
Designing a BSP version of ScaLAPACK�Guy Horvitzy Rob H. BisselingzAbstractThe ScaLAPACK library for parallel dense matrix computations is built on top ofthe BLACS communications layer. In this work, we investigate the use of BSPlib as thebasis for a communications layer. We examine the LU decomposition from ScaLAPACKand develop a bulk synchronous parallel (BSP) version. For small problems, wherecommunication dominates, the BSP version is about 10% faster compared to the nativeBLACS version and 50% compared to the MPI BLACS version. For large problems,where computation dominates, the di�erences are less pronounced, but the BSP versionis still slightly faster. We present the main features of a new library, BSP2D, which wepropose to develop for porting the whole of ScaLAPACK.1 IntroductionTo obtain the highest performance in parallel computation both computation and commu-nication must be optimised. LAPACK [1] has provided us with highly optimised implemen-tations of state-of-the-art algorithms in the �eld of numerical linear algebra, in particularfor the solution of dense linear systems and eigensystems. Many years of e�ort have goneinto optimising LAPACK, and much of its success is due to the encapsulation of system-dependent optimisations into the Basic Linear Algebra Subprograms (BLAS). LAPACKis available for sequential computers, vector supercomputers, and parallel computers withshared memory.The ScaLAPACK [3] project aims to provide a scalable version of LAPACK for parallelcomputers with distributed memory. Portability is ensured by building ScaLAPACK on topof the Basic Linear Algebra Communication Subprograms (BLACS). The parallel e�ciencydepends critically on the communication performance achieved by this library and thus itis natural to ask whether the performance can be further improved.The bulk synchronous parallel (BSP) model [9] views a parallel algorithm as a sequenceof supersteps, each containing computation and/or communication, followed by a globalsynchronisation of all the processors. This imposes a discipline on the user, thus makingparallel programming simpler, but it also provides possibilities for system-level optimisationsuch as combining and rescheduling of messages. This can be done because the superstepprovides a natural context for communication optimisation by the system; the user neednot be concerned about this.�This work was supported in part by NCF, which provided computer time on the Cray T3E of the HighPerformance Applied Computing centre at the Technical University of Delft.yFritz Haber Research Center for Molecular Dynamics, Hebrew University, Jerusalem 91904, Israel,guyh@fh.huji.ac.ilzDepartment of Mathematics, Utrecht University, P.O. Box 80010, 3508 TA Utrecht, The Netherlands,Rob.Bisseling@math.uu.nl 1

2A BSP computer can be characterised by four global parameters: p, the number ofprocessors; s, the computing speed in op/s; g, the communication time per data elementsent or received, measured in op time units; and l, the synchronisation time, also measuredin ops. Algorithms can be analysed by using the parameters p; g, and l; the parameter sjust scales the time. The time of a superstep with both computation and communicationis w + hg + l, where w denotes the maximum amount of work (in ops) of a processor,and h is the maximum number of data elements sent or received by a processor. The totalexecution time of an algorithm (in ops) can be obtained by adding the times of the separatesupersteps. This yields an expression of the form a+ bg+ cl. In the following presentation,we consider the architecture as an abstract BSP computer, and therefore we use the term`processes' instead of `processors'. In our experiments, only one process executes on eachprocessor, so these terms may be used interchangeably.BSPlib [7] is a proposed standard which makes it possible to program directly in BSPstyle. BSPlib is an alternative to PVM [8] and MPI [5]. It provides both direct remotememory access (i.e., one-sided communications such as put and get), and bulk synchronousmessage passing.BSPPACK [2] is a prototype application package built on top of BSPlib. It is a researchand educational library which contains parallel implementations of algorithms for sparseand dense linear system solution, fast Fourier transforms, and other scienti�c computations.The aim of the present work is to answer the question: can ScaLAPACK be portedto BSPlib and does this improve performance? This may indeed be the case, because weexpect ScaLAPACK to bene�t from ideas developed within the context of BSPPACK andfrom the excellent implementation of BSPlib available as the Oxford BSP toolset [6]. Here,we limit ourselves to investigating the ScaLAPACK LU decomposition subroutine PSGETRF.The design philosophy of ScaLAPACK is to use a hierarchy of software layers. Thetop of the pyramid is ScaLAPACK itself, which calls the Parallel BLAS (PBLAS). ThePBLAS use the BLAS for single-process linear algebra computations and the BLACS forcommunication. The BLACS can be built on top of a basic communications layer such asMPI or PVM. The BLACS perform communication at a higher level: they send completematrices of all types and they allow us to view the processes as a two-dimensional grid andto perform operations within the scope of a process row or column, or the complete grid.The data distribution of ScaLAPACK is the two-dimensional block-cyclic distributionwith a user determined block size nb. Another parameter is the algorithmic block sizenb0. The algorithms in the sequential package LAPACK handle complete blocks of size nb0.ScaLAPACK structures its algorithms in the same way, but it imposes nb0 = nb. We makethe same choice for reasons of convenience, but in our case it is straightforward to relaxthis constraint to nb0 � nb; we shall discuss this later.Since the communication in ScaLAPACK is isolated in the BLACS it would be themost natural choice to construct a BLACS version based on BSPlib. A straightforwardBSPlib implementation of the BLACS, however, would be impossible for di�erent reasons;one important reason is the following. The BLACS include pair-wise message passing forcommunication where the receiver has to wait for the data to arrive in order to continue.The sender can continue as soon as the message is sent o�. In BSPlib, a message transfer iscompleted only after the next global synchronisation. Suppose there is exactly one messageto be communicated and hence in the program there is one call to a BLACS send andone to a BLACS receive. The processes that do not send or receive are not aware ofthis communication and hence do not synchronise, thus violating the principle of globalsynchronisation.

