 73.26

16384 233.89 242.91 134.45 99.67 102.77
32768 840.56 865.57 449.76 229.25 187.90
65536 2159.20 2201.80 1193.90 625.40 353.87
8192 56.85 57.81 48.18 47.30 70.93

16384 176.97 179.74 107.79 83.52 96.70
32768 640.49 651.51 359.49 187.04 168.59
65536 1729.30 1747.60 1016.10 540.95 314.75

Table 5.6
BSP parameters measured using a modified version of the program bspbench from the package

BSPEDUpack [7].

Cray T3E (s = 34.9 Mflop/s) IBM SP (s = 202 Mflop/s)
p g l g l

(flops) (µs) (flops) (µs) (flops) (µs) (flops) (µs)
2 1.14 0.0328 479 13.72 82.2 0.407 215203 1066
8 2.14 0.0613 1377 39.48 92.0 0.456 868640 4300

64 3.05 0.0876 3861 110.88 −− −− −− −−

common count of 5N log2 N for the FFT. Furthermore, T (N, p) denotes the execution
time of the parallel FLT algorithm. Ideally, the flop rates should be high and remain
constant with an increase in p. As already pointed out, in absolute numbers, the IBM
SP delivers more Mflops per second, but the Cray T3E maintains better flop rates as
a function of p.

Normalizing F (N, p) against the flop rate of the sequential algorithm, F seq(N)
(the entry labeled “seq” in Figure 5.1), gives the absolute efficiency of a parallel
algorithm:

Eabs(N, p) =
F (N, p)

F seq(N)
.(5.2)

The absolute efficiency can be used as a measure of the scalability of the parallel
algorithm. Ideally, Eabs(N, p) = 1. As a rule of thumb, efficiencies larger than 0.8
are considered very good, while efficiencies of 0.5 are reasonable. From the nearly
horizontal lines of F (N, p) for large N , it is clear that the algorithm scales very well
asymptotically (i.e., when N is large). The experimental results also show that on
the Cray T3E with up to 64 processors a size of N ≥ 8192 already gives reasonable to
very good efficiencies, whereas on the IBM SP with up to eight processors, N must
at least be equal to 32768. Note that on the Cray T3E, efficiencies larger than one
are observed for N ≥ 16384. This is a well-known phenomenon related to cache size.

The DLT is often used as part of a larger spherical harmonic transform. This
means that, in practical applications, many independent FLTs of small size will be
performed by a group of processors that could be only slightly larger than the number
of transforms. For this reason, it is important that the FLT algorithm scales well for
small N and p. Indeed, our algorithm already delivers reasonable to good efficiencies
on the Cray T3E with up to eight processors for N as small as 512; on the IBM SP,
larger problem sizes are needed.

296 M. A. INDA, R. H. BISSELING, AND D. K. MASLEN

seq 1 2 4 8 16 32 64
 number of processors

0

20

40

60

80

100

120

140

160

180

co
m

pu
ta

tio
n

ra
te

 p
er

 p
ro

ce
ss

or
 (M

flo
p/

s)

Cray T3E

N=512
N=1024
N=8192
N=16384
N=32768
N=65536

seq 1 2 4 8
0

20

40

60

80

100

120

140

160

180
IBM SP

Fig. 5.1. Mflop/s rate per processor of the FLT algorithm with termination parameter M = 64.

5.4. Further optimizations. It is easy to modify our FLT algorithm to enable
the use of complete FFTs instead of our own butterfly routines. In this subsection, we
discuss the necessary modifications and demonstrate the possible gains by comparing
our plain implementation with an optimized version that uses Ooura’s FFT package
fft4g.c [27]. This competitive FFT is on average 2.6 times faster than our butterflies
and our FFT.

The sequential stages of our parallel algorithm involve complete FFTs, provided
we do not move the bit-reversal permutation to the precomputation; see section 4.3.2.
These FFTs can readily be replaced by highly optimized versions. Similarly, the
short distance butterflies of the parallel stages can be replaced by a local bit-reversal
permutation followed by a complete local FFT of size N/p. In stages 2 to log2 p, the
extra permutation can be moved to the precomputation, so that it comes for free. (It
is even possible to skip the extra permutation of the first stage; see [23, Section 2.3.2].)

