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Abstract. In this article, we introduce a cache-oblivious method for sparse matrix�vector multiplication. Our
method attempts to permute the rows and columns of the input matrix using a hypergraph-based sparse matrix
partitioning scheme so that the resulting matrix induces cache-friendly behaviour during sparse matrix�vector
multiplication. Matrices are assumed to be stored in row-major format, by means of the compressed row storage
(CRS) or its variants incremental CRS and zig-zag CRS. The zig-zag CRS data structure is shown to �t well with
the hypergraph metric used in partitioning sparse matrices for the purpose of parallel computation. We present
the separated block-diagonal (SBD) form as the appropriate matrix structure for cache enhancement.

We use a k-way set-associative idealised cache model, and we have implemented a run-time cache simulation
library enabling us to analyse cache behaviour for arbitrary matrices and arbitrary cache properties during matrix�
vector multiplication within this model. The results of these simulations are then veri�ed by actual experiments
run on various cache architectures. In all these experiments, we use the Mondriaan sparse matrix partitioner in
one-dimensional mode. The savings in computation time achieved by our matrix reorderings reach up to 50 percent,
in case of a large link matrix.

Key words. matrix�vector multiplication, sparse matrix, parallel computing, recursive bipartitioning, cache-
oblivious.

1. Introduction. Many important linear algebra kernels typically take a performance hit
on modern cache-based computer architectures [27, 18, 7] due to ine�cient use of the system
cache. Cache use is best when data from main memory is stored contiguously and accessed in a
single straight pass. Each data item is preferably used many times, and is not needed in further
computation afterwards. Unfortunately, many non-trivial applications require to jump through
data in main memory, even if data is stored contiguously. A notorious example is sparse matrix�
vector (MV) multiplication. In these cases, we can minimise the number of jumps or otherwise
improve cache e�ciency. As recent work in the �eld of the BLAS by Goto and van de Geijn [14]
has shown, tweaking algorithms to speci�c architectures results in large speedups.

Such cache-aware algorithms have as a disadvantage the need to adapt existing code to new
architectures, every time they become available. To resolve this, auto-tuning software libraries
have become a focus for much research [33, 20], most notably FFTW (for fast Fourier transforms)
[10, 11], OSKI (basic sparse BLAS) [32], and ATLAS (dense BLAS) [34]. These libraries may run
various benchmarks upon installation to help optimise algorithms for the hardware speci�cs of the
target machine, or may even attempt this during real-time execution.

Another approach is to design algorithms in such a way that optimal cache e�ciency is achieved
on any (regular) machine architecture. These cache-oblivious algorithms have been researched to
some extent, and for some applications have been shown to obtain asymptotically optimal bounds
[12, 3].

In this article, we propose a cache-oblivious sparse matrix�vector multiplication algorithm.
We use techniques from load-balancing for parallelism to increase data locality for cache reuse.
Before introducing our method, we �rst describe our sparse matrix storage format in Section 2.
We then proceed in Section 3 with an analysis of cache e�ciency and extend this knowledge in
Section 4 to obtain a better performing scheme. We link this scheme to hypergraph partitioning
theory, and formulate the basic idea of our MV multiplication method. In Section 5, we formalise
this idea in terms of matrix permutations.

Theoretical cache e�ciency analysis depends very much on the exact matrix input; even when
this is known, analysis still is di�cult due to algorithm complexity. Experimental results on actual
machines, on the other hand, su�er from in�exibility in the cache parameters, such as cache size,
leading to observations with only a limited range of applicability. This motivated the development
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m× n matrix dimensions
A, x, y matrix and vectors

C the cache
S cache size in bytes
LS cache line size in bytes
L number of cache lines (L = S/LS)
w number of data words in a cache line
k number of subcaches

Table 1.1
List of parameters used throughout this paper.

Main
memory

(RAM)

Cache

Subcaches

Modulo mapping

LRU−stack

Fig. 1.1. Schematic view of the k-way set-associative cache model with modulo mapping of main memory to
subcache.

of our run-time cache simulator, which we introduce in Section 6. We �nish with experimental
results on actual hardware and general conclusions in Sections 7 and 8, respectively.

Throughout the paper, we assume a k-way set-associative idealised cache model, with k sub-
caches, where the case k → ∞ corresponds to the ideal-cache model introduced in [12]. In our
model, we assume a total cache size equal to S bytes, and a line size of LS bytes. The total
number of cache lines is thus L = S/LS . A cache C can then be modelled as an L/k × k matrix,
where entries cij correspond to individual cache lines and each matrix column to a subcache. The
number i is commonly called the Set ID, while j is called the Line ID. Table 1.1 provides an easy
reference of the parameters introduced here.

A further assumption we make regarding the cache model, is that data is modulo-mapped
into one of the k subcaches by the Least Recently Used (LRU) policy. This means that the data
in main memory (RAM) at the bytes in the range [rLS , (r + 1)LS), for any r ∈ N0, is mapped
to the Set ID i = r mod L

k (hence the name modulo mapped). The Line ID j is determined by
selecting the cache line containing the least recently used data item, and the cache line we select
thus becomes cij . See also Figure 1.1 for an illustration of this model. For a further introduction
to cache architecture, one may consult [29].

2. Incremental CRS. A standard storage scheme for sparse matrices is the Compressed
Row Storage (CRS) format [2]. This format utilises three arrays: one array for storing individual
nonzero matrix entry values (nzs), one for storing the column index of those nonzeros (col_ind),
and one for indexing where in the previous two arrays individual rows start (row_start).

The arrays nzs and col_ind each require nz(A) space in memory, where nz(A) denotes the
number of nonzeros of the m × n sparse matrix A. The array row_start requires only m words
of space, bringing the total up to 2nz(A) + m. An algorithm to perform the MV multiplication
y = Ax on a matrix stored in CRS format is given in Algorithm 1. Note that we index vector and
matrix elements starting from 0: the matrix elements are aij , 0 ≤ i < m and 0 ≤ j < n.

A drawback of standard CRS implementation becomes immediately clear on line 4 of Algo-
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rithm 1. A for-loop was started on line 3 along indices k relevant to the row i being processed.
The array nzs is straightforwardly accessed according to k, in contrast to x which is accessed
according to j =col_ind[k] ; this kind of index translation causes much instruction overhead.

Koster proposes in his master's thesis [23] to store column index increments instead of storing
column indices. Hence, an MV algorithm only needs to increment a local column variable instead
of using index translation. An MV algorithm utilising this Incremental CRS (ICRS) storage
scheme is given in Algorithm 2. Note that an increment in row index is signalled by causing j to
over�ow (i.e., j ≥ n) so that j − n corresponds to the actual column index corresponding to the
�rst nonzero in the new row. The increase in the row index i after each column over�ow is stored
in the array row_jump.

