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AbstractBulk synchronous parallel architectures o�er the prospect of achieving both scalableparallel performance and architecture independent parallel software. They providea robust model on which to base the future development of general purpose parallelcomputing systems. In this paper we theoretically and experimentally analyse thee�ciency with which a wide range of important scienti�c computations can be per-formed on bulk synchronous architectures. The computations considered include theiterative solution of sparse linear systems, molecular dynamics, linear programming,and the solution of partial di�erential equations on a multidimensional discrete grid.These computations are analysed in a uniform manner by formulating their basicprocedures as sparse matrix-vector multiplications.
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1 IntroductionBulk synchronous parallel (BSP) architectures [30] o�er the prospect of achieving bothscalable parallel performance and architecture independent parallel software. They pro-vide a robust model on which to base the future development of general purpose parallelcomputing systems. In this paper, we theoretically and experimentally analyse the e�-ciency with which a wide range of important scienti�c computations can be performed onBSP architectures. The computations considered include the iterative solution of sparselinear systems, molecular dynamics, linear programming, and the solution of partial di�er-ential equations on a discrete grid. We analyse these computations in a uniform mannerby formulating their basic procedures as a sparse matrix-vector multiplication. In ouranalysis, we introduce the normalised BSP cost of an algorithm as an expression of theform a + bg + cl, where a; b; and c are scalar values which depend on the algorithm, onthe number of processors, and on the chosen data distribution. The scalars g and l areparameters that characterise the hardware: g � 1 is the communication throughput ratioand l � 1 is the network periodicity. An ideal parallel algorithm has the values a = 1,b = 0, and c = 0; an algorithm with load imbalance has a value a > 1; an algorithmwith communication overhead has a value b > 0; and an algorithm with synchronisationoverhead has a value c > 0.As an example, consider the execution of a �ve-point Laplacian �nite di�erence operatoron a two-dimensional toroidal grid. This operator computes new values at a grid pointusing the old values at the grid point and its direct neighbours to the north, east, south, andwest. Our BSP algorithm for this computation has a normalised cost on 100 processors of1:0+0:022g+0:00056l for a grid of size 200�200. This low cost is achieved by distributingthe grid by orthogonal domain partitioning over the processors, assigning a square block of20�20 grid points to each processor. The resulting cost value implies that this computationcan be performed e�ciently on BSP computers with g � b�1 � 45 and l � c�1 � 1800.In the design of e�cient BSP algorithms, it is important to �nd a good data distribu-tion. In fact, the choice of a data distribution is one of the main means of in
uencing theperformance of the algorithm. In the BSP model, the partitioning of the data is a cru-cial issue, as opposed to the mapping of the resulting partitions to particular processors,which is irrelevant. This leads to an emphasis on problem dependent techniques of datapartitioning, instead of on hardware dependent techniques that take network topologiesinto account. The algorithm designer who is liberated from such hardware considerationsmay concentrate on exploiting the essential features of the problem. In our case, thisleads, surprisingly, to the application of sphere packing techniques to reduce communica-tion in molecular dynamics simulations and to the application of tiling techniques to reducecommunication in discrete grid calculations.We present experimental results for the multiplication u := Av of a sparse matrix Aand a vector v. The experiments are performed on the sparse matrix test library MLIB,which we developed with the aim of capturing the essence of a range of important scienti�ccomputations in the uniform format of a sparse matrix. The library contains matriceswith a regular structure, such as the adjacency matrix of a multidimensional toroidal grid,3



and also matrices with an irregular structure, such as random sparse matrices. Further-more, the library contains matrices with an underlying, but hidden structure (given assupplementary information), such as the matrices that describe the short-range interactionbetween particles in a molecular dynamics simulation.Our BSP algorithm for sparse matrix-vector multiplication imposes the constraint thatthe vectors u and v and the diagonal of A are distributed in the same way and that thematrix A is distributed in a so-called Cartesian manner. This means that the p processorsare numbered by two-dimensional Cartesian coordinates (s; t), and that each matrix rowis assigned to a set of processors with the same �rst coordinate s, and each matrix columnto a set of processors with the same second coordinate t. This distribution leads to asimple sparse matrix-vector multiplication algorithm. Within this scheme, various choicesare possible. For general sparse matrices, with no known structure, a good choice isto distribute the matrix diagonal randomly over the processors, taking care that eachprocessor receives an equal number of diagonal elements, and using a square Cartesianprocessor numbering, i.e. with 0 � s; t < pp. For matrices with a known structure, thismethod can be greatly improved upon by using techniques such as spatial decompositionof the corresponding physical domain. We present several new techniques based on spatialdecomposition and demonstrate their practical utility by numerical experiments.2 The BSP modelFor a detailed account of the BSP model, and of the various routing and hashing resultswhich can be obtained for it, the reader is referred to [30] (see also [31]). We concentratehere on presenting a view of how a bulk synchronous parallel architecture would be de-scribed, and how it would be used. A bulk synchronous parallel (BSP) computer consistsof: a set of processor-memory pairs; a communications network that delivers messages ina point-to-point manner; and a mechanism for the e�cient barrier synchronisation of all,or a subset, of the processors. There are no specialised broadcasting or combining facil-ities. If we de�ne a time step to be the time required for a single local operation, i.e. abasic operation such as addition or multiplication on locally held data values, then theperformance of any BSP computer can be characterised by the following four parameters:p = number of processorss = processor speed, i.e. number of time steps per secondl = synchronisation periodicity, i.e. minimal number of time steps betweensuccessive synchronisation operationsg = (total number of local operations performed by all processors in one second) /(total number of words delivered by the communications network in one second)The parameter l is related to the network latency, i.e. to the time required for a non-localmemory access in a situation of continuous message tra�c. The parameter g correspondsto the frequency with which non-local memory accesses can be made; in a machine with ahigher value of g one must make non-local memory accesses less frequently. Let the term4



\realising an h-relation" denote the general packet routing problem where each processorhas at most h packets to send to various processors in the network, and where each processoris also due to receive at most h packets from other processors. Here, a packet is one wordof information, such as a real number or an integer. The g parameter of a BSP computeris based on the time required to realise h-relations in a situation of continuous messagetra�c; g is the value such that an h-relation can be performed in gh time steps.A BSP computer operates in the following way. A computation consists of a sequenceof parallel supersteps, where each superstep is a sequence of steps, followed by a barriersynchronisation at which point any memory accesses take e�ect. During a superstep, eachprocessor has to carry out a set of programs or threads, and it can do the following: (i)perform a number of computation steps, from its set of threads, on values held locally atthe start of the superstep; (ii) send and receive a number of messages corresponding tonon-local read and write requests. For simplicity, we assume in this paper that a superstepeither performs steps of (i), or steps of (ii), but not of both.The BSP computer is a two-level memory model [24], i.e. each processor has its ownphysically local memory module; all other memory is non-local, and is accessible in auniformly e�cient way. By uniformly e�cient, we mean that the time taken for a proces-sor to read from, or write to, a non-local memory element in another processor-memorypair should be independent of which physical memory module the value is held in. Thealgorithm designer and the programmer should not be aware of any hierarchical memoryorganisation based on network locality in the particular physical interconnect structure cur-rently used in the communications network, as in special purpose parallel computing [23].Instead, performance of the communications network should be described only in termsof its global properties, e.g. the maximum time required to perform a non-local memoryoperation, and the maximum number of such operations which can simultaneously exist inthe network at any time.The complexity of a superstep S in a BSP algorithm is determined as follows. Let thework w be the maximum number of local computation steps executed by any processorduring S. Let hs be the maximum number of messages sent by any processor during S,and hr be the maximum number of messages received by any processor during S. In theoriginal BSP model, the cost of S is maxfl; w; ghs; ghrg time steps. (An alternative [14]is to charge maxfl; w + ghs; w + ghrg time steps for superstep S.) In this paper, we willcharge l+w+ g �maxfhs; hrg time steps for S. The cost of a BSP algorithm is simply thesum of the costs of its supersteps. Di�erent cost de�nitions re
ect di�erent assumptionsabout the implementation of supersteps, and in particular about which operations can bedone in parallel and which ones must be done in sequence. The di�erence is not crucial;for instance, our cost is between one and three times the cost in the original model. Ourchoice for charging the cost of a superstep is motivated by its convenience in obtaininga simple numeric expression for the cost of an algorithm for a particular problem on aBSP computer with unknown characteristic parameters l and g. Using our de�nition, oneobtains a simple expression of the form a + bg + cl for the cost of an algorithm, wherea; b; and c are numeric constants. Note that in this case the original de�nition does notnecessarily lead to a simple expression. 5



