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Abstract

Bulk synchronous parallel architectures offer the prospect of achieving both scalable
parallel performance and architecture independent parallel software. They provide
a robust model on which to base the future development of general purpose parallel
computing systems. In this paper we theoretically and experimentally analyse the
efficiency with which a wide range of important scientific computations can be per-
formed on bulk synchronous architectures. The computations considered include the
iterative solution of sparse linear systems, molecular dynamics, linear programming,
and the solution of partial differential equations on a multidimensional discrete grid.
These computations are analysed in a uniform manner by formulating their basic
procedures as sparse matrix-vector multiplications.



1 Introduction

Bulk synchronous parallel (BSP) architectures [30] offer the prospect of achieving both
scalable parallel performance and architecture independent parallel software. They pro-
vide a robust model on which to base the future development of general purpose parallel
computing systems. In this paper, we theoretically and experimentally analyse the effi-
ciency with which a wide range of important scientific computations can be performed on
BSP architectures. The computations considered include the iterative solution of sparse
linear systems, molecular dynamics, linear programming, and the solution of partial differ-
ential equations on a discrete grid. We analyse these computations in a uniform manner
by formulating their basic procedures as a sparse matrix-vector multiplication. In our
analysis, we introduce the normalised BSP cost of an algorithm as an expression of the
form a + bg + ¢l, where a,b, and ¢ are scalar values which depend on the algorithm, on
the number of processors, and on the chosen data distribution. The scalars ¢ and [ are
parameters that characterise the hardware: ¢ > 1 is the communication throughput ratio
and [ > 1 is the network periodicity. An ideal parallel algorithm has the values a = 1,
b =0, and ¢ = 0; an algorithm with load imbalance has a value ¢ > 1; an algorithm
with communication overhead has a value b > 0; and an algorithm with synchronisation
overhead has a value ¢ > 0.

As an example, consider the execution of a five-point Laplacian finite difference operator
on a two-dimensional toroidal grid. This operator computes new values at a grid point
using the old values at the grid point and its direct neighbours to the north, east, south, and
west. Our BSP algorithm for this computation has a normalised cost on 100 processors of
1.0+ 0.022¢g + 0.00056! for a grid of size 200 x 200. This low cost is achieved by distributing
the grid by orthogonal domain partitioning over the processors, assigning a square block of
20 x 20 grid points to each processor. The resulting cost value implies that this computation
can be performed efficiently on BSP computers with ¢ < b~ ~ 45 and [ < ¢! & 1800.

In the design of efficient BSP algorithms, it is important to find a good data distribu-
tion. In fact, the choice of a data distribution is one of the main means of influencing the
performance of the algorithm. In the BSP model, the partitioning of the data is a cru-
cial issue, as opposed to the mapping of the resulting partitions to particular processors,
which is irrelevant. This leads to an emphasis on problem dependent techniques of data
partitioning, instead of on hardware dependent techniques that take network topologies
into account. The algorithm designer who is liberated from such hardware considerations
may concentrate on exploiting the essential features of the problem. In our case, this
leads, surprisingly, to the application of sphere packing techniques to reduce communica-
tion in molecular dynamics simulations and to the application of tiling techniques to reduce
communication in discrete grid calculations.

We present experimental results for the multiplication v := Av of a sparse matrix A
and a vector v. The experiments are performed on the sparse matrix test library MLIB,
which we developed with the aim of capturing the essence of a range of important scientific
computations in the uniform format of a sparse matrix. The library contains matrices
with a regular structure, such as the adjacency matrix of a multidimensional toroidal grid,



and also matrices with an irregular structure, such as random sparse matrices. Further-
more, the library contains matrices with an underlying, but hidden structure (given as
supplementary information), such as the matrices that describe the short-range interaction
between particles in a molecular dynamics simulation.

Our BSP algorithm for sparse matrix-vector multiplication imposes the constraint that
the vectors u and v and the diagonal of A are distributed in the same way and that the
matrix A is distributed in a so-called Cartesian manner. This means that the p processors
are numbered by two-dimensional Cartesian coordinates (s,t), and that each matrix row
is assigned to a set of processors with the same first coordinate s, and each matrix column
to a set of processors with the same second coordinate ¢. This distribution leads to a
simple sparse matrix-vector multiplication algorithm. Within this scheme, various choices
are possible. For general sparse matrices, with no known structure, a good choice is
to distribute the matrix diagonal randomly over the processors, taking care that each
processor receives an equal number of diagonal elements, and using a square Cartesian
processor numbering, i.e. with 0 < s,# < ,/p. For matrices with a known structure, this
method can be greatly improved upon by using techniques such as spatial decomposition
of the corresponding physical domain. We present several new techniques based on spatial
decomposition and demonstrate their practical utility by numerical experiments.

2 The BSP model

For a detailed account of the BSP model, and of the various routing and hashing results
which can be obtained for it, the reader is referred to [30] (see also [31]). We concentrate
here on presenting a view of how a bulk synchronous parallel architecture would be de-
scribed, and how it would be used. A bulk synchronous parallel (BSP) computer consists
of: a set of processor-memory pairs; a communications network that delivers messages in
a point-to-point manner; and a mechanism for the efficient barrier synchronisation of all,
or a subset, of the processors. There are no specialised broadcasting or combining facil-
ities. If we define a time step to be the time required for a single local operation, i.e. a
basic operation such as addition or multiplication on locally held data values, then the
performance of any BSP computer can be characterised by the following four parameters:

= processor speed, i.e. number of time steps per second
= synchronisation periodicity, i.e. minimal number of time steps between
successive synchronisation operations
g = (total number of local operations performed by all processors in one second) /

p = number of processors
s
[

(total number of words delivered by the communications network in one second)

The parameter [ is related to the network latency, i.e. to the time required for a non-local
memory access in a situation of continuous message traffic. The parameter ¢ corresponds
to the frequency with which non-local memory accesses can be made; in a machine with a
higher value of ¢ one must make non-local memory accesses less frequently. Let the term
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“realising an h-relation” denote the general packet routing problem where each processor
has at most h packets to send to various processors in the network, and where each processor
is also due to receive at most h packets from other processors. Here, a packet is one word
of information, such as a real number or an integer. The ¢ parameter of a BSP computer
is based on the time required to realise h-relations in a situation of continuous message
traffic; ¢ is the value such that an h-relation can be performed in gh time steps.

A BSP computer operates in the following way. A computation consists of a sequence
of parallel supersteps, where each superstep is a sequence of steps, followed by a barrier
synchronisation at which point any memory accesses take effect. During a superstep, each
processor has to carry out a set of programs or threads, and it can do the following: (i)
perform a number of computation steps, from its set of threads, on values held locally at
the start of the superstep; (ii) send and receive a number of messages corresponding to
non-local read and write requests. For simplicity, we assume in this paper that a superstep
either performs steps of (i), or steps of (ii), but not of both.

The BSP computer is a two-level memory model [24], i.e. each processor has its own
physically local memory module; all other memory is non-local, and is accessible in a
uniformly efficient way. By uniformly efficient, we mean that the time taken for a proces-
sor to read from, or write to, a non-local memory element in another processor-memory
pair should be independent of which physical memory module the value is held in. The
algorithm designer and the programmer should not be aware of any hierarchical memory
organisation based on network locality in the particular physical interconnect structure cur-
rently used in the communications network, as in special purpose parallel computing [23].
Instead, performance of the communications network should be described only in terms
of its global properties, e.g. the maximum time required to perform a non-local memory
operation, and the maximum number of such operations which can simultaneously exist in
the network at any time.

