
Inferring transportation modes from smartphone
sensors

Rob Bisseling (Utrecht University), Jason Frank (Utrecht University), Haris
Gavranovic (University of Sarajevo), Jasper van Heugten (Radboud University
Nijmegen), Anna Kruseman (Utrecht University), Daphne van Leeuwen (CWI),

Christian Reinhardt (University of Leiden)

1 Introduction

Transportation in urban areas poses big challenges related to sustainability,
safety and health of residents. A key step to improving policymaking in these
respects is to collect and analyse data on how current resources are used, so
that inefficiencies may be identified and addressed. The abundance of mobile
devices makes it very attractive to harness the advanced data collection abilities
of smartphones to tackle this question.

1.1 Mobidot problem statement

Mobidot b.v. develops software that can be implemented in smartphone appli-
cations to provide automated capturing and analysis of mobility traces of in-
dividuals via smartphone sensors. Their customers are businesses and govern-
ment organisations interested in quantifying and improving the travel patterns
of their employees or constituents, especially by providing those individuals
with knowledge that motivates them to make safe, sustainable and healthy
mobility choices.

The platform developed by Mobidot utilizes efficient real-time data acquisition
using smartphone sensors, coupled with a central analysis server that cleans the
raw data and compares it with available databases to infer travel trajectories
and modes.
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The problem formulated for the Study Group focuses on advancing the quality
of data derivation. Mobidot infers the route, role, objective and mode of
transportation from smartphone sensor data. Smartphones possess a variety of
sensors, including GPS, mobile telephone (4G) and wi-fi signals, accelerometer
and gyroscope sensors, etc. that could be used to determine the motion and
position of the user, when coupled with geographic databases and known public
transport tables.

The volume of monitoring and data recording must be weighed agains battery
drain, and consequently a sensing strategy must be devised to optimise infor-
mation gathering with minimal energy usage. The first objective of the problem
posed to the Study Group was to optimise data measurement versus battery
usage, by (1) devising and optimal scheduling plan for sensing, detecting mode
changes, (2) developing a method to locally filter and compress relevant infor-
mation at the mobile site, and (3) developing a method to infer motion from
incomplete data. A second objective posed to the Study Group was to detect
obvious errors in the trip analysis and minimise false inferences.

For the Study Group Mathematics with Industry, Mobidot provided relevant
data to develop data deduction improvements and test approaches and meth-
ods. This included sample smartphone multi-sensor data, sensor energy usage
stats and samples of resulting anonymised mobility profiles.

1.2 Work plan of the Study Group

The Study Group initially began work on several fronts and eventually con-
verged on two most promising lines of investigation. The first of these was
an improvement to transportation mode identification using high-resolution
accelerometer measurements to try to identify transportation mode signatures
from vibrational data (bicycling rhythms, motor frequencies, etc.). Related to
this, the second investigation line was a sensing strategy that would accom-
modate taking such high-resolution accelerometer readings without excessively
straining battery charge.

In this paper we propose approaches to dealing with the above challenges. In
Section 2, we focus on devising a sensing strategy that is both energy efficient
and provides enough data to sense multimodal traveling. This in particular
necessitates the detection of changes in the transportation mode. To this end
high resolution data is crucial to reliably deduce changes. We propose to
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supplement the currently used GPS/localization sensing with high-resolution
accelerometer data in a three stage sampling procedure. This keeps both energy
consumption low and prediction power high.

Once data is acquired it is necessary to infer motion signatures from it. This
means that we need to process the time series data obtained from the measure-
ments in a way that enables us to reliably distinguish between different modes
of transportation. Current approaches use for example frequency analysis via
Fourier transform methods. Here we investigate the use of Wavelet transform
methods that provide local frequency information on time series signals. Us-
ing wavelet analysis, each time signal is efficiently converted into a distinct
two dimensional signature, which in turn could be used to train a learning
algorithm to distinguish different transport modalities. In Section 3 we dis-
cuss the use of Haar wavelets in some detail and stress how they are useful to
detect characteristic changes in time series data. In Section 4 we show some
sample applications of this method to accelerometer data taken from different
modes of transportation. A powerful feature of the Wavelet approach is the
great variety of available basis wavelets that enable one to look for changes
with specific structures. We use as a second example the Mexican hat wavelet
to analyse the same accelerometer data and discover characteristic structures
for the different modes of transportation. The results suggest that further re-
search might lead to powerful prediction tools via the ’right’ choice of wavelet.
Finally, in Section 5, we mention a method to determine the specific moment
of modality change from accelerometer data stored on the phone.