In designing algorithms for a BSP computer with a high g value, we need to achieve ameasure of communication slackness by exploiting thread locality in the two-level memory,i.e. we must ensure that for every non-local memory access we request, we are able toperform approximately g operations on local data. To achieve architecture independencein the BSP model, it is therefore appropriate to design parallel algorithms and programswhich are parameterised not only by n, the size of the problem, and p, the number ofprocessors, but also by l and g. This can indeed be done, because the network performanceof a BSP computer is captured in global terms using the values l and g. (A language thatsupports this style of programming is GL [25].) The resulting algorithms can thereforebe e�ciently implemented on a range of BSP architectures with widely di�ering l and gvalues.A systematic study of direct bulk synchronous algorithms remains to be done. Some�rst steps in this direction are described in [14, 30]. This paper signi�cantly extends thatwork by theoretically and experimentally analysing the e�ciency with which a wide rangeof important scienti�c computations can be performed on bulk synchronous architectures.3 Linear algebra in scienti�c computingLinear algebra is of crucial importance to scienti�c computing. The main reason for thisis the large amount of computing time consumed by linear algebra computations in a widerange of application areas. Often, applications require the solution of large linear systemsor large eigensystems. This has lead to the extensive use of linear algebra libraries such asLINPACK, EISPACK, and their common successor LAPACK [2]. To achieve portability,many scienti�c computer programs rely on using the common Basic Linear Algebra Sub-programs (BLAS) for their vector, matrix-vector, and matrix-matrix operations. Today,e�cient BLAS implementations are available for most computer architectures. Anotherreason for the importance of linear algebra is that the language of linear algebra providesa powerful formalism for expressing scienti�c computations, including many computationsthat are not commonly thought of as linear algebra computations. A prime example ofthe bene�t of this approach is the use of matrix-vector notation to formulate Fast FourierTransform algorithms [32].One important application of linear algebra occurs in the solution of partial di�erentialequations (PDEs) by �nite di�erence, �nite element, or �nite volume methods. Theserequire the repeated solution of systems of linear equations Ax = b, where A is an n � nnonsingular matrix, and x and b are vectors of length n. Usually, the matrix A is sparse,i.e., only O(n) of its n2 elements are nonzero. The system can be solved by a directalgorithm, using Cholesky factorisation in the case of a symmetric positive de�nite matrixA, or LU decomposition in the general case, see [15]. An alternative approach is to usean iterative algorithm, based on successive improvements of approximate solution vectorsx(k). Two important iterative algorithms are the conjugate gradient algorithm [19] forsymmetric positive de�nite matrices A and the generalised minimal residual algorithm[29] for general matrices. Iterative methods use the matrix A mainly in a multiplicative6



manner, by computing matrix-vector products of the form u := Av. Iterative methods areincreasingly becoming popular, because they enable the solution of very large linear systemssuch as those originating in PDE solving on large three-dimensional grids. Discretising aPDE on a grid of 100� 100 � 100 points with one variable per grid point already leads tolinear systems of one million equations in one million variables. Such systems may arise forinstance in the simulation of oil reservoirs, in the modelling of semiconductor devices, andin aerodynamics computations. Iterative methods may often solve these systems withinreasonable time and with acceptable memory use, because the systems are sparse andremain so during their solution, whereas direct methods will break down, because theycreate too many new nonzero elements in the matrix.Another application of linear algebra in scienti�c computing is in the solution of linearprogramming (LP) problems, such as the problem of minimising the cost cTx under theconstraint Ax � b (to be interpreted component-wise), where A is an m� n matrix, c andx are vectors of length n, and b is a vector of length m. This optimisation problem can besolved by the simplexmethod [8], which involves a sequence of rank-one updates of the formA := A+ uvT , or by an interior-point method [21], which involves multiplying the matrixA by its transpose and solving a symmetric positive de�nite linear system of the formAATu = v. This system is usually solved by Cholesky factorisation (see [4] for a parallelimplementation), although currently much research is being done on the applicability ofiterative methods.Linear algebra is also important in the �eld of molecular quantum chemistry, wherevarious properties of molecules are determined from �rst principles by solving the time-independent Schr�odinger equation, for instance by the direct SCF method [1]. Althoughthe dominant part of this computation is the calculation of 2-electron integrals and theirincorporation into a Hamiltonian matrix, other important parts are the computation of theeigenvalues and eigenvectors of this matrix, and the multiplication of matrices. Since thelatter parts are more di�cult to parallelise than the trivially parallel integral calculations,they may well dominate the computing time on a parallel computer [16].The examples above suggest that a �rst approach to achieving general purpose parallelcomputing for scienti�c applications may be based on developing BSP algorithms for linearalgebra computations and implementing these algorithms on a computer which resemblesthe BSP model as much as possible. For scienti�c applications that are not based on linearalgebra, we may still be able to capture the essence of the computation in linear algebralanguage, so that we can use BSP techniques developed for linear algebra to gain furtherinsight into these applications as well.This paper focuses on one particular linear algebra operation, the sparse matrix-vectormultiplication, for the following reasons:1. The sparse matrix-vector multiplication is the basis of iterative methods for the solutionof sparse linear systems Ax = b. At every iteration, the matrix A (and in certain cases itstranspose) is multiplied by a vector, and the resulting vector is used to update the bestcurrent approximate solution. Similarly, this multiplication is also the basis for the Lanczosmethod [22], an iterative method which can be used to �nd the extremal eigenvalues of a7



