Basic Techniques for Numerical Linear Algebra
on Bulk Synchronous Parallel Computers”

Rob H. Bisseling
Department of Mathematics, Utrecht University
P. O. Box 80010, 3508 TA Utrecht, the Netherlands
http://www.math.ruu.nl/people/bisseling

Abstract

The bulk synchronous parallel (BSP) model promises scalable and
portable software for a wide range of applications. A BSP computer
consists of several processors, each with private memory, and a communi-
cation network that delivers access to remote memory in uniform time.

Numerical linear algebra computations can benefit from the BSP model,
both in terms of simplicity and efficiency. Dense LU decomposition and
other computations can be made more efficient by using the new tech-
nique of two-phase randomised broadcasting, which is motivated by a cost
analysis in the BSP model. For LU decomposition with partial pivoting,
this technique reduces the communication time by a factor of (\/p+1)/3,
where p is the number of processors.

Theoretical analysis, together with benchmark values for machine pa-
rameters, can be used to predict execution time. Such predictions are
verified by numerical experiments on a 64-processor Cray T3D. The ex-
perimental results confirm the advantage of two-phase randomised broad-
casting.

1 Introduction

The field of parallel numerical linear algebra has rapidly evolved over the last
decade. A major development has been the acceptance of the two-dimensional
cyclic data distribution as a standard for dense matrix computations on parallel
computers with distributed memory. The two-dimensional cyclic distribution of
an m X n matrix A over a parallel computer with p = M - N processors is given
by

a;; — P(imod M,jmod N), for 0 <i<mand0<j<n (1)

*From: Proc. First Workshop on Numerical Analysis and Applications, Rousse, Bulgaria,
June 1996, Lecture Notes in Computer Science, Vol. 1196, Springer-Verlag, Berlin 1997, pp.
46-57.

where P(s,t), with 0 < s < M and 0 < ¢ < N, is a two-dimensional proces-
sor number. To the best of our knowledge, this distribution was first used by
O’Leary and Stewart [12] in 1985. Tt has been the basis of parallel linear alge-
bra libraries such as PARPACK [1, 3], a prototype library for dense and sparse
matrix computations which was developed for use on transputer meshes, and
Scal.aPack [4], a public domain library for dense matrix computations which
is available for many different parallel computers. (Scal.aPack uses a general-
isation of (1), where each matrix element a;; is replaced by a submatrix 4;;.)
Distribution (1) has acquired a variety of names, such as ‘torus-wrap map-
ping’, which is used in [8], and ‘scattered square decomposition’ [5]. Following
PARPACK, we use the term M x N grid distribution. In many cases, it is
best to choose M ~ N ~ ,/p. For an optimality proof of the grid distribution
with respect to load balancing and a discussion of its communication proper-
ties, see [3]. Application of this distribution in a wide range of numerical linear
algebra computations (LU decomposition, QR factorisation, and Householder
tridiagonalisation) is discussed in [8].

The chosen data distribution need not have any relation with the physical ar-
chitecture of a parallel computer. Even though terms as ‘processor row P(s, *)’,
or ‘processor column P(*,?)" are used in this paper and elsewhere, these terms
just describe a collection of processors with particular processor identities and
not a physical submachine. Although many parallel linear algebra algorithms
were originally developed for rectangular meshes or hypercubes, today it is
recognised that these algorithms can often be used on other architectures as
well, simply by taking the processor numbering as a logical numbering.

Parallel algorithms are always developed within a given programming model,
whether it 1s explicitly specified or not. A simple parallel programming model
that leads to portable and scalable software can clearly be of great benefit in
applications, including numerical linear algebra. The Bulk Synchronous Par-
allel (BSP) model by Valiant [15] is such a simple model; it will be explained
briefly in Sect. 2. The BSP model allows us to analyse the time complexity
of parallel algorithms using only a few parameters. On the basis of such an
analysis, algorithms can be better understood and possibly improved. One
improvement is the technique of two-phase randomised broadcasting, which is
presented in Sect. 3 and tested in Sect. 4. The technique is based on the idea
of using intermediate randomly chosen processors, which originates in routing
algorithms [14].