The complexity of a superstep S in a BSP algorithm is determined as follows. Let the
work w be the maximum number of local computation steps executed by any processor
during 5. Let hg be the maximum number of messages sent by any processor during .5,
and h, be the maximum number of messages received by any processor during S. In the
original BSP model, the cost of S is max{/,w, ghs, gh,} time steps. (An alternative [14]
is to charge max{l,w + ghs,w + gh,} time steps for superstep S.) In this paper, we will
charge [ 4+ w + g - max{hg, h,} time steps for S. The cost of a BSP algorithm is simply the
sum of the costs of its supersteps. Different cost definitions reflect different assumptions
about the implementation of supersteps, and in particular about which operations can be
done in parallel and which ones must be done in sequence. The difference is not crucial;
for instance, our cost is between one and three times the cost in the original model. Our
choice for charging the cost of a superstep is motivated by its convenience in obtaining
a simple numeric expression for the cost of an algorithm for a particular problem on a
BSP computer with unknown characteristic parameters [ and ¢g. Using our definition, one
obtains a simple expression of the form a + bg 4 ¢l for the cost of an algorithm, where
a,b, and ¢ are numeric constants. Note that in this case the original definition does not
necessarily lead to a simple expression.



In designing algorithms for a BSP computer with a high ¢ value, we need to achieve a
measure of communication slackness by exploiting thread locality in the two-level memory,
i.e. we must ensure that for every non-local memory access we request, we are able to
perform approximately ¢ operations on local data. To achieve architecture independence
in the BSP model, it is therefore appropriate to design parallel algorithms and programs
which are parameterised not only by n, the size of the problem, and p, the number of
processors, but also by [ and ¢g. This can indeed be done, because the network performance
of a BSP computer is captured in global terms using the values [ and g¢. (A language that
supports this style of programming is GL [25].) The resulting algorithms can therefore
be efficiently implemented on a range of BSP architectures with widely differing [ and ¢
values.

A systematic study of direct bulk synchronous algorithms remains to be done. Some
first steps in this direction are described in [14, 30]. This paper significantly extends that
work by theoretically and experimentally analysing the efficiency with which a wide range
of important scientific computations can be performed on bulk synchronous architectures.

3 Linear algebra in scientific computing

Linear algebra is of crucial importance to scientific computing. The main reason for this
is the large amount of computing time consumed by linear algebra computations in a wide
range of application areas. Often, applications require the solution of large linear systems
or large eigensystems. This has lead to the extensive use of linear algebra libraries such as
LINPACK, EISPACK, and their common successor LAPACK [2]. To achieve portability,
many scientific computer programs rely on using the common Basic Linear Algebra Sub-
programs (BLAS) for their vector, matrix-vector, and matrix-matrix operations. Today,
efficient BLAS implementations are available for most computer architectures. Another
reason for the importance of linear algebra is that the language of linear algebra provides
a powerful formalism for expressing scientific computations, including many computations
that are not commonly thought of as linear algebra computations. A prime example of
the benefit of this approach is the use of matrix-vector notation to formulate Fast Fourier
Transform algorithms [32].

One important application of linear algebra occurs in the solution of partial differential
equations (PDEs) by finite difference, finite element, or finite volume methods. These
require the repeated solution of systems of linear equations Ax = b, where A is an n x n
nonsingular matrix, and = and b are vectors of length n. Usually, the matrix A is sparse,
i.e., only O(n) of its n? elements are nonzero. The system can be solved by a direct
algorithm, using Cholesky factorisation in the case of a symmetric positive definite matrix
A, or LU decomposition in the general case, see [15]. An alternative approach is to use
an iterative algorithm, based on successive improvements of approximate solution vectors
M. Two important iterative algorithms are the conjugate gradient algorithm [19] for
symmetric positive definite matrices A and the generalised minimal residual algorithm
[29] for general matrices. Iterative methods use the matrix A mainly in a multiplicative
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manner, by computing matrix-vector products of the form u := Av. Iterative methods are
increasingly becoming popular, because they enable the solution of very large linear systems
such as those originating in PDE solving on large three-dimensional grids. Discretising a
PDE on a grid of 100 x 100 x 100 points with one variable per grid point already leads to
linear systems of one million equations in one million variables. Such systems may arise for
instance in the simulation of oil reservoirs, in the modelling of semiconductor devices, and
in aerodynamics computations. Iterative methods may often solve these systems within
reasonable time and with acceptable memory use, because the systems are sparse and
remain so during their solution, whereas direct methods will break down, because they
create too many new nonzero elements in the matrix.

Another application of linear algebra in scientific computing is in the solution of linear
programming (LP) problems, such as the problem of minimising the cost ¢!z under the
constraint Az < b (to be interpreted component-wise), where A is an m x n matrix, ¢ and
x are vectors of length n, and b is a vector of length m. This optimisation problem can be
solved by the simplex method [8], which involves a sequence of rank-one updates of the form
A= A +wv?, or by an interior-point method [21], which involves multiplying the matrix
A by its transpose and solving a symmetric positive definite linear system of the form
AATu = v. This system is usually solved by Cholesky factorisation (see [4] for a parallel
implementation), although currently much research is being done on the applicability of
iterative methods.

Linear algebra is also important in the field of molecular quantum chemistry, where
various properties of molecules are determined from first principles by solving the time-
independent Schrodinger equation, for instance by the direct SCF method [1]. Although
the dominant part of this computation is the calculation of 2-electron integrals and their
incorporation into a Hamiltonian matrix, other important parts are the computation of the
eigenvalues and eigenvectors of this matrix, and the multiplication of matrices. Since the
latter parts are more difficult to parallelise than the trivially parallel integral calculations,
they may well dominate the computing time on a parallel computer [16].

The examples above suggest that a first approach to achieving general purpose parallel
computing for scientific applications may be based on developing BSP algorithms for linear
algebra computations and implementing these algorithms on a computer which resembles
the BSP model as much as possible. For scientific applications that are not based on linear
algebra, we may still be able to capture the essence of the computation in linear algebra
language, so that we can use BSP techniques developed for linear algebra to gain further
insight into these applications as well.

This paper focuses on one particular linear algebra operation, the sparse matrix-vector
multiplication, for the following reasons:

1. The sparse matrix-vector multiplication is the basis of iterative methods for the solution
of sparse linear systems Ax = b. At every iteration, the matrix A (and in certain cases its
transpose) is multiplied by a vector, and the resulting vector is used to update the best
current approximate solution. Similarly, this multiplication is also the basis for the Lanczos
method [22], an iterative method which can be used to find the extremal eigenvalues of a



sparse symmetric matrix (see e.g. [15]).

2. The sparse matrix-vector multiplication represents the execution of the finite difference
operator in certain PDE solvers. This even holds in the common case of matriz-free solvers
which do not form the finite difference matrix explicitly, but instead apply the finite dif-
ference operator directly on the current approximate solution vector. An example is the
five-point Laplacian finite difference operator used to solve a second-order elliptic PDE on
a two-dimensional grid of size r x r. This operator can be formulated in matrix terms (see
e.g. [28]) by defining an n x n matrix A, with n = r?, by

—4 ifi=
U5 = 1 le:jzl:l,jzl:T (1)

0 otherwise.

The solution value of the PDE at a grid point (k,1),0 < k,[ < r corresponds to a component
x;,0 <@ < n, of the solution vector = of a linear system Az = b, by the relation ¢ = kr 4 [.
In a matrix-free PDE solver based on an iterative linear system solver, the equivalent of
the sparse matrix-vector multiplication u := Av will simply be executed by summing the
values of v in the neighbouring grid points (k+1,1), (k—1,1), (k,{+1), and (k,[—1), and
subtracting from the result four times the value of v in the grid point (k,1), to produce the
value of u in that grid point.

