Combinatorial Problems in High-Performance Computing

Rob H. Bisseling
Mathematical Institute, Utrecht University

March 24, 2010

Outline

Partitioning problems

Parallel sparse matrix-vector multiplication
Movie: chess matrix
Hypergraphs
2D matrix partitioning
Vector partitioning
Matching problems
Parallel edge-weighted matching
Example graph

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution

Separated Block Diagonal structure
Movie: Navier-Stokes
Parallel computing revolution
Conclusions and future work

Joint work

My PhD Students:

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution

Other collaborators: Brendan Vastenhouw, Wouter Meesen, Tristan van Leeuwen, Fredrik Manne (Bergen, Norway), Ümit Çatalyürek (Ohio, USA)

Motivation: sparse matrix memplus

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
17758×17758 matrix with 126150 nonzeros.
Contributed to MatrixMarket in 1995 by Steve Hamm (Motorola). Represents the design of a memory circuit. Iterative solver multiplies matrix repeatedly with a vector

Motivation: high-performance computer

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
Conclusions

- Huygens, the machine, has 104 nodes
- Each node has 16 processors
- Each processor has 2 cores and an L3 cache
- Each core has an L1 and L2 cache

Now you go out and program this machine so that it works efficiently at all levels of its architecture!

Parallel sparse matrix-vector multiplication $\mathbf{u}:=A \mathbf{v}$

A sparse $m \times n$ matrix, \mathbf{u} dense m-vector, \mathbf{v} dense n-vector

$$
u_{i}:=\sum_{j=0}^{n-1} a_{i j} v_{j}
$$

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
Conclusions

4 phases: communicate, compute, communicate, comput Universiteit Utrecht

Divide evenly over 4 processors

Outline

Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
Conclusions

Composition with Red，Yellow，Blue and Black

Outline

Partitioning
Matrix－vector
Movie：chess
Hypergraphs
2D
Vector
Matching
Edge－weighted
Example graph
Ordering
SBD
Movie：LNS
Revolution
Conclusions

Piet Mondriaan 1921

Matrix prime60

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
Conclusions

- Mondriaan block partitioning of 60×60 matrix prime 60 with 462 nonzeros, for $p=4$
- $a_{i j} \neq 0 \Longleftrightarrow i \mid j$ or $j \mid i \quad(1 \leq i, j \leq 60)$

Universiteit Utrecht

Communication volume for partitioned matrix

Outline

Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
Conclusions

Here, $V\left(A_{0}, A_{1}, A_{2}, A_{3}\right)$ is the global matrix-vector communication volume corresponding to the partitioning $A_{0}, A_{1}, A_{2}, A_{3}$

Avoid communication completely, if you can

Outline

Partitioning
Matrix-vector Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
Conclusions

All nonzeros in a row or column have the same colour.

Permute the matrix by row and column permutations

Outline

Partitioning
Matrix-vector Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
Conclusions

First the black rows, then the red ones.
First the black columns, then the red ones.

Combinatorial problem: sparse matrix partitioning

Problem: Split the set of nonzeros A of the matrix into p subsets, $A_{0}, A_{1}, \ldots, A_{p-1}$, minimising the communication volume $V\left(A_{0}, A_{1}, \ldots, A_{p-1}\right)$ under the load imbalance constraint

$$
n z\left(A_{i}\right) \leq \frac{n z(A)}{p}(1+\epsilon), \quad 0 \leq i<p .
$$

The maximum amount of work should not exceed the average amount by more than a fraction ϵ.

- $p=2$ problem is already NP-complete (Lengauer 1990, circuit layout)
- Generalisation: heterogeneous processors with different speeds

The hypergraph connection

Outline

Partitioning
Matrix-vector
Movie: chess Hypergraphs 2 D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
Conclusions

Hypergraph with 9 vertices and 6 hyperedges (nets), partitioned over 2 processors

Another view of hypergraphs

$\left|\begin{array}{lllll}a_{11} & a_{12} & 0 & 0 & a_{15} \\ a_{21} & a_{22} & 0 & 0 & 0 \\ a_{31} & 0 & 0 & a_{34} & 0 \\ 0 & 0 & a_{43} & a_{44} & a_{45}\end{array}\right|$

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
(from Zoltan paper by Devine, Boman, et al. 2006)

- Hypergraph corresponding to a sparse matrix
- Columns are vertices. Rows (in green) are hyperedges.

