
1Scienti�c Computing on Bulk Synchronous Parallel ArchitecturesR. H. Bisselinga � and W. F. McCollb ya Department of Mathematics, Utrecht University, P.O. Box 80010, 3508 TA Utrecht,The Netherlands (bisseling@math.ruu.nl)b Programming Research Group, Oxford University Computing Laboratory, WolfsonBuilding, Parks Road, Oxford OX1 3QD, UK (mccoll@comlab.ox.ac.uk)We theoretically and experimentally analyse the e�ciency with which a wide range ofimportant scienti�c computations can be performed on bulk synchronous parallel archi-tectures.Keyword Codes: C.1.2; F.1.1; G.1.3Keywords: Multiprocessors; Models of Computation; Numerical Linear Algebra1. IntroductionBulk synchronous parallel (BSP) architectures [1,2] o�er the prospect of achieving bothscalable parallel performance and architecture independent parallel software. They pro-vide a robust model on which to base the future development of general purpose parallelcomputing systems. In this paper we theoretically and experimentally analyse the e�-ciency with which a wide range of important scienti�c computations can be performed onBSP architectures. The computations considered include the iterative solution of sparselinear systems, molecular dynamics, linear programming, and the solution of partial dif-ferential equations on a mesh. We analyse these computations in a uniform manner byformulating their basic procedures as a sparse matrix-vector multiplication. In our anal-ysis, we introduce the normalised BSP cost of an algorithm as an expression of the forma + bg + cl, where a; b; and c are scalar values which depend on the algorithm, on thenumber of processors, and on the chosen data distribution. The scalars g and l are theparameters that characterise a BSP architecture. An ideal parallel algorithm has thevalues a = 1, b = 0, and c = 0; an algorithm with load imbalance has a value a > 1;an algorithm with communication overhead has a value b > 0; and an algorithm withsynchronisation overhead has a value c > 0.As an example, consider the execution of a �ve-point Laplacian �nite di�erence operatoron a two-dimensional toroidal mesh. This operator computes new values at a mesh pointusing the old values at the mesh point and its direct neighbours to the north, east,�This work was initiated while this author was a Research Mathematician at Koninklijke/Shell-Laboratorium, Amsterdam.yPart of this work was done while this author was a Visiting Scientist at Koninklijke/Shell-Laboratorium,Amsterdam.



2south, and west. Our BSP algorithm for this computation has a normalised cost on 100processors of 1:0+0:022g+0:00056l for a mesh of size 200�200. This low cost is achievedby distributing the mesh by orthogonal domain partitioning over the processors, assigninga square block of 20� 20 mesh points to each processor. The resulting cost value impliesthat this computation can be performed e�ciently on BSP computers with g � b�1 � 45and l � c�1 � 1800.In the design of e�cient BSP algorithms, it is important to �nd a good data distribution.In fact, the choice of a data distribution is one of the main means of in
uencing theperformance of the algorithm. In the BSP model, the partitioning of the data is a crucialissue, as opposed to the mapping of the resulting partitions to particular processors,which is irrelevant. This leads to an emphasis on problem dependent techniques of datapartitioning, instead of on hardware dependent techniques that take network topologiesinto account. The algorithm designer who is liberated from such hardware considerationsmay concentrate on exploiting the essential features of the problem. In our case, this leads,surprisingly, to the application of sphere packing techniques to reduce communication inmolecular dynamics simulations and in mesh computations.2. The MLIB test set of sparse matricesLinear algebra is of crucial importance in scienti�c computing. This paper focuses onone particularly important linear algebra operation, the multiplication of a sparse matrixby a vector. This operation arises in many areas, e.g. it is the basis of most iterativemethods for the solution of sparse linear systemsAx = b, it represents the execution of the�nite di�erence operator in certain PDE solvers, and it can be used to model two-particleinteractions in molecular dynamics simulations. For more details, see [3].We present experimental results on the e�ciency with which sparse matrix-vector mul-tiplication can be performed on BSP architectures. The experiments are performed ona sparse matrix test library MLIB, which we developed with the aim of capturing theessence of a wide range of important scienti�c computations in the uniform format of asparse matrix. MLIB consists of 34 sparse matrices and their generating programs. Itcontains the following classes of matrices:� hyp:r:d:D, the hypercube matrix with radix r, dimension d, and distanceD, r; d;D �1. For D = 1, this is the adjacency matrix of the directed r-ary, d-dimensional hy-percube graph. The vertices of this graph form a d-dimensional mesh of n = rdpoints; they are numbered lexicographically. Each vertex has directed edges to it-self and to its immediate neighbours in each direction. The size of the hypercubematrix is n � n. For D > 1, the hypercube graph is obtained by connecting eachvertex to those vertices that can by reached by a path of length � D in the originalD = 1 graph. This models certain higher-order �nite di�erence operators.� dense.n, the dense matrix of size n � n. All elements of this matrix are nonzero.� random.n:��1, an n � n matrix with a random sparsity structure and a nonzerodensity �.� hb.x, the matrix x from the Harwell-Boeing collection [4].