sparse symmetric matrix (see e.g. [15]).2. The sparse matrix-vector multiplication represents the execution of the �nite di�erenceoperator in certain PDE solvers. This even holds in the common case of matrix-free solverswhich do not form the �nite di�erence matrix explicitly, but instead apply the �nite dif-ference operator directly on the current approximate solution vector. An example is the�ve-point Laplacian �nite di�erence operator used to solve a second-order elliptic PDE ona two-dimensional grid of size r� r. This operator can be formulated in matrix terms (seee.g. [28]) by de�ning an n� n matrix A, with n = r2, byaij = 8><>: �4 if i = j1 if i = j � 1; j � r0 otherwise. (1)The solution value of the PDE at a grid point (k; l); 0 � k; l < r corresponds to a componentxi; 0 � i < n, of the solution vector x of a linear system Ax = b, by the relation i = kr+ l.In a matrix-free PDE solver based on an iterative linear system solver, the equivalent ofthe sparse matrix-vector multiplication u := Av will simply be executed by summing thevalues of v in the neighbouring grid points (k+1; l), (k�1; l), (k; l+1), and (k; l�1), andsubtracting from the result four times the value of v in the grid point (k; l), to produce thevalue of u in that grid point.3. The sparse matrix-vector multiplication may be used to model two-particle interac-tions in molecular dynamics simulations. As an example, consider an orthogonal three-dimensional molecular dynamics universe of size 1 � 1 � 1 with periodic boundaries. Theuniverse is �lled with n particles, numbered 0 � i < n. Each particle moves under thein
uence of the forces caused by the other particles. Each force is determined by a poten-tial, such as the Lennard-Jones potential for nonbonded particles. Let Fij denote the forceon particle i due to particle j, so that the total force on particle i is Fi = Pn�1j=0 Fij. Notethat Fii = 0. The force Fij is a function of the position ri of particle i and the position rjof particle j, Fij = F (ri; rj). Therefore, to compute the force on a particle i, one needs,besides the position of the particle i itself, the positions of all the other particles withwhich it interacts. The need for information about particle positions can be expressed inan n� n matrix A, de�ned byaij = ( 1 if i = j or particles i and j interact0 otherwise. (2)An analogy to the force computation from the positions of the particles is the sparse matrix-vector multiplication u := Av, where u is a vector that models the force components andv is a vector that models the particle positions. For short-range potentials, there exists acut-o� radius rc > 0, such that aij = 0 if the distance between particle i and particle j islarger than or equal to rc. For rc � 1 this leads to A being very sparse. The movementof the particles will cause the sparsity pattern of the matrix to change during the courseof the simulation. All e�cient simulation methods exploit the sparsity to limit the total8



number of force computations. Furthermore, distributed memory parallel algorithms basedon geometric parallelism also exploit the sparsity to reduce the number of communicationsof current particle positions [12].Simplifying molecular dynamics simulations by modelling their essence in matrix termsmay give remarkable new insights, and may even lead to new ways of performing thesesimulations. A recent example of this approach is the work of Hendrickson and Plimp-ton [18] on parallel many-body simulations (such as molecular dynamics). They achievea reduction in communication volume by an order of pp, compared to all-to-all commu-nication, by using techniques from dense linear algebra and carefully translating them tothe many-body context. The main idea in their method is to cluster the force computa-tions in a particular way, and to replace the all-to-all communication of particle positionsby partial broadcasts of these positions and partial combines of accumulated forces. Nosparsity is used to reduce the communication. (It is used, of course, to reduce the totalnumber of force computations.) Because of this, the method is most suited for long-rangeor medium-range potentials, with a break-even point that is much more favourable thanthat of conventional all-to-all methods.4 The MLIB test set of sparse matricesOur motivation for developing a new library of sparse matrices, MLIB, came from thedesire to mimic various areas of scienti�c computing in one common format and to use thisformat to investigate parallel scienti�c computing. The essential properties of problems ina wide range of application areas can often be captured in one sparse matrix or one familyof matrices with the same structure. An example is the solution of a PDE on a regulartwo-dimensional r � r grid using the �ve-point Laplacian �nite-di�erence operator, seeSection 3. Taking the grid points as vertices and their neighbour relations as directed edges,while assuming periodic boundary conditions, we obtain a directed r-ary, two-dimensionalhypercube graph. In general, PDE-solvers on regular grids give rise to hypercube graphswith a large radix and a low dimension. The adjacency matrix A of such a graph is sparseand its size grows rapidly with increasing dimension or increasing radix. On a distributed-memory parallel computer it would be e�cient to distribute the matrix and the relatedvectors by using the knowledge of the underlying neighbour structure of the graph. Thismay eliminate unnecessary communication of grid variables.At present, there exists a library of sparse matrices, the Harwell-Boeing (HB) library[10, 11], which is widely used to test sparse matrix algorithms. It contains many examplesof matrices that occur in practical applications. We have included a small subset of elevenmatrices of the HB library in MLIB, mainly to facilitate our experiments on such practicalmatrices. For our speci�c purpose of mimicking scienti�c computation, the HB matricesare not well suited, and therefore we decided to design our own library. We do not claimin any way that the matrix library MLIB is complete or representative. We present it asa �rst attempt to capture some features of scienti�c computing in the common format ofsparse matrices. 9



The matrix library MLIB consists of 34 sparse matrices and their generating programs.Each matrix is represented by a �le which contains the nonzero elements of the matrixstored by the coordinate scheme (see [9]). The element aij 6= 0 is stored as a triple (i; j; x)where i is the row index, j the column index, and x = aij the numerical value. Thenumerical values of MLIB are dummies, except in the case of the HB subset, which retainsthe original numerical values. At this stage, our interest is in sparsity patterns and theirimplications for parallel computing, and not in numerical issues. Nevertheless, we decidedto include numerical values in the format, to enable possible future use of such values. Theformat of a matrix �le is: �rst, a line containing the matrix size m�n; then the nonzeros,one per line; after that, a terminator line \�1"; and, optionally, additional informationon the matrix, such as particle positions in the case of molecular dynamics matrices. TheMLIB library is available upon request from the authors. More details can be found in thedocumentation of the generating programs.The MLIB library contains the following classes of matrices:� hyp:r:d:D, the hypercube matrix with radix r, dimension d, and distance D, r; d;D �1. For D = 1, this is the adjacency matrix of the directed r-ary, d-dimensionalhypercube graph. The vertices of this graph form a d-dimensional grid of n = rdpoints; they are numbered lexicographically. Each vertex has directed edges to itselfand to its immediate neighbours in each direction. The size of the hypercube matrixis n � n. For D > 1, the hypercube graph is obtained by connecting each vertex tothose vertices that can by reached by a path of length � D in the original D = 1graph. This models certain higher-order �nite di�erence operators.� dense.n, the dense matrix of size n� n. All elements of this matrix are nonzero.� random.n:��1, an n�nmatrix with a random sparsity structure and a nonzero density�. This matrix is generated by using the pseudo-random number generator ran2 from[28]. (All random numbers used in this paper were generated by this generator.)� hb.x, the matrix x from the HB collection [10]. For a description of the matrix, see[11]. The subset of the HB collection that is included in MLIB consists of elevenmatrices from various application �elds. It is the same subset as the one used in [3]to test a parallel iterative linear system solver.� md.n:rc�1, an n � n matrix which corresponds to n particles in a three-dimensionalmolecular dynamics simulation with short-range potentials, see Section 3. The parti-cles i and j interact, i.e. aij 6= 0, if jjri� rjjj � rc, where ri is the position of particlei and rc the cut-o� radius. The positions ri = (xi; yi; zi), with 0 � xi; yi; zi � 1, aregiven at the end of the �le. The interactions assume periodic boundaries.� mdr.n:rc�1:��1, an n�nmatrix which corresponds to n particles in a three-dimensionalmolecular dynamics simulation with short-range potentials and, additionally, an ar-ti�cial long-range potential for certain randomly selected particle pairs. The sparsitypattern of this matrix is the union of the sparsity patterns of a short-range molecular10