Figure 5.2 shows the effect on the Cray T3E of optimizing the computation su-
persteps of the FLT algorithm. For small N , the main savings are already obtained
by terminating early, while for large N they are achieved by using complete, faster
FFTs. We also observe that computation is dominant for large values of N/p, which
leaves in principle plenty of room for improvement of the FLT by optimizing the com-
putation supersteps. For small N/p, however, such optimization will not have much

PARALLEL LEGENDRE TRANSFORM 297

p=1 p=2 p=4 p=8 p=16 p=32

N=8192
0.00

0.25

0.50

0.75

1.00

computation
communication
synchronization

p=1 p=2 p=4

N=512
0.00

0.25

0.50

0.75

1.00

p=1 p=2 p=4 p=8 p=16 p=32

N=65536
0.00

0.25

0.50

0.75

1.00

p=1 p=2 p=4 p=8

N=1024
0.00

0.25

0.50

0.75

1.00

Fig. 5.2. Gains achieved by optimizing the computational supersteps of the parallel FLT. Verti-
cal bars represent the time of an FLT of length N executed on p processors of a Cray T3E, normalized
with respect to our plain implementation with M = 2. The first bar of each triple represents the plain
implementation with M = 2; the second bar represents the plain implementation optimized by early
termination with M = 64; and the third bar represents the highly optimized version (with M = 64
and Ooura’s FFT). Each bar is split into three parts, representing computation, communication,
and synchronization time.

effect because the dominant cost is that of communication and synchronization; we
believe that these costs have already been reduced to the minimum.

Optimizing the FFTs of the sequential stages and the short distance butterflies
of the parallel stages already covers most of the O(N log2 N) computation operations
of the algorithm. The only parts not yet optimized are as follows: the recurrence
and pack/extract operations of the FChTs, with a total of O(N logN) flops, which
can be carried out using level 1 BLAS; the O(NM) termination routine which can be
based on level 2 BLAS; and the long distance butterflies with a total of O(N log2 p)
flops. Since p - N/p in practice, the long distance butterfly stages have a relatively
small cost; if, however, p ≈ N/p, this cost becomes significant. Fortunately, the long
distance butterfly stages in the zig-zag cyclic distribution can also be carried out using
FFTs at the expense of an extra O(N log p) flops and some local permutations. To
do so, we first need to permute the vector to move the even elements to the front and
then apply to both vector halves the method described in [23, sections 2.4 and 2.6],
which performs cyclically distributed long distance butterflies using FFTs.

6. Conclusions and future work. As part of this work, we developed and
implemented a sequential algorithm for the DLT, based on the Driscoll–Healy algo-
rithm. This implementation is competitive for large problem sizes. Its complexity
O(N log2 N) is considerably lower than the O(N2) matrix-vector multiplication algo-
rithms which are still much in use today for the computation of Legendre transforms.

298 M. A. INDA, R. H. BISSELING, AND D. K. MASLEN

Its accuracy is similar, provided the precomputation is performed in increased preci-
sion. The new algorithm is a promising approach for compute-intensive applications
such as weather forecasting.

The main aim of this work was to develop and implement a parallel Legendre
transform algorithm. Our experimental results show that the performance of our par-
allel algorithm scales well with the number of processors for medium to large problem
sizes. The overhead of our parallel program consists mainly of communication, and
this is limited to two redistributions of the full data set and one redistribution of half
the set in each of the first log2 p stages of the algorithm. Two full redistributions are
already required by an FFT and an inverse FFT, indicating that our result is close to
optimal. Our parallelization approach was first to derive a basic algorithm that uses
block and cyclic data distributions and then to optimize this algorithm by removing
permutations and redistributions wherever possible. To facilitate this we proposed a
new data distribution, which we call the zig-zag cyclic distribution.

Within the framework of this work, we also developed a new algorithm for the
simultaneous computation of two Chebyshev transforms. This is useful in the context
of the FLT because the Chebyshev transforms always come in pairs, but such a double
FChT also has many applications in its own right, as does the corresponding double
FCT. Our algorithm has the additional benefit of easy parallelization. Our FFT,
FChT, and FLT programs will be made available in the public domain as the package
BSPFTpack, which can be obtained through the same Webpage as BSPEDUpack [7].