Changing CRS to handle data incrementally does not change its memory requirements; nzs
and the new di�erence array di� both use nz(A) space while row_jump is still of size m in the
worst case. The total memory requirement thus also equals 2nz(A) + m.

Although the pseudocode of Algorithm 2 is a few lines larger than that of Algorithm 1, the
lack of index translation and ability to implement the latter algorithm e�ciently using pointer
arithmetic causes the instruction overhead to drop dramatically [23, Figure 2.5].

Algorithm 1 Matrix�vector multiplication using CRS

Input: nzs, col_ind, and row_start corresponding to some sparse matrix A; the dimensions m
and n of A; the dense input vector x required to calculate Ax.
Output: A dense vector y, where y = Ax.

1: Allocate y of size m and initialise: y = 0
2: for i = 0; i < m; i = i + 1 do
3: for k =row_start [i]; k <row_start [i + 1]; k = k + 1 do
4: j =col_ind [k]
5: y[i]= y[i]+nzs[k]∗x[j]
6: end for
7: end for
8: return y

Algorithm 2 Matrix�vector multiplication using ICRS

Input: nzs, di�, and row_jump corresponding to some sparse matrix A; the dimensions m and n
of A; the dense input vector x required to calculate Ax; the number of nonzeros nz(A).
Output: A dense vector y, where y = Ax.

1: Allocate y of size m and initialise: y = 0
2: i =row_jump[0], j =di� [0], k = 0, r = 1
3: while k < nz(A) do
4: y[i]= y[i]+nzs[k]∗x[j]
5: k = k + 1
6: j = j+di� [k]
7: if j ≥ n then
8: j = j − n
9: i = i+row_jump[r]
10: r = r + 1
11: end if
12: end while
13: return y

3. Cache performance for dense and sparse MV multiplication. Cache performance
is deemed optimal if an algorithm does not cause more cache misses than necessary. This is most
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easily achieved when data is stored contiguously and accessed only once with stride one; that
is, consecutively from front to back. Contiguous access is necessary since multiple data words
may �t into a single cache line. However, in most cases previously accessed data is reused which
complicates �nding an optimal access pattern.

We consider the dense case �rst. For simplicity, we assume that one data word �ts exactly
in one cache line, i.e., w = 1. Figure 3.1 shows a small example of cache e�ects in the context
of dense MV multiplication, where we assume the perfect cache idealisation k → ∞; that is, the
cache C is given by a 1 × L matrix and cache lines are solely selected by use of the LRU policy.
The algorithm starts o� with y0 = y0 + a00x0, pushing the elements from x, A and y onto the top
of the LRU stack. If the cache size S is such that the cache can contain exactly two data words,
i.e., L = 2, we see that x0 is pushed out of the cache at the end of this instruction.

The next instruction is y0 = y0 + a01x1, and again the variables x and A are brought in �rst,
pushing y0 out of the cache just before it was needed again. If the cache could contain exactly
three data words instead of two, y0 would still have been available. Note that when the MV
algorithm reaches the next row (i.e., executes y1 = y1 + a10x0), then, depending on the cache size
S, there are two possibilities: either x0 is still in cache and no cache miss occurs, or x0 was evicted
and it must be brought back in. This results in O(n) cache misses on x, on each row ; and hence
O(mn) cache misses during the whole algorithm.

A way to prevent those cache misses on x is to limit the number of subsequent accesses using
some blocking parameter q so that after processing xq−1, the MV algorithm proceeds with the
next row. Obviously, we choose q so that elements from x are not prematurely evicted. When the
last row has been processed, the algorithm jumps back to the �rst row and goes on to process xq

until it reaches xmax {2q−1,n−1}, et cetera.

At this point, y is repeatedly accessed from index 0 until m − 1, as each column-block is
processed. Thus, it is possible that elements from y are prematurely evicted in the same way as
originally for x, causing O(m) cache misses each time a column block is processed. This already is
quite an improvement since we typically have far fewer column blocks than we have rows. Although
the problem is less severe, we still may want to limit access on y using some blocking variable
p (which need not be equal to q) and apply the same trick on the row indices. This method is
appropriately named blocking since, in e�ect, we are subdividing A into blocks of size p × q for
which an MV algorithm does not incur unnecessary cache misses.

Let us now discuss the sparse case. With the dense case described above in mind, we observe
the following regarding general sparse MV multiplication algorithms:

• every matrix element is accessed exactly once during MV multiplication;
• the order of matrix element access determines the access patterns of the x and y vectors;
• the order of matrix element access is determined by its storage scheme.

From this last point, we expect that CRS and ICRS obtain the same performance in terms
of cache e�ciency since the order of element access remains unchanged; thus for readability we
will only discuss the CRS ordering. We may analyse a sparse MV multiplication algorithm using
the ordering induced by CRS in much the same way as in the dense case; Figure 3.2 shows that
the LRU stack during a sparse MV multiplication using CRS behaves quite similarly to the stack
of a dense MV multiplication. The major di�erence is that most of the time, the column indices
are not consecutive. This greatly increases the di�culty of predicting when cache misses occur;
it all depends on the relative column-wise positions of the nonzeros in A. Hence the blocking
parameters p and q cannot be determined solely from m,n, and the cache size S, but also requires
information on the structure of A. Cache-aware blocking thus becomes much harder to apply,
motivating run-time cache-aware auto-tuning kernels such as OSKI [32].

4. Zig-zag CRS data structure and its connection to hypergraphs. A �rst, cache-
oblivious way to reduce the number of cache misses in CRS, is to prevent jumping from the last
to the �rst column when a row increment occurs. Instead, we could just start at the last column
of that row, and then process nonzeros in reverse order until we arrive at the �rst column. At the
next row increment we repeat this recipe. Assuming all rows are non-empty, we thus process in
the standard increasing order on even-numbered rows, and in decreasing order on odd-numbered
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Fig. 3.1. LRU stack progression during the �rst steps of dense MV multiplication. Whenever a new data
element is pushed onto the stack, it is displayed on top. Older elements thus appear lower in this �gure, with the
least recently used element at the bottom. Note that if all memory lines below the bars are evicted, y0 is evicted at
step 4 (denoted by the fourth arrow), while it is immediately reused the step after.
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Fig. 3.2. LRU stack progression during the �rst steps of sparse MV multiplication using CRS. The indices
ir and jr are the row and column index of the rth nonzero element from A. Note that for most r, jr 6= jr+1, while
ir only di�ers from ir+1 when the nonzeros at a given row are exhausted and the algorithm moves to the next row.

rows. We call the resulting data structure zig-zag-CRS (ZZ-CRS). Figure 4.1 illustrates both the
CRS and zig-zag-CRS orderings.