2 Sampling algorithm

In subsequent sections we discuss ideas about improving modality sensing by
incorporating high-frequency accelerometer data. Modality changes are rare,
however, and it is unnecessary to continually probe and analyse accelerometer
data throughout a commuter trajectory. At the same time, sampling should
be done as sparsely as possible to minimize battery drain. In this section we
discuss a possible scheme for acquiring high resolution accelerometer readings
through irregular short bursts.

We propose 3 modes of data sampling:
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- burst: high frequency sampling for a fixed short duration
- cruise: variable frequency sampling
- sleep: low frequency sampling, only when stationary

Switching between the modes is indicated in the scheme below:

Burst
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<
|a|
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∆
x

=
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Sleep
∆x 6= 0

Burst mode is a new feature for Mobidot and its main purpose is to enable
high frequency sampling for modality detection from accelerometer data. In
this mode, both accelerometer data and GPS data are collected. The Burst
mode lasts for a fixed amount of time TB seconds and the time step between
two consecutive measurements is short ∆tB. After Burst mode, the system
always goes to Cruise mode.

Cruise mode is a medium frequency sampling mode to track the trajectory
and to detect sudden changes, which call for a change back to Burst mode.
The sampling frequency of cruise mode is adaptive, depending on the change
in acceleration as derived from the GPS data. When Cruise mode is evoked
after a Burst, the time step starts at ∆tmin.

Each time step later, the stepping time is adapted: ∆t = max(∆tmin, f(a)).
The function f is linear with acceleration a in m/s2. So f(a) := ∆tmax − c ∗
(a− amin), where c = ∆tmax−∆tmin

amax−amin
.

This is shown schematically in the figure below.

f(a)∆tmax

∆tmin

amin amax

In Cruise mode only GPS data is collected. The system can leave Cruise mode
when:
- location is stationary for a time span longer than TS : go to Sleep mode
- there is a sudden change in acceleration |a| > γ: go to Burst mode
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Sleep mode is only invoked when the device is stationary. This mode is char-
acterised by low frequency sampling ∆tS . When significant location change is
detected, the system goes immediately into burst mode, to detect the modality
of the new trip.

The mode switching is demonstrated in the following algorithm:

if mode==Burst
∆t = ∆tB
if T > TB

mode =Cruise
end

elseif mode ==Cruise
∆t = max(∆tmin, f(a))
if ∆x == 0 and Tstationary > TS

mode=Sleep
elseif |a| > γ

mode =Burst
end

elseif mode==Sleep
∆t = ∆tS
if ∆x > 0

mode =Burst
end

end

3 Discrete Wavelet Transform

In a practical application such as Mobidot’s smartphone app, a continuous
function f is often sampled at a finite set of discrete time points. Let us define
the function values as xi = f(ti) where the ti = i∆t, i = 0, . . . , n − 1 are n
equidistant sample times.

Time series analysis is a large field. The Study Group has investigated the
use of wavelet analysis as a potentially efficient means of transforming discrete
accelerometer data into a form suitable for training a learning algorithm to
distinguish transport modality.
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Analysis of a discrete time series requires a discrete version of the wavelet
transform, and we will explain this for the simplest possible wavelet, the Haar
wavelet. This wavelet is based on computing sums and differences of neigh-
bouring function values, thereby representing both averages and differences.
The averages give a smoothed version of the time series, with hopefully more
reliable statistics, whereas the differences reveal whether a significant change
has occurred over time.

One level of the wavelet transform is defined by

y2i = x2i + x2i+1, y2i+1 = x2i − x2i+1, for i = 0, . . . , n/2− 1. (1)

We denote this by dwt1(x, n), where the output y overwrites the input x,. We
can also carry this out on the first k components of the vector x of length n,
in which case we write dwt1(x, k).