dynamics matrix with cut-o� radius rc and a random sparse matrix with density�. Here, long-range interactions between selected particles represent interactionsbetween distant clusters of particles. The aim of this procedure is to mimic e.g.multipole expansions.� lp.n, an n � n matrix which resembles certain symmetric matrices that occur inthe solution of LP problems by interior point methods [21] (for a parallel implemen-tation, see [4]). The matrix is constructed by placing dense square submatrices ofrandom size at random places in the matrix, with bias towards small sizes. Thiscaptures a structural feature that we observed in certain LP problems. We wouldlike to add a disclaimer about this particular matrix class: one may argue aboutwhether this represents the typical structure of LP matrices. Therefore, we presentthis type of matrix as just a �rst and modest attempt to capture some of the commoncharacteristics of LP matrices.Table 1 presents the size and the number of nonzeros of the 34 matrices from MLIB.5 Sparse matrix-vector multiplicationIn this section, we present a parallel algorithm for the multiplication of a sparse matrix Aand a dense vector v,u := Av; (3)which produces a dense vector u. The matrix A = (aij; 0 � i; j < n) has size n � nand the vectors u = (ui; 0 � i < n) and v = (vi; 0 � i < n) have length n. Weassume that the matrix is distributed by a Cartesian distribution [6]. This means thatthe processors are numbered by two-dimensional identi�ers (s; t), with 0 � s < q0 and0 � t < q1, where p = q0q1 is the number of processors, and that there are mappings�0 : f0; 1; : : : ; n � 1g ! f0; 1; : : : ; q0 � 1g and �1 : f0; 1; : : : ; n� 1g ! f0; 1; : : : ; q1 � 1gsuch that matrix elements are distributed according toaij 7�! processor(�0(i); �1(j)): (4)Note that the elements of a matrix row are mapped to processors with the same �rst identi-�er coordinate and that the elements of a matrix column are mapped to processors with thesame second coordinate. This re
ects the row-wise and column-wise nature of many linearalgebra algorithms and this often leads to reduced communication requirements in linearalgebra computations on distributed-memory parallel computers. This two-dimensionalnumbering of processors originates in special purpose algorithms for mesh networks ofprocessors [3, 6]. In the present work, however, the two-dimensional numbering re
ectsa property of the problem to be solved and not of any particular network topology: theBSP-model is topology-independent. We assume that vectors are distributed in the samemanner as the diagonal of the matrix, i.e. according toui 7�! processor(�0(i); �1(i)): (5)11



Matrix A Order n Nonzeros nz(A)hyp.2.10.1 1024 11264hyp.2.10.2 1024 57344hyp.2.10.3 1024 180224hyp.3.10.1 59049 1240029hyp.3.8.1 6561 111537hyp.20.4.1 160000 1440000hyp.30.3.1 27000 189000hyp.50.3.1 125000 875000hyp.50.2.1 2500 12500hyp.100.2.1 10000 50000hyp.200.2.1 40000 200000dense.100 100 10000dense.500 500 250000random.1000.1000 1000 1002random.1000.100 1000 10013random.1000.10 1000 100000hb.impcolb 59 312hb.west0067 67 294hb.fs5411 541 4285hb.steam2 600 13760hb.shl400 663 1712hb.bp1600 822 4841hb.jpwh991 991 6027hb.sherman1 1000 3750hb.sherman2 1080 23094hb.lns3937 3937 25407hb.gemat11 4929 33185lp.1000 1000 66512lp.6000 6000 321256md.6000.20 6000 25054md.6000.10 6000 155592md.6000.8 6000 300928mdr.6000.10.2000 6000 175176mdr.6000.8.1000 6000 337380Table 1: Matrix library MLIB12



This particular distribution scheme is 
exible enough to accommodate many commonlyused distribution methods while it is also su�ciently restrictive to impose e�cient com-munication patterns. The 
exibility is illustrated by the following two examples. The �rstexample concerns the two-dimensional Laplacian operator. One often uses domain parti-tioning to split the corresponding discrete grid into blocks of grid points with the aim ofallocating blocks to processors. Since each grid point corresponds to one vector component,this amounts to distributing the vector over the processors in a locality-preserving manner.The complete row i of the Laplacian matrix is usually allocated to the same processor asvector component i. In our scheme, this can simply be achieved by taking q0 = p andq1 = 1. Another example is the square grid distribution, which is the matrix distributionde�ned by�0(i) = �1(i) = i mod q0; (6)where q0 = q1 = pp. This distribution is optimal for linear algebra computations suchas dense LU decomposition [6]. This distribution is known under various names, suchas scattered square decomposition [13] and cyclic storage [20]. (The grid distribution of amatrix should not be confused with discrete grids used to model e.g. PDE's.) Our generaldistribution scheme leaves much freedom in choosing particular mappings, and this canbe exploited to achieve a good load balance and to reduce communication, see the nextsection. A detailed discussion and motivation of this distribution scheme in the context ofsparse matrix-vector multiplication is given in [3].Figure 1 presents a parallel sparse matrix-vector multiplication algorithm for a BSPcomputer. The algorithm consists of four supersteps: a fan-out of vector components tothe processors that need them; a multiplication of the local part of the sparse matrixby the corresponding part of the input vector; a fan-in of partial sums; and, �nally, thecomputation of the local part of the output vector. The fan-out and the fan-in are h-relations; the other supersteps are local computations. The communication requirementsare derived from the computations on the basis of the \need to know". Matrix elementsare not communicated. The only communication needed is that of vector components andof partial sums used to compute new vector components. The input and output vectorsare required to be distributed in the same manner. This facilitates repeated applicationof the algorithm, e.g. in an iterative linear system solver. The sparsity of the matrix isexploited in two ways: �rst, computations are performed only for nonzero elements; second,communications are performed only if the matrix element that makes them necessary isnonzero.The notation of the algorithm should be interpreted as follows. The text given is theprogram text for a processor (s; t), with 0 � s < q0 and 0 � t < q1. The execution ofthe program depends on the parameters s and t. The for all-statements are implementedusing an e�cient data structure, so that unnecessary tests (such as aij 6= 0 or uit 6= 0) areavoided. This implies that local vector components are easily accessible, and that localmatrix nonzeros are stored in a sparse data structure that provides row-wise access. Thisdata structure does not store rows that are locally empty. (A suitable data structure isthe collection of sparse row vectors [9], with pointers only to the rows that are locally13



f A : n � n; distr(A) = �,v : n; distr(v) = distr(diag(A)) gf fan-out gfor all j : 0 � j < n ^ �0(j) = s ^ �1(j) = t dosend vj to processors f(�0(i); t) : 0 � i < n ^ aij 6= 0g;f local sparse matrix-vector multiplication gfor all i : 0 � i < n ^ �0(i) = s ^ (9r : 0 � r < n ^ �1(r) = t ^ air 6= 0) dobeginuit := 0;for all j : 0 � j < n ^ ^�1(j) = t ^ aij 6= 0 do uit := uit + aijvjend;f fan-in gfor all i : 0 � i < n ^ �0(i) = s ^ uit 6= 0 dosend uit to processor (s; �1(i));f summation of partial sums gfor all i : 0 � i < n ^ �0(i) = s ^ �1(i) = t dobeginui := 0;for all k : 0 � k < q1 ^ uik 6= 0 do ui := ui + uikendfu : n; u = Av; distr(u) = distr(v)gFigure 1: Sparse matrix-vector multiplication algorithm for processor (s; t)
14