3Forcing the user to synchronise globally between a send and a receive requires drasticchanges in both the syntax and the semantics of the BLACS subroutines. This would turnthe BLACS into a di�erent library, which could be called BSP2D; section 4 outlines howsuch a library could be constructed in the future. The present work simply removes theBLACS and adapts ScaLAPACK and the PBLAS using direct calls to BSPlib. This aloneis not su�cient: it is also necessary to restructure ScaLAPACK and the PBLAS on thebasis of supersteps.2 BSP version of ScaLAPACK LU decompositionProgramming in BSPlib requires global synchronisation. For this reason, every processshould know when a global synchronisation is needed to perform a certain task. Sometimes,a process also needs to know about resources (such as bu�ers) provided by remote processes.Such knowledge can be transferred by communication, but this would be ine�cient.Another approach would be to let all the processes call subroutines together and withthe same values for the scalar input parameters. This way, each process can deduce thebehaviour of the other processes. We adopted this approach for the PBLAS. For example,consider the PBLAS subroutine PSSWAP which swaps two rows or columns of distributedmatrices. If the swap is local and no communication is needed, the processes do notsynchronise. Otherwise, all the processes perform one synchronisation, even if they do nothold any of the related data and do not actively participate in the operation. All processescan distinguish between the two situations, because they have the necessary information.2.1 Unblocked LU decomposition and pivot search subroutinesAn example of how a ScaLAPACK subroutine and a PBLAS should be altered, is shown inthe case of the ScaLAPACK subroutine PSGETF2, which performs an unblocked parallel LUdecomposition on a block of consecutive columns; it is called by the main LU decompositionsubroutine PSGETRF. The main part of the PSGETF2 code is given in Fig. 1.In the original subroutine, the main loop (DO 10 : : : 10 CONTINUE) is executed only bythe process column IACOL that holds the block to be decomposed. After the decomposition,the pivot indices IPIV(IIA..IIA+MN-1) of that block are broadcast to the other processcolumns by the sending subroutine IGEBS2D and the receiving subroutine IGEBR2D. Thisstructure is inherited from the PBLAS. Since the PBLAS subroutine PSAMAX, which �ndsthe pivot of matrix column J, returns the result only to the processes of the process columnIACOL that holds J, the other processes cannot evaluate the singularity test GMAX.NE.ZERO.We mentioned earlier that BSP based PBLAS should be called by all processes withthe same values for the scalar input parameters. The example of PSGETF2 makes it clearthat scalar output parameters must be returned to all processes too. This way, GMAX andthe pivot index become available to all the processes so they can participate in the mainloop, and can call subsequent PBLAS together, as required. Inevitably, sending the outputscalars to all processes costs extra communication and synchronisation time.An advantage of the changes in PSAMAX and PSGETF2 is the ability to choose analgorithmic block size that di�ers from the distribution block size. This is impossiblein the current version of ScaLAPACK; e.g. if nb0 = 2nb, then two process columns shouldparticipate in the decomposition of one algorithmic block of columns. The subroutinePSAMAX, however, returns its results only to the process column that holds matrix column J.