We view the present FLT as a good starting point for the use of fast Legendre
algorithms in practical applications. However, to make our FLT algorithm directly
useful in such applications, further work must be done: an inverse FLT must be de-
veloped; the FLT must be adapted to the more general case of the spherical harmonic
transform where associated Legendre functions are used (this can be done by chang-
ing the initial values of the recurrences of the precomputed values and multiplying
the results by normalization factors); and alternative choices of sampling points must
be made possible. Lesur and Gubbins [26] have studied the accuracy of the gener-
alization of the FLT to the spherical harmonic transform, and they found numerical
instabilities for higher order transforms. Future research should investigate how tech-
niques such as precomputation in quadruple precision and our method of truncation
improve the accuracy in the general case. Driscoll, Healy, and Rockmore [15] have
already shown how a variant of the Driscoll–Healy algorithm may be used to compute
Legendre transforms at any set of sample points (see Appendix A), though the set of
points chosen affects the stability of the algorithm.

Appendix A. Related transforms and algorithms.
The derivation of the Driscoll–Healy algorithm given in section 2 depends only

on the properties of truncation operators Tn given in Lemma 2.9 and on the exis-
tence of an efficient algorithm for applying the truncation operators. In particular,
Lemmas 2.9 and 2.11 hold as stated when the weight function ω(x) = π−1(1 − x2)

1
2

is changed, when the truncation operators are defined using a polynomial sequence
which is orthogonal with respect to the new weight function and which starts with
the polynomial 1, and when the Lagrange interpolation operators are defined using
the roots of the polynomials from the sequence. In theory, this can be used to develop
new algorithms for computing orthogonal polynomial transforms, though with differ-
ent sample weights wj . In practice, however, the existence of efficient Chebyshev and
cosine transform algorithms makes these the only reasonable choice in the definition
of the truncation operators. This situation may change with the advent of other fast

PARALLEL LEGENDRE TRANSFORM 299

transforms.

Theoretically, the basic algorithm works, with minor modifications, in the follow-
ing general situation. We are given operators T r

n for 1 ≤ n ≤ r such that the following
hold.

1. T r
n is a mapping from the space of polynomials of degree less than 2r to the

space of polynomials of degree less than n.
2. If m ≤ n ≤ r, then T n

mT r
n = T r

m.
3. If degQ ≤ m ≤ n ≤ r, then T r

n−m(f ·Q) = T n
n−m [(T r

n f) ·Q].

The problem now is, given an input polynomial f of degree less than N , to compute
the quantities T N

1 (f · pl) for 0 ≤ l < N , where {pl} is a sequence of orthogonal
polynomials. This problem may be treated using the same algorithms as in section 2,
but with the truncation operators Tn replaced by T r

n , where r ≤ N depends on the
stage of the algorithm. Using r = N retrieves our original algorithm. The generalized
algorithm uses the quantities ZK

l = T N
K (f · pl), and the recurrences in this context

are

ZK
l+K−1 = T 2K

K [Z2K
l ·Ql,K−1 + Z2K

l−1 ·Rl,K−1],(A.1)

ZK
l+K = T 2K

K [Z2K
l ·Ql,K + Z2K

l−1 ·Rl,K],(A.2)

cf. (2.18) and (2.19).

This generalization of our approach may be used to derive the original algorithm
of Driscoll and Healy in the exact form it was presented [13, 14], which uses the cosine
transforms in the points cos(jπ/K). For more details, see [24].

Driscoll, Healy, and Rockmore [15] describe another variant of the Driscoll–Healy
algorithm that may be used to compute the Legendre transform of a polynomial
sampled at the Gaussian points, i.e., at the roots of the Legendre polynomial PN .
Their method replaces the initial Chebyshev transform used to find the polynomial ZN

0

in Chebyshev representation by a Chebyshev transform taken at the Gaussian points.
Once ZN

0 has been found in Chebyshev representation, the rest of the computation is
the same.

The Driscoll–Healy algorithm can also be used for input vectors of arbitrary size,
not only powers of two. Furthermore, at each stage, we can split the problem into an
arbitrary number of subproblems, not only into two. This requires that Chebyshev
transforms of suitable sizes are available.