In the complete Discrete Wavelet transform (DWT), all differences are recorded
and then they remain unchanged afterwards. For the sums, however, the pro-
cedure is repeated, but now with half the previous length. This is facilitated
by first permuting the vector y by an even-odd sort, giving

zi = y2i, zi+n/2 = y2i+1, for i = 0, . . . , n/2− 1. (2)

We denote this by sort(y, n), again assuming the output z overwrites the input
y. The complete DWT is given as Algorithm 1.

Algorithm 1 Discrete Haar wavelet transform
Require: x: vector of length n, with n = 2m.
Ensure: y: vector of length n, y = DWT(x, n).

while n > 1 do
dwt1(x, n) ;
sort(x, n) ;
n := n/2;

return x;

As a result of executing the DWT, we obtain an output vector y with

y0 = x0 + . . .+ xn−1, (3)

so that y0/n equals the average of all the input values. The next value

y1 = (x0 + . . .+ xn/2−1)− (xn/2 + . . .+ xn−1) (4)
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indicates whether a significant change in mean value can be detected between
the first half of the time series and the second half. The other values yi give
such change information at more detailed levels of accuracy.

The total number of additions and subtractions in the DWT algorithm for the
Haar wavelet equals n+n/2 + · · ·+ 2 ≈ 2n, which is significantly smaller than
the 5n log2 n floating-point operations (additions, subtractions, and multipli-
cations) that would be needed for a standard radix-2 Fast Fourier Transform.
For example, for n = 1024 the Haar wavelet transform is a factor 25 cheaper
than the FFT. Note that the Haar wavelet does not need any multiplications
(in contrast to the commonly used Daubechies wavelet), making it particu-
larly cheap. Its use would lead to a much lower energy consumption in case
the transform is computed on a smartphone.

4 Application of wavelet analysis

A Fourier transform of a signal in time only gives information on what frequen-
cies are present in the total signal and thus the time-domain is lost. The wavelet
transform provides a way to preserve the time-domain while also obtaining in-
formation about the frequency domain. The wavelet transform is most easily
understood from the formula of the continuous wavelet transform

Ψ(τ, s) =
1√
s

∫
f(t)w

(
t− τ
s

)
dt,

where τ is the location of the window over which we integrate, s is the scale, and
w(t) is the wavelet, for example the Haar wavelet as shown in Figure 1.

In this section we apply the theory of the wavelet to the accelerometer data
collected by Study Group. However, first we apply wavelet analysis to an
example.

Consider the signal composed of two cosine functions

f(t) = 2 cos(20πt) + cos
(

50
√

2πt
)
. (5)

This function is sampled on t ∈ [0, 2] with steps of size 10−3, leading to n =
2000 data points:
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The wavelet transform is performed with the Haar wavelet using Mathematica
and is shown in the lower left in Figure 1. Each box, numbered 1 to 7 in
the plot, contains the same t-axis shown in the above image, namely t× 103 ∈
[0, 2000]. As explained each level of refinement corresponds to convolution with
the Haar wavelet at a different scale. The signal is thus compared to the Haar
wavelet at each scale. In turn, each scale can be seen as a trade-off between
frequency resolution and time resolution. In Figure 2 we compare the wavelet-
transforms of each of the two cosines in the function f(t) individually. Here we
can see that at the sixth level of refinement there is a clear distinction between
the two. The weight in the Haar transform of the complete function thus
indicates that on this scale of the data the function contains a prominent slowly
oscillating component. For each scale we can determine the energy fraction:
{0.003, 0.012, 0.046, 0.138, 0.228, 0.385, 0.156, 0.0321}, where the energy of each
scale is determined by the sum of squares of the values. The energy fraction
can be used to rank the dominant contribution in the signal.

Although the Haar-wavelet transform is computationally very efficient, other
wavelets can be tailored to find specific signals in data. For example, if we were
to use the Meyer-wavelet the two oscillatory signals are clearly distinguishable
as shown on the right-hand side of Figures 1 and 2. This suggests that we
might use wavelets to pick out certain features in the Mobidot data specific to
bicycles, trains or buses, by optimizing the wavelet basis for specific transport
modes.