4IF(MYCOL.EQ.IACOL) THEN DELDO 10 J = JA, JA+MN-1I = IA + J - JA** Find pivot and test for singularity.CALL PSAMAX(M-J+JA, GMAX, IPIV(IIA+J-JA), A, I, J,$ DESCA, 1)IF(GMAX.NE.ZERO) THEN** Apply the row interchanges to columns JA:JA+N-1CALL PSSWAP(N, A, I, JA, DESCA, DESCA(M_), A,$ IPIV(IIA+J-JA), JA, DESCA, DESCA(M_))** Compute elements I+1:IA+M-1 of J-th column.IF(J-JA+1.LT.M)$ CALL PSSCAL(M-J+JA-1, ONE / GMAX, A, I+1, J,$ DESCA, 1)ELSE IF(INFO.EQ.0) THENINFO = J - JA + 1END IF** Update trailing submatrixIF(J-JA+1.LT.MN) THENCALL PSGER(M-J+JA-1, N-J+JA-1, -ONE, A, I+1, J, DESCA,$ 1, A, I, J+1, DESCA, DESCA(M_), A, I+1,$ J+1, DESCA)END IF10 CONTINUE* CALL IGEBS2D(ICTXT, 'Rowwise', ROWBTOP, MN, 1, IPIV(IIA), DEL$ MN) DELELSE DELCALL IGEBR2D(ICTXT, 'Rowwise', ROWBTOP, MN, 1, IPIV(IIA), DEL$ MN, MYROW, IACOL) DELEND IF DELFig. 1. Main part of PSGETF2 source code. Lines marked by DEL are deleted in the BSP version.2.2 Collective communication subroutinesSometimes, we need subroutines to perform collective communications such as broadcastsor reductions. In our case, we need to broadcast data within a process row (or column),and perform this operation for all process rows simultaneously. The method adopted forthe PBLAS, global replication of scalar parameters, is not suitable here. The reason is thatthe size of the broadcast may di�er between the process rows. We must allow di�erentsizes, but the number of synchronisations should not depend on them.The simplest solution is always to use a broadcast with two synchronisations, exceptwhen the broadcast is in the scope of one or two processes. For one process nosynchronisation is needed, and for two processes a single synchronisation su�ces. Allprocesses can take the same decision because the number of participants in the broadcastis the same and known to all of them. The choice of performing two synchronisations inthe general case is based on the e�ciency of the so-called two-phase broadcast, which �rst

5scatters the elements of a data vector across all the processes, and then lets each processbroadcast the data it received. This was shown to be e�cient in the LU decompositionprogram from BSPPACK, see [2].2.3 Multiple row swap subroutineThe ScaLAPACK subroutine PSLASWP applies a series of row exchanges in a matrixprescribed by a given vector of pivoting indices. This is originally done by pairwise rowswaps, each time using the PBLAS subroutine PSSWAP. A direct translation into BSP wouldimply one superstep for each swap. We change the method so that all the swaps are donein one superstep, in good BSP style. The changes are as follows.First we translate the representation of the permutation from swaps into cycles. Forexample, suppose the swap vector is (4, 10) (3, 10) (2, 10) (1, 10), which means: �rst swaprows 1 and 10, then 2 and 10, etc. In this example, rows 1, 2, 3, 4 are on the same processA and row 10 resides on a di�erent process B. The cycle representation of this permutationis (10, 4, 3, 2, 1), which means: 1 goes to 2, 2 goes to 3, : : :, 10 goes to 1. The operationsperformed by A and B in this case are:Process A Process BPut row 4 in bu�er on process B Put row 10 in bu�er on process AFor i = 3 to 1 step �1copy row i into row i+ 1Sync SyncCopy bu�er into row 1 Copy bu�er into row 10In this way, only one row is exchanged between A and B. In the original algorithm, whichperforms the swaps sequentially, four rows are exchanged. In the general case, the di�erentcycles are handled separately, but with one global synchronisation for all of them.2.4 Registered bu�ersOften, we have to communicate noncontiguous data like e.g. a matrix row, which inScaLAPACK is stored as a strided subarray. The data elements can of course be sentseparately, but even though BSPlib automatically combines small messages, there is still anotable overhead for extremely small messages such as single words. If the access patternis based on a stride, the overhead can be avoided by packing messages in bu�ers.Put operations are the most e�cient means of communication on many architectures,including our test machine. When we use puts for communications, the locations of thebu�ers in which we put the packed data must have been registered previously. The purposeof registration is to link the name of a remote variable with its local address; this enablesputting into dynamically allocated memory. Since registration incurs communication andsynchronisation costs, it is more e�cient to register the locations only once, at the beginningof the computation. The locations should then be passed to the PBLAS.For this purpose, we implemented a management system for registered bu�ers. Atthe start of the program, we allocate and register bu�ers of appropriate sizes. When aPBLAS requests a bu�er of a certain size, it calls a subroutine which returns a pointer tothe smallest bu�er of at least the requested size. Similar to the registration procedure ofBSPlib, bu�ers are requested in lock step. All processes participate in all requests, andthey ask for a bu�er of the same size.To achieve the ultimate in e�ciency, we use the high performance put primitivebsp hpput which is unbu�ered on source and unbu�ered on destination, instead of bsp put