When using the zig-zag scheme, a cache that is too small will not cause the full O(n) cache
misses on the vector x (assuming w = 1) for each row in the dense case. Instead, we incur only
O(n − L) cache misses, where L is the total number of cache lines. For the general case w ≥ 1,
where more than one data word may �t into a cache line, we have O( n

w−L) misses instead of O( n
w ).

This improvement may seem small, but we do not advocate zig-zag ordering for this reason alone.
In fact, we shall now show that by using this particular storage scheme, we can �nd similarities
between established matrix partitioning schemes and the cache dynamics we have just observed.
To this end, we quickly review basic hypergraph-based partitioning methods for sparse matrices.

It is possible to represent a sparse matrix A as a hypergraph H = (V,N ), as follows. We let
a vertex vj ∈ V correspond to the jth column of A. The net (or hyperedge) ni ∈ N is a subset of
V that contains exactly those vertices vj for which aij 6= 0. This is called the row-net model [21],
since each matrix row is represented by a net. Other models to represent sparse matrices include
the column-net [21] and �ne-grain model [5]. In the column-net model, the roles of the row and
column indices are interchanged as compared to the row-net model. The �ne-grain model di�ers
from the previous models in that the vertices correspond to individual nonzeros aij . A net then
contains nonzeros sharing the same row or column.

We will use the row-net model because of the rowwise storage of CRS. Suppose we partition
the vertex set V into subsets V0,V1, . . . ,Vp−1, where we have that the Vs ⊂ V are pairwise disjoint

while ∪p−1
s=0Vs = V. Given a speci�c partitioning, it can happen that the vertices in a given net ni

are distributed over several subsets, resulting in a cut net. Let us denote the number of partitions
over which the ith net is cast, by λi; this is also called the connectivity of the ith net.

Given the net cost ci, which is a factor expressing the relative importance of each net, and the
net connectivity λi, a cost can be assigned to a given partitioning by means of a cost function:∑

i:ni∈N
ci(λi − 1). (4.1)

This cost function is commonly called the λ− 1 metric. Generally, in our matrix partitioning, we
assume there is no preference of any kind as to which matrix rows are cut, and thus take ci = 1
for all i. While partitioning a hypergraph in this manner, we strive to minimise the function (4.1).

When applying hypergraph partitioning with parallel distribution of sparse matrices in mind,
we also want to maintain a good load balance; that is, the number of nonzeros in each partition
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Fig. 4.1. The CRS (left) and ZZ-CRS (right) orderings. The dash-dotted lines show the order in which
matrix nonzeros are stored.

should deviate only by a small factor from the average number. To achieve this, each vertex vj is
weighted with wj = nzj , the number of nonzeros in the jth column of the matrix. We then also
minimise:

max
0≤s<p

∑
j:vj∈Vs

wj . (4.2)

Consider a recursive algorithm which repeatedly splits sets of vertices V into two subsets and
aims to construct a partitioning of a hypergraph this way. A quantity that is useful when reasoning
about load balance is

ε =
max{|V0|, |V1|}
(|V0|+ |V1|)/2

− 1. (4.3)

When ε = 0 we have perfect load balance; we will denote ε as the load-imbalance factor.
The demands of a perfect load balance and a minimised total partition cost usually con�ict

with each other. In an attempt to construct a partitioning which is acceptable in terms of both
criteria, we may decide to allow a load imbalance ε′ not larger than some pre-de�ned imbalance
parameter ε so that ε′ ≤ ε. A software package implementing this approach in sparse matrix
partitioning is Mondriaan [31]. Mondriaan splits the matrix in both dimensions, each time choosing
the best from a split in the row direction and the column direction. We use this partitioner in our
experiments in Section 7, although not in its full 2D generality. We only need splits in the column
direction, and hence use Mondriaan in 1D mode.

When considering parallel sparse MV multiplication, partitions correspond to processors. In
a full 2D partitioning, a cut column in some partitioning indicates that the required component
of the vector x is shared among di�erent processors. This results in communication, since the
components of x are distributed among the processors to achieve scalability ; processors that require
components from x which they do not locally store, have to request these values from other
processors. This happens before any computational work, and is called the fan-out of the parallel
MV multiplication. The same goes for components of y: some processors may have to add values
to elements of y not governed by themselves and thus also require to communicate. This happens
after the computational work and is called fan-in.

The rationale for the cost function (4.1) is that if we attempt to minimise communication,
we try to avoid any cut nets; ideally we have λi = 1 for all i. And even if we do have to cut a
net, we should cut it in as few parts as possible so that the number of processors which have to
communicate with each other, is minimised.

Now, consider the following bipartitioning routine working on a row-net hypergraph H =
(V,N ) representation of some sparse matrix A, where vertices represent columns and rows rep-
resent nets. We partition V into V0,V1 while taking into account the cost function and load
imbalance. Note that the indices of the columns corresponding to the vertices in each partition do
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not have to be consecutive. In e�ect, we now have partitioned the matrix A columnwise. We also
induce a partitioning on the nets in N corresponding to this partitioning. The set of nets with
vertices only in V0 is denoted by N−. The set of nets with vertices only in V1 is denoted by N+.
The set of cut nets, i.e., nets which have vertices in both partitions, is denoted by N c.

Let us consider the case in which an MV multiplication algorithm visits matrix elements in
the following order. First, we process the rows corresponding to nets in N−, then those in N c,
and �nally those in N+. The matrix elements in subsequent rows are furthermore processed in
zig-zag order. Since such an algorithm, like ZZ-CRS based MV multiplication, visits matrix rows
in succession, no unnecessary cache misses are incurred on the vector y.

To minimise the cache misses on x, we de�ne

p =
n

wL
, (4.4)

which can be interpreted as the number of caches that would be needed to store the complete
input vector x. (Note that wL equals the number of data words that can be stored by the cache.)
This value p de�nes a natural number of partitions (or processors) for storing a row of the matrix.
If the matrix were dense, the number of cache misses per row would be n/w − L = L(p − 1),
provided the zig-zag ordering is used. This would also be the number of misses for a sparse matrix
that is relatively dense and has its nonzeros well-spread, e.g. in a random sparsity pattern.

If the matrix row i is only nonzero in an interval j ∈ [li, ri), the number of cache misses for
that row is at most (ri − li)/w − L, provided the interval is the same as for the previous or next
row (this is needed for the zig-zag ordering to be bene�cial). Here, we replace the row length n
in the right-hand side of eqn (4.4) by the interval length ri − li, giving a number of nonempty
row parts (of the size of a complete cache) equal to λi = (ri − li)/(wL), and the corresponding
number of cache misses is then L(λi−1). If the interval is dense, this upper bound is exact. If the
interval is only relatively dense, with each cache line of w data words having at least one nonzero,
the bound is still exact. Another important case is where the row is uncut after partitioning the
matrix into p sets of columns. This happens very often for a good partitioner, as this is the main
aim. For such an uncut row no cache misses are incurred, again under the assumption that the
zig-zag ordering works, and this corresponds exactly to the bound L(λi− 1) with λi = 1, which is
just zero.