3. The sparse matrix-vector multiplication may be used to model two-particle interac-
tions in molecular dynamics simulations. As an example, consider an orthogonal three-
dimensional molecular dynamics universe of size 1 x 1 x 1 with periodic boundaries. The
universe is filled with n particles, numbered 0 < ¢ < n. Each particle moves under the
influence of the forces caused by the other particles. Each force is determined by a poten-
tial, such as the Lennard-Jones potential for nonbonded particles. Let F; denote the force
on particle 7 due to particle j, so that the total force on particle 7 is F; = Z?:_& Fi;. Note
that Fj;; = 0. The force F;; is a function of the position r; of particle + and the position r;
of particle j, F;; = F(r;,r;). Therefore, to compute the force on a particle 7, one needs,
besides the position of the particle ¢ itself, the positions of all the other particles with
which it interacts. The need for information about particle positions can be expressed in
an n x n matrix A, defined by

(2)

~_J 1 ifi=j or particles i and j interact
% =) 0 otherwise.

An analogy to the force computation from the positions of the particles is the sparse matrix-
vector multiplication u := Av, where u is a vector that models the force components and
v is a vector that models the particle positions. For short-range potentials, there exists a
cut-off radius r. > 0, such that a;; = 0 if the distance between particle 2 and particle j is
larger than or equal to r.. For r. < 1 this leads to A being very sparse. The movement
of the particles will cause the sparsity pattern of the matrix to change during the course
of the simulation. All efficient simulation methods exploit the sparsity to limit the total



number of force computations. Furthermore, distributed memory parallel algorithms based
on geometric parallelism also exploit the sparsity to reduce the number of communications
of current particle positions [12].

Simplifying molecular dynamics simulations by modelling their essence in matrix terms
may give remarkable new insights, and may even lead to new ways of performing these
simulations. A recent example of this approach is the work of Hendrickson and Plimp-
ton [18] on parallel many-body simulations (such as molecular dynamics). They achieve
a reduction in communication volume by an order of ,/p, compared to all-to-all commu-
nication, by using techniques from dense linear algebra and carefully translating them to
the many-body context. The main idea in their method is to cluster the force computa-
tions in a particular way, and to replace the all-to-all communication of particle positions
by partial broadcasts of these positions and partial combines of accumulated forces. No
sparsity is used to reduce the communication. (It is used, of course, to reduce the total
number of force computations.) Because of this, the method is most suited for long-range
or medium-range potentials, with a break-even point that is much more favourable than
that of conventional all-to-all methods.

4 The MLIB test set of sparse matrices

Our motivation for developing a new library of sparse matrices, MLIB, came from the
desire to mimic various areas of scientific computing in one common format and to use this
format to investigate parallel scientific computing. The essential properties of problems in
a wide range of application areas can often be captured in one sparse matrix or one family
of matrices with the same structure. An example is the solution of a PDE on a regular
two-dimensional r x r grid using the five-point Laplacian finite-difference operator, see
Section 3. Taking the grid points as vertices and their neighbour relations as directed edges,
while assuming periodic boundary conditions, we obtain a directed r-ary, two-dimensional
hypercube graph. In general, PDE-solvers on regular grids give rise to hypercube graphs
with a large radix and a low dimension. The adjacency matrix A of such a graph is sparse
and its size grows rapidly with increasing dimension or increasing radix. On a distributed-
memory parallel computer it would be efficient to distribute the matrix and the related
vectors by using the knowledge of the underlying neighbour structure of the graph. This
may eliminate unnecessary communication of grid variables.

At present, there exists a library of sparse matrices, the Harwell-Boeing (HB) library
[10, 11], which is widely used to test sparse matrix algorithms. It contains many examples
of matrices that occur in practical applications. We have included a small subset of eleven
matrices of the HB library in MLIB, mainly to facilitate our experiments on such practical
matrices. For our specific purpose of mimicking scientific computation, the HB matrices
are not well suited, and therefore we decided to design our own library. We do not claim
in any way that the matrix library MLIB is complete or representative. We present it as
a first attempt to capture some features of scientific computing in the common format of
sparse matrices.



The matrix library MLIB consists of 34 sparse matrices and their generating programs.
Each matrix is represented by a file which contains the nonzero elements of the matrix
stored by the coordinate scheme (see [9]). The element a;; # 0 is stored as a triple (¢, j, )
where 7 is the row index, j the column index, and ¢ = a;; the numerical value. The
numerical values of MLIB are dummies, except in the case of the HB subset, which retains
the original numerical values. At this stage, our interest is in sparsity patterns and their
implications for parallel computing, and not in numerical issues. Nevertheless, we decided
to include numerical values in the format, to enable possible future use of such values. The
format of a matrix file is: first, a line containing the matrix size m x n; then the nonzeros,
one per line; after that, a terminator line “—17; and, optionally, additional information
on the matrix, such as particle positions in the case of molecular dynamics matrices. The
MLIB library is available upon request from the authors. More details can be found in the
documentation of the generating programs.

The MLIB library contains the following classes of matrices:

e hyp.r.d.D, the hypercube matrix with radix r, dimension d, and distance D, r.d, D >
1. For D = 1, this is the adjacency matrix of the directed r-ary, d-dimensional
hypercube graph. The vertices of this graph form a d-dimensional grid of n = ¢

points; they are numbered lexicographically. Each vertex has directed edges to itself

and to its immediate neighbours in each direction. The size of the hypercube matrix
isn x n. For D > 1, the hypercube graph is obtained by connecting each vertex to

those vertices that can by reached by a path of length < D in the original D = 1

graph. This models certain higher-order finite difference operators.
e dense.n, the dense matrix of size n x n. All elements of this matrix are nonzero.

e random.n.p™!, an n xn matrix with a random sparsity structure and a nonzero density
p. This matrix is generated by using the pseudo-random number generator ran2 from
[28]. (All random numbers used in this paper were generated by this generator.)

e hb.x, the matrix x from the HB collection [10]. For a description of the matrix, see
[11]. The subset of the HB collection that is included in MLIB consists of eleven
matrices from various application fields. It is the same subset as the one used in [3]
to test a parallel iterative linear system solver.

L an n x n matrix which corresponds to n particles in a three-dimensional

molecular dynamics simulation with short-range potentials, see Section 3. The parti-

e md.n.r.”

cles ¢ and j interact, i.e. a;; # 0, if ||r; — rj|| < re, where r; is the position of particle
¢ and r. the cut-off radius. The positions r; = (@, s, 2;), with 0 < a;,y,, 2 < 1, are
given at the end of the file. The interactions assume periodic boundaries.

e mdr.n.r.~'.p7!, an nxn matrix which corresponds to n particles in a three-dimensional

molecular dynamics simulation with short-range potentials and, additionally, an ar-
tificial long-range potential for certain randomly selected particle pairs. The sparsity
pattern of this matrix is the union of the sparsity patterns of a short-range molecular
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dynamics matrix with cut-off radius r. and a random sparse matrix with density
p. Here, long-range interactions between selected particles represent interactions
between distant clusters of particles. The aim of this procedure is to mimic e.g.
multipole expansions.

e lp.n, an n X n matrix which resembles certain symmetric matrices that occur in
the solution of LP problems by interior point methods [21] (for a parallel implemen-
tation, see [4]). The matrix is constructed by placing dense square submatrices of
random size at random places in the matrix, with bias towards small sizes. This
captures a structural feature that we observed in certain LP problems. We would
like to add a disclaimer about this particular matrix class: one may argue about
whether this represents the typical structure of LP matrices. Therefore, we present
this type of matrix as just a first and modest attempt to capture some of the common
characteristics of LP matrices.