6Table 1Computing rate in Gop/s of LU decomposition on a CRAY T3E for three di�erent communi-cation layers. The process grid has size 8� 8; the block size is 32.Size BSPlib native MPIBLACS BLACS500 0.37 0.33 0.221000 1.22 1.11 0.812000 3.19 3.04 2.423000 5.34 4.96 4.154000 6.79 6.57 5.616000 9.63 9.24 8.568000 10.47 10.55 10.0410000 12.73 12.48 12.20which is doubly bu�ered. In the case of the high performance primitives, responsibility forbu�ering rests on the user instead of on the BSPlib system. On our test machine, we foundthat the improvement in performance was signi�cant.3 Experimental resultsWe performed numerical experiments on a CRAY T3E computer with p = 64 processors,each with a theoretical peak performance of 600 Mop/s. We measured a sequential speedof s = 250 Mop/s for the matrix multiplication part of the LU decomposition. Normalisedfor this value of s, we found g � 14 and l �16000{80000. (We measured these values withinthe context of the program, not in a separate benchmark. This explains the variation inl.) The aim was to compare the ScaLAPACK performance of three communication layers:BSPlib, a Cray-speci�c native version of the BLACS, and an MPI version. We ran testsfor three di�erent process grids (with size 8 � 8, 16 � 4, 4 � 16) and four di�erent blocksizes (nb = 16, 32, 48, 64). The optimal grid size for all three communication layers was8� 8, and the optimal block size was 32. We used single precision, which is 64 bits on thismachine. We ran a test program which generates a square matrix with random elements.The measured computing rate is given in Table 1. The rate is based on the overallexecution time, including all overheads. For small problems, where communicationdominates, the table shows a considerable gain in speed obtained by using BSPlib: about10% compared to the native BLACS and 50% compared to the MPI BLACS, for n = 1000.For large problems, where computation dominates, the di�erences are less pronounced:about 2% compared to the native BLACS and 4% compared to the MPI BLACS, forn = 10000. The BSPlib version is faster than the others, except for n = 8000.To understand the savings in execution time, we measured the time used by each partof the program. Using BSPlib we can measure the communication/synchronisation timeseparately from the local computation time. We then separated the communication timefrom the synchronisation time by using a BSP-provided estimate of the synchronisationtime. We also measured the packing time, which includes the time spent in packing andunpacking data, and in local swaps. Finally, we could estimate the idle time of eachprocess, which we de�ne as the average time a process waits for the others to �nish theircomputation. The resulting breakdown of the costs is presented in Fig. 2. As expected,

7
0 2000 4000 6000 8000 10000

matrix size

0

20

40

60

se
co

nd
s

idle

comp

pack
comm
syncFig. 2. Breakdown of the total execution time for BSP based LU decomposition. Thecomponents are: synchronisation, communication, packing, computation, and idling. The processgrid has size 8� 8; the block size is 32.