As a result, we can view the matrix as being partitioned into blocks of n/p columns, and the
corresponding communication volume of parallel sparse MV multiplication times L gives an upper
bound on the number of cache misses. Thus, minimising the communication volume in the λ− 1
metric using hypergraph partitioning is expected to improve cache utilisation. This is the main
motivation for our approach.

In practice, we are oblivious of the values for w,L and do not know the appropriate value of
p. It does not harm the cache behaviour to partition beyond the value of p given in eqn (4.4).
Hence, we partition in�nitely, p → ∞, or as far as we can go. If we perform the partitioning by
recursive bipartitioning, and reorder the matrix accordingly, see Section 5, we create bene�cial
matrix structure at all values of p. This way of reordering also minimises cache misses on multi-
level cache hierarchies since for lower p we optimise for the larger, upper level caches while for
higher p we optimise for the smaller, lower-level caches, such as the L1 cache, without harming
the upper-level optimisations.

Putting the collection of cut rows between those of N− and N+ ensures that data loaded in
by �rst visiting columns corresponding to V0 are still available when processing N c. Since N c also
contains data from V1, cache performance deteriorates as data corresponding to V0 is swapped out
in favour of those of V1. We then proceed with N+, which only deals with data corresponding to
V1; thus purging the remaining data corresponding to V0 while taking advantage of the V1 data
already brought into cache. This procedure is preferred to, say, processing rows in N c strictly after
those in N− and N+, as is done in matrix reorderings for other purposes, e.g. in nested dissection
[13] for Cholesky factorisation [16] or LU factorisation, see e.g. work by Aykanat et al. [1] which
uses hypergraphs to reorder rectangular matrices for sparse LU or QR factorisation, and recent
work by Grigori et al. [15], which uses hypergraphs to reorder unsymmetric matrices for sparse
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LU factorisation. For factorisation, it makes sense to place cut rows or columns last, since this
postpones and prevents �ll-in, the creation of new nonzeros. Another example where cut rows
come last, is the work on the package Monet [17], which tries to create a bordered block-diagonal
form based on hypergraph partitioning with the cut-net metric (i.e., eqn (4.1) with λi−1 replaced
by 1 if λi ≥ 2, and 0 otherwise). If cut rows come last, they will bring into cache some elements
which may also have been used by N+, but certainly all data corresponding to V0 will have been
evicted from cache. This data will have to be reloaded.

Concluding, our method of placing cut rows in the middle ensures, with high probability, that
we have cache hits when moving from one net to another in the set of cut nets. This allows for a
gradual transition from one set of rows to the other. This transition is expected to be smooth if
the rows are sparse, and if the partitioner manages to keep the number of cut rows small.

The idea of using graphs or hypergraphs to help optimise cache e�ciency has been proposed
before: Strout and Hovland introduced a similar concept in [26, 25], but they use (regular) graph
partitioning to achieve a better data ordering, directly deducing a better ordering of data in
memory. They use hypergraph partitioning to improve inter-iteration locality; this can be done
in some iterative algorithms, where it is not necessary to �nish one iteration before partially
continuing with the next. This can be exploited to improve cache locality.

5. Matrix Permutations. Consider now a single bipartition of A de�ned by V0, V1, N−, N c

and N+. We can then de�ne a permuted matrix A1 as in Figure 5.1. The permutation of columns
can be written in linear algebra form by AQ, where A is the original matrix and Q a permutation
matrix of corresponding dimensions. Similarly, the permutation of rows to achieve the net-based
ordering N−,N c,N+ can be written as a left-side multiplication with another permutation matrix
P .

Let us denote the n × n identity matrix by I = (e1|e2| . . . |en). Then we have that the
right-sided permutation matrix is given by Q = (eq0 |eq1 | . . . |eqn−1), for some index permutation
(qi)i∈[0,n−1] of the tuple (0, 1 . . . , n − 1). Similarly, P = (ep0 |ep1 | . . . |epm−1)

T , with index permu-
tation (pi)i∈[0,m−1]. Recall that since P,Q are permutation matrices, P−1 = PT and Q−1 = QT .
Of course, the indices at the start of (qi) correspond to the columns in V0 and are followed by
those corresponding to the columns in V1; the order of (pi) is similarly induced by the net order.
The permuted matrix A1 after one bipartitioning step is then given by A1 = PAQ.

Subsequent recursive bipartitioning results in similar row and column permutations on disjoint
submatrices of A. We can therefore still represent the matrix Ar after r recursive steps by Ar =
PAQ, for certain P and Q, and our modi�ed MV multiplication routine can be represented as
follows:

y = Ax = PT ArQ
T x, so ỹ = Arx̃ with ỹ = Py, x̃ = QT x. (5.1)

One can see a clear similarity to general preconditioning techniques. Also by using this notation,
we can extend our partitioning mechanism to other related linear algebra kernels besides MV
multiplication:

• We can express y = Ax + βz as follows: y = PT (ArQ
T x + βPz), so that the procedure

can be written as a standard MV multiplication ỹ = Arx̃ + z̃ with ỹ = Py, x̃ = QT x,
z̃ = Pz.

• Also, y = AT x can be expressed as a permutation: y = QAT
r Px so that we have ỹ = AT

r x̃
with ỹ = QT y, x̃ = Px.

• Finally, y = AAT x is also possible: y = PT ArA
T
r Px so that ỹ = ArA

T
r x̃ with ỹ = Py,

x̃ = Px.
This shows that one can apply our cache-oblivious matrix reordering scheme by only permuting

input matrices and vectors, and run the corresponding standard BLAS kernels (or similar) on the
permuted input data. The underlying BLAS software can even be a cache-aware package, such
as OSKI [32], thus perhaps increasing cache e�ciency even beyond what is possible with either
OSKI alone or with our method combined with a simple BLAS kernel.

We can also show that some linear algebra kernels cannot be executed directly using our parti-
tioning method. Notably this applies to the kernel used in power method solvers, namely y = Asx,
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Fig. 5.1. Original matrix (left) and permuted matrix (right) after one bipartitioning step. Shaded and black
squares denote nonzero elements. Black columns denote vertices in V0 whereas the shaded columns denote vertices
in V1.

s ∈ N, s > 1. When supplying a permuted matrix, this kernel becomes y = (PAQ)(PAQ)s−1x;
between instances of the original matrix A we thus �nd the matrix QP . Since generally QP 6= I,
we cannot simply feed the matrix to an arbitrary Asx kernel; we need a translating step between
successive MV multiplications, which would be quite ine�cient. This is for instance the case for
the power method used in Google PageRank computations [4]. However, if we instead consider an
alternative page ranking method based on hubs and authorities, called the HITS method [22] (see
also the book [24, p. 117]), the power method is applied to the matrices AAT and AT A with A a
link matrix. After reordering of A, the matrix (AAT )s becomes (PAQQT AT PT )s = P (AAT )sPT ,
and similarly for AT A. In this case, our reordering scheme can be used without penalty.