non-empty.) In our exposition, we assume that there are no accidental zeros caused bynumerical cancellations. The h-relations are described by including for each data element tobe communicated a \send"-statement in the program text of the source processor, togetherwith the address of the destination processor. It is assumed that processors are willingto receive all the data that are sent to them in an h-relation. Because of this, thereis no need to include explicit \receive"-statements. All data are described using globalindices (in an implementation, it may be convenient to convert these to local indices).In particular, communicated data are described in global terms, which is convenient formaking assertions in the program text about these data. The global description enablesus to make such assertions, irrespective of whether they belong to the text of sending orreceiving processors. The destination address of a message is determined by the sendingprocessor. For the fan-in, this is done on the basis of pre-computed information, based onthe sparsity pattern of A. In an implementation of the h-relations, the messages are packedinto a send-bu�er by the sending processor, then communicated, and after that stored ina receive-bu�er and unpacked by the receiving processor.The BSP cost of the sparse matrix-vector multiplication algorithm is determined asfollows. The �rst superstep is the fan-out, which is a communication superstep. Lethr(s; t) be the number of components vj received by processor (s; t) and hs(s; t) the numberof components sent. Then de�nehr = maxfhr(s; t) : 0 � s < q0 ^ 0 � t < q1g; (7)hs = maxfhs(s; t) : 0 � s < q0 ^ 0 � t < q1g; (8)h = maxfhr; hsg: (9)The BSP cost of the �rst superstep is l+ gh, see Section 2.The second superstep is the local sparse matrix-vector multiplication, which is a com-putation superstep. Letri(t) = jfj : 0 � j < n ^ aij 6= 0 ^ �1(j) = tgj; (10)be the number of nonzeros in processor part t of matrix row i, 0 � i < n. Then the numberof 
oating point operations of processor (s; t) isw(s; t) = n�1Xi = 0�0(i) = s; ri(t) > 0 (2ri(t)� 1): (11)In this operation count, we include only non-trivial 
oating point operations; we excludetrivial operations involving zero operands. The maximum amount of work of a processoris w = maxfw(s; t) : 0 � s < q0 ^ 0 � t < q1g: (12)15



The BSP cost of the second superstep is l+ w, see Section 2.The third superstep is similar to the �rst, except that partial sums uik are communi-cated, instead of vector components vj. The fourth superstep is similar to the second; itscost is determined as follows. Letsi = jfk : 0 � k < q1 ^ uik 6= 0gj; (13)be the number of nonzero partial sums produced by matrix row i, 0 � i < n. Then thenumber of 
oating point operations of processor (s; t) isw(s; t) = n�1Xi = 0�0(i) = s; si > 0 (si � 1): (14)The total BSP cost of the algorithm is obtained by adding the costs of the four supersteps.We denote the BSP cost for p processors by T (p).The BSP cost as de�ned above can be used to compare the e�ciency of di�erentdistributions of the same matrix. To obtain a meaningful measure for comparison ofdi�erent matrices it is necessary to normalise the cost. We de�ne the normalised BSP costC(p) byC(p) = pT (p)Tseq ; (15)where Tseq is the cost of the sequential algorithm. This sequential cost is de�ned byTseq = n�1Xi = 0ri > 0 (2ri � 1); (16)whereri = jfj : 0 � j < n ^ aij 6= 0gj; (17)for 0 � i < n. In other words, the normalised BSP cost C(p) of an algorithm is theratio between the time T (p) of that algorithm on a BSP computer and the time Tseq of aperfectly parallelised sequential algorithm. The normalised BSP cost of an algorithm is anexpression of the form a+ bg+ cl, where a; b; and c are scalar values which depend on thealgorithm, on the number of processors, and on the chosen data distribution. The scalarsg and l are parameters that characterise the hardware, see Section 2. The normalised BSPcost of an ideal parallel algorithm is 1 + 0g + 0l.In summary, we have presented a simple methodology that leads to a useful measureof the e�ciency of BSP algorithms and distributions. This measure, the normalised BSPcost C(p), can, of course, be used to distinguish good algorithms and distributions frombad ones, but also to identify easy and hard problems for BSP computers.16



6 Results for structure independent distributionsWe have implemented a program that computes the normalised BSP cost a + bg + cl ofthe sparse matrix-vector multiplication algorithm of Fig. 1 for a given sparse matrix and agiven data distribution. In this section, we use this program to obtain experimental resultson the performance of di�erent data distribution schemes in a wide range of problem areas.Our cost statistics can be used to predict the computing time on an actual BSP computer,provided that the g and l parameters of the machine are available. For our experiments,we �x the number of processors at p = 100. The problem size, however, may vary, so thatwe are still able to investigate scalability.Table 2 presents the normalised computing cost a for seven di�erent data distributionsand for all sparse matrices from MLIB, cf. Table 1. Table 3 presents the normalised com-munication cost b for the di�erent data distributions and the normalised synchronisationcost c for a distribution that requires all the four supersteps of the algorithm to be present.(For a row distribution, with q1 = 1, there is no need for a fan-in and a summation ofpartial sums, so that the number of supersteps becomes two and c is halved.) The valueof c depends only on the number of supersteps, the number of processors, and the amountof work of the sequential algorithm, but in general not on the chosen distribution. For alldistributions, the vectors u and v are distributed in the same manner as the diagonal ofthe matrix. All distributions, except \PRAM", are Cartesian, cf. eqn. 4.The \PRAM" distribution is obtained by assigning nonzero elements randomly to theprocessors. This distribution is non-Cartesian, since in general there do not exist mappings�0 and �1 that satisfy eqn. 4. The \PRAM" distribution is included in the table, becauseit simulates the use of a BSP machine in PRAM mode, with randomised allocation ofdata by hashing. This mode of operation may be advantageous on machines with a lowvalue of g [30]. In Tables 2 and 3, following the column of the \PRAM" distribution,there are three columns with results for random distributions. The random distributionwith q0 = 100 and q1 = 1 assigns matrix rows i randomly to processors (�0(i); 0), with0 � �0(i) < 100. The random distribution with q0 = q1 = 10 assigns an identi�er �0(i),with 0 � �0(i) < 10, randomly to each matrix row i, and, independently, an identi�er �1(j),with 0 � �1(j) < 10, to each matrix column j. An equalised random distribution of rows issimilar to a random distribution, but it assigns the same number of rows to each identi�er,if n mod q0 = 0. Otherwise, the number of rows will di�er by at most one. This procedureis equivalent to randomly permuting the rows and then distributing them according to theblock distribution �0(i) = i div `, where ` = n=q0 and it is assumed that n mod q0 = 0.This random permutation procedure was proposed by Ogielski and Aiello [26] for use in aparallel algorithm for sparse matrix-vectormultiplication. Ogielski and Aiello also present aprobabilistic analysis that shows the advantages of this matrix distribution. (Our matrix-vector multiplication algorithm di�ers from theirs in that we reduce communication byexploiting sparsity and by choosing a vector distribution that matches the distribution ofthe matrix diagonal. Their algorithm has the same communication requirements as in thecase of a dense matrix. Their vector distribution is based on a lexicographic ordering, whichhas no relation to the matrix distribution.) The cost results for the random distributions are17