Table 1 presents the size and the number of nonzeros of the 34 matrices from MLIB.

5 Sparse matrix-vector multiplication

In this section, we present a parallel algorithm for the multiplication of a sparse matrix A
and a dense vector v,

u:= Av, (3)

which produces a dense vector u. The matrix A = (a;;, 0 < 7,5 < n) has size n X n
and the vectors u = (u;, 0 < ¢ < n) and v = (v;;, 0 < ¢ < n) have length n. We
assume that the matrix is distributed by a Cartesian distribution [6]. This means that
the processors are numbered by two-dimensional identifiers (s,), with 0 < s < ¢ and
0 <t < ¢, where p = ¢oq1 is the number of processors, and that there are mappings
oo : {0,1,...,n—1} —={0,1,...,q0— 1} and ¢; : {0,1,...,n—1} = {0,1,...,¢1 — 1}

such that matrix elements are distributed according to

ai; — processor(do(i), 61(j)). (4)

Note that the elements of a matrix row are mapped to processors with the same first identi-
fier coordinate and that the elements of a matrix column are mapped to processors with the
same second coordinate. This reflects the row-wise and column-wise nature of many linear
algebra algorithms and this often leads to reduced communication requirements in linear
algebra computations on distributed-memory parallel computers. This two-dimensional
numbering of processors originates in special purpose algorithms for mesh networks of
processors [3, 6]. In the present work, however, the two-dimensional numbering reflects
a property of the problem to be solved and not of any particular network topology: the
BSP-model is topology-independent. We assume that vectors are distributed in the same
manner as the diagonal of the matrix, i.e. according to

u; — processor(do(t), ¢1(7)). (5)
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Matrix A Order n Nonzeros nz(A)
hyp.2.10.1 1024 11264
hyp.2.10.2 1024 57344
hyp.2.10.3 1024 180224
hyp.3.10.1 59049 1240029
hyp.3.8.1 6561 111537
hyp.20.4.1 160000 1440000
hyp.30.3.1 27000 189000
hyp.50.3.1 125000 875000
hyp.50.2.1 2500 12500
hyp.100.2.1 10000 50000
hyp.200.2.1 40000 200000
dense.100 100 10000
dense.500 500 250000
random.1000.1000 1000 1002
random.1000.100 1000 10013
random.1000.10 1000 100000
hb.impcolb 59 312
hb.west0067 67 294
hb.fs5411 541 4285
hb.steam? 600 13760
hb.shl400 663 1712
hb.bp1600 822 4841
hb.jpwh991 991 6027
hb.shermanl 1000 3750
hb.sherman?2 1080 23094
hb.Ins3937 3937 25407
hb.gemat11 4929 33185
1p.1000 1000 66512
1p.6000 6000 321256
md.6000.20 6000 25054
md.6000.10 6000 155592
md.6000.8 6000 300928
mdr.6000.10.2000 6000 175176
mdr.6000.8.1000 6000 337380

Table 1: Matrix library MLIB
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This particular distribution scheme is flexible enough to accommodate many commonly
used distribution methods while it is also sufficiently restrictive to impose efficient com-
munication patterns. The flexibility is illustrated by the following two examples. The first
example concerns the two-dimensional Laplacian operator. One often uses domain parti-
tioning to split the corresponding discrete grid into blocks of grid points with the aim of
allocating blocks to processors. Since each grid point corresponds to one vector component,
this amounts to distributing the vector over the processors in a locality-preserving manner.
The complete row ¢ of the Laplacian matrix is usually allocated to the same processor as
vector component ¢. In our scheme, this can simply be achieved by taking ¢o = p and
¢1 = 1. Another example is the square grid distribution, which is the matrix distribution

defined by
¢o(2) = ¢1(i) = i mod o, (6)

where qo = ¢1 = /p. This distribution is optimal for linear algebra computations such
as dense LU decomposition [6]. This distribution is known under various names, such
as scattered square decomposition [13] and cyclic storage [20]. (The grid distribution of a
matrix should not be confused with discrete grids used to model e.g. PDE’s.) Our general
distribution scheme leaves much freedom in choosing particular mappings, and this can
be exploited to achieve a good load balance and to reduce communication, see the next
section. A detailed discussion and motivation of this distribution scheme in the context of
sparse matrix-vector multiplication is given in [3].

Figure 1 presents a parallel sparse matrix-vector multiplication algorithm for a BSP
computer. The algorithm consists of four supersteps: a fan-out of vector components to
the processors that need them; a multiplication of the local part of the sparse matrix
by the corresponding part of the input vector; a fan-in of partial sums; and, finally, the
computation of the local part of the output vector. The fan-out and the fan-in are h-
relations; the other supersteps are local computations. The communication requirements
are derived from the computations on the basis of the “need to know”. Matrix elements
are not communicated. The only communication needed is that of vector components and
of partial sums used to compute new vector components. The input and output vectors
are required to be distributed in the same manner. This facilitates repeated application
of the algorithm, e.g. in an iterative linear system solver. The sparsity of the matrix is
exploited in two ways: first, computations are performed only for nonzero elements; second,
communications are performed only if the matrix element that makes them necessary is
nonzero.

The notation of the algorithm should be interpreted as follows. The text given is the
program text for a processor (s,t), with 0 < s < ¢o and 0 < ¢ < ¢;. The execution of
the program depends on the parameters s and ¢. The for all-statements are implemented
using an efficient data structure, so that unnecessary tests (such as a;; # 0 or u; # 0) are
avoided. This implies that local vector components are easily accessible, and that local
matrix nonzeros are stored in a sparse data structure that provides row-wise access. This
data structure does not store rows that are locally empty. (A suitable data structure is
the collection of sparse row vectors [9], with pointers only to the rows that are locally
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{ A: nxn, distr(A) = ¢,
v : n, distr(v) = distr(diag(A)) }

{ fan-out }
forallj:0<j<n Ad¢o(j)=s AN ¢1(j) =t do
send v; to processors {(¢o(7),t): 0 <o <n A a;; # 0};

{ local sparse matrix-vector multiplication }
foralli:0<i<n A ¢go(t)=s A(Fr:0<r<n A ¢i(r)=1t A a;, #0) do
begin
uyy :=0;
for all]() S] <n A A¢1(j) =t A 5 7£0d0 Ut = uit—l—aijvj
end;

{ fan-in }
foralli:0<i<n A ¢o(¢t) =5 A ui # 0 do
send u;; to processor (s, ¢1(2));

{ summation of partial sums }
foralli:0<i<n A ¢ot) =5 A ¢1(¢) =t do

begin

u; = 0;

forallk:0<k<q@ A uik%()doui::ui—l—uik
end

{u: n, u=Av, distr(u) = distr(v)}

Figure 1: Sparse matrix-vector multiplication algorithm for processor (s,1)
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non-empty.) In our exposition, we assume that there are no accidental zeros caused by
numerical cancellations. The h-relations are described by including for each data element to
be communicated a “send”-statement in the program text of the source processor, together
with the address of the destination processor. It is assumed that processors are willing
to receive all the data that are sent to them in an h-relation. Because of this, there
is no need to include explicit “receive”-statements. All data are described using global
indices (in an implementation, it may be convenient to convert these to local indices).
In particular, communicated data are described in global terms, which is convenient for
making assertions in the program text about these data. The global description enables
us to make such assertions, irrespective of whether they belong to the text of sending or
receiving processors. The destination address of a message is determined by the sending
processor. For the fan-in, this is done on the basis of pre-computed information, based on
the sparsity pattern of A. In an implementation of the h-relations, the messages are packed
into a send-buffer by the sending processor, then communicated, and after that stored in
a receive-buffer and unpacked by the receiving processor.