Appendix B. The precomputed data.

In this appendix we describe algorithms for generating the point values of Ql,m, Rl,m

used in the recurrence of the FLT algorithm and for generating the coefficients qnl,m, rnl,m
used in its termination stage.

Lemma B.1. Let l ≥ 1, j ≥ 0, and k ≥ 1. Then the associated polynomials
Ql,m, Rl,m satisfy the recurrences

Ql,j+k = Ql+k,jQl,k + Rl+k,jQl,k−1,(B.1)

Rl,j+k = Ql+k,jRl,k + Rl+k,jRl,k−1.(B.2)

Proof. The proof is by induction on j. The proof for j = 0 follows immediately
from the definition (2.13), since Ql+k,0Ql,k + Rl+k,0Ql,k−1 = 1 · Ql,k + 0 = Ql,k and
similarly for Rl,k. The case j = 1 also follows immediately from the definition. For

300 M. A. INDA, R. H. BISSELING, AND D. K. MASLEN

j > 1, we have

Ql+k,jQl,k + Rl+k,jQl,k−1 = [Ql+k+j−1,1Ql+k,j−1 + Rl+k+j−1,1Ql+k,j−2]Ql,k

+ [Ql+k+j−1,1Rl+k,j−1 + Rl+k+j−1,1Rl+k,j−2]Ql,k−1

= Ql+k+j−1,1 [Ql+k,j−1Ql,k + Rl+k,j−1Ql,k−1]
+Rl+k+j−1,1 [Ql+k,j−2Ql,k + Rl+k,j−2Ql,k−1]

= Ql+k+j−1,1Ql,k+j−1 + Rl+k+j−1,1Ql,k+j−2

= Ql,k+j ,

where we have used the case j = 1 to prove the first and last equality and the induction
hypothesis for the cases j − 1, j − 2 to prove the third equality. In the same way we
may show that Ql+k,jRl,k + Rl+k,jRl,k−1 = Rl,k+j .

This lemma is the basis for the computation of the data needed in the recurrences
of the Driscoll–Healy algorithm. The basic idea of the Algorithm B.1 is to start with
polynomials of degree 0, 1, given in only one point, and then repeatedly double the
number of points by performing a Chebyshev transform, adding zero terms to the
Chebyshev expansion, and transforming back, and also double the maximum degree
of the polynomials by applying the lemma with j = K − 1,K and k = K.

Algorithm B.1 Precomputation of the point values.

INPUT N : a power of 2.

OUTPUT Ql,m(x2k

j), Rl,m(x2k

j) for 1 ≤ k ≤ log2 N , 0 ≤ j < 2k, m = 2k−1, 2k−1 − 1, and

l = 1, 2k−1 + 1, . . . , N − 2k−1 + 1.

STAGES
0. for l = 1 to N do

Ql,0(0) ← 1, Rl,0(0) ← 0, Ql,1(0) ← Bl, Rl,1(0) ← Cl

k. for k = 1 to log2 N do
K ← 2k−1

for m = K − 1 to K do
for l = 1 to N −K + 1 step K do

(q0l,m, . . . , qK−1
l,m) ← Chebyshev(Ql,m(xK

0), . . . , Ql,m(xK
K−1))

(r0l,m, . . . , rK−1
l,m) ← Chebyshev(Rl,m(xK

0), . . . , Rl,m(xK
K−1))

(qKl,m, . . . , q2K−1
l,m) ← (0, . . . , 0)

if m = K then qKl,m ← AlAl+1 · · ·Al+m−1/2m−1

(rKl,m, . . . , r2K−1
l,m) ← (0, . . . , 0)

(Ql,m(x2K
0), . . . , Ql,m(x2K

2K−1)) ← Chebyshev−1(q0l,m, . . . , q2K−1
l,m)

(Rl,m(x2K
0), . . . , Rl,m(x2K

2K−1)) ← Chebyshev−1(r0l,m, . . . , r2K−1
l,m)

for l = 1 to N − 2K + 1 step 2K do
for j = 0 to 2K − 1 do

Ql,2K(x2K
j) ← Ql+K,K(x2K

j)Ql,K(x2K
j) + Rl+K,K(x2K

j)Ql,K−1(x2K
j)

