
Basic Techniques for Numerical Linear Algebraon Bulk Synchronous Parallel Computers�Rob H. BisselingDepartment of Mathematics, Utrecht UniversityP. O. Box 80010, 3508 TA Utrecht, the Netherlandshttp://www.math.ruu.nl/people/bisselingAbstractThe bulk synchronous parallel (BSP) model promises scalable andportable software for a wide range of applications. A BSP computerconsists of several processors, each with private memory, and a communi-cation network that delivers access to remote memory in uniform time.Numerical linear algebra computations can bene�t from the BSP model,both in terms of simplicity and e�ciency. Dense LU decomposition andother computations can be made more e�cient by using the new tech-nique of two-phase randomised broadcasting, which is motivated by a costanalysis in the BSP model. For LU decomposition with partial pivoting,this technique reduces the communication time by a factor of (pp+1)=3,where p is the number of processors.Theoretical analysis, together with benchmark values for machine pa-rameters, can be used to predict execution time. Such predictions areveri�ed by numerical experiments on a 64-processor Cray T3D. The ex-perimental results con�rm the advantage of two-phase randomised broad-casting.1 IntroductionThe �eld of parallel numerical linear algebra has rapidly evolved over the lastdecade. A major development has been the acceptance of the two-dimensionalcyclic data distribution as a standard for dense matrix computations on parallelcomputers with distributed memory. The two-dimensional cyclic distribution ofan m� n matrix A over a parallel computer with p =M �N processors is givenby aij 7�! P (i mod M; j mod N ); for 0 � i < m and 0 � j < n ; (1)�From: Proc. First Workshop on Numerical Analysis and Applications, Rousse, Bulgaria,June 1996, Lecture Notes in Computer Science, Vol. 1196, Springer-Verlag, Berlin 1997, pp.46{57. 1



where P (s; t), with 0 � s < M and 0 � t < N , is a two-dimensional proces-sor number. To the best of our knowledge, this distribution was �rst used byO'Leary and Stewart [12] in 1985. It has been the basis of parallel linear alge-bra libraries such as PARPACK [1, 3], a prototype library for dense and sparsematrix computations which was developed for use on transputer meshes, andScaLaPack [4], a public domain library for dense matrix computations whichis available for many di�erent parallel computers. (ScaLaPack uses a general-isation of (1), where each matrix element aij is replaced by a submatrix Aij.)Distribution (1) has acquired a variety of names, such as `torus-wrap map-ping', which is used in [8], and `scattered square decomposition' [5]. FollowingPARPACK, we use the term M � N grid distribution. In many cases, it isbest to choose M � N � pp. For an optimality proof of the grid distributionwith respect to load balancing and a discussion of its communication proper-ties, see [3]. Application of this distribution in a wide range of numerical linearalgebra computations (LU decomposition, QR factorisation, and Householdertridiagonalisation) is discussed in [8].The chosen data distribution need not have any relation with the physical ar-chitecture of a parallel computer. Even though terms as `processor row P (s; �)',or `processor column P (�; t)' are used in this paper and elsewhere, these termsjust describe a collection of processors with particular processor identities andnot a physical submachine. Although many parallel linear algebra algorithmswere originally developed for rectangular meshes or hypercubes, today it isrecognised that these algorithms can often be used on other architectures aswell, simply by taking the processor numbering as a logical numbering.Parallel algorithms are always developed within a given programmingmodel,whether it is explicitly speci�ed or not. A simple parallel programming modelthat leads to portable and scalable software can clearly be of great bene�t inapplications, including numerical linear algebra. The Bulk Synchronous Par-allel (BSP) model by Valiant [15] is such a simple model; it will be explainedbriey in Sect. 2. The BSP model allows us to analyse the time complexityof parallel algorithms using only a few parameters. On the basis of such ananalysis, algorithms can be better understood and possibly improved. Oneimprovement is the technique of two-phase randomised broadcasting, which ispresented in Sect. 3 and tested in Sect. 4. The technique is based on the ideaof using intermediate randomly chosen processors, which originates in routingalgorithms [14].Within the BSP framework, there have been a few studies of broadcastingas part of parallel numerical linear algebra. Gerbessiotis and Valiant [6] presentand analyse an algorithm for Gauss-Jordan elimination with partial pivoting.Their algorithm broadcasts matrix rows and columns in log2pp phases. Inpreliminarywork with Timmers [13], we implemented the technique of two-phaserandomised broadcasting as part of a parallel Cholesky factorisation. Althoughour theoretical analysis revealed major bene�ts, we did not observe them inpractice, for the simple reason that we used a parallel computer with only four2