0 2000 4000 6000 8000 10000
matrix size

0

2

4

6

8

10

se
co

nd
s

BSP

MPI
BLACS

BSP

comm
+ sync
+ pack

comm
+ sync

native
BLACS

Fig. 3. Communication time (including packing and synchronisation) during LU decompo-sition for three communication layers: BSPlib, native BLACS and MPI BLACS. For BSPlib, thetime without packing is also given. The process grid has size 8� 8; the block size is 32.the computation time of 2n3=3p ops dominates for large n. Note that the synchronisationtime, although only linear in n, is still signi�cant compared to the computation time.The computation and idling time is identical for all three versions, because they di�eronly in the communication part. By subtracting the computation and idling time from themeasured total time, we can obtain the time of the communication part, which is presentedin Fig. 3. It is clear that the communication time for BSP is signi�cantly less than for the

8
ScaLAPACK

PBLASLAPACK

BLAS BSP2D

BSPlibFig. 4. Hierarchical view of a possible BSP based ScaLAPACK, adapted from [4]. The doubleboxes contain the parts a�ected by moving to BSP. Solid arrows represent major dependencies anddashed ones minor dependencies. The solid bold arrows represent the main structure of ScaLAPACK.other two versions. For large n, the typical savings compared to the native BLACS are10{15%. The exception is again the case n = 8000, for which the native BLACS are slightlyfaster. We found that the cause of this exception is the poor performance on the Cray T3Eof the vendor-provided BLAS SCOPY and SSWAP, which we used for packing and local swapsin PSSWAP and PSLASWP. They reduced the performance of our program considerably, andmore than that of the native and MPI BLACS versions. Improving the copying wouldreduce the communication time for BSPlib to that depicted in the lower line of Fig. 3.4 Proposal for a BSP2D libraryWhen developing a BSP implementation of the whole ScaLAPACK, it would be mostconvenient to have available a high level BSP based communication layer, called BSP2D.This would save much e�ort and would also improve modularity. The position of the BSP2Dlayer in the ScaLAPACK hierarchy is shown in Fig. 4. BSP2D has the functionality of theBLACS, i.e., communicating complete matrices (or vectors) of di�erent types. Like theBLACS it views the processes as a two-dimensional grid. It can be built on top of BSPlibor another suitable BSP library.There are two types of communication operation in BSP2D: pair-wise communicationsand collective communications. Pair-wise communications should be done by bulksynchronous message passing (using bsp send) and not by direct remote memory access(using bsp put, bsp get, or their high performance equivalents).Direct remote memory access cannot be used for the following reason. The communi-cation of noncontiguous data structures involves packing of the data in bu�ers. Communi-cating by direct remote memory access requires previous registration of these bu�ers. Sincethe size of data each process sends is not always known to the other processes we cannotuse the global management system for registered bu�ers described in Subsection 2.4. (Fora general library such as BSP2D we cannot adopt the same solution as for the PBLAS,namely calling each subroutine with the same global parameters. This would render thelibrary hard to use.) An alternative would be to register a bu�er for each put operation, butthis would be ine�cient. A third possibility would be to use static pre-registered bu�ers,where each process makes p� 1 bu�ers available for use by the other processes; this wastestoo much memory. Therefore, none of these methods is satisfactory.

9As a consequence, pair-wise communication should be done by bulk synchronousmessage passing. This means that data are sent, and after global synchronisation thedestination process moves the data from its receive queue. Messages consist of a payloadand a tag. The payload contains the matrix to be communicated, packed in a suitableform. The tag consists of type information, the identity of the sending process, and thenumber of messages that were already sent by that process to the receiving process in thecurrent superstep. This number represents the order in which the send operations occurin the program text, and not the actual order in which BSPlib sends them. BSPlib is stillallowed to optimise communication by rescheduling messages within a superstep. (This isthe main advantage over traditional message passing.)In BSP2D, messages originating in the same process must be moved in the order thosemessages were sent; this is similar to the requirement for receives in the BLACS. Themessages of the receive queue of BSPlib, however, are in arbitrary order and the queue canonly be accessed in this order. Still, this poses no problem since the high performance moveoperation bsp hpmove can be used to create a list of the message positions in the queue. Thisoperation is done as part of the BSP2D synchronisation subroutine. In an implementation,the list can be sorted in linear time by source process and message number. The use ofbsp hpmove instead of bsp move also enables BSP2D to unpack data straight from thereceive bu�er, thus saving the time of local copying. (Performance could be improved evenmore if a high performance send bsp hpsend were available, so the data could be sentstraight from the source memory.)Collective communications such as broadcasts and reductions involve synchronisation,so they should be called by all processes at the same time. They can be performed in thescope of a process row, a process column, or the whole process grid. To ensure that all theprocesses perform the same number of synchronisations, these subroutines always have twosupersteps, except when the number of processes in the scope is one or two. As alreadyobserved in our study of LU decomposition, the decision on the number of synchronisationscannot rely on the number of data to be communicated, since it may vary between di�erentprocess rows or columns.We already described the two-phase broadcast in Subsection 2.2. Two-phase reductionis similar. Suppose the scope of the operation has q processes. In the reduction, each processhas a vector of the same size n. Associative and commutative component-wise operationssuch as additions have to be performed on these q vectors. This is done as follows. Thedata on each process are divided into q blocks of size n=q, numbered 0; : : : ; q� 1, and eachblock is sent to a di�erent process, so that process i gets all the blocks numbered i. Theneach process performs a local reduction of the blocks, and sends the result to all the otherprocesses. The total communication/synchronisation cost is about 2ng + 2l.In summary, BSP2D will include subroutines for pair-wise and collective communica-tions, for global synchronisation with additional housekeeping, for the creation, initialisa-tion, and destruction of the process grid, and for retrieving the grid dimensions and processcoordinates.5 Conclusions and future workIn this work, we have demonstrated that it is feasible to produce, with a relativelyminor e�ort, an e�cient bulk synchronous parallel version of an important ScaLAPACKsubroutine. We expect that the same can be done for most subroutines from ScaLAPACK.The BSP version outperforms two other versions, one based on a vendor-built BLACS