row distr. PRAM random random eq. random grid block diag.q0 100 10 10 10 10 10column distr. random eq. random grid gridq1 1 10 10 10 10 10hyp.2.10.1 1.44 1.74 1.58 1.41 4.26 1.07 1.26hyp.2.10.2 1.34 1.72 1.39 1.16 2.43 1.03 1.15hyp.2.10.3 1.20 1.74 1.33 1.07 1.74 1.03 1.12hyp.3.10.1 1.04 1.08 1.05 1.04 3.21 1.01 1.02hyp.3.8.1 1.14 1.24 1.16 1.13 3.52 1.02 1.08hyp.20.4.1 1.02 1.03 1.04 1.03 8.82 1.00 1.02hyp.30.3.1 1.08 1.13 1.17 1.09 8.46 1.00 1.05hyp.50.3.1 1.03 1.05 1.05 1.04 8.46 1.00 1.02hyp.50.2.1 1.29 1.43 1.39 1.33 7.78 1.00 1.19hyp.100.2.1 1.14 1.20 1.17 1.16 7.78 1.00 1.10hyp.200.2.1 1.06 1.10 1.09 1.08 7.78 1.00 1.05dense.100 2.14 4.03 2.41 1.12 1.41 1.00 1.00dense.500 1.12 2.12 1.48 1.01 1.08 1.00 1.00random.1000.1000 2.10 2.32 2.30 2.18 4.21 1.88 2.13random.1000.100 1.48 1.77 1.61 1.46 4.00 1.29 1.28random.1000.10 1.28 1.73 1.36 1.11 1.49 1.09 1.08hb.impcolb 4.14 5.88 5.11 4.06 5.66 4.43 3.84hb.west0067 3.90 5.33 4.70 3.74 7.29 3.84 3.42hb.fs5411 1.69 2.12 2.71 2.50 6.41 2.42 2.24hb.steam2 1.55 2.02 1.68 1.40 3.11 1.11 1.22hb.shl400 4.98 31.52 5.05 4.74 6.99 4.38 4.74hb.bp1600 2.24 7.73 2.32 2.15 4.64 2.34 2.11hb.jpwh991 1.53 1.86 1.69 1.58 5.52 1.48 1.39hb.sherman1 1.61 1.93 1.80 1.68 11.29 1.85 1.52hb.sherman2 1.47 1.84 1.51 1.34 3.79 1.27 1.27hb.lns3937 1.25 1.25 1.31 1.27 4.61 1.62 1.21hb.gemat11 1.23 1.33 1.26 1.24 4.30 1.28 1.18lp.1000 1.37 2.08 1.49 1.34 1.72 1.93 1.31lp.6000 1.14 1.43 1.18 1.15 1.81 1.42 1.15md.6000.20 1.21 1.31 1.26 1.25 5.78 1.19 1.18md.6000.10 1.14 1.26 1.15 1.11 2.83 1.07 1.07md.6000.8 1.11 1.26 1.11 1.08 2.04 1.05 1.05mdr.6000.10.2000 1.13 1.25 1.14 1.11 2.71 1.06 1.06mdr.6000.8.1000 1.11 1.26 1.11 1.07 1.91 1.05 1.04Table 2: Computation cost for data distributions with p = 10018



Communication (in g) Synch.(in l)row distr. PRAM random random eq. random grid block diag.q0 100 10 10 10 10 10 > 1column distr. random eq. random grid gridq1 1 10 10 10 10 10 > 1hyp.2.10.1 1.55 0.79 1.04 0.99 4.61 0.46 0.68 0.0186hyp.2.10.2 1.31 0.66 0.30 0.29 1.59 0.16 0.17 0.0035hyp.2.10.3 0.81 0.41 0.10 0.09 0.52 0.06 0.06 0.0011hyp.3.10.1 0.95 0.48 0.42 0.42 3.65 0.31 0.39 0.0002hyp.3.8.1 1.10 0.55 0.58 0.58 4.39 0.39 0.47 0.0018hyp.20.4.1 0.93 0.47 0.64 0.64 2.35 0.18 0.61 0.0001hyp.30.3.1 1.01 0.51 0.85 0.74 3.08 0.21 0.68 0.0011hyp.50.3.1 0.94 0.47 0.69 0.69 3.08 0.19 0.67 0.0002hyp.50.2.1 1.24 0.62 1.06 1.02 4.44 0.27 0.84 0.0178hyp.100.2.1 1.04 0.52 0.86 0.85 4.44 0.24 0.77 0.0044hyp.200.2.1 0.96 0.48 0.77 0.77 4.44 0.23 0.73 0.0011dense.100 2.57 1.26 0.38 0.33 0.91 0.09 0.09 0.0201dense.500 0.42 0.21 0.04 0.04 0.18 0.02 0.02 0.0008random.1000.1000 3.27 1.68 3.02 2.89 14.60 2.26 2.54 0.3010random.1000.100 1.77 0.89 1.14 1.10 6.37 0.74 0.73 0.0210random.1000.10 1.10 0.54 0.17 0.16 0.91 0.09 0.09 0.0020hb.impcolb 7.06 3.83 4.70 4.40 10.80 1.77 2.30 0.7080hb.west0067 6.28 3.20 4.66 4.23 11.71 1.92 2.46 0.7678hb.fs5411 2.55 1.58 1.40 1.29 6.96 1.17 1.03 0.0498hb.steam2 1.75 0.88 0.78 0.74 3.98 0.25 0.40 0.0149hb.shl400 5.24 15.37 2.79 2.64 10.07 2.43 2.49 0.1449hb.bp1600 2.64 3.68 1.46 1.37 7.52 0.95 1.10 0.0451hb.jpwh991 1.62 0.82 1.25 1.22 6.79 0.71 0.88 0.0361hb.sherman1 1.64 0.82 1.37 1.33 3.39 0.57 1.04 0.0615hb.sherman2 1.55 0.78 0.64 0.62 3.91 0.27 0.42 0.0089hb.lns3937 1.26 0.64 0.92 0.91 7.37 0.84 0.76 0.0085hb.gemat11 1.38 0.70 0.96 0.95 7.64 0.58 0.80 0.0065lp.1000 1.22 0.60 0.21 0.20 1.17 0.11 0.14 0.0030lp.6000 0.88 0.44 0.17 0.17 1.36 0.11 0.14 0.0006md.6000.20 1.11 0.56 0.92 0.91 6.70 0.80 0.80 0.0091md.6000.10 1.09 0.54 0.43 0.43 3.27 0.34 0.34 0.0013md.6000.8 0.97 0.49 0.24 0.24 1.80 0.18 0.18 0.0007mdr.6000.10.2000 1.07 0.53 0.39 0.39 2.96 0.30 0.30 0.0012mdr.6000.8.1000 0.95 0.47 0.21 0.21 1.61 0.16 0.16 0.0006Table 3: Communication and synchronisation cost for data distributions with p = 10019



the averages over 100 runs of the random distribution program. The standard deviationsare small, so that we consider the results to be reliable. The random distributions weregenerated by using the pseudo-random number generator ran2 from [28].Tables 2 and 3 also present results for two deterministic distributions: the grid/griddistribution, which is the square grid distribution of eqn. 6, and the block/grid distribution,which is de�ned for the general case by`0 = $ nq0% ; `1 = & nq0' ; r = nmod q0; (18)�0(i) = ( idiv `1 if i < r`1;r + (i� r`1)div `0 if i � r`1; (19)�1(i) = imodq1; for 0 � i < n: (20)This distribution allocates rows in consecutive blocks to processors, and columns in a cyclicfashion. It was proposed as a suitable distribution for iterative linear system solvers [3],because it distributes the matrix diagonal over all the processors so that it can easilybe matched with a vector distribution. (The square grid distribution does not have thisadvantage, because it distributes the diagonal over only pp processors.) Finally, Tables 2and 3 present a column with the results for the \diagonal" distribution. This distributionis determined by taking an equalised random distribution of the matrix diagonal overthe processors. Note that in our distribution scheme, for a given choice of q0 and q1, thedistribution of the matrix diagonal fully determines the distribution of the complete matrixand that of the vectors, see eqns 4 and 5.The results of Table 2 show that it is relatively easy to obtain a good load balance,i.e. a � 1, and hence a minimal computation cost, except for very small matrices suchas dense.100, hb.impcolb, and hb.west0067, and for extremely sparse ones such ashb.shl400. Most distributions lead to a normalised computation cost of between oneand two. The exception is the square grid distribution, which leads to excessive workloadson diagonal processors (s; s) in the summation of the partial sums, because these are theonly processors that participate in this superstep. (Note that this is directly related tothe heavy communication obligations of the diagonal processors in the fan-in, since theseprocessors are the only receivers of data.) A breakdown of the total BSP cost into thecontributions of the separate supersteps con�rms this analysis. Furthermore, it shows thatthe load balance of the grid distribution in the local sparse matrix-vector multiplication isabout the same as that of the other distributions, except in the case of matrices with anunfavourable nonzero structure. This may occur if there is a correlation between the rowand the column nonzero structures, resulting e.g. in diagonals of nonzeros. This may leadto a bad load balance for certain numbers of processors. This phenomenon can be observedfor some of the hypercube matrices and the hb.sherman matrices. Furthermore, Table 2shows that equalised random distributions lead to a better load balance than standard ran-dom distributions. In general, distributions that impose constraints balance the workloadbetter. For example, the \PRAM" distribution does not impose any constraints except for20