Within the BSP framework, there have been a few studies of broadcasting
as part of parallel numerical linear algebra. Gerbessiotis and Valiant [6] present
and analyse an algorithm for Gauss-Jordan elimination with partial pivoting.
Their algorithm broadcasts matrix rows and columns in log, /p phases. In
preliminary work with Timmers [13], we implemented the technique of two-phase
randomised broadcasting as part of a parallel Cholesky factorisation. Although
our theoretical analysis revealed major benefits, we did not observe them in
practice, for the simple reason that we used a parallel computer with only four

processors. To reap the benefits of this technique, more processors must be used.
This is done in Sect. 4 of the present work, where 64 processors are used to study
two-phase randomised broadcasting as part of a parallel LU decomposition.
Recent theoretical work on communication primitives for the BSP model such
as broadcast and parallel prefix can be found in [9].

2 BSP model

The BSP model was proposed by Valiant in 1990 [15]. Tt defines an architecture,
a type of algorithm, and a function for charging costs to algorithms. We use
the variant of the cost function proposed in [2]. For a recent survey of BSP
computing, see [10].

A BSP computer consists of p processors, each with private memory, and
a communication network that allows processors to access private memories of
other processors. Each processor can read from or write to any memory cell in
the entire machine. If the cell is local, the read or write operation is relatively
fast. If the cell belongs to another processor, a message must be sent through
the communication network, and this takes more time. The access time for
different non-local memories is the same.

A BSP algorithm consists of a sequence of supersteps, each ended by a global
barrier synchronisation. In a computation superstep, each processor performs a
sequence of operations on locally held data. In numerical linear algebra, these
operations are mainly floating point operations (flops). In a communication su-
perstep, each processor sends and receives a number of messages. The messages
do not synchronise the sender with the receiver and they do not block progress.
Synchronisation takes place only at the end of a superstep.

The BSP cost function is defined as follows. An h-relation is a commu-
nication superstep where each processor sends at most A data words to other
processors and receives at most ~ data words. We denote the maximum number
of words sent by any processor by hg, and the maximum number received by h..
Therefore,

h = max{hg, h;} . (2)

This equation reflects the assumption that a processor can send and receive

data simultaneously. Charging costs on the basis of h is motivated by the

assumption that the bottleneck of communication lies at the entry or exit of

the communication network, so that simply counting the maximum number of

sends and receives per processor gives a good indication of communication time.
The cost of an h-relation is

Tcomm(h) = hg +1) (3)

where ¢ and [are machine-dependent parameters. The cost unit is the time of
one flop. Cost function (3) is chosen because of the expected linear increase of

communication time with A. The processor that sends or receives the maximum
number of data words determines h and hence the communication cost. Since
¢ = limp_oo Teomm(h)/h, the value of g can be viewed as the time (in flops)
needed to send one word into the communication network, or to receive one word
from it, in a situation of continuous message traffic. The linear cost function
includes a nonzero constant [because each h-relation incurs a fixed cost. This
fixed cost includes: the cost of global synchronisation; the cost of ensuring that
all communicated data have arrived at their destination; and startup costs of
sending messages.
The cost of a computation superstep with an amount of work w is

Teomp(w) =w+1 . (4)

The amount of work w is defined as the maximum number of flops performed
in the superstep by any processor. The value of [is taken to be the same as
that of a communication superstep, despite the fact that the fixed cost is less:
global synchronisation is still necessary, but the other costs disappear. The
advantage of having one parameter { is simplicity; the total synchronisation
cost of an algorithm can be determined by simply counting the supersteps. As
a consequence of (3) and (4), the total cost of a BSP algorithm becomes an
expression of the form a + bg + ¢l.

A BSP computer can be characterised by four parameter: p is the number
of processors; s is the single-processor speed measured in flop/s; ¢ is the com-
munication cost per data word; and [is the synchronisation cost of a superstep.
(We slightly abuse the language, because [also includes other costs.) We call a
computer with these four parameters a BSPC(p, s, g,!). The execution time of
an algorithm with cost a+bg+cl on a BSPC(p, s,¢,{) is (a+bg—+cl)/s seconds.