processors. To reap the bene�ts of this technique, more processors must be used.This is done in Sect. 4 of the present work, where 64 processors are used to studytwo-phase randomised broadcasting as part of a parallel LU decomposition.Recent theoretical work on communication primitives for the BSP model suchas broadcast and parallel pre�x can be found in [9].2 BSP modelThe BSP model was proposed by Valiant in 1990 [15]. It de�nes an architecture,a type of algorithm, and a function for charging costs to algorithms. We usethe variant of the cost function proposed in [2]. For a recent survey of BSPcomputing, see [10].A BSP computer consists of p processors, each with private memory, anda communication network that allows processors to access private memories ofother processors. Each processor can read from or write to any memory cell inthe entire machine. If the cell is local, the read or write operation is relativelyfast. If the cell belongs to another processor, a message must be sent throughthe communication network, and this takes more time. The access time fordi�erent non-local memories is the same.A BSP algorithm consists of a sequence of supersteps, each ended by a globalbarrier synchronisation. In a computation superstep, each processor performs asequence of operations on locally held data. In numerical linear algebra, theseoperations are mainly oating point operations (ops). In a communication su-perstep, each processor sends and receives a number of messages. The messagesdo not synchronise the sender with the receiver and they do not block progress.Synchronisation takes place only at the end of a superstep.The BSP cost function is de�ned as follows. An h-relation is a commu-nication superstep where each processor sends at most h data words to otherprocessors and receives at most h data words. We denote the maximumnumberof words sent by any processor by hs, and the maximumnumber received by hr.Therefore, h = maxfhs; hrg : (2)This equation reects the assumption that a processor can send and receivedata simultaneously. Charging costs on the basis of h is motivated by theassumption that the bottleneck of communication lies at the entry or exit ofthe communication network, so that simply counting the maximum number ofsends and receives per processor gives a good indication of communication time.The cost of an h-relation isTcomm(h) = hg + l ; (3)where g and l are machine-dependent parameters. The cost unit is the time ofone op. Cost function (3) is chosen because of the expected linear increase of3