an identical distribution of matrix diagonal and vectors. It does not perform very well onsmall problems and even for larger problems there are superior distributions, such as the\diagonal" distribution, which imposes an equal division of the matrix diagonal over theprocessors and hence causes a good load balance in the summation of partial sums.The results of Table 3 show that it is quite hard to achieve a low communication costfor general sparse matrices, i.e. if one cannot exploit any structural knowledge about thematrix. Even for the best structure independent distributions, block/grid and \diagonal",one needs a BSP computer with g � 10 to solve most problems e�ciently. The bestperformance is obtained by square distributions, i.e. distributions with q0 = q1 = pp.This leads to a factor of pp=2 communication reduction for dense [3] and general sparsematrices, compared to a row distribution. This is due to a pp-fold increase in the reuse ofcommunicated data, at the cost of an extra communication phase, the fan-in. (A similaranalysis can be performed for the BSP model.) This e�ect can most clearly be seenby comparing the random distribution for q0 = 100 and q1 = 1 with the random/randomdistribution for q0 = q1 = 10, in particular for relatively dense matrices such as hyp.2.10.3,dense.500, random.1000.10, md.6000.8, and md.6000.8.1000. On the other hand, forvery sparse matrices such as random.1000.1000 and md.6000.2, the introduction of thefan-in for q1 > 1 doubles the communication, without much compensation by reuse ofdata. The \PRAM" distribution performs poorly, because nearly all the vector data mustbe fetched from non-local memories. This distribution is viable only if g is very close toone. Again, the square grid distribution is the worst distribution: the diagonal processorsare the only ones that send data in the fan-out, and they are also the only ones that receivedata in the fan-in; this may degrade performance by a factor of pp. The best distributionsare the block/grid distribution and the \diagonal" distribution. They perform equally wellfor problems that have a random nature, such as the random, md, and mdr matrices. Forproblems that have some local structure that is re
ected in the matrix, the block/griddistribution is able to discover part of this structure and to exploit it, to some extent. Thiscan be observed for the hyp matrices, hb.steam2, and the hb.sherman matrices, whichare all derived from multidimensional grids. Obviously, the random construction of the\diagonal" distribution prevents discovery of any structure. In a few cases, hb.fs5411 andhb.lns3937, the block/grid distribution is outperformed by the \diagonal" one; this maybe caused by an unfavourable structure that does not suit the block/grid distribution.The synchronisation cost of the sparse matrix-vector multiplication is low, because ithas at most four supersteps. The normalised synchronisation cost isc � 42nz(A)=p = 2pnz(A): (21)This implies that problems with more than 200,000 nonzeros can be solved e�ciently on a100-processor BSP computer with l � 1000.21



7 Results for structure dependent distributionsTable 4 shows the normalised communication cost for hypercube matrices of distance oneand dimension d = 2; 3; 4, distributed by domain partitioning of the corresponding hyper-cube graph. The radix r is the number of points in each dimension, and Pk; 0 � k < d,is the number of subdomains into which dimension k is split. For example, the �rst lineof the table gives the cost for a 50 � 50 grid that is split into 50 � 2 blocks, each of size1� 25. In all cases, we choose q0 = p and q1 = 1, because we found no advantage in otherchoices of q0 and q1 for domain distribution of hypercube matrices of distance one. Thedistribution of the grid points and hence of the vector components uniquely determinesthe distribution of the matrix.The results of Table 4 show that the lowest communication cost for separate dimensionsplitting is achieved if the resulting blocks are cubic. This is an immediate consequence ofthe surface-to-volume e�ect, where the communication across the block boundaries growsas the number of points near the surface, and the computation as the number of pointswithin the volume of the block. In two dimensions, partitioning the grid into square blocksof size r=pp � r=pp reduces the communication by a factor of about pp=2, compared tosplitting it into strips of size r=p � r. This can be seen for example in the reduction by afactor of �ve for the 200 � 200 hypercube grid, comparing the cost for P0 = 100; P1 = 1with that for P0 = 10; P1 = 10. The surface-to-volume ratio for cubes in dimension d is2dp1=d=r. For each grid point, 4d + 1 
oating point operations must be performed. Thevalue h of the h-relation to be realised equals the number of exterior boundary points,because all the values of these points must be received. By symmetry, the same argumentholds for sending. Therefore, the normalised communication cost for cubic partitioning isb = 2dp1=d(4d + 1)r � p1=d2r : (22)This formula explains the results for d = 2 and P0 = P1 = 10 in Table 4. It implies forinstance that two-dimensional grid problems with more than 45 grid points per directioncan be solved e�ciently on 100-processor BSP computers with g � 10. This indicates thatPDE solving on such a BSP computer is feasible, already for relatively small problem sizes.It is possible to improve the distribution further, by partitioning the domain alongspeci�c hyperplanes, not necessarily parallel to the coordinate hyperplanes. (Note thatthis implies that the dimensions are not split up separately.) An example is the case of thetwo-dimensional hypercube grid, which can be split into digital spheres of the formBR(a) = fx 2 Z2 : jjx� ajj1 � Rg; (23)where the norm in dimension d is de�ned by jjxjj1 = Pd�1i=0 jxij. In other words, all gridpoints with a Manhattan distance less than or equal to R to the centre a of such a sphereare allocated to the same processor. The spheres wrap around the boundaries of the grid.Figure 2 illustrates this distribution.For an in�nite grid, the centers of the spheres form a lattice, consisting of all integerlinear combinations of the vectors v0 = (R + 1; R) and v1 = (�R;R + 1). Together22