Determining the column permutation is straightforward: the recursive bipartitioning yields
an implicit order of subsets of V. Indeed, if we recursively bipartition an arbitrary number of
times, we may denote the resulting subsets by describing the path followed in their construction;
that is, at each recursive step a vertex subset either remains intact, is distributed left (0), or
distributed right (1). A subset can thus be denoted like (0110), meaning it was �rst distributed
left, then right, right again, and �nally again on the left side. Interpreting this representation as a
binary number gives us a natural ordering on the vertex sets. Note that if we bipartition in�nitely
(that is, continue until each subset contains exactly one vertex), we end up with n subsets each
containing a single column. Reordering those subsets according to their binary representation and
reading out the column indices of the corresponding vertices yields the �nal column reordering.

Determining the row permutation is more di�cult. To do this, we look at the set of possible
�nal locations Qi of each row i after permutation. At the start of the reordering, we of course
have that Qi = [0,m − 1], which is the full range of matrix rows. After the �rst bipartitioning,
we obtain three net subsets N {−,c,+}. The rows corresponding to those in N− can then end up
in [0, |N−| − 1], those in N c in [|N−|,m − |N+| − 1] and those in N+ in [m − |N+|,m − 1]; see
also Figure 5.1. This procedure can be repeated after each following bipartitioning; see Figure 5.2.
There, each horizontal straight line gives new row boundaries for the rows, with Qi containing
those boundary rows. After in�nite bipartitioning, we can then deduce a row ordering from the
Qi. Note that such an ordering need not be unique; for some i, |Qi| > 1 is possible, even if m ≤ n.

Figure 5.3 shows the overall structure that is obtained by recursively bipartitioning the sparse
matrix and placing the cut rows in the middle. In analogy with the bordered block-diagonal (BBD)
form [9], we call the matrix structure obtained after a sequence of recursive bipartitionings the
separated block-diagonal (SBD) form. At each level of the recursion, the cut rows separate the two
sets of uncut rows from each other. Note that the cut rows may have internal structure, which is
not depicted. This structure is created by using the λ − 1 metric, which tries to prevent further
cuts inside already cut rows. (The cut-net metric does not have this advantageous property.)
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Fig. 5.2. The reorderings after one resp. two further bipartitionings after the bipartitioning in Figure 5.1.
Grey squares denote nonzeros not considered in the latest bipartitioning step.

Fig. 5.3. Separated block-diagonal (SBD) structure of a sparse matrix obtained by recursively partitioning in
the column direction and moving the cut rows to the middle. The recursion has been stopped when 16 diagonal
blocks have been created. The four colours indicate the block structure at p = 4.

6. Cache Simulation. The performance of sparse MV multiplication kernels depends on
the actual structure of the sparse matrix itself. This dependency on matrix input makes it hard to
analyse our method in terms of the cache model we introduced; we therefore implemented a cache
simulator library, which enables us to simulate cache dynamics accurately within the theoretical
model. Using this library, we are able to analyse theoretical cache performance on any sparse
input matrix, and correlate these results to actual wall-clock timings in Section 7.

Our cache simulator, implemented in C++, uses run-time memory allocation and memory
access wrapper functions to catch and process data access. Upon allocation, a pointer to the
allocated region x̃ is stored. This pointer is regarded as a physical RAM address. The address
x = x̃ − (x̃ mod LS) is then calculated. We use this address instead of x̃ to account for the
possibility that several variables share the same cache line; we only store the start of the cache
line brought into cache. Upon accessing s bytes from x̃, the simulator proceeds with calculating
to which cache set ID x maps, that is, i = x

LS
mod L

k . Let us �rst assume that x̃ − x + s ≤ LS

so that one cache line su�ces. The address x is then pushed onto the stack corresponding to the
set ID i.

The act of pushing an address onto the stack is where the simulator detects if a cache hit or
miss has occurred. For every set ID i, we have stored a stack of size k. When pushing x onto such
a stack, either x already is in cache, or it is not. If it is present, we have a hit and x is removed
from its current location in the stack and once again inserted at the front of the stack. If it is
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not present, we have a miss and x is inserted at the front. If this would cause the stack size to
over�ow (i.e., become larger than k items), the address at the back of the stack is evicted. If the
data called exceeds the size of a single cache line, the above process is repeated for the next cache
line, with x̃new = xold + LS and snew = sold − LS + x̃old − xold.

For our purposes, we are only interested in cache e�ects caused by the matrix A, and its
input and output vectors x and y. We therefore only apply cache simulations to calls to memory
corresponding to A, x, and y. Further advantages of using the cache simulator is that it enables
us to obtain theoretical performance gains for caches with arbitrary parameters, that is, we can
simulate a variety of caches. Our simulator is limited to handling one level of cache only. It is
publicly available.1

7. Experimental Results. Here, we present experimental results of our reordering scheme.
We are interested in obtaining wall-clock timings for various p and ε to measure the e�ectiveness
of our method in practice. We also give the theoretical number of cache misses by using our cache
simulator, to check whether the model indeed approaches realistic cache dynamics.

Our experiments are set up as follows. We assume as input a matrix stored in Matrix Market
format. This is read into an adapted version of the recently released Mondriaan 2.0 software pack-
age [31], which keeps track of the permutation matrices P and Q while partitioning. The permuted
matrix PAQ is then written in triplet format to a binary �le, and can be read in by specialised
CRS, ICRS, and ZZ-ICRS benchmark or cache simulation programs. To compare our results with
established methods, we also run experiments using OSKI [32] on the original matrix as well as on
reordered versions thereof. The OSKI benchmarking program forces OSKI always to fully tune the
input matrix before multiplication (by means of using the ALWAYS_TUNE_AGGRESSIVELY
�ag). All benchmarking programs perform 1000 matrix�vector multiplications, of which the aver-
age execution time (in milliseconds) is reported.