Rl,2K(x2K
j) ← Ql+K,K(x2K

j)Rl,K(x2K
j) + Rl+K,K(x2K

j)Rl,K−1(x2K
j)

Ql,2K−1(x2K
j) ← Ql+K,K−1(x2K

j)Ql,K(x2K
j) + Rl+K,K−1(x2K

j)Ql,K−1(x2K
j)

Rl,2K−1(x2K
j) ← Ql+K,K−1(x2K

j)Rl,K(x2K
j) + Rl+K,K−1(x2K

j)Rl,K−1(x2K
j)

Note that deg Rl,m ≤ m − 1, so the Chebyshev coefficients rnl,m with n ≥ m are
zero, which means that the polynomial is fully represented by its first m Chebyshev
coefficients. In the case of the Ql,m, the coefficients are zero for n > m. If n =
m, however, the coefficient is nonzero, and this is a problem if m = K. The Kth
coefficient which was set to zero must then be corrected and set to its true value,
which can be computed easily by using (2.13) and (2.4).

PARALLEL LEGENDRE TRANSFORM 301

The FLT algorithm requires the numbers

Ql,K(x2K
j), Ql,K−1(x

2K
j), Rl,K(x2K

j), Rl,K−1(x
2K
j), 0 ≤ j < 2K,

for l = r · 2K + 1, 0 ≤ r < N
2K , for all K with M ≤ K ≤ N/2. After the m-loop in

stage k = log2 K + 1 of Algorithm B.1, we have obtained these values for l = rK + 1,
0 ≤ r < N/K. We need only the values for even r, so the others can be discarded.
The algorithm must be continued until K = N/2, i.e., k = log2 N .

The total number of flops of the precomputation of the point values is

Tprecomp, point = 6αN log2
2 N + (2α + 12β + 12)N log2 N.(B.3)

Comparing with the cost (2.25) of the Driscoll–Healy algorithm itself and considering
only the highest order term, we see that the precomputation costs about three times
as much as the Driscoll–Healy algorithm without early termination. This one-time
cost, however, can be amortized over many subsequent executions of the algorithm.

Parallelizing the precomputation of the point values can be done most easily by
using the block distribution. This is similar to our approach in deriving a basic parallel
version of the Driscoll–Healy algorithm. In the early stages of the precomputation,
each processor handles a number of independent problems, one for each l. At the
start of stage k, such a problem involves K points. In the later stages, each problem
is assigned to one processor group. The polynomials Ql,K , Ql,K−1, Rl,K , Rl,K−1, and
Ql+K,K , Ql+K,K−1, Rl+K,K , Rl+K,K−1 are all distributed in the same manner, so
that the recurrences are local. The Chebyshev transforms and the addition of zeros
may require communication. For the addition of zeros, this is caused by the desire
to maintain a block distribution while doubling the number of points. The parallel
precomputation algorithm can be optimized following similar ideas as in the optimized
main algorithm.

The precomputation of the coefficients qnl,m, rnl,m required to terminate the Driscoll–
Healy algorithm early, as in Lemma 2.12, is based on the following recurrences.

Lemma B.2. Let l ≥ 1 and m ≥ 2. The coefficients qnl,m satisfy the recurrences

qnl,m =
1

2
Al+m−1(q

n+1
l,m−1 + qn−1

l,m−1) + Bl+m−1q
n
l,m−1 + Cl+m−1q

n
l,m−2 for n ≥ 2,

q1
l,m = Al+m−1(q

0
l,m−1 +

1

2
q2
l,m−1) + Bl+m−1q

1
l,m−1 + Cl+m−1q

1
l,m−2,

q0
l,m =

1

2
Al+m−1q

1
l,m−1 + Bl+m−1q

0
l,m−1 + Cl+m−1q

0
l,m−2,

subject to the boundary conditions q0
l,0 = 1, q0

l,1 = Bl, q1
l,1 = Al, and qnl,m = 0 for

n > m. The rnl,m satisfy the same recurrences but with boundary conditions r0
l,1 = Cl

and rnl,m = 0 for n ≥ m.
Proof. These recurrences are the shifted three-term recurrences (2.13) rewritten

in terms of the Chebyshev coefficients of the polynomials by using the equations
x · Tn = (Tn+1 + Tn−1)/2 for n > 0 and x · T0 = T1.