Estimates for ¢ and [of a particular machine can be obtained by benchmark-
ing a range of full h-relations, i.e., h-relations where each processor sends and
receives exactly h data. In the field of numerical linear algebra, it is appropriate
to use 64-bit reals as data words. The measured cost of a full h-relation will be
an upper bound on the cost of an arbitrary h-relation. For a good benchmark,
a representative full h-relation must be chosen which is unrelated to the specific
architectural characteristics of the machine. A cyclic pattern will often suffice:
processor P(i), 0 < ¢ < p, sends its first data word to P((i + 1) mod p), the
next to P((i + 2) mod p), and so on. The source processor P(7) is skipped as
the destination of messages, since local assignments do not require communica-
tion. (As an alternative, an average for a set of random full h-relations can be
measured.)

Figure 1 shows the results of benchmarking cyclic full h-relations on 64
processors of a Cray T3D. The nodes of the Cray T3D used in this experiment
consist of a 150 MHz Dec Alpha processor and a memory of 64 Mbyte. The
communication network is a three-dimensional torus. The Cray T3D is trans-
formed into a BSP computer by using the Cray T3D implementation of the

800 T T T T T T —
O
50
e
xS
700 | /650 i
<O
0’0
<
/0»6
600 & i
&
&
&
. 500 o7 4
@) £
= &
2 o
=} e
g &
= 400 P 4
£ &%
5 o7
£ 5‘7
": <
300 [P -
25°
2
<5
200 | s |
&0
Q/O
rad
100 b 5 -
&< measured data <
least-squares fit -----
O 1 1 1 1 1 1
0 10 20 30 40 50 60

Figure 1: Time of an h-relation on a 64-processor Cray T3D

Oxford BSP library [11], version 1.1. The measured data points of the figure lie
close to the straight line of a least-squares fit, so that the behaviour is indeed
linear as modelled by (3). The fitted BSP parameters are ¢ = 11.5 and [= 61.4.
The sequential computing speed s = 6.0 Mflop/s is obtained by measuring the
time of a DAXPY operation y := ax 4+ y, where x and y are vectors of length
1024 and « is a scalar.

Communication in the BSP model does not require any form of synchro-
nisation between the sender and the receiver. Global barrier synchronisations
guarantee memory integrity at the start of every superstep. The absence of
sender/receiver synchronisation makes it possible to view the communications
as one-sided: the processor that initiates the communication of a message is
active and the other processor is passive. If the initiator is the sender, we call
the send operation a put; if it is the receiver, we call the receive operation a get.
Conceptually, puts and gets are single-processor operations. More and more,
puts and gets are supported in hardware, which makes them very efficient. An
early example of such support is the SHMEM facility of the Cray T3D. The use
of one-sided communications makes programs simpler: the program text only
includes a put or get statement for the initiator. This is in contrast to tradi-
tional message-passing programs where both parts of a matching send/receive

pair must be included. In dense matrix computations, puts are usually suffi-
cient. In sparse matrix computations, gets are sometimes needed because the
receiver of the data knows which data it needs, for instance because of its local
sparsity pattern, but the sender does not have this knowledge. Note that we
use the terms ‘send’ and ‘receive’, even if we only perform puts. Furthermore,
we still analyse algorithms counting both sent and received data words. The
advantage of one-sided communications lies mainly in simpler program texts of
algorithms and their implementations.

3 Two-Phase Randomised Broadcasting

An important communication operation in parallel algorithms for numerical
linear algebra is the broadcast of a matrix row or column. Let us examine a
column broadcast in detail. The M x N grid distribution assigns matrix element
a;; to processor P(i mod M, j mod N). Suppose we have to broadcast column
k, 1.e., each matrix element a;; must be communicated to all processors that
contain elements from matrix row ¢. For the grid distribution, these processors
are contained in processor row P(i mod M, *). Often, a column broadcast and
a similar row broadcast prepare the ground for a subsequent rank-1 update of
the matrix. The broadcasts communicate the elements a;; and ag; that are
required in assignments of the form a;; = a;; — asrar;.