The BSP cost of the sparse matrix-vector multiplication algorithm is determined as
follows. The first superstep is the fan-out, which is a communication superstep. Let
hy(s,1) be the number of components v; received by processor (s,t) and hs(s,t) the number
of components sent. Then define

hy = max{hy(s,t): 0<s<qgo ANO<1t<q}, (7)
hs = max{hs(s,t): 0<s<qgo AN 0O<t<q}, (8)
h = max{h;, hs}. 9)

The BSP cost of the first superstep is [ 4 gh, see Section 2.
The second superstep is the local sparse matrix-vector multiplication, which is a com-
putation superstep. Let

ri(f) =[{7: 0<j <n Aai; Z0 A ¢u(j) = ], (10)

be the number of nonzeros in processor part ¢ of matrix row 7, 0 < ¢ < n. Then the number
of floating point operations of processor (s,1) is

w(s,t) = ”Z—: (2r;i(t) — 1). (11)
1 =0
do() = s, 1y

In this operation count, we include only non-trivial floating point operations; we exclude

(t)>0

trivial operations involving zero operands. The maximum amount of work of a processor
is

w=max{w(s,t): 0<s<go AN0<t<q}. (12)
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The BSP cost of the second superstep is [ + w, see Section 2.

The third superstep is similar to the first, except that partial sums u;, are communi-
cated, instead of vector components v;. The fourth superstep is similar to the second; its
cost is determined as follows. Let

Si:Hk: O§k<q1/\uik7é0}|, (13)

be the number of nonzero partial sums produced by matrix row ¢, 0 < ¢ < n. Then the
number of floating point operations of processor (s,t) is

w(s,t) = ”Z—: (s; —1). (14)
1 =10
do(1) = s, s; >0

The total BSP cost of the algorithm is obtained by adding the costs of the four supersteps.
We denote the BSP cost for p processors by T'(p).

The BSP cost as defined above can be used to compare the efficiency of different
distributions of the same matrix. To obtain a meaningful measure for comparison of
different matrices it is necessary to normalise the cost. We define the normalised BSP cost

C(p) by

Cr) ="p 2 (15)

where T is the cost of the sequential algorithm. This sequential cost is defined by

n—1
Tseq - Z (27"2 - 1)7 (16)
1 =10
r; >0
where
ri=Hj: 0<j<n A ay# 0}, (17)

for 0 < ¢ < n. In other words, the normalised BSP cost C(p) of an algorithm is the
ratio between the time T'(p) of that algorithm on a BSP computer and the time Ty, of a
perfectly parallelised sequential algorithm. The normalised BSP cost of an algorithm is an
expression of the form a + bg + ¢l, where a, b, and ¢ are scalar values which depend on the
algorithm, on the number of processors, and on the chosen data distribution. The scalars
g and [ are parameters that characterise the hardware, see Section 2. The normalised BSP
cost of an ideal parallel algorithm is 1 4 0¢ + 01.

In summary, we have presented a simple methodology that leads to a useful measure
of the efficiency of BSP algorithms and distributions. This measure, the normalised BSP
cost C'(p), can, of course, be used to distinguish good algorithms and distributions from
bad ones, but also to identify easy and hard problems for BSP computers.

16



6 Results for structure independent distributions

We have implemented a program that computes the normalised BSP cost a + bg + ¢l of
the sparse matrix-vector multiplication algorithm of Fig. 1 for a given sparse matrix and a
given data distribution. In this section, we use this program to obtain experimental results
on the performance of different data distribution schemes in a wide range of problem areas.
Our cost statistics can be used to predict the computing time on an actual BSP computer,
provided that the ¢ and [ parameters of the machine are available. For our experiments,
we fix the number of processors at p = 100. The problem size, however, may vary, so that
we are still able to investigate scalability.

Table 2 presents the normalised computing cost a for seven different data distributions
and for all sparse matrices from MLIB, cf. Table 1. Table 3 presents the normalised com-
munication cost b for the different data distributions and the normalised synchronisation
cost ¢ for a distribution that requires all the four supersteps of the algorithm to be present.
(For a row distribution, with ¢; = 1, there is no need for a fan-in and a summation of
partial sums, so that the number of supersteps becomes two and ¢ is halved.) The value
of ¢ depends only on the number of supersteps, the number of processors, and the amount
of work of the sequential algorithm, but in general not on the chosen distribution. For all
distributions, the vectors u and v are distributed in the same manner as the diagonal of
the matrix. All distributions, except “PRAM?”, are Cartesian, cf. eqn. 4.

The “PRAM?” distribution is obtained by assigning nonzero elements randomly to the
processors. This distribution is non-Cartesian, since in general there do not exist mappings
oo and ¢q that satisfy eqn. 4. The “PRAM” distribution is included in the table, because
it simulates the use of a BSP machine in PRAM mode, with randomised allocation of
data by hashing. This mode of operation may be advantageous on machines with a low
value of ¢ [30]. In Tables 2 and 3, following the column of the “PRAM” distribution,
there are three columns with results for random distributions. The random distribution
with ¢o = 100 and ¢; = 1 assigns matrix rows ¢ randomly to processors (¢o(¢),0), with
0 < ¢o(2) < 100. The random distribution with ¢o = ¢1 = 10 assigns an identifier ¢o(7),
with 0 < ¢o(¢) < 10, randomly to each matrix row ¢, and, independently, an identifier ¢;(y),
with 0 < ¢4(j) < 10, to each matrix column j. An equalised random distribution of rows is
similar to a random distribution, but it assigns the same number of rows to each identifier,
if n mod ¢y = 0. Otherwise, the number of rows will differ by at most one. This procedure
is equivalent to randomly permuting the rows and then distributing them according to the
block distribution ¢o(z) = ¢ div ¢, where { = n/qy and it is assumed that n mod ¢y = 0.
This random permutation procedure was proposed by Ogielski and Aiello [26] for use in a
parallel algorithm for sparse matrix-vector multiplication. Ogielski and Aiello also present a
probabilistic analysis that shows the advantages of this matrix distribution. (Our matrix-
vector multiplication algorithm differs from theirs in that we reduce communication by
exploiting sparsity and by choosing a vector distribution that matches the distribution of
the matrix diagonal. Their algorithm has the same communication requirements as in the
case of a dense matrix. Their vector distribution is based on a lexicographic ordering, which
has no relation to the matrix distribution.) The cost results for the random distributions are
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row distr. PRAM random random eq. random grid block diag.
q 100 10 10 10 10 10
column distr. random eq. random grid  grid