Next we apply the wavelet transform to the one-component of the 3-axis ac-
celerometer data acquired by team member Jason Frank using a third party
smartphone App. It is important to stress that a much more thorough data ac-
quisition program is needed to characterise transport modes accurately. Here
we provide only a random sample of time series data to indicate that differ-
ences can be discerned. Furthermore, our sampling rate was approximately
100–150 samples per second, which may be too low for detecting mechanical
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Figure 1: Left: The Haar wavelet (top) and the Haar transform of f(t) (bot-
tom). Right: The Meyer wavelet (top) and the Meyer transform of f(t) (bot-
tom).
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Figure 2: Left: The Haar-wavelet transform of the first (top) and second
(bottom) term of f(t). Right: Similarly, but for the Meyer wavelet.

vibrations in automobiles and buses. For visualisation purposes we will use
the continuous wavelet transform with the Mexican-hat wavelet:



30 SWI 2015 Proceedings

-4 -2 0 2 4
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

The time series data and its wavelet transform are shown in Figure 3. The
results are shown with the scale (refinement) on the vertical axis and time
on the horizontal axis. Each horizontal line in the image shows the absolute
value of the wavelet transform with darker colours corresponding to larger
magnitudes (cf. the amplitudes of the functions shown in Figure 2). Thus the
image shows the dominant contribution to the wavelet transform at a particular
scale.

It is clear that the bicycle shows distinctive features when analysed with this
wavelet, which indicates that bicycles might be discernible. The car in general
has high energies at low frequencies, while the train and bus are relatively quiet.
A possible way to train mode-detection using wavelet analysis on the Mobidot
data would be to record a sample of accelerometer data of fixed length of
time, and subsequently apply the Haar transform to see if distinctions between
different modes of transport can be identified based on which scales contain the
largest energy fraction. If the Haar wavelet does not provide a clear distinction
between modes of transport one could start to train on different wavelets. Using
combinations of Haar wavelets one could potentially develop a training method
which varies the wavelet form until an optimum wavelet is found. However,
since Mobidot would like the wavelet transform with the optimum wavelet to
be implemented on the mobile device, there will in general be a competition
between the ease of detection and the computational cost.

5 Determine specific moment of transportation modal-
ity change

Continual recording of GPS location would prohibitively drain smartphone
battery charge. Therefore Mobidot collects GPS data at regular intervals de-
pending on detected movement. As a result it is hard to determine the exact
starting time of a trip. If a change is detected one can only guess the starting
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Figure 3: Accelerometer data and Mexican-hat wavelet transform for four dif-
ferent modes of transport.
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Figure 4: Visual representation of mode change detection via accelerometer
sensor.

time via interpolation methods.

To overcome this problem the Mobidot application could augment GPS up-
date requests with accelerometer data. The accelerometer in smartphones is a
background application that is used for to detect gestures in the device. One
can think of horizontal or vertical display switching or the natural 3D shadow
effects for icons. Assuming the accelerometer is already running continuously,
we can collect and store this data temporarily. After a certain time interval,
the location detector can give an update about the current location. When no
location change is detected, the accelerometer data can be deleted. However,
if there is a significant change between the current and previous location we
can analyse the accelerometer data of that time interval. This time interval
can be analysed via the wavelet transform proposed in Section 4 to determine
the moment of mode change.

This method can be used to detect the start of a trip, but it can also detect
a change in transportation mode. To give a better overview of the method
a graphical representation is shown in Figure 4. The left figure indicates the
update method when the phone is in stationary mode. The right one represents
a regular check to see changes in transportation type within a trip. Via small
bursts of high frequency accelerometer data as described in Section 2 a mode
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change can be detected. If a change is detected we can use the temporarily
stored accelerometer data from the phone and track at which moment the
change took place.

6 Conclusions

We have reported on preliminary research to improve transport modality sens-
ing using smartphone data acquisition. Our primary conclusions are:

• High resolution accelerometer data exhibits noticeable differences among
different modalities such as bicycle, automobile, bus and train. Possibly
this approach could be combined with currently used location service
data to improve modality inference.

• Wavelet transforms offer an inexpensive and potentially powerful ap-
proach to obtain local frequency information on accelerometer signals.
A more thorough multi-scale application of wavelets yields distinctive
pictures of transport signals, that could be used to train learning algo-
rithms.

• Accelerometer data may be effectively sampled in short, high-resolution
bursts. These acquisitions can be incorporated in a multi-phase sensing
strategy to preserve battery charge.

• The wavelet approach and multi-phase sensing strategy can be combined
to improve the detection of mode changes during transit.



34 SWI 2015 Proceedings