For a fixed l, we can compute the qnl,m and rnl,m by increasing m, starting with
the known values for m = 0, 1, and finishing with m = M − 2. For each m, we need
to compute only the qnl,m with n ≤ m and the rnl,m with n < m. The total number of
flops of the precomputation of the Chebyshev coefficients in the general case is

Tprecomp, term = 7M2 − 16M − 15.(B.4)

302 M. A. INDA, R. H. BISSELING, AND D. K. MASLEN

When the initial values Bl are identically zero, the coefficients can be packed in
alternating fashion into array T, as shown in Figure 3.3. In that case the cost is
considerably lower, namely, 2.5M2 − 3.5M − 12.

The precomputed Chebyshev coefficients can be used to save the early stages in
Algorithm B.1. If we continue the precomputation of the Chebyshev coefficients two
steps more and finish with m = M instead of m = M −2, we then can switch directly
to the precomputation of the point values at stage K = M , just after the forward
Chebyshev transforms.

Parallelizing the precomputation of the Chebyshev coefficients is straightforward,
since the computation for each l is independent. Therefore, if M ≤ N/p, both the
termination and its precomputation are local operations.

Acknowledgments. We thank Dennis Healy, Daniel Rockmore, and Peter Kost-
elec for useful discussions. We thank the anonymous referees for valuable suggestions
for improvement.

REFERENCES

[1] N. Ahmed, T. Natarajan, and K. R. Rao, Discrete cosine transform, IEEE Trans. Comput.,
23 (1974), pp. 90–93.

[2] B. K. Alpert and V. Rokhlin, A fast algorithm for the evaluation of Legendre expansions,
SIAM J. Sci. Statist. Comput., 12 (1991), pp. 158–179.

[3] S. R. M. Barros and T. Kauranne, On the parallelization of global spectral weather models,
Parallel Comput., 20 (1994), pp. 1335–1356.

[4] P. Barrucand and D. Dickinson, On the associated Legendre polynomials, in Orthogonal
Expansions and Their Continuous Analogues, D. T. Haimo, ed., Southern Illinois University
Press, Carbondale, IL, 1968, pp. 43–50.

[5] S. Belmehdi, On the associated orthogonal polynomials, J. Comput. Appl. Math., 32 (1990),
pp. 311–319.

[6] R. H. Bisseling, Basic techniques for numerical linear algebra on bulk synchronous parallel
computers, in Numerical Analysis and Its Applications, Lecture Notes in Comput. Sci.
1196, Springer-Verlag, Berlin, 1997, pp. 46–57.

[7] R. H. Bisseling, BSPEDUpack, http://www.math.uu.nl/people/bisseling/software.html, 2000.
[8] O. Bonorden, B. Juurlink, I. von Otte, and I. Rieping, The Paderborn University BSP

(PUB) library—design, implementation and performance, in Proceedings of the 13th In-
ternational Parallel Processing Symposium and the 10th Symposium on Parallel and Dis-
tributed Processing, CD-ROM, IEEE Computer Society, Los Alamitos, CA, 1999.

[9] G. L. Browning, J. J. Hack, and P. N. Swarztrauber, A comparison of three numerical
methods for solving differential equations on the sphere, Monthly Weather Review, 117
(1989), pp. 1058–1075.

[10] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York,
1978.

[11] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier
series, Math. Comp., 19 (1965), pp. 297–301.

[12] G. A. Dilts, Computation of spherical harmonic expansion coefficients via FFTs, J. Comput.
Phys., 57 (1985), pp. 439–453.

[13] J. R. Driscoll and D. M. Healy, Jr., Computing Fourier transforms and convolutions on
the 2-sphere, Adv. Appl. Math., 15 (1994), pp. 202–250.

[14] J. R. Driscoll and D. M. Healy, Jr., Computing Fourier transforms and convolutions on the
2-sphere, extended abstract in Proceedings of the 30th IEEE Symposium on Foundations
of Computer Science, IEEE Computer Society, Los Alamitos, CA, 1989, pp. 344–349.