Usually, only part of a column k& must be broadcast, such as e.g. the elements
a;p with 2 > k in stage k& of an LU decomposition. In our explanation, however,
we assume without loss of generality that all elements a;;, 0 < i < m, must
be broadcast, where m > 1. A simple algorithm that performs this column
broadcast is given by Fig. 2.

if k mod N =t then
forall::0<i<m A imod M =s do
put a;; in P(s, *);
syne;

Figure 2: Program text for processor P(s,t) of one-phase broadcast of column

k

This broadcast consists of one phase, which 1s a communication superstep.
The cost of this superstep can be analysed as follows. The only processors that
send data are the M processors from P(*, k mod N). These processors send N —
1 copies of at most R = [m/M] matrix elements, so that the maximum number
of elements sent per processor is hg = R(N —1). In general, all processors except
the senders receive elements from column k. The maximum number of elements

received per processor is hy = R. Tt follows that h = hs = R(N —1). (Note that
this count also holds in the special case N = 1, where h = 0.) The resulting
cost of the one-phase broadcast is

T'(one-phase broadcast) = [%w (N=1Dg+1. (5)

In the common case M = N = ,/p with m > /p > 1, the cost becomes
Trmg+I.

This cost analysis reveals a major disadvantage of the straightforward algo-
rithm. The maximum number of sends is N — 1 times larger than the maximum
number of receives. In the ideal situation, hs and h; would both be equal to
the average number of data communicated per processor, which i1s the com-
munication volume divided by p. In the one-phase broadcast, however, the
communication work 1s badly balanced. The senders have to copy the column
elements and send all these copies out, whereas the receivers only receive one
copy of each column element. For M = N = /p with m > ,/p > 1, we are
far from the ideal situation: hs ~ m, hy =~ m/,/p, and the average number of
communicated data is about m/,/p.

The communication imbalance can be eliminated by first sending one copy of
each data element to a randomly chosen intermediate processor and making this
processor responsible for copying and for sending the copies to the destination.
This method is similar to two-phase randomised routing [14], which sends pack-
ets from source to destination through a randomly chosen intermediate location,
to avoid congestion in the routing network. The new broadcasting method splits
the original communication superstep into two communication supersteps: an
unbalanced h-relation which randomises the location of the data elements to
be broadcast; and a balanced h-relation which performs the broadcast itself.
In analogy with the routing case, we call the resulting pair of h-relations a
two-phase randomised broadcast.

In general, the intermediate processor in a two-phase randomised broad-
cast 1s chosen randomly. However, in certain situations with regular commu-
nication patterns, for instance in dense matrix computations, the intermediate
processor can also be chosen deterministically. (For sparse matrix computa-
tions, which are often irregular, a random choice may be more appropriate.)
Processor P(s,k mod N), 0 < s < M, is the source of the matrix elements a;j,
with ¢ mod M = s. The row index ¢ of a local element a;; of this processor can
be written as ¢ = iM + s, where i 1s a local index. Note that i = ¢ div M, and
that the local indices of the local elements are consecutive. The intermediate
processor for an element a;; of P(s,k mod N) can be chosen within processor
row P(s,*). This is a natural choice, because the broadcast involves a nearly
equal number of elements for each processor row and because source and des-
tination are always in the same processor row. The consecutive local indices i
can be used to assign intermediate addresses in a cyclic fashion (similar to the
cyclic method of the grid distribution itself). This can be done by assigning el-

ements with local index 1 to processor P(s,i mod N). The resulting two-phase
broadcast is given by Fig. 3.

if k mod N =t then
forall::0<i<m A itmod M =s do
put a;; in P(s, (i div M) mod N);
Sync;
foralli:0<i<mAimod M =s A (i div M) mod N=1¢do
put a;; in P(s, *);
Sync;