communication time with h. The processor that sends or receives the maximumnumber of data words determines h and hence the communication cost. Sinceg = limh!1 Tcomm(h)=h, the value of g can be viewed as the time (in ops)needed to send one word into the communication network, or to receive one wordfrom it, in a situation of continuous message tra�c. The linear cost functionincludes a nonzero constant l because each h-relation incurs a �xed cost. This�xed cost includes: the cost of global synchronisation; the cost of ensuring thatall communicated data have arrived at their destination; and startup costs ofsending messages.The cost of a computation superstep with an amount of work w isTcomp(w) = w + l : (4)The amount of work w is de�ned as the maximum number of ops performedin the superstep by any processor. The value of l is taken to be the same asthat of a communication superstep, despite the fact that the �xed cost is less:global synchronisation is still necessary, but the other costs disappear. Theadvantage of having one parameter l is simplicity; the total synchronisationcost of an algorithm can be determined by simply counting the supersteps. Asa consequence of (3) and (4), the total cost of a BSP algorithm becomes anexpression of the form a + bg + cl.A BSP computer can be characterised by four parameter: p is the numberof processors; s is the single-processor speed measured in op/s; g is the com-munication cost per data word; and l is the synchronisation cost of a superstep.(We slightly abuse the language, because l also includes other costs.) We call acomputer with these four parameters a BSPC(p; s; g; l). The execution time ofan algorithm with cost a+bg+cl on a BSPC(p; s; g; l) is (a+bg+cl)=s seconds.Estimates for g and l of a particular machine can be obtained by benchmark-ing a range of full h-relations, i.e., h-relations where each processor sends andreceives exactly h data. In the �eld of numerical linear algebra, it is appropriateto use 64-bit reals as data words. The measured cost of a full h-relation will bean upper bound on the cost of an arbitrary h-relation. For a good benchmark,a representative full h-relation must be chosen which is unrelated to the speci�carchitectural characteristics of the machine. A cyclic pattern will often su�ce:processor P (i), 0 � i < p, sends its �rst data word to P ((i + 1) mod p), thenext to P ((i + 2) mod p), and so on. The source processor P (i) is skipped asthe destination of messages, since local assignments do not require communica-tion. (As an alternative, an average for a set of random full h-relations can bemeasured.)Figure 1 shows the results of benchmarking cyclic full h-relations on 64processors of a Cray T3D. The nodes of the Cray T3D used in this experimentconsist of a 150 MHz Dec Alpha processor and a memory of 64 Mbyte. Thecommunication network is a three-dimensional torus. The Cray T3D is trans-formed into a BSP computer by using the Cray T3D implementation of the4



0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60

T
im

e 
(i

n 
fl

op
 u

ni
ts

)

h

measured data
least-squares fitFigure 1: Time of an h-relation on a 64-processor Cray T3DOxford BSP library [11], version 1.1. The measured data points of the �gure lieclose to the straight line of a least-squares �t, so that the behaviour is indeedlinear as modelled by (3). The �tted BSP parameters are g = 11:5 and l = 61:4.The sequential computing speed s = 6:0Mop/s is obtained by measuring thetime of a DAXPY operation y := �x+ y, where x and y are vectors of length1024 and � is a scalar.Communication in the BSP model does not require any form of synchro-nisation between the sender and the receiver. Global barrier synchronisationsguarantee memory integrity at the start of every superstep. The absence ofsender/receiver synchronisation makes it possible to view the communicationsas one-sided: the processor that initiates the communication of a message isactive and the other processor is passive. If the initiator is the sender, we callthe send operation a put; if it is the receiver, we call the receive operation a get.Conceptually, puts and gets are single-processor operations. More and more,puts and gets are supported in hardware, which makes them very e�cient. Anearly example of such support is the SHMEM facility of the Cray T3D. The useof one-sided communications makes programs simpler: the program text onlyincludes a put or get statement for the initiator. This is in contrast to tradi-tional message-passing programs where both parts of a matching send/receive5



pair must be included. In dense matrix computations, puts are usually su�-cient. In sparse matrix computations, gets are sometimes needed because thereceiver of the data knows which data it needs, for instance because of its localsparsity pattern, but the sender does not have this knowledge. Note that weuse the terms `send' and `receive', even if we only perform puts. Furthermore,we still analyse algorithms counting both sent and received data words. Theadvantage of one-sided communications lies mainly in simpler program texts ofalgorithms and their implementations.3 Two-Phase Randomised BroadcastingAn important communication operation in parallel algorithms for numericallinear algebra is the broadcast of a matrix row or column. Let us examine acolumn broadcast in detail. TheM�N grid distribution assigns matrix elementaij to processor P (i mod M; j mod N ). Suppose we have to broadcast columnk, i.e., each matrix element aik must be communicated to all processors thatcontain elements from matrix row i. For the grid distribution, these processorsare contained in processor row P (i mod M; �). Often, a column broadcast anda similar row broadcast prepare the ground for a subsequent rank-1 update ofthe matrix. The broadcasts communicate the elements aik and akj that arerequired in assignments of the form aij := aij � aikakj.Usually, only part of a column k must be broadcast, such as e.g. the elementsaik with i > k in stage k of an LU decomposition. In our explanation, however,we assume without loss of generality that all elements aik, 0 � i < m, mustbe broadcast, where m � 1. A simple algorithm that performs this columnbroadcast is given by Fig. 2.if k mod N = t thenfor all i : 0 � i < m ^ i mod M = s doput aik in P (s; �);sync;Figure 2: Program text for processor P (s; t) of one-phase broadcast of columnk This broadcast consists of one phase, which is a communication superstep.The cost of this superstep can be analysed as follows. The only processors thatsend data are theM processors fromP (�; k modN ). These processors send N�1 copies of at most R = dm=Me matrix elements, so that the maximumnumberof elements sent per processor is hs = R(N�1). In general, all processors exceptthe senders receive elements from column k. The maximumnumber of elements6