3� md.n:rc�1, an n � n matrix which corresponds to n particles in a three-dimensionalmolecular dynamics simulation with short-range potentials. The particles i and jinteract, i.e. aij 6= 0, if jjri � rjjj � rc, where ri is the position of particle i and rcthe cut-o� radius. The positions ri = (xi; yi; zi), with 0 � xi; yi; zi � 1, are given atthe end of the �le. The interactions assume periodic boundaries.� mdr.n:rc�1:��1, an n�nmatrix which corresponds to n particles in a three-dimensionalmolecular dynamics simulation with short-range potentials and, additionally, an ar-ti�cial long-range potential for certain randomly selected particle pairs. The sparsitypattern of this matrix is the union of the sparsity patterns of a short-range molecu-lar dynamics matrix with cut-o� radius rc and a random sparse matrix with density�. Here, long-range interactions between selected particles represent interactionsbetween distant clusters of particles. The aim of this procedure is to mimic e.g.multipole expansions.� lp.n, an n � n matrix which resembles certain matrices that occur in the solutionof linear programming problems.The matrices in the library range in size from hb.impcol (n = 59, #nonzeros=312)through to hyp.20.4.1 (n = 160000, #nonzeros=1440000).3. Sparse matrix-vector multiplicationIn this section we present a parallel algorithm for the multiplication of a sparse matrixA by a dense vector v to produce a vector u. The matrix A = (aij; 0 � i; j < n) hassize n � n and the vectors u = (ui; 0 � i < n) and v = (vi; 0 � i < n) have lengthn. We assume that the matrix is distributed by a Cartesian distribution [5]. This meansthat the processors are numbered by two-dimensional identi�ers (s; t), with 0 � s < q0and 0 � t < q1, where p = q0q1 is the number of processors, and that there are mappings�0 : f0; 1; : : : ; n� 1g ! f0; 1; : : : ; q0� 1g and �1 : f0; 1; : : : ; n� 1g ! f0; 1; : : : ; q1� 1gsuch that matrix elements are distributed according toaij 7�! processor(�0(i); �1(j)):Vectors are distributed in the same manner as the diagonal of the matrix, i.e. accordingtoui 7�! processor(�0(i); �1(i)):This particular distribution scheme is 
exible enough to accommodate many commonlyused distribution methods while it is also su�ciently restrictive to impose e�cient com-munication patterns. A detailed discussion and motivation of this distribution scheme inthe context of sparse matrix-vector multiplication is given in [6].Sparse matrix-vector multiplication can be performed on a BSP computer in four super-steps: a fan-out of vector components to the processors that need them; a multiplicationof the local part of the sparse matrix by the corresponding part of the input vector; afan-in of partial sums; and, �nally, the computation of the local part of the output vector.The fan-out and the fan-in are h-relations [1]; the other supersteps are local computations.



4 f A : n� n; distr(A) = �,v : n; distr(v) = distr(diag(A)) gf fan-out gfor all j : 0 � j < n ^ �0(j) = s ^ �1(j) = t dosend vj to processors f(�0(i); t) : 0 � i < n ^ aij 6= 0g;f local sparse matrix-vector multiplication gfor all i : 0 � i < n ^ �0(i) = s ^ (9r : 0 � r < n ^ �1(r) = t ^ air 6= 0) dobeginuit := 0;for all j : 0 � j < n ^ ^�1(j) = t ^ aij 6= 0 do uit := uit + aijvjend;f fan-in gfor all i : 0 � i < n ^ �0(i) = s ^ uit 6= 0 dosend uit to processor (s; �1(i));f summation of partial sums gfor all i : 0 � i < n ^ �0(i) = s ^ �1(i) = t dobeginui := 0;for all k : 0 � k < q1 ^ uik 6= 0 do ui := ui + uikendfu : n; u = Av; distr(u) = distr(v)gFigure 1. Sparse matrix-vector multiplication program for processor (s; t)Figure 1 gives the program text for processor (s; t), with 0 � s < q0 and 0 � t < q1.The total BSP cost of the algorithm is obtained by adding the computation and com-munication costs of the four supersteps. Denoting the BSP cost for p processors by T (p)we de�ne the normalised BSP cost C(p) to be pT (p)=Tseq where Tseq is the cost of thesequential algorithm. In other words, the normalised BSP cost C(p) of an algorithm isthe ratio between the time T (p) of that algorithm on a BSP computer and the time Tseqof a perfectly parallelised sequential algorithm. The normalised BSP cost of an algorithmis an expression of the form a+ bg + cl. The normalised cost of an ideal BSP algorithmwould be 1 + 0g + 0l.4. Results for structure independent distributionsWe have implemented a program that computes the normalised BSP cost a+ bg+ cl ofsparse matrix-vectormultiplication for a given sparse matrix and a given data distribution.Our cost statistics can be used to predict the computing time on an actual BSP computer,provided that the g and l parameters of the machine are available. For our experiments,we �xed the number of processors at p = 100.The c coe�cient depends only on p, Tseq and the number of supersteps, i.e. it isindependent of the data distribution. Many data distributions give values close to 1 for thea coe�cient. The results in [3] show, however, that the b coe�cient depends crucially onthe data distribution. For example, consider the MLIB matrix hyp.200.2.1 (n = 40000,