Figure 3: Program text for processor P(s,t) of two-phase broadcast of column

k

The cost analysis of the two-phase broadcast is as follows. The broadcast
consists of two communication supersteps. Let R = [m/M]. The first superstep
has hy = R — |R/N|, since at least |R/N| puts are local, and h, = [R/N].
For simplicity, we write ~ < R. The second superstep has hs = [R/N](N — 1)
and Ay = R — |[R/N]|. An upper bound for hs can be obtained from hs =
[R/NJ(N —1) < (R/N+1)N = R+ N. We write h < R+ N. The resulting

cost of the two-phase broadcast is
T(two-phase broadcast) < (2 [%w + N)g+ 2l . (6)

For M = N = ,/p with m >> p, the cost becomes 1" ~ 2(m/,/p)g+2l. Compared
to the one-phase broadcast, the communication cost decreases by the consid-
erable factor of |/p/2, at the modest expense of doubling the synchronisation
time.

The cost of the two-phase broadcast is close to minimal because a lower
bound for every broadcast 1s

T(broadcast) > [%w g+1 . (7)

The lower bound follows from the fact that the processor with most words to
broadcast has to send [m/M] data words at least once and this takes at least
one superstep.

Figure 4 illustrates the implementation of a two-phase broadcast as part of
an LU decomposition program. The program fragment performs the broadcast
of elements a;; with k£ < i < n, for an n xn matrix A. The program is written in
ANSI C extended with primitives from the proposed BSP Worldwide standard
library [7]. The program uses two-dimensional processor coordinates (s,t) and
the corresponding one-dimensional identity s+t*M. The first bsp_put primitive

writes the double a;;, = a[i][ke] into ak[i] of processor s+(i mod N)*M. The
value of 10 is the smallest integer i > kr1 with i mod N =+¢.

#tdefine SZD (sizeof(double))
/* nr = number of local rows of matrix A
krl = first local row with global index > k */

if (kYN==t){
/* kc = local column with global index = k */
for(i=kril; i<ar; i++){
bsp_put (s+(i%N)*M,&al[i] [kc] ,ak,i*SZD,SZD);
¥
¥
bsp_sync();
for(i=i0; i<nr; i +=N){
for(t1=0; ti<N; ti1++){
bsp_put(s+ti*M,&ak[i],ak,i*SZD,SZD);
¥
¥
bsp_sync();

Figure 4: Implementation of two-phase broadcast from LU decomposition in
ANSI C with BSP extensions

4 Experimental Results

The theoretical analysis of Sect. 3 shows that two-phase randomised broadcast-
ing is advantageous. In this section, we put this claim to the test by performing
numerical experiments on a parallel computer. We choose LU decomposition
with partial pivoting as our test problem and we perform our tests on 64 nodes
of a Cray T3D. This parallel computer with parameters p = 64, s = 6.0 Mflop/s,
g = 11.5, and [= 61.4 has good BSP characteristics, because of the low values
of ¢ and ! and because of its scalable and predictable behaviour, see Sect. 2.
For the experiments, we implemented LU decomposition with one-phase and
two-phase broadcasts. Except for the broadcasts, the two implementations are
identical. The n x n matrix A which is decomposed into PA = LU is distrib-
uted according to the 8 x 8 grid distribution. The test matrix is chosen such
that in each stage &, 0 < k < n, of the LU decomposition, row k is explicitly
swapped with the pivot row r, forcing communication. This is done to generate
the worst-case communication behaviour.

The communication operations of LU decomposition in stage k are: a broad-
cast of column & which involves elements a;; with k¥ < ¢ < n; a broadcast of

row k which involves elements az; with & < j < n; and a swap of rows k and
r which involves elements az; and a,; with 0 < 7 < n. The time complexity
of the broadcasts is analysed in Sect. 3; the row swap costs about (n/\/p)g +{
flop units. FEach stage of the parallel LU decomposition algorithm with two-
phase randomised broadcasting contains six supersteps. (This small number
can be obtained in an implementation by combining supersteps and by per-
forming computation and communication in the same superstep.) The total
cost of the algorithms can be shown to be equal to

2n3 n?
T(LU with one-phase broadcast) ~ — + <n2 + —) g+ 5nl | 8
(o v)
and
. 203 3n?
T(LU with two-phase broadcast) & — + ——¢ + 6nl . (9)