[15] J. R. Driscoll, D. M. Healy, Jr., and D. N. Rockmore, Fast discrete polynomial transforms
with applications to data analysis for distance transitive graphs, SIAM J. Comput., 26
(1997), pp. 1066–1099.

[16] B. S. Duncan and A. J. Olson, Approximation and characterization of molecular surfaces,
Biopolymers, 33 (1993), pp. 219–229.

PARALLEL LEGENDRE TRANSFORM 303

[17] D. M. Healy, Jr. and P. T. Kim, Spherical Deconvolution with Application to Geometric
Quality Assurance, Tech. report, Department of Mathematics and Computer Science, Dart-
mouth College, Hanover, NH, 1993.

[18] D. M. Healy, Jr. and P. T. Kim, An empirical Bayes approach to directional data and efficient
computation on the sphere, Ann. Statist., 24 (1996), pp. 232–254.

[19] D. M. Healy, Jr., S. S. B. Moore, and D. Rockmore, Efficiency and Stability Issues in the
Numerical Computation of Fourier Transforms and Convolutions on the 2-Sphere, Tech.
report PCS-TR94-222, Department of Mathematics and Computer Science, Dartmouth
College, Hanover, NH, 1994.

[20] D. M. Healy, Jr., D. Rockmore, P. J. Kostelec, and S. S. B. Moore, FFTs for the
2-Sphere—Improvements and Variations, Tech. report, Department of Mathematics and
Computer Science, Dartmouth College, Hanover, NH, 1998.

[21] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao,
T. Suel, T. Tsantilas, and R. H. Bisseling, BSPlib: The BSP programming library,
Parallel Comput., 24 (1998), pp. 1947–1980.

[22] J. M. D. Hill, S. R. Donaldson, and A. McEwan, Installation and User Guide for the Oxford
BSP Toolset (v1.4) Implementation of BSPlib, Tech. report, Oxford University Computing
Laboratory, Oxford, UK, 1998.

[23] M. A. Inda, Constructing Parallel Algorithms for Discrete Transforms: From FFTs to
Fast Legendre Transforms, Ph.D. thesis, Department of Mathematics, Utrecht University,
Utrecht, The Netherlands, 2000.

[24] D. K. Maslen, A Polynomial Approach to Orthogonal Polynomial Transforms, Preprint
MPI/95-9, Max-Planck-Institut für Mathematik, Bonn, Germany, 1995.

[25] W. F. McColl, Scalability, portability and predictability: The BSP approach to parallel pro-
gramming, Fut. Gen. Comp. Syst., 12 (1996), pp. 265–272.

[26] V. Lesur and D. Gubbins, Evaluation of fast spherical transforms for geophysical applications,
Geophys. J. Int., 139 (1999), pp. 547–555.

[27] T. Ooura, General purpose FFT (fast Fourier/cosine/sine transform) package,
http://momonga.t.u-tokyo.ac.jp/õoura/fft.html, 1998.

[28] S. A. Orszag, Fast eigenfunction transforms, in Science and Computers, G.-C. Rota, ed.,
Academic Press, Orlando, FL, 1986, pp. 23–30.

[29] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P Flannery, Numerical Recipes
in C: The Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge,
UK, 1992.

[30] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, and Applications,
Academic Press, San Diego, CA, 1990.

[31] N. Shalaby, Parallel Discrete Cosine Transforms: Theory and Practice, Tech. report TR-34-
95, Center for Research in Computing Technology, Harvard University, Cambridge, MA,
1995.

[32] N. Shalaby and S. L. Johnsson, Hierarchical load balancing for parallel fast Legendre trans-
forms, in Proceedings of the 8th SIAM Conference on Parallel Processing for Scientific
Computing, M. Heath et al., eds., SIAM, Philadelphia, 1997.

[33] G. Steidl and M. Tasche, A polynomial approach to fast algorithms for discrete Fourier-
cosine and Fourier-sine transforms, Math. Comp., 56 (1991), pp. 281–296.

[34] L. G. Valiant, A bridging model for parallel computation, Comm. ACM, 33 (1990), pp. 103–
111.

[35] C. Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, Philadelphia,
1992.