" 1 10 10 10 10 10
hyp.2.10.1 1.44 1.74 1.58 141 426 1.07 1.26
hyp.2.10.2 1.34 1.72 1.39 1.16 243 1.03 1.15
hyp.2.10.3 1.20 1.74 1.33 .07 174 1.03 1.12
hyp.3.10.1 1.04 1.08 1.05 1.04 3.21  1.01 1.02
hyp.3.8.1 1.14 1.24 1.16 .13 352 1.02 1.08
hyp.20.4.1 1.02 1.03 1.04 1.03 882 1.00 1.02
hyp.30.3.1 1.08 1.13 1.17 1.09 846 1.00 1.05
hyp.50.3.1 1.03 1.05 1.05 1.04 846 1.00 1.02
hyp.50.2.1 1.29 1.43 1.39 1.33  7.78 1.00 1.19
hyp.100.2.1 1.14 1.20 1.17 .16 7.78 1.00 1.10
hyp.200.2.1 1.06 1.10 1.09 1.08 7.78 1.00 1.05
dense.100 2.14 4.03 2.41 .12 141  1.00 1.00
dense.500 1.12 2.12 1.48 .01  1.08 1.00 1.00
random.1000.1000 2.10 2.32 2.30 2.18 421 1.88 2.13
random.1000.100 1.48 1.77 1.61 146  4.00 1.29 1.28
random.1000.10 1.28 1.73 1.36 .11 149  1.09 1.08
hb.impcolb 4.14 5.88 5.11 4.06 566 4.43 3.84
hb.west0067 3.90 5.33 4.70 3.74 729 3.84 342
hb.fsh411 1.69 2.12 2.71 2,50  6.41 242 224
hb.steam2 1.55 2.02 1.68 140 311 111 1.22
hb.sh1400 4.98 31.52 5.05 4.74 699 438 4.74
hb.bp1600 2.24 7.73 2.32 215 4.64 234 211
hb.jpwh991 1.53 1.86 1.69 1.68 552 148 1.39
hb.shermanl 1.61 1.93 1.80 1.68 11.29 1.85 1.52
hb.sherman2 1.47 1.84 1.51 .34  3.79 127 1.27
hb.Ins3937 1.25 1.25 1.31 1.27 461 162 1.21
hb.gemat11 1.23 1.33 1.26 1.24 430 1.28 1.18
1p.1000 1.37 2.08 1.49 .34 1.72 193 1.31
1p.6000 1.14 1.43 1.18 .15 1.81 142 1.15
md.6000.20 1.21 1.31 1.26 1.25 578 1.19 1.18
md.6000.10 1.14 1.26 1.15 .11 283 1.07 1.07
md.6000.8 1.11 1.26 1.11 1.08 2.04 1.05 1.05
mdr.6000.10.2000 1.13 1.25 1.14 .11 271 1.06 1.06
mdr.6000.8.1000 1.11 1.26 1.11 1.07 191 1.05 1.04
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Communication (in ¢) Synch.
(in 1)
row distr. PRAM random random eq. random grid block diag.
q 100 10 10 10 10 10 > 1
column distr. random eq. random grid = grid
" 1 10 10 10 10 10 > 1
hyp.2.10.1 1.55 0.79 1.04 099 461 046 0.68 0.0186
hyp.2.10.2 1.31 0.66 0.30 029 159 0.16 0.17 0.0035
hyp.2.10.3 0.81 0.41 0.10 0.09 052 0.06 0.06 0.0011
hyp.3.10.1 0.95 0.48 0.42 042 3.65 0.31 0.39 0.0002
hyp.3.8.1 1.10 0.55 0.58 0.58 439 0.39 0.47 0.0018
hyp.20.4.1 0.93 0.47 0.64 0.64 235 0.18 0.61 0.0001
hyp.30.3.1 1.01 0.51 0.85 0.74 3.08 0.21 0.68 0.0011
hyp.50.3.1 0.94 0.47 0.69 0.69 3.08 0.19 0.67 0.0002
hyp.50.2.1 1.24 0.62 1.06 1.02 444  0.27 0.84 0.0178
hyp.100.2.1 1.04 0.52 0.86 085 444 0.24 0.77 0.0044
hyp.200.2.1 0.96 0.48 0.77 077 444 0.23 0.73 0.0011
dense.100 2.57 1.26 0.38 0.33 091 0.09 0.09 0.0201
dense.500 0.42 0.21 0.04 0.04 0.18 0.02 0.02 0.0008
random.1000.1000 3.27 1.68 3.02 2.89 14.60 226 2.54 0.3010
random.1000.100 1.77 0.89 1.14 1.10  6.37  0.74  0.73  0.0210
random.1000.10 1.10 0.54 0.17 0.16 091 0.09 0.09 0.0020
hb.impcolb 7.06 3.83 4.70 4.40 10.80 1.77 2.30 0.7080
hb.west0067 6.28 3.20 4.66 4.23 11.71  1.92 246 0.7678
hb.fsh411 2.55 1.58 1.40 1.29  6.96 1.17 1.03 0.0498
hb.steam2 1.75 0.88 0.78 0.74 398 0.25 0.40 0.0149
hb.sh1400 5.24 15.37 2.79 2.64 10.07 243 249 0.1449
hb.bp1600 2.64 3.68 1.46 137 752 095 1.10 0.0451
hb.jpwh991 1.62 0.82 1.25 1.22 6.79 0.71  0.88 0.0361
hb.shermanl 1.64 0.82 1.37 1.33  3.39 057 1.04 0.0615
hb.sherman2 1.55 0.78 0.64 0.62 391 0.27 0.42 0.0089
hb.Ins3937 1.26 0.64 0.92 091 737 084 0.76 0.0085
hb.gemat11 1.38 0.70 0.96 095 7.64 0.58 0.80 0.0065
1p.1000 1.22 0.60 0.21 0.20 1.17 0.11 0.14 0.0030
1p.6000 0.88 0.44 0.17 0.17 136 0.11 0.14 0.0006
md.6000.20 1.11 0.56 0.92 091 6.70 0.80 0.80 0.0091
md.6000.10 1.09 0.54 0.43 043 327 034 0.34 0.0013
md.6000.8 0.97 0.49 0.24 024 1.80 0.18 0.18 0.0007
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mdr.6000.10.2000 1.07 0.53 0.39 0.39 296 030 0.30 0.0012
mdr.6000.8.1000 0.95 0.47 0.21 021 1.61 0.16 0.16 0.0006

Table 3: Communication and synchronisation cost for data distributions with p = 100



the averages over 100 runs of the random distribution program. The standard deviations
are small, so that we consider the results to be reliable. The random distributions were
generated by using the pseudo-random number generator ran2 from [28].

Tables 2 and 3 also present results for two deterministic distributions: the grid/grid
distribution, which is the square grid distribution of eqn. 6, and the block/grid distribution,
which is defined for the general case by

f= H Cn-= H = nmodg, (13)

do o
N zdiv€1 ifi<7"€1,
Poli) = { r (i =) divily ifi >, (19)
$1(7) = imod ¢y, for0 <@ < n. (20)

This distribution allocates rows in consecutive blocks to processors, and columns in a cyclic
fashion. It was proposed as a suitable distribution for iterative linear system solvers [3],
because it distributes the matrix diagonal over all the processors so that it can easily
be matched with a vector distribution. (The square grid distribution does not have this
advantage, because it distributes the diagonal over only |/p processors.) Finally, Tables 2
and 3 present a column with the results for the “diagonal” distribution. This distribution
is determined by taking an equalised random distribution of the matrix diagonal over
the processors. Note that in our distribution scheme, for a given choice of ¢y and ¢y, the
distribution of the matrix diagonal fully determines the distribution of the complete matrix
and that of the vectors, see eqns 4 and 5.