3p VP

Figure 5 shows the measured time of LU decomposition with partial pivoting
for matrices of order n=250-5000. Two-phase randomised broadcasting clearly
improves performance for all problem sizes. The largest gain factor achieved is
2.53, for n = 500. Theoretically, the total communication cost of the algorithm
decreases from (n? +n?/\/p)g to (3n?/\/p)g. This is a decrease by a factor of
(v/P+1)/3, which equals three for p = 64. Synchronisation is dominant for small
problems and computation i1s dominant for large problems; in both asymptotic
cases the decrease in communication time is relatively small compared to the
total solution time. In the intermediate range of problem size, however, the
decrease is significant. The experiments show that in the range of n = 250—
1500 the decrease of the total time is more than a factor of two, but even for
n = 5000 it is substantial: the two-phase version takes only 143s, whereas the
one-phase version takes 202s.

The theoretical timing formula (9) and the measured machine characteris-
tics p, s, g, and [can be used to predict the total execution time and its three
components. Table 1 compares predicted and measured execution times. The
table displays reasonable agreement for small n, but significant discrepancy for
larger n. This discrepancy is mainly due to a sequential effect: it is difficult to
predict sequential computing time, because the actual computing rate may dif-
fer from one application to another. Simply substituting a benchmark result in
a theoretical time formula gives what may be termed an ab initio prediction, i.e.
a prediction from basic principles, which may be useful as an indication of ex-
pected performance, but not as an accurate estimate. Of course, the prediction
can always be improved by using the measured computing rate for the partic-
ular application, instead of the benchmark rate s. (For LU decomposition, we
measured a sequential rate of 9.35 Mflop/s for n = 1000, which is considerably
faster than the benchmark rate of 6.0 Mflop/s.)

A breakdown of the predicted total time in computation time, communica-
tion time, and synchronisation time gives additional insight. Synchronisation

10

Time (in seconds)

250 T T T T T T T T T
one-phase broadcast <—
two-phase broadcast -+---
200 -
150
100
50 -
e
0 > A = ”‘1//4/ I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Matrix sizen

Figure 5: Time of LU decomposition with partial pivoting on a 64-processor

Cray T3D

time is negligible for this machine and this problem, except in the case of very
small n. This implies that the increase in synchronisation time caused by two-
phase randomised broadcasting is irrelevant. The savings in communication
time, however, is significant. For example, for n = 5000, the predicted com-
munication time is brought down from 53.91s to 17.97s, and this predicted
decrease accounts for much of the total measured decrease of 59s. (As in the
case of computation, we cannot expect an ab initio prediction to give an exact
account of all communication effects.)

Our implementation of LU decomposition was developed to study broadcasts
in a typical parallel matrix computation. The program is a straightforward im-
plementation in ANSI C of parallel LU decomposition with the grid distribu-
tion. The program does not use Basic Linear Algebra Subprograms (BLAS) or
submatrix blocking, which are crucial in obtaining high computing rates. As
expected, our implementation is far from optimal with respect to computing
speed; it achieves 0.56 Gflop/s for n = 8000 and p = 64, whereas Scal.aPack
attains 5.3 Gflop/s [4] for the same problem on the same machine. Absolute
performance can of course be improved by using BLAS wherever possible and
reorganising the algorithm to use matrix-matrix multiplication in the core com-

11

Table 1: Predicted and measured time (in s) of parallel LU decomposition

Predicted Measured

n Tcomp Tcomm Tsync 71total 71total
250 0.03 0.04 0.02 0.09 0.10
500 0.22 0.18 0.03 0.43 0.36
750 0.73 0.40 0.05 1.18 0.87
1000 1.74 0.72 0.06 2.52 1.72
2000 13.89 2.88 0.12 16.89 10.33
3000 46.88 6.47 0.18 53.53 31.53
4000 111.11 11.50 0.25 122.86 73.20
5000 217.01 1797 0.31 235.29 142.91

putation. The data distribution need not be changed. Note that for higher
computing rates the issue of communication will become relatively more impor-
tant and hence the benefits of two-phase randomised broadcasting will grow in
significance.