The benchmark applications to obtain the wall-clock timings are performed on two architec-
tures. The �rst architecture is a quadcore 2.4 GHz Intel Core 2 (Q6600) machine with 8 GB of
main memory. Each single core has a 32 kB 8-way L1 cache, and each pair of cores shares a 4 MB
16-way L2 cache. The second architecture is the Dutch national supercomputer Huygens at SARA
in Amsterdam. This machine consists of 1664 dual-core 4.7 GHz IBM Power6+ processors divided
over 104 nodes. Each core possesses its own 64 kB 8-way associative L1 data cache (besides a 64
kB L1 instruction cache) and a 4 MB L2 cache which is semi-shared (among two cores). The two
cores of each processor share a 32 MB L3 cache. Each node of 16 processors has 128 GB main
memory.

Several matrices have been pulled from the Florida Matrix Collection [6] and were used in our
experiments. We also include some test matrices used in [31]. Table 7.1 shows all matrices and
their properties. Generally, matrices can be divided into two classes: those that already possess
a structure bene�cial in terms of cache reuse, and those that do not. If we expect a matrix to
fall in the �rst category, we call it structured, otherwise we call it unstructured. Examples of the
�rst category include matrices resulting from �nite element methods on a regular grid, resulting
in d-diagonal matrices. The matrix s3dtk3m2 is such a matrix, possessing relatively dense block
matrices along three diagonals.

Another structured matrix is memplus, obtained from memory circuit simulation; see Fig-
ure 7.1 (left). For this matrix, the vector x is consecutively accessed in up to four di�erent areas,
much like a four-diagonal matrix. The only exceptions occur on the �rst few rows, and on those
rows where a straight line of nonzeros expands into a triangle-like area of nonzeros. Due to this
structure, we expect our method not to yield great improvements. On the other hand, we have
unstructured matrices such as rhpentium, which originates in circuit simulation of a part of the
Intel Pentium processor; see Figure 7.1 (right). Since the matrix is so unstructured, and the num-
ber of nonzeros per row (nz/row) is rather small, column partitioning is expected to give only few
cut nets, and thus we expect large performance gains. Note that the matrix may seem very dense
in Figure 7.1 (right), created by using the spy plotting command from MatlabTM , but in fact

1The cache simulator can be obtained from http://www.math.uu.nl/people/yzelman/software/
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Name rows columns nonzeros nz
row remarks

memplus 17758 17758 126150 7.1 struct. symmetric, structured
rhpentium 25187 25187 258265 10.3 unstructured
s3dtk3m2 90449 90449 1921955 21.2 symmetric, structured
rand10000 10000 10000 49987 5.0 random pattern
�dap037 3565 3565 67591 19.0 struct. symmetric, structured
lhr34 35152 35152 764014 21.7 structured
rand50000 50000 50000 1249641 25.0 random pattern
nug30 52260 379350 1567800 30.0 structured
tbdlinux 112757 21067 2157675 19.1 unstructured
bmw7st1 141347 141347 3740507 26.5 unstructured
stanford 281903 281903 2312497 8.2 unstructured, link matrix
stanford-berkeley 683446 683446 7583376 11.1 unstructured, link matrix
wikipedia-20051105 1634989 1634989 19753078 12.1 unstructured, link matrix
cage14 1505785 1505785 27130349 18.0 struct. symmetric, structured

Table 7.1
Matrices used in our experiments, sorted by category �rst and the number of nonzeros second. The �rst

category is that of the matrices we discuss in-depth in Section 7. The second shows all matrices of the smaller
category, where input and output vectors typically �t into L2 cache. Finally, the third category shows matrices of
much larger dimensions, causing more intensive use of the L2 cache.

Fig. 7.1. Plot of the original memplus (left) and rhpentium (right) matrices. Memplus has a favourable
structure, whereas rhpentium looks unstructured.

nz/row ≈ 10.3. The seemingly high density is an artefact due to the relative size of the markers
representing the nonzeros. Still, the plot shows very well that nonzeros are spread throughout the
matrix. If nz/row is large and the columns are di�cult to partition, we may expect many cut nets
resulting in badly reordered matrices. Based on this, we can expect the unstructured matrices
rhpentium and rand10000 to perform well after reordering; both have relatively small nz/row. A
large nz/row does not necessarily mean partitioning will yield catastrophic results: it is possible a
matrix can be partitioned quite well even though nz/row is relatively large, and our method may
still work well.

Due to the large number of columns of our test matrices, taking the number of partitions
to in�nity (p = n) may take a very long time. We therefore limit the number of partitions
to an initial maximum of 400, although some experiments may have used even less partitions.
One should note that for a given number of partitions and a given matrix structure, the gain of
reordering will depend mainly on the cache size. Hence we start o� with discussing the results of
cache simulation with di�erent cache size for a fairly structured matrix (memplus) as well as an
unstructured matrix (rhpentium).

As mentioned earlier, we do not expect to gain much by reordering an already favourably
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Fig. 7.2. Plots of the memplus matrix after one bipartitioning (left) and the rhpentium matrix after 100
bipartitionings (right).

Fig. 7.3. Plots of the memplus matrix after 100 bipartitionings (left) and the rhpentium matrix after 400
bipartitionings (right).

structured matrix. After a single bipartitioning, however, we do see a structural improvement
on the matrix memplus. In Figure 7.2 (left) the top half of the permuted matrix shows straight
lines exactly corresponding to the bene�cial original structure. The bottom half contains the less
favourably structured parts, compressed together. After 100 bipartitionings (Figure 7.3, left),
things have become far less favourably structured as our method tries to compress the nonzeros in
smaller and smaller areas. Figure 7.4 re�ects this; at p = 2 gains of about 2 percent are recorded,
while at p = 100 losses of the order of 10 percent can be seen.

Examining the unstructured matrix rhpentium, Figures 7.2 (right) and 7.3 (right), we see
a completely di�erent behaviour. At p = 100, a good structure has already surfaced, which is
improved at p = 400 as the thickness of the rows corresponding to N c have been reduced.

Figure 7.5 shows large gains of up to 35 percent for all three data structures. Interesting to
note here is that for p = 400, the gain curve improves for lower cache sizes when comparing to
the same curve for p = 100 regardless of which data structure is used. Re�ning further beyond
p = 100 is not worth the e�ort if the actual cache used already was large enough, which would
have been the case if the cache used was the L1 cache of an Intel Core 2 processor. In the �gure,
the largest gain becomes about 37 percent. On the other hand, partitioning to in�nity makes the
ordering truly cache-oblivious since it works well irrespective of the actual cache size. This also
hints at good performance on multi-level cache architectures: the early partitionings optimise for
the larger higher-level caches, while subsequent re�nements increase performance on the smaller
lower-level caches.