The results of Table 2 show that it is relatively easy to obtain a good load balance,
i.e. a ~ 1, and hence a minimal computation cost, except for very small matrices such
as dense.100, hb.impcolb, and hb.west0067, and for extremely sparse ones such as
hb.sh1400. Most distributions lead to a normalised computation cost of between one
and two. The exception is the square grid distribution, which leads to excessive workloads
on diagonal processors (s,s) in the summation of the partial sums, because these are the
only processors that participate in this superstep. (Note that this is directly related to
the heavy communication obligations of the diagonal processors in the fan-in, since these
processors are the only receivers of data.) A breakdown of the total BSP cost into the
contributions of the separate supersteps confirms this analysis. Furthermore, it shows that
the load balance of the grid distribution in the local sparse matrix-vector multiplication is
about the same as that of the other distributions, except in the case of matrices with an
unfavourable nonzero structure. This may occur if there is a correlation between the row
and the column nonzero structures, resulting e.g. in diagonals of nonzeros. This may lead
to a bad load balance for certain numbers of processors. This phenomenon can be observed
for some of the hypercube matrices and the hb.sherman matrices. Furthermore, Table 2
shows that equalised random distributions lead to a better load balance than standard ran-
dom distributions. In general, distributions that impose constraints balance the workload
better. For example, the “PRAM” distribution does not impose any constraints except for
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an identical distribution of matrix diagonal and vectors. It does not perform very well on
small problems and even for larger problems there are superior distributions, such as the
“diagonal” distribution, which imposes an equal division of the matrix diagonal over the
processors and hence causes a good load balance in the summation of partial sums.

The results of Table 3 show that it is quite hard to achieve a low communication cost
for general sparse matrices, i.e. if one cannot exploit any structural knowledge about the
matrix. Even for the best structure independent distributions, block/grid and “diagonal”,
one needs a BSP computer with ¢ < 10 to solve most problems efficiently. The best
performance is obtained by square distributions, i.e. distributions with ¢o = ¢1 = /p.
This leads to a factor of \/p/2 communication reduction for dense [3] and general sparse
matrices, compared to a row distribution. This is due to a /p-fold increase in the reuse of
communicated data, at the cost of an extra communication phase, the fan-in. (A similar
analysis can be performed for the BSP model.) This effect can most clearly be seen
by comparing the random distribution for ¢o = 100 and ¢; = 1 with the random /random
distribution for ¢o = ¢; = 10, in particular for relatively dense matrices such as hyp.2.10.3,
dense.500, random.1000.10, md.6000.8, and md.6000.8.1000. On the other hand, for
very sparse matrices such as random.1000.1000 and md.6000.2, the introduction of the
fan-in for ¢ > 1 doubles the communication, without much compensation by reuse of
data. The “PRAM” distribution performs poorly, because nearly all the vector data must
be fetched from non-local memories. This distribution is viable only if ¢ is very close to
one. Again, the square grid distribution is the worst distribution: the diagonal processors
are the only ones that send data in the fan-out, and they are also the only ones that receive
data in the fan-in; this may degrade performance by a factor of |/p. The best distributions
are the block/grid distribution and the “diagonal” distribution. They perform equally well
for problems that have a random nature, such as the random, md, and mdr matrices. For
problems that have some local structure that is reflected in the matrix, the block/grid
distribution is able to discover part of this structure and to exploit it, to some extent. This
can be observed for the hyp matrices, hb.steam2, and the hb.sherman matrices, which
are all derived from multidimensional grids. Obviously, the random construction of the
“diagonal” distribution prevents discovery of any structure. In a few cases, hb.fs5411 and
hb.1ns3937, the block/grid distribution is outperformed by the “diagonal” one; this may
be caused by an unfavourable structure that does not suit the block/grid distribution.

The synchronisation cost of the sparse matrix-vector multiplication is low, because it
has at most four supersteps. The normalised synchronisation cost is

N 4 _2p
T onz(A)p T nz(A)

c

(21)

This implies that problems with more than 200,000 nonzeros can be solved efficiently on a
100-processor BSP computer with [ < 1000.
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7 Results for structure dependent distributions

Table 4 shows the normalised communication cost for hypercube matrices of distance one
and dimension d = 2,3, 4, distributed by domain partitioning of the corresponding hyper-
cube graph. The radix r is the number of points in each dimension, and P, 0 < k < d,
is the number of subdomains into which dimension k is split. For example, the first line
of the table gives the cost for a 50 x 50 grid that is split into 50 x 2 blocks, each of size
1 x 25. In all cases, we choose ¢y = p and ¢; = 1, because we found no advantage in other
choices of ¢o and ¢; for domain distribution of hypercube matrices of distance one. The
distribution of the grid points and hence of the vector components uniquely determines
the distribution of the matrix.

The results of Table 4 show that the lowest communication cost for separate dimension
splitting is achieved if the resulting blocks are cubic. This is an immediate consequence of
the surface-to-volume effect, where the communication across the block boundaries grows
as the number of points near the surface, and the computation as the number of points
within the volume of the block. In two dimensions, partitioning the grid into square blocks
of size r/,/p x r/,/p reduces the communication by a factor of about ,/p/2, compared to
splitting it into strips of size r/p x r. This can be seen for example in the reduction by a
factor of five for the 200 x 200 hypercube grid, comparing the cost for Fy = 100, P, = 1
with that for £y = 10, P, = 10. The surface-to-volume ratio for cubes in dimension d is
2dp'/? /. For each grid point, 4d + 1 floating point operations must be performed. The
value h of the h-relation to be realised equals the number of exterior boundary points,
because all the values of these points must be received. By symmetry, the same argument
holds for sending. Therefore, the normalised communication cost for cubic partitioning is

del/d pl/d
(4d +1)r ~ 20
This formula explains the results for d = 2 and Py = P, = 10 in Table 4. It implies for
instance that two-dimensional grid problems with more than 45 grid points per direction
can be solved efficiently on 100-processor BSP computers with ¢ < 10. This indicates that

PDE solving on such a BSP computer is feasible, already for relatively small problem sizes.
It is possible to improve the distribution further, by partitioning the domain along

(22)

specific hyperplanes, not necessarily parallel to the coordinate hyperplanes. (Note that
this implies that the dimensions are not split up separately.) An example is the case of the
two-dimensional hypercube grid, which can be split into digital spheres of the form

Br(a) = {x € Z*: ||x —all; < R}, (23)

where the norm in dimension d is defined by ||x||; = 32924 |z:|. In other words, all grid
points with a Manhattan distance less than or equal to R to the centre a of such a sphere
are allocated to the same processor. The spheres wrap around the boundaries of the grid.
Figure 2 illustrates this distribution.

For an infinite grid, the centers of the spheres form a lattice, consisting of all integer
linear combinations of the vectors vo = (R4 1, R) and vi = (=R, R 4+ 1). Together
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radixr dm.d P, P P, P; comm.

(in g)
50 2 50 2 0.231
50 2 10 10 0.089
100 2 100 1 0.222
100 2 50 2 0.116
100 2 10 10 0.044
200 2 100 1 0.111
200 2 50 2 0.058
200 2 10 10 0.022
10 320 5 1 0.096
10 3 10 10 1 0.077
10 3 10 5 2 0.065
10 3 5 5 4 0.054
20 420 5 1 1 0.147
20 4 10 10 1 1 0118
20 410 5 2 1 0.100
20 45 5 4 1 0.082
20 45 5 2 2 0.082

Table 4: Communication cost for low-dimensional hypercube matrices with domain parti-
tioning for p = 100

the spheres form a tiling of the plane Z%. The advantage of tile partitioning over block
partitioning is that there are a factor of v/2 less points in the boundary layer, for sufficiently
large partition sizes. Therefore, the normalised communication cost b is reduced by a factor
of V2. For the example of Fig. 2, the cost is b ~ 0.071, compared to b ~ 0.088 for the
corresponding block partitioning. Fig. 3 shows the normalised communication cost for
the two distributions as a function of the number of grid points per processor. The tile
distribution is clearly superior, showing for instance a reduction by a factor of 1.34 for 221
grid points per processor. Note that problems of this size can be solved efficiently on BSP
computers with ¢ < 50, provided the tile distribution is used.