5 Conclusion

The main result of this work is that significant performance improvement can
be obtained by using the BSP model in parallel numerical linear algebra. The
new technique of two-phase randomised broadcasting has been introduced to
balance the communication work in a parallel computer. This technique can be
used to accelerate row and column broadcasts in LU decomposition, Cholesky
factorisation, QR factorisation, and Householder tridiagonalisation. Numerical
experiments on a Cray T3D show that the improvement can be observed in
practice. Application is not restricted to a BSP context; the technique may
be used wherever row or column broadcasts occur in parallel numerical linear
algebra. The derivation of the technique is natural in the BSP model. One may
speculate that it is much more difficult to obtain such techniques without the
guidance of the BSP model.

Acknowledgements
This work is partially supported by the university grants programme of NCF

in the Netherlands and Cray Research. Numerical experiments were performed
on the Cray T3D of the Ecole Polytechnique Fédéral de Lausanne.

12

References

(1]

[2]

R. H. Bisseling and L. D. J. C. Loyens. Towards peak parallel LINPACK
performance on 400 transputers. Supercomputer, 45:20-27, 1991.

R. H. Bisseling and W. F. McColl. Scientific computing on bulk synchro-
nous parallel architectures. In B. Pehrson and I. Simon, editors, Technology
and Foundations: Information Processing '94, Vol I, volume b1 of IFIP
Transactions A, pages b09-514. Elsevier Science Publishers, Amsterdam,
1994.

R. H. Bisseling and J. G. G. van de Vorst. Parallel LU decomposition
on a transputer network. In G. A. van Zee and J. G. G. van de Vorst,
editors, Parallel Computing 1988, volume 384 of Lecture Notes in Computer
Science, pages 61-77. Springer-Verlag, Berlin, 1989.

J. J. Dongarra and D. W. Walker. Software libraries for linear algebra
computations on high performance computers. SIAM Review, 37(2):151-
180, 1995.

G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and
D. W. Walker. Solving Problems on Concurrent Processors: Vol. I, General
Techniques and Regular Problems. Prentice Hall, Englewood Cliffs; NJ,
1988.

A. V. Gerbessiotis and L. G. Valiant. Direct bulk-synchronous parallel
algorithms. Journal of Parallel and Distributed Computing, 22(2):251-267,
1994.

M. W. Goudreau, J. M. D. Hill, K. Lang, B. McColl, S. B. Rao, D. C.
Stefanescu, T. Suel, and T. Tsantilas. A proposal for the BSP Worldwide
standard library. Technical report, Oxford Parallel, Oxford, UK, Apr. 1996.

B. A. Hendrickson and D. E. Womble. The torus-wrap mapping for dense
matrix calculations on massively parallel computers. SIAM Journal on

Scientific Computing, 15(5):1201-1226, 1994.

B. H. H. Juurlink and H. A. G. Wijshoff. Communication primitives for
BSP computers. Information Processing Letters, to appear, 1996.

W. F. McColl. Scalable computing. In J. van Leeuwen, editor, Computer
Science Today: Recent Trends and Developments, volume 1000 of Lecture
Notes in Computer Science, pages 46-61. Springer-Verlag, Berlin, 1995.

R. Miller. A library for bulk synchronous parallel programming. In Gen-
eral Purpose Parallel Computing, pages 100-108. British Computer Society
Parallel Processing Specialist Group, 1993.

13

[12] D. P. O’Leary and G. W. Stewart. Data-flow algorithms for parallel matrix
computations. Communications of the ACM, 28(8):840-853, 1985.

[13] P. Timmers. Implementing dense Cholesky factorization on a BSP com-
puter. Master’s thesis, Department of Mathematics, Utrecht University,
Utrecht, the Netherlands, June 1994.

[14] L. G. Valiant. A scheme for fast parallel communication. SIAM Journal
on Computing, 11:350-361, 1982.

[15] L. G. Valiant. A bridging model for parallel computation. Communications
of the ACM, 33(8):103-111, 1990.

14