radix r dim. d P0 P1 P2 P3 comm.(in g)50 2 50 2 0.23150 2 10 10 0.089100 2 100 1 0.222100 2 50 2 0.116100 2 10 10 0.044200 2 100 1 0.111200 2 50 2 0.058200 2 10 10 0.02240 3 20 5 1 0.09640 3 10 10 1 0.07740 3 10 5 2 0.06540 3 5 5 4 0.05420 4 20 5 1 1 0.14720 4 10 10 1 1 0.11820 4 10 5 2 1 0.10020 4 5 5 4 1 0.08220 4 5 5 2 2 0.082Table 4: Communication cost for low-dimensional hypercube matrices with domain parti-tioning for p = 100the spheres form a tiling of the plane Z2. The advantage of tile partitioning over blockpartitioning is that there are a factor of p2 less points in the boundary layer, for su�cientlylarge partition sizes. Therefore, the normalised communication cost b is reduced by a factorof p2. For the example of Fig. 2, the cost is b � 0:071, compared to b � 0:088 for thecorresponding block partitioning. Fig. 3 shows the normalised communication cost forthe two distributions as a function of the number of grid points per processor. The tiledistribution is clearly superior, showing for instance a reduction by a factor of 1.34 for 221grid points per processor. Note that problems of this size can be solved e�ciently on BSPcomputers with g � 50, provided the tile distribution is used.A complication that should be mentioned is that there may be a mismatch betweenthe number of processors and the size of the grid. A perfect block distribution is possibleonly for very speci�c (square) numbers of grid points per processor, and similarly a perfecttile distribution is possible only for 2R2 + 2R+ 1 grid points per processor, with R a non-negative integer. In the non-ideal case, a good distribution can still be obtained by splittingthe plane along diagonal lines at suitable distances and assigning grid points accordingly.Tabel 5 shows the BSP cost for various distributions of the molecular dynamics matrix23
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Figure 2: Partitioning of a 25 � 25 hypercube grid into 25 digital spheres of radius R = 3md.6000.10. This matrix represents a three-dimensional universe of 6000 particles, con-tained in a box of size 1 � 1 � 1 with periodic boundary conditions. Particles interact iftheir distance is less than rc = 0:1. For convenience, the upper part of the table repeatsthe cost results for a few structure independent distributions from Tables 2 and 3. Thelower part of the table presents the cost of structure dependent distributions; these exploitadditional knowledge about the particle positions to assign particles to subdomains andhence to processors.The results for the structure independent distributions show that they achieve a goodload balance but that they su�er from large amounts of communication. Even the bestdistributions of this type, block/grid and \diagonal", need BSP computers with a low valueof g, g � 3, to prevent communication dominance. One can view these distributions asbeing based on so-called particle parallelism. Another approach is to distribute particlesby using geometric parallelism, see [12] for an extensive discussion. This leads to structuredependent distributions as given in the lower part of the table. These distributions havelower communication requirements, but the price to be paid is a possible deterioration ofthe load balance, due to an inhomogeneous particle density.Table 5 indicates that cubic subdomains are optimal among the orthogonal partitioningschemes, i.e., those schemes that split each dimension separately. Note that for non-cubicsubdomains such as slabs or piles, choosing a square Cartesian distribution (with q0 = q1)24
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Figure 3: Communication cost comparison between block distributionand tile distribution of two-dimensional hypercube matrices25



distribution q0 q1 comp. comm. synch.(in g) (in l)PRAM 1.14 1.087 0.0013random row 100 1 1.26 0.541 0.0007eq. random row and column 10 10 1.11 0.426 0.0013block/grid 10 10 1.07 0.338 0.0013diagonal 10 10 1.07 0.337 0.0013slabs of size 0:01� 1:0 � 1:0 100 1 1.34 0.320 0.0007slabs of size 0:01� 1:0 � 1:0 10 10 1.28 0.259 0.0013piles of size 0:1 � 0:1 � 1:0 100 1 1.41 0.108 0.0007piles of size 0:1 � 0:1 � 1:0 10 10 1.41 0.081 0.0013near-cubes of size 0:2� 0:2� 0:25 100 1 1.54 0.075 0.0007near-cubes of size 0:2� 0:2� 0:25 10 10 1.54 0.087 0.0013Table 5: Normalised BSP cost for distributions with p = 100 of the matrix md.6000.10improves the performance signi�cantly. This is also done by Hendrickson and Plimpton[18] in the case of particle parallelism. For cubic subdomains, communication requirementsare already reduced to such a low level, that this procedure, based on aggregation of partialsums, does not lead to further improvement. Note that the cut-o� radius rc = 0:1 of thismatrix is quite large compared to the subdomain size. For partioning into slabs this impliesthat particle information must be sent to 20 other processors (so that it pays to aggregateinformation); for piles it must be sent to 4{8 other processors, depending on the position;and for near-cubes to 2{6 processors. (In our discussion we ignore the symmetry of particleinteractions, which may be used to reduce the computation and the communication by afactor of two.)It is possible to further improve the distribution by allowing cuts of the domain inany direction. This can be done e�ciently by taking a suitable sphere packing lattice [7]and assigning particles to the nearest centre of a sphere. (Sphere packing lattices havebeen used in other areas of scienti�c computing; for instance, it has been proposed [5]to use them to decrease anisotropy in pseudo-spectral PDE solving on multidimensionalgrids.) This method splits the universe into Voronoi cells, each of which corresponds toa processor. Figure 4 shows the communication cost for the matrix md.6000.20, whichrepresents 6000 particles with a cut-o� radius of 0.05. For the cube distribution, theuniverse is split into cubes of size p�1=3� p�1=3� p�1=3. This perfect splitting is, of course,only possible if the number of processors p is a cube. For the sphere packing distribution,we used a body-centred-cubic (bcc) lattice, de�ned by three basis vectors v0 = (2; 0; 0),26
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Figure 4: Communication cost comparison between cube distribution andbcc sphere packing distribution for molecular dynamics matrix md.6000.2027



v1 = (0; 2; 0), and v2 = (1; 1; 1). The lattice is scaled by a factor � = (p=2)�1=3. Thisleads to a perfect splitting of the box if p equals two times a cube. The �gure shows thatthe bcc distribution is slightly superior. (Note that this �gure is based on experiments forone randomly generated md matrix and not on the average for a set of randomly generatedmatrices.) We chose the bcc lattice for this experiment because it has been conjectured thatit solves the sphere covering problem. Our results indicate that sphere packing techniquesmay be useful in distributing physical domains over the processor of a parallel computer.This holds in particular for a BSP computer, because it liberates us from considerations ofnetwork locality. Therefore, there is no need for rigid partitioning schemes that producehighly regular domains. Further investigation of this issue is needed; for instance, theremay exist better lattices for our purpose. Furthermore, to be useful in practice, �nite-sizee�ects must be taken care of.8 ConclusionThe BSP model provides a new theoretical foundation for the development of scalableparallel computing systems. It o�ers a robust framework within which we can unify thevarious classes of parallel computers which are being produced (distributed memory archi-tectures, shared memory multiprocessors, networks of workstations). The model permitsand encourages the development of e�cient parallel algorithms and programs which areboth scalable and portable.In this paper we provide the �rst theoretical and experimental analysis of the e�ciencywith which a wide range of important scienti�c computations can be performed on bulksynchronous architectures. The computations considered include the iterative solution ofsparse linear systems, molecular dynamics, linear programming, and the solution of partialdi�erential equations on a multidimensional discrete grid.Our analysis shows that the exploitation of knowledge about the underlying structureof the problem is the key to achieving e�cient parallel computations on a BSP computer.We have shown that grid computations and molecular dynamics simulations are feasible onBSP computers with realistic values for the machine characteristics g and l. Therefore, theBSP computers that can be built in the foreseeable future will be able to solve problemsfrom several important problem classes. Highly irregular scienti�c computing problemswithout a known structure are much harder to solve on BSP computers. We have intro-duced two distributions, block/grid and \diagonal", see Section 6, that perform reasonablywell on a variety of such problems. Our results show that structure independent parallelcomputations require extremely high communication performance and demand values ofg that at present are di�cult to achieve. This holds even more for the PRAM approach,which completely ignores the problem structure.Providing a library of parallel algorithms to solve general sparse problems is a �rst steptowards e�cient parallel scienti�c computing, but to make further progress, this should becombined with developing algorithms that �nd structure in the problems, see e.g. [27] and[17]. The BSP model facilitates developing such algorithms, because it focuses attention28



on the partitioning of the problem to be solved and not on the mapping to any particularhardware.The initial techniques and results described here show clearly that the network indepen-dent approach of the BSP model gives rise to a whole range of interesting new theoreticalquestions concerning load balancing, communication complexity, and domain partitioningfor parallel scienti�c computing. In contrast to the many network speci�c (e.g. hypercube,mesh, or butter
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