A complication that should be mentioned is that there may be a mismatch between
the number of processors and the size of the grid. A perfect block distribution is possible
only for very specific (square) numbers of grid points per processor, and similarly a perfect
tile distribution is possible only for 2R* + 2R + 1 grid points per processor, with R a non-
negative integer. In the non-ideal case, a good distribution can still be obtained by splitting
the plane along diagonal lines at suitable distances and assigning grid points accordingly.

Tabel 5 shows the BSP cost for various distributions of the molecular dynamics matrix
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Figure 2: Partitioning of a 25 x 25 hypercube grid into 25 digital spheres of radius R = 3

md.6000.10. This matrix represents a three-dimensional universe of 6000 particles, con-
tained in a box of size 1 x 1 x 1 with periodic boundary conditions. Particles interact if
their distance is less than r. = 0.1. For convenience, the upper part of the table repeats
the cost results for a few structure independent distributions from Tables 2 and 3. The
lower part of the table presents the cost of structure dependent distributions; these exploit
additional knowledge about the particle positions to assign particles to subdomains and
hence to processors.

The results for the structure independent distributions show that they achieve a good
load balance but that they suffer from large amounts of communication. Even the best
distributions of this type, block/grid and “diagonal”, need BSP computers with a low value
of g, ¢ < 3, to prevent communication dominance. One can view these distributions as
being based on so-called particle parallelism. Another approach is to distribute particles
by using geometric parallelism, see [12] for an extensive discussion. This leads to structure
dependent distributions as given in the lower part of the table. These distributions have
lower communication requirements, but the price to be paid is a possible deterioration of
the load balance, due to an inhomogeneous particle density.

Table 5 indicates that cubic subdomains are optimal among the orthogonal partitioning
schemes, i.e., those schemes that split each dimension separately. Note that for non-cubic
subdomains such as slabs or piles, choosing a square Cartesian distribution (with ¢o = ¢1)
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distribution go ¢ comp. comm. synch.

(ing) (in0)

PRAM 1.14 1.087  0.0013
random row 100 1 1.26 0.541  0.0007
eq. random row and column 10 10 1.11 0.426  0.0013
block/grid 10 10 1.07 0.338  0.0013
diagonal 10 10 1.07 0.337  0.0013
slabs of size 0.01 x 1.0 x 1.0 100 1 1.34 0.320  0.0007
slabs of size 0.01 x 1.0 x 1.0 10 10 1.28 0.259  0.0013
piles of size 0.1 x 0.1 x 1.0 100 1 1.41 0.108  0.0007
piles of size 0.1 x 0.1 x 1.0 10 10 1.41 0.081  0.0013

near-cubes of size 0.2 x 0.2 x 0.25 100 1 1.54 0.075 0.0007
near-cubes of size 0.2 x 0.2 x 0.25 10 10 1.54 0.087 0.0013

Table 5: Normalised BSP cost for distributions with p = 100 of the matrix md.6000.10

improves the performance significantly. This is also done by Hendrickson and Plimpton
[18] in the case of particle parallelism. For cubic subdomains, communication requirements
are already reduced to such a low level, that this procedure, based on aggregation of partial
sums, does not lead to further improvement. Note that the cut-off radius r. = 0.1 of this
matrix is quite large compared to the subdomain size. For partioning into slabs this implies
that particle information must be sent to 20 other processors (so that it pays to aggregate
information); for piles it must be sent to 4-8 other processors, depending on the position;
and for near-cubes to 2-6 processors. (In our discussion we ignore the symmetry of particle
interactions, which may be used to reduce the computation and the communication by a
factor of two.)

It is possible to further improve the distribution by allowing cuts of the domain in
any direction. This can be done efficiently by taking a suitable sphere packing lattice [7]
and assigning particles to the nearest centre of a sphere. (Sphere packing lattices have
been used in other areas of scientific computing; for instance, it has been proposed [5]
to use them to decrease anisotropy in pseudo-spectral PDE solving on multidimensional
grids.) This method splits the universe into Voronoi cells, each of which corresponds to
a processor. Figure 4 shows the communication cost for the matrix md.6000.20, which
represents 6000 particles with a cut-off radius of 0.05. For the cube distribution, the
universe is split into cubes of size p='/3 x p~1/% x p=1/3. This perfect splitting is, of course,
only possible if the number of processors p is a cube. For the sphere packing distribution,
we used a body-centred-cubic (bcc) lattice, defined by three basis vectors vo = (2,0,0),
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Figure 4: Communication cost comparison between cube distribution and
bce sphere packing distribution for molecular dynamics matrix md.6000.20
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vy = (0,2,0), and v = (1,1,1). The lattice is scaled by a factor A = (p/Z)_l/S. This
leads to a perfect splitting of the box if p equals two times a cube. The figure shows that
the bee distribution is slightly superior. (Note that this figure is based on experiments for
one randomly generated md matrix and not on the average for a set of randomly generated
matrices.) We chose the bec lattice for this experiment because it has been conjectured that
it solves the sphere covering problem. Our results indicate that sphere packing techniques
may be useful in distributing physical domains over the processor of a parallel computer.
This holds in particular for a BSP computer, because it liberates us from considerations of
network locality. Therefore, there is no need for rigid partitioning schemes that produce
highly regular domains. Further investigation of this issue is needed; for instance, there
may exist better lattices for our purpose. Furthermore, to be useful in practice, finite-size
effects must be taken care of.

& Conclusion

The BSP model provides a new theoretical foundation for the development of scalable
parallel computing systems. It offers a robust framework within which we can unify the
various classes of parallel computers which are being produced (distributed memory archi-
tectures, shared memory multiprocessors, networks of workstations). The model permits
and encourages the development of efficient parallel algorithms and programs which are
both scalable and portable.

In this paper we provide the first theoretical and experimental analysis of the efficiency
with which a wide range of important scientific computations can be performed on bulk
synchronous architectures. The computations considered include the iterative solution of
sparse linear systems, molecular dynamics, linear programming, and the solution of partial
differential equations on a multidimensional discrete grid.

Our analysis shows that the exploitation of knowledge about the underlying structure
of the problem is the key to achieving efficient parallel computations on a BSP computer.
We have shown that grid computations and molecular dynamics simulations are feasible on
BSP computers with realistic values for the machine characteristics ¢ and [. Therefore, the
BSP computers that can be built in the foreseeable future will be able to solve problems
from several important problem classes. Highly irregular scientific computing problems
without a known structure are much harder to solve on BSP computers. We have intro-
duced two distributions, block/grid and “diagonal”, see Section 6, that perform reasonably
well on a variety of such problems. Our results show that structure independent parallel
computations require extremely high communication performance and demand values of
g that at present are difficult to achieve. This holds even more for the PRAM approach,
which completely ignores the problem structure.

Providing a library of parallel algorithms to solve general sparse problems is a first step
towards efficient parallel scientific computing, but to make further progress, this should be
combined with developing algorithms that find structure in the problems, see e.g. [27] and
[17]. The BSP model facilitates developing such algorithms, because it focuses attention
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on the partitioning of the problem to be solved and not on the mapping to any particular
hardware.

The initial techniques and results described here show clearly that the network indepen-
dent approach of the BSP model gives rise to a whole range of interesting new theoretical
questions concerning load balancing, communication complexity, and domain partitioning
for parallel scientific computing. In contrast to the many network specific (e.g. hypercube,
mesh, or butterfly) process mapping and domain decomposition methods which were de-
veloped over the last decade, the techniques and results described here have an advantage
in that they are of relevance to any parallel computing system.
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