10communication layer, and the other on MPI BLACS. The performance gains were entirelydue to a reduction of the communication time; the computation part was left unchanged.For large problems, e.g. n = 10000, communication time was reduced by up to 15%compared to the vendor-built BLACS version and even more compared to the MPI version.Because our test machine has relatively fast communications the reduction in total executiontime is less pronounced. For machines with slower communication relative to computation,the inuence of communication on the total time will be larger, and hence the gain weexpect to achieve by using BSPlib would be proportionally larger. Of course, in futurework this prediction should be tested in practice. For small problems, communication isdominant and the savings in total time are considerable. These results demonstrate that apublic-domain software layer such as BSPlib can outperform a vendor-supplied layer. (Wewould expect a vendor-supplied version of BSPlib to improve performance even more.)Our practical experience in porting one major ScaLAPACK subroutine led to theformulation of the BSP2D library. Whereas we could build one single routine (and therequired PBLAS) directly on top of BSPlib and we could manage the registered bu�erswithin the subroutine, this would not be a feasible solution for the whole of ScaLAPACK.Instead, using an intermediate BSP2D layer would increase modularity and software reuse,at only a slight increase in cost due to copying and other overheads.The approach of BSPlib, based on global synchronisation, can be carried over to thePBLAS, and this gives the additional advantage that the algorithmic and distributionblock sizes can be decoupled. This enables a better trade-o� between load balance, speedof BLAS operations in the unblocked part of the algorithm, and speed in the blocked part,thus providing further opportunities for improving the performance of ScaLAPACK.References[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users' Guide,Release 2.0, SIAM, Philadelphia, PA, second ed., 1995.[2] R. H. Bisseling, Basic techniques for numerical linear algebra on bulk synchronous parallelcomputers, in vol. 1196 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1997,pp. 46{57.[3] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra,S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACKUsers' Guide, SIAM, Philadelphia, PA, 1997.[4] J. Choi, J. J. Dongarra, L. S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C. Whaley, Thedesign and implementation of the ScaLAPACK LU, QR, and Cholesky factorization routines,Scienti�c Programming, 5 (1996), pp. 173{184.[5] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable programming with the Message-Passing Interface, MIT Press, Cambridge, MA, 1994.[6] J. M. D. Hill, S. R. Donaldson, and A. McEwan, Installation and user guide for the OxfordBSP toolset (v1.3) implementation of BSPlib, technical report, Oxford University ComputingLaboratory, Oxford, UK, Nov. 1997.[7] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao, T. Suel,T. Tsantilas, and R. H. Bisseling, BSPlib: The BSP programming library, Parallel Computing,24 (1998), pp. 1947{1980.[8] V. S. Sunderam, PVM: A framework for parallel distributed computing, Concurrency: Practiceand Experience, 2 (1990), pp. 315{339.[9] L. G. Valiant, A bridging model for parallel computation, Communications of the ACM, 33(1990), pp. 103{111.