Figure 7.5 also shows that the gain for reordering tends to decrease as the cache size increases;
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Fig. 7.4. Simulated cache e�ect of our reordering method for the memplus matrix, plotted against di�erent
cache sizes. Given is the ratio between the number of cache misses for the reordered matrix and the number for
the original matrix, for three data structures, namely CRS, ICRS, and ZZ-ICRS. On the left we have simulations
with p = 2, while on the right we have p = 100. The line size is LS = 64 bytes, so that w = 8. We assume an
8-way set-associative cache. Note that a cache size S = 215 bytes corresponds to an Intel Core 2 L1 cache.
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Fig. 7.5. Simulated cache e�ect of our reordering method for the rhpentium matrix, plotted against di�erent
cache sizes. On the left we have simulations with p = 100, while on the right we have p = 400. We again are
simulating an 8-way set-associative cache with LS = 64.

this indicates that the more data �t into cache, the less reordering can improve upon cache misses.
Eventually one would expect that as S →∞, the ratio shown tends to one. The reverse also holds;
as the cache size tends to a minimum, the ratio tends to one as we cannot improve much when
most misses are inevitable.

Table 7.2 presents the same simulations as Figures 7.4 and 7.5, but now with a �xed cache
size, a varying number of partitions, and a complete test set of matrices. Table 7.2 shows that for
large matrices and larger p, the zig-zag variant of CRS is superior, although we cannot say this
for all test instances.

Comparing Table 7.1 and 7.2, it can be seen that matrices with already favourable structure
indeed do not yield improved performance upon reordering in our single-level cache simulation.
Losses in miss ratio are at most 8 percent, namely for the structured matrix memplus. The gain
is largest at 37 percent for rhpentium, followed by 30 and 25 percent gain for rand10000 and
stanford respectively. We also note that although reordering with large p is never found to be
bene�cial for structured matrices, reordering with small p can still yield modest improvements;
see memplus and more notably nug30 which gains 11 percent with p = 2.

The miss ratios in Figure 7.4, 7.5 and Table 7.2 are calculated by dividing the number of
cache misses for the reordered matrix by the number of cache misses for the original matrix. We
expect that these gains correlate to the actual running time of a single multiplication, but not
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Name p = 2 p = 100 p = 400
memplus 0.99 (C) 1.05 (C) 1.08 (Z)
rhpentium 0.96 (Z) 0.66 (Z) 0.63 (I)
s3dkt3m2 1.00 (I) 1.00 (C) 1.00 (C)
rand10000 0.91 (C) 0.72 (C) 0.70 (I)
�dap037 0.98 (C) 1.00 (C) 1.01 (C)
lhr34 1.00 (C) 1.01 (Z) 1.02 (C)
rand50000 1.00 (I) 0.98 (I) 0.98 (I)
nug30 0.89 (Z) 1.05 (I) 1.06 (C)
tbdlinux 0.97 (Z) 0.90 (Z) 0.90 (Z)
bmw7st1 1.00 (I) 0.99 (I) 0.99 (I)

Name p = 2 p = 10 p = 20
stanford 0.98 (Z) 0.86 (Z) 0.75 (Z)
stanford_berkeley 1.00 (Z) 1.00 (Z) 0.98 (Z)
wikipedia-20051105 0.98 (C) 0.94 (I) 0.92 (Z)
cage14 1.02 (I) 1.09 (Z) 1.10 (I)

Table 7.2
Simulated cache e�ect of our reordering method for the complete matrix test set and for a varying number of

partitions p. Given is the ratio between the number of cache misses for the reordered matrix and the number for the
original matrix, for the best of three data structures, namely CRS, ICRS, and ZZ-ICRS. The best data structure
is shown in parenthesis. In the partitioning, the load imbalance is chosen as ε = 0.1. The results are obtained by
simulating an Intel Core 2 L1 cache; that is, S = 215, LS = 64, k = 8.

in a directly proportional manner: incurring 37 percent less cache misses will not mean running
time improves with 37 percent. Rather, we can say the CPU has shorter data access times in 37
percent of the data accesses. To see what the insights obtained by simulation mean in practice,
we need experiments on actual machines.

Figure 7.6 shows the gain in wall-clock timings of benchmark experiments for the smaller test
matrices. Here, the MV multiplication time for the reordered matrix is compared to the time for
the original matrix, which is normalised at the value 1. The matrices used in the benchmarks of
Figure 7.6 are relatively small: an Intel Core 2 L2 cache has size S = 222 bytes, while a double
requires 8 bytes of storage. Hence a vector of size 219 = 524288 can �t entirely in L2 cache. As
seen in Table 7.1, these test matrices have row and column dimensions much smaller than this
size, causing our reordering method to alter mostly the L1 (and not L2) cache behaviour; hence
cache e�ect enhancements translate to relatively small amounts of real-time gain, especially since
the partitioning has been stopped at p = 400, with p still far from n. Carrying the partitioning
much further would probably show gains from the L1 cache.

Figure 7.6 shows that for small matrices our reordering method sometimes achieves modest
gains; it almost never leads to losses. The two small matrices that obtained large gains in simu-
lations, rhpentium and rand10000, also show signi�cant gains here, of about 20 percent and 15
percent, respectively. These cases indeed display larger gains with increasing p, indicating that
partitioning with even higher p is desirable. In six out of ten cases, the cache-aware OSKI [32]
method is superior, as one would expect since this method uses blocking and can exploit the L1
cache. In seven out of ten cases, combining our reordering with OSKI gives the best result.

As we expect from our previous analysis, reordering performs poorly on the already well-
structured matrix memplus: with ε = 0.1 it breaks even, and with ε = 0.3 it shows losses of up to
10 percent. Note that OSKI performs even worse on this problem. The gain in execution time in
the case of fidap037 is surprising, since cache simulation did not show any e�ect at all, indicating
that reordering may a�ect behaviour not included in our cache simulation model.

Apparently, our reordering method results sometimes in a matrix that OSKI is particularly
well-suited to handle, see the lhr34 matrix. The reordered matrix has visible block structure
which may not have been easily discernible in the original matrix. This block structure is then
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Fig. 7.6. Wall-clock timings performed on an Intel Core 2 (Q6600) machine. The CRS bar denotes the timings
of a basic CRS implementation of MV multiplication applied to the original matrix. The bar p = 1 corresponds to
the best timing of CRS, ICRS, and ZZ-ICRS also applied to the original. The bars p = 2/0.1, 3, 4, 100, 400 show
the results after reordering using p partitions, with ε set to 0.1, and similarly for the p from 2/0.3 with ε = 0.3.
The best timing of the CRS, ICRS, and ZZ-ICRS schemes is shown. The `OSKI'-bar shows the performance of
OSKI [32] when aggressively tuning the original matrix. The `Both'-bar contains the timing obtained by selecting
the reordered matrix with the best results and feeding that matrix to OSKI. Note that OSKI internally uses the
CRS scheme. The test matrices are: 1. rhpentium; 2. memplus; 3. s3dkt3m2; 4. rand10000; 5. �dap037; 6.
lhr34; 7. rand50000; 8. nug30; 9. tbdlinux; 10. bmw7st1.

exploited by OSKI.