received per processor is hr = R. It follows that h = hs = R(N �1). (Note thatthis count also holds in the special case N = 1, where h = 0.) The resultingcost of the one-phase broadcast isT (one-phase broadcast) = lmM m (N � 1)g + l : (5)In the common case M = N = pp with m � pp � 1, the cost becomesT � mg + l.This cost analysis reveals a major disadvantage of the straightforward algo-rithm. The maximumnumber of sends is N �1 times larger than the maximumnumber of receives. In the ideal situation, hs and hr would both be equal tothe average number of data communicated per processor, which is the com-munication volume divided by p. In the one-phase broadcast, however, thecommunication work is badly balanced. The senders have to copy the columnelements and send all these copies out, whereas the receivers only receive onecopy of each column element. For M = N = pp with m � pp � 1, we arefar from the ideal situation: hs � m, hr � m=pp, and the average number ofcommunicated data is about m=pp.The communication imbalance can be eliminated by �rst sending one copy ofeach data element to a randomly chosen intermediate processor and making thisprocessor responsible for copying and for sending the copies to the destination.This method is similar to two-phase randomised routing [14], which sends pack-ets from source to destination through a randomly chosen intermediate location,to avoid congestion in the routing network. The new broadcasting method splitsthe original communication superstep into two communication supersteps: anunbalanced h-relation which randomises the location of the data elements tobe broadcast; and a balanced h-relation which performs the broadcast itself.In analogy with the routing case, we call the resulting pair of h-relations atwo-phase randomised broadcast.In general, the intermediate processor in a two-phase randomised broad-cast is chosen randomly. However, in certain situations with regular commu-nication patterns, for instance in dense matrix computations, the intermediateprocessor can also be chosen deterministically. (For sparse matrix computa-tions, which are often irregular, a random choice may be more appropriate.)Processor P (s; k mod N ), 0 � s < M , is the source of the matrix elements aikwith i modM = s. The row index i of a local element aik of this processor canbe written as i = iM + s, where i is a local index. Note that i = i div M , andthat the local indices of the local elements are consecutive. The intermediateprocessor for an element aik of P (s; k mod N ) can be chosen within processorrow P (s; �). This is a natural choice, because the broadcast involves a nearlyequal number of elements for each processor row and because source and des-tination are always in the same processor row. The consecutive local indices ican be used to assign intermediate addresses in a cyclic fashion (similar to thecyclic method of the grid distribution itself). This can be done by assigning el-7