5#nonzeros=200000). The program shows that for a \PRAM distribution", i.e. randomallocation of matrix elements to processors, (a; b; c) = (1:06; 0:96; 0:0011) whereas for a\block-grid distribution" it is (1:00; 0:23; 0:0011). For the matrix dense.500 (n = 500,#nonzeros=250000) we have (1:12; 0:42; 0:0008) for PRAM and (1:00; 0:02; 0:0008) forblock-grid. For details of these results, and many others, see [3].5. Results for structure dependent distributionsThe b coe�cient for hyp.200.2.1 can be further reduced to 0:022 by distributing thematrix elements according to an orthogonal partition of the corresponding 200�200 meshinto 20�20 contiguous blocks. This is an immediate consequence of the surface-to-volumee�ect, where the communication across the block boundaries grows as the number ofpoints near the surface, and the computation as the number of points within the volumeof the block. It is possible to improve the b coe�cient even further, to about 0.016,by partitioning the 200�200 mesh into \digital circles" where all mesh points with aManhattan distance less than or equal to a radius r from the centre of such a circle areallocated to the same processor. The circles wrap around the boundaries of the mesh.Figure 2 illustrates this kind of distribution. These \digital sphere packing" techniquescan be generalised to give very e�cient BSP domain decomposition methods for higherdimensional hypercube matrices and for molecular dynamics matrices. For details, see[3].
t t t t t t tt t t t t tt t t tt t

t t t tt tqqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

qqqqqqqqqqqqqqqq
qqqqqqqqq

Figure 2. Partitioning of a 25 � 25 mesh into 25 digital circles of radius 36. ConclusionThe BSP model provides a new foundation for the development of scalable parallelcomputing systems. It o�ers a robust framework within which we can unify the various



6classes of parallel computers which are being produced (distributed memory architectures,shared memory multiprocessors, networks of workstations). The model permits and en-courages the development of e�cient parallel algorithms and programs which are bothscalable and portable.In this paper and [3] we provide the �rst theoretical and experimental analysis of thee�ciency with which a wide range of important scienti�c computations can be performedon bulk synchronous parallel architectures. Our analysis shows that the exploitationof knowledge about the underlying structure of the problem is extremely important inachieving e�cient parallel computations on a BSP computer. Highly irregular sparse ma-trix problems without a known structure are likely to be very di�cult to solve e�cientlyon any parallel architecture which has a large g value. Our results show clearly that manystructure independent parallel computations require extremely high communication per-formance and demand values of g that at present are di�cult to achieve. Providing alibrary of parallel algorithms to solve general sparse problems is a �rst step towards e�-cient parallel scienti�c computing, but to make further progress, this should be combinedwith developing algorithms that �nd structure in the problems [7].The initial techniques and results described here show clearly that the network indepen-dent approach of the BSP model gives rise to a whole range of interesting new theoreticalquestions concerning load balancing, communication complexity, and domain partitioningfor parallel scienti�c computing. In contrast to the many network speci�c (e.g. hyper-cube, mesh, or butter
y) process mapping and domain decomposition methods whichwere developed over the last decade, the techniques and results described here have anadvantage in that they are of relevance to any parallel computing system.REFERENCES1. L. G. Valiant, A bridging model for parallel computation, Commun. ACM, 33 (1990), pp.103{111.2. W. F. McColl, General purpose parallel computing. In: A. M. Gibbons and P. Spirakis(eds.), Lectures on Parallel Computation. Proc. 1991 ALCOM Spring School on ParallelComputation, Cambridge University Press, Cambridge, UK, 1993, pp. 337{391.3. R. H. Bisseling and W. F. McColl, Scienti�c Computing on Bulk Synchronous ParallelArchitectures, Preprint No. 836, Department of Mathematics, Utrecht University, 1993,31pp.4. I. S. Du�, R. G. Grimes, and J. G. Lewis, Users' guide for the Harwell-Boeing sparse matrixcollection (Release I). Technical Report TR/PA/92/86, CERFACS, Toulouse, France, 1992.5. R. H. Bisseling and J. G. G. van de Vorst, Parallel LU decomposition on a transputernetwork. In: G. A. van Zee and J. G. G. van de Vorst (eds.), Parallel Computing 1988,Shell Conference, Lecture Notes in Computer Science, 384, Springer-Verlag, Berlin, 1989,pp. 61{77.6. R. H. Bisseling, Parallel iterative solution of sparse linear systems on a transputer network,In: A. E. Fincham and B. Ford (eds) Proc. IMA Conf. on Parallel Computing, Oxford 1991,Oxford University Press, Oxford, UK, 1993, pp. 253{271.7. A. Pothen, H. D. Simon, and K.-P. Liou, Partitioning sparse matrices with eigenvectors ofgraphs. SIAM J. Matrix Anal. Appl., 11 (1990), pp. 430{452.