Figure 7.7 shows results for much larger matrices. We feature several link matrices, as well as
the cage14 matrix. (A link matrix A is a binary matrix with entries aij nonzero i� there is a link
from web page i to j.) We stop partitioning at p = 20, because partitioning is very time-consuming
for these large matrices. Since the input and output vector together do not �t in the L2 cache,
and for the largest three matrices even a single vector does not �t, the e�ects of reordering are
expected to become much clearer here. Judging by the results, this is indeed the case; for p ≥ 2
reordering is already faster than OSKI for two of the four matrices, and increasing p gives even
better results, with a gain of over 50 percent for the stanford matrix. OSKI outperforms our
reordering methods on the smaller matrices, indicating well-optimised behaviour for lower-level
caches. Reordering, however, outperforms OSKI on larger matrices, because it uses the higher-level
caches better. Therefore, both methods nicely complement each other.

The stanford_berkeley matrix breaks about even in run-time, which is very di�erent from
the stanford matrix which gains much. We do not know the reason for this, and can only
speculate. The stanford_berkeley matrix consists of two web subdomains, those of Stanford
University and of the University of California at Berkeley, which may pose a bigger challenge
for �nding exploitable structure than the stanford matrix which represents a single subdomain.
Another possible cause may be that the matrix dimensions (m = n = 281903) together are close
to the cache size (524288 doubles), making this a border case. If the data from the original matrix
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Fig. 7.7. Wall-clock timings regarding very large matrices; that is, matrices for which the input and output
vector do not �t into cache. Interpretation is the same as for Figure 7.6, with ε = 0.1 when our matrix reordering
method is applied. The test matrices are: 1. stanford; 2. stanford_berkeley; 3. wikipedia-20051105; 4. cage14.

and vectors often do not �t in the cache, but for the reordered matrix they do, the gains can be
particularly large.

The case of cage14 where losses of more than 10 percent are recorded seems to be a hard case
for improvement. One can observe a structure in all the cage matrices, which comes from the
chosen numbering of states in the underlying Markov model used to study DNA electrophoresis,
see [30]. For cage14, the original state space had 613 states, which was reduced to 1505785 states
(the value of m and n) by exploiting various symmetries. Note that the losses reach their peak
at p = 4, and that for p ≥ 4 the losses decrease monotonically with p, indicating that the �ner-
grain structure of the matrix might eventually be exploited by reordering to improve the cache
behaviour.

Since our method is cache-oblivious, it should perform similarly on other architectures. To
check this, we also performed experiments on the Dutch national supercomputer Huygens at
SARA. We expect similar results as for the Intel Core 2 machine, but perhaps a more increased
performance due to the presence of an L3 cache on larger problems. Figure 7.8 shows wall-clock
time results for the larger matrices processed on Huygens. We indeed see similar performance on
the stanford and wikipedia matrices, but note that already for p = 2 we have a 30 percent gain
for the wikipedia matrix. This may be caused by the L3 cache which can store 4194304 doubles
and hence can just �t the input and output vectors. The losses for the cage14 matrix are now
less severe.

8. Conclusions and future work. We have introduced a matrix reordering method which
permutes the matrix rows and columns to improve the cache e�ciency of a sparse matrix�vector
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Fig. 7.8. Experiments similar to Figure 7.7, but run on the Dutch national supercomputer Huygens. No
results with OSKI are available. The test matrices are the same: 1. stanford; 2. stanford_berkeley; 3. wikipedia-
20051105; 4. cage14

multiplication algorithm in a cache-oblivious manner. This method is based on partitioning meth-
ods for load balancing from the area of parallel matrix computations. By use of both a cache
simulator as well as wall-clock timings on two di�erent computer architectures, we have shown
experimentally that this method yields considerable savings in computation time for certain ma-
trices during sparse matrix�vector multiplication. For matrices that already have a cache-friendly
structure, the gains are modest or even a small loss is observed. This should not deter us from
using the reordering method on an unknown matrix, since the potential gains are large, and the
possible losses small. The time needed to determine the reordering permutations can be amortised
if the multiplication is carried out repeatedly, as happens in iterative linear system solvers and
eigensolvers.

Although cache-oblivious matrix reordering may not seem to be as e�ective on small matrices
as cache-aware software such as OSKI [32], this is partly a consequence of not carrying through
the partitioning till the end. Further research on improving the partitioning speed should bringer
the number of partitions p closer to the number of matrix columns n. For larger matrices, we have
observed cases where the time of sparse matrix�vector multiplication was more than halved, e.g.
for the large link matrix stanford. Cache-aware methods can still be used after cache-oblivious
reordering, for �ne-tuning to achieve the ultimate in cache use. We have seen that such a combined
method works well in practice.

The central ideas of our matrix reordering are:

• using a zig-zag variant of the CRS data structure, thus avoiding unnecessary cache misses
at the start and end of rows;

• placing cut rows in the middle during the partitioning process, leading to a gradual tran-
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sition between a cache �lled with data from one column set V0 to another one, V1;
• hypergraph partitioning to reduce the number of cut rows;
• using the λ− 1 metric in the hypergraph partitioning, to prevent parts of cut rows from
being cut further.

For obtaining the matrix reorderings, we have adapted the hypergraph-based sparse matrix
partitioner Mondriaan [31], version 2.0, in 1D (column direction) mode; that is, not in its full 2D
generality. The adaptations we made for reordering will be incorporated in a future version of
Mondriaan. The reordering method does not depend on Mondriaan, however. Instead, one can
use other hypergraph partitioners, such as PaToH [21], hMETIS [19], Zoltan [8], Monet [17], and
Parkway [28].

Mondriaan is, as of yet, not designed with taking the number of partitions to in�nity in mind.
It is expected that additional speedups can be obtained by removing time-consuming optimisations
that only make sense for small p. Also, our results show that the choice of imbalance parameter ε
is less critical than in the case of parallel computations (where it should re�ect the ratio between
the computation rate and the communication rate of the hardware). It will be interesting to study
better strategies for choosing ε in a sequence of matrix splits.

Another way to improve this method is to use 2D partitioning instead of 1D only. This
higher-dimensional partitioning can be done by either modeling the matrix by using the �ne-
grain method [5], or by allowing a 1D method to bipartition recursively in either the column
or row direction, whichever yields the best results; the latter is Mondriaan's default mode of
operation. Depending on using �ne-grain or a row or column partitioning, we end up with six
possible sets R−,c,+, C−,c,+ after every bipartition, where R, C denote the row and column sets,
respectively. It warrants further investigation how a reordering based on these sets a�ects sparse
matrix-vector multiplication when using plain CRS and to see whether other data structures are
more appropriate.
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