ements with local index i to processor P (s; i mod N ). The resulting two-phasebroadcast is given by Fig. 3.if k mod N = t thenfor all i : 0 � i < m ^ i mod M = s doput aik in P (s; (i div M ) mod N );sync;for all i : 0 � i < m ^ i mod M = s ^ (i div M ) mod N = t doput aik in P (s; �);sync;Figure 3: Program text for processor P (s; t) of two-phase broadcast of columnk The cost analysis of the two-phase broadcast is as follows. The broadcastconsists of two communication supersteps. Let R = dm=Me. The �rst superstephas hs = R � bR=Nc, since at least bR=Nc puts are local, and hr = dR=Ne.For simplicity, we write h � R. The second superstep has hs = dR=Ne(N � 1)and hr = R � bR=Nc. An upper bound for hs can be obtained from hs =dR=Ne(N � 1) � (R=N + 1)N = R + N . We write h � R + N . The resultingcost of the two-phase broadcast isT (two-phase broadcast) � (2 lmM m+ N )g + 2l : (6)ForM = N = pp withm� p, the cost becomes T � 2(m=pp)g+2l. Comparedto the one-phase broadcast, the communication cost decreases by the consid-erable factor of pp=2, at the modest expense of doubling the synchronisationtime.The cost of the two-phase broadcast is close to minimal because a lowerbound for every broadcast isT (broadcast) � lmM m g + l : (7)The lower bound follows from the fact that the processor with most words tobroadcast has to send dm=Me data words at least once and this takes at leastone superstep.Figure 4 illustrates the implementation of a two-phase broadcast as part ofan LU decomposition program. The program fragment performs the broadcastof elements aik with k < i < n, for an n�n matrixA. The program is written inANSI C extended with primitives from the proposed BSP Worldwide standardlibrary [7]. The program uses two-dimensional processor coordinates (s,t) andthe corresponding one-dimensional identity s+t*M. The �rst bsp put primitive8



writes the double aik = a[i][kc] into ak[i] of processor s+(i mod N)*M. Thevalue of i0 is the smallest integer i � kr1 with i mod N = t.#define SZD (sizeof(double))/* nr = number of local rows of matrix Akr1 = first local row with global index > k */if (k%N==t){/* kc = local column with global index = k */for(i=kr1; i<nr; i++){bsp_put(s+(i%N)*M,&a[i][kc],ak,i*SZD,SZD);}}bsp_sync();for(i=i0; i<nr; i +=N){for(t1=0; t1<N; t1++){bsp_put(s+t1*M,&ak[i],ak,i*SZD,SZD);}}bsp_sync();Figure 4: Implementation of two-phase broadcast from LU decomposition inANSI C with BSP extensions4 Experimental ResultsThe theoretical analysis of Sect. 3 shows that two-phase randomised broadcast-ing is advantageous. In this section, we put this claim to the test by performingnumerical experiments on a parallel computer. We choose LU decompositionwith partial pivoting as our test problem and we perform our tests on 64 nodesof a Cray T3D. This parallel computer with parameters p = 64, s = 6:0Mop/s,g = 11:5, and l = 61:4 has good BSP characteristics, because of the low valuesof g and l and because of its scalable and predictable behaviour, see Sect. 2.For the experiments, we implemented LU decomposition with one-phase andtwo-phase broadcasts. Except for the broadcasts, the two implementations areidentical. The n � n matrix A which is decomposed into PA = LU is distrib-uted according to the 8 � 8 grid distribution. The test matrix is chosen suchthat in each stage k, 0 � k < n, of the LU decomposition, row k is explicitlyswapped with the pivot row r, forcing communication. This is done to generatethe worst-case communication behaviour.The communication operations of LU decomposition in stage k are: a broad-cast of column k which involves elements aik with k < i < n; a broadcast of9



row k which involves elements akj with k < j < n; and a swap of rows k andr which involves elements akj and arj with 0 � j < n. The time complexityof the broadcasts is analysed in Sect. 3; the row swap costs about (n=pp)g + lop units. Each stage of the parallel LU decomposition algorithm with two-phase randomised broadcasting contains six supersteps. (This small numbercan be obtained in an implementation by combining supersteps and by per-forming computation and communication in the same superstep.) The totalcost of the algorithms can be shown to be equal toT (LU with one-phase broadcast) � 2n33p + �n2 + n2pp� g + 5nl ; (8)and T (LU with two-phase broadcast) � 2n33p + 3n2pp g + 6nl : (9)Figure 5 shows the measured time of LU decomposition with partial pivotingfor matrices of order n=250{5000. Two-phase randomised broadcasting clearlyimproves performance for all problem sizes. The largest gain factor achieved is2.53, for n = 500. Theoretically, the total communication cost of the algorithmdecreases from (n2 + n2=pp)g to (3n2=pp)g. This is a decrease by a factor of(pp+1)=3, which equals three for p = 64. Synchronisation is dominant for smallproblems and computation is dominant for large problems; in both asymptoticcases the decrease in communication time is relatively small compared to thetotal solution time. In the intermediate range of problem size, however, thedecrease is signi�cant. The experiments show that in the range of n = 250{1500 the decrease of the total time is more than a factor of two, but even forn = 5000 it is substantial: the two-phase version takes only 143 s, whereas theone-phase version takes 202 s.The theoretical timing formula (9) and the measured machine characteris-tics p; s; g, and l can be used to predict the total execution time and its threecomponents. Table 1 compares predicted and measured execution times. Thetable displays reasonable agreement for small n, but signi�cant discrepancy forlarger n. This discrepancy is mainly due to a sequential e�ect: it is di�cult topredict sequential computing time, because the actual computing rate may dif-fer from one application to another. Simply substituting a benchmark result ina theoretical time formula gives what may be termed an ab initio prediction, i.e.a prediction from basic principles, which may be useful as an indication of ex-pected performance, but not as an accurate estimate. Of course, the predictioncan always be improved by using the measured computing rate for the partic-ular application, instead of the benchmark rate s. (For LU decomposition, wemeasured a sequential rate of 9.35Mop/s for n = 1000, which is considerablyfaster than the benchmark rate of 6.0Mop/s.)A breakdown of the predicted total time in computation time, communica-tion time, and synchronisation time gives additional insight. Synchronisation10



0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e 
(i

n 
se

co
nd

s)

Matrix size n

one-phase broadcast
two-phase broadcast

Figure 5: Time of LU decomposition with partial pivoting on a 64-processorCray T3Dtime is negligible for this machine and this problem, except in the case of verysmall n. This implies that the increase in synchronisation time caused by two-phase randomised broadcasting is irrelevant. The savings in communicationtime, however, is signi�cant. For example, for n = 5000, the predicted com-munication time is brought down from 53.91 s to 17.97s, and this predicteddecrease accounts for much of the total measured decrease of 59 s. (As in thecase of computation, we cannot expect an ab initio prediction to give an exactaccount of all communication e�ects.)Our implementation of LU decomposition was developed to study broadcastsin a typical parallel matrix computation. The program is a straightforward im-plementation in ANSI C of parallel LU decomposition with the grid distribu-tion. The program does not use Basic Linear Algebra Subprograms (BLAS) orsubmatrix blocking, which are crucial in obtaining high computing rates. Asexpected, our implementation is far from optimal with respect to computingspeed; it achieves 0.56Gop/s for n = 8000 and p = 64, whereas ScaLaPackattains 5.3Gop/s [4] for the same problem on the same machine. Absoluteperformance can of course be improved by using BLAS wherever possible andreorganising the algorithm to use matrix-matrix multiplication in the core com-11



Table 1: Predicted and measured time (in s) of parallel LU decompositionPredicted Measuredn Tcomp Tcomm Tsync Ttotal Ttotal250 0.03 0.04 0.02 0.09 0.10500 0.22 0.18 0.03 0.43 0.36750 0.73 0.40 0.05 1.18 0.871000 1.74 0.72 0.06 2.52 1.722000 13.89 2.88 0.12 16.89 10.333000 46.88 6.47 0.18 53.53 31.534000 111.11 11.50 0.25 122.86 73.205000 217.01 17.97 0.31 235.29 142.91putation. The data distribution need not be changed. Note that for highercomputing rates the issue of communication will become relatively more impor-tant and hence the bene�ts of two-phase randomised broadcasting will grow insigni�cance.5 ConclusionThe main result of this work is that signi�cant performance improvement canbe obtained by using the BSP model in parallel numerical linear algebra. Thenew technique of two-phase randomised broadcasting has been introduced tobalance the communication work in a parallel computer. This technique can beused to accelerate row and column broadcasts in LU decomposition, Choleskyfactorisation, QR factorisation, and Householder tridiagonalisation. Numericalexperiments on a Cray T3D show that the improvement can be observed inpractice. Application is not restricted to a BSP context; the technique maybe used wherever row or column broadcasts occur in parallel numerical linearalgebra. The derivation of the technique is natural in the BSP model. One mayspeculate that it is much more di�cult to obtain such techniques without theguidance of the BSP model.AcknowledgementsThis work is partially supported by the university grants programme of NCFin the Netherlands and Cray Research. Numerical experiments were performedon the Cray T3D of the Ecole Polytechnique F�ed�eral de Lausanne.12



References[1] R. H. Bisseling and L. D. J. C. Loyens. Towards peak parallel LINPACKperformance on 400 transputers. Supercomputer, 45:20{27, 1991.[2] R. H. Bisseling and W. F. McColl. Scienti�c computing on bulk synchro-nous parallel architectures. In B. Pehrson and I. Simon, editors, Technologyand Foundations: Information Processing '94, Vol. I, volume 51 of IFIPTransactions A, pages 509{514. Elsevier Science Publishers, Amsterdam,1994.[3] R. H. Bisseling and J. G. G. van de Vorst. Parallel LU decompositionon a transputer network. In G. A. van Zee and J. G. G. van de Vorst,editors, Parallel Computing 1988, volume 384 of Lecture Notes in ComputerScience, pages 61{77. Springer-Verlag, Berlin, 1989.[4] J. J. Dongarra and D. W. Walker. Software libraries for linear algebracomputations on high performance computers. SIAM Review, 37(2):151{180, 1995.[5] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, andD. W. Walker. Solving Problems on Concurrent Processors: Vol. I, GeneralTechniques and Regular Problems. Prentice Hall, Englewood Cli�s, NJ,1988.[6] A. V. Gerbessiotis and L. G. Valiant. Direct bulk-synchronous parallelalgorithms. Journal of Parallel and Distributed Computing, 22(2):251{267,1994.[7] M. W. Goudreau, J. M. D. Hill, K. Lang, B. McColl, S. B. Rao, D. C.Stefanescu, T. Suel, and T. Tsantilas. A proposal for the BSP Worldwidestandard library. Technical report, Oxford Parallel, Oxford, UK, Apr. 1996.[8] B. A. Hendrickson and D. E. Womble. The torus-wrap mapping for densematrix calculations on massively parallel computers. SIAM Journal onScienti�c Computing, 15(5):1201{1226, 1994.[9] B. H. H. Juurlink and H. A. G. Wijsho�. Communication primitives forBSP computers. Information Processing Letters, to appear, 1996.[10] W. F. McColl. Scalable computing. In J. van Leeuwen, editor, ComputerScience Today: Recent Trends and Developments, volume 1000 of LectureNotes in Computer Science, pages 46{61. Springer-Verlag, Berlin, 1995.[11] R. Miller. A library for bulk synchronous parallel programming. In Gen-eral Purpose Parallel Computing, pages 100{108. British Computer SocietyParallel Processing Specialist Group, 1993.13



[12] D. P. O'Leary and G. W. Stewart. Data-ow algorithms for parallel matrixcomputations. Communications of the ACM, 28(8):840{853, 1985.[13] P. Timmers. Implementing dense Cholesky factorization on a BSP com-puter. Master's thesis, Department of Mathematics, Utrecht University,Utrecht, the Netherlands, June 1994.[14] L. G. Valiant. A scheme for fast parallel communication. SIAM Journalon Computing, 11:350{361, 1982.[15] L. G. Valiant. A bridging model for parallel computation. Communicationsof the ACM, 33(8):103{111, 1990.

14