1D matrix partitioning using hypergraphs

Outline
Partitioning
Matrix-vector
Movie: chess Hypergraphs
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution

Column bipartitioning of $m \times n$ matrix

- Hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{N}) \Rightarrow$ exact communication volume in sparse matrix-vector multiplication.
- Columns \equiv Vertices: $0,1,2,3,4,5,6$. Rows \equiv Hyperedges (nets, subsets of \mathcal{V}):

$$
\begin{array}{lll}
n_{0}=\{1,4,6\}, & n_{1}=\{0,3,6\}, & n_{2}=\{4,5,6\}, \\
n_{3}=\{0,2,3\}, & n_{4}=\{2,3,5\}, & n_{5}=\{1,4,6\} .
\end{array}
$$

Minimising communication volume

Outline
Partitioning
Matrix-vector
Movie: chess Hypergraphs

Vector
Matching
Edge-weighted
Example graph
Ordering

- Cut nets: n_{1}, n_{2} cause one horizontal communication
- Use Kernighan-Lin/Fiduccia-Mattheyses for hypergraph bipartitioning
- Multilevel scheme: merge similar columns first, refine bipartitioning afterwards
- Used in PaToH (Çatalyürek and Aykanat 1999) for 1D matrix partitioning.

General combinatorial problem

Outline
Partitioning
Matrix-vector
Movie: chess Hypergraphs 2D
Vector
Matching
Edge-weighted Example graph

Ordering
SBD
Movie: LNS
Revolution

- Well-known problem in VLSI circuit design.
- Can be solved by using MLpart, hMetis, PaToH, Zoltan, Parkway, or Mondriaan.

Mondriaan 2D matrix partitioning

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution

- Block partitioning (without row/column permutations) of 59×59 matrix impcol_b with 312 nonzeros, for $p=4$
- Mondriaan package v1.0 (May 2002). Originally developed by Vastenhouw and Bisseling for partitioning term-by-document matrices for a parallel web search machine.

Mondriaan 2D partitioning

Partitioning
Matrix-vector
Movie: chess
Hypergraphs
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution

- Recursively split the matrix into 2 parts.
- Try splits in row and column directions, allowing permutations. Each time, choose the best direction.

Mondriaan 2.0, Released July 14, 2008

- New algorithms for vector partitioning. Often best achievable communication load balance (but not perfect).
- Much faster partitioning, by a factor of 10 compared to version 1.0.
- 10% better quality of the matrix partitioning.
- Inclusion of fine-grain partitioning method by Çatalyürek and Aykanat, 2001.
- Inclusion of hybrid between original Mondriaan and fine-grain methods.
- Can also handle non-powers of two for the number of processors.

Fine-grain matrix partitioning

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution

Matrix view of fine-grain 2D partitioning

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
Conclusions

- View the fine-grain hypergraph as an incidence matrix.
- $m \times n$ matrix A with $n z(A)$ nonzeros
- $(m+n) \times n z(A)$ matrix $F=F_{A}$ with $2 \cdot n z(A)$ nonzeros
- $a_{i j}$ is k th nonzero of $A \Leftrightarrow f_{i k}, f_{m+j, k}$ are nonzero in

Communication for fine-grain 2D partitioning

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
Conclusions

- Cut net in first m nets (row nets) of hypergraph of F : nonzeros from row $a_{i *}$ are in different parts, hence horizontal communication in A.
- Cut net in last n nets (col nets) of hypergraph of F : vertical communication in A.

Fine-grain 2D partitioning

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution

- Recursively split the matrix into 2 parts
- Assign individual nonzeros to parts
- For visualisation: move mixed rows to middle, red up, blue down. Same for columns.

Hybrid 2D partitioning

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution

- Recursively split the matrix into 2 parts
- Try splits in row and column directions, and fine-grain. Each time, choose the best of 3 .
- Joint work with Tristan van Leeuwen and Ümit Cataly $\begin{aligned} & \text { Hetek, }\end{aligned}$ to be published

Recursive, adaptive bipartitioning algorithm

MatrixPartition (A, p, ϵ) input: $\epsilon=$ allowed load imbalance, $\epsilon>0$. output: p-way partitioning of A with imbalance $\leq \epsilon$.
if $p>1$ then

$$
\begin{aligned}
& q:=\log _{2} p ; \\
& \left(A_{0}^{\mathrm{r}}, A_{1}^{\mathrm{r}}\right):=h(A, \text { row }, \epsilon / q) ; \text { hypergraph splitting } \\
& \left(A_{0}^{\mathrm{c}}, A_{1}^{\mathrm{c}}\right):=h(A, \text { col, } \epsilon / q) ; \\
& \left(A_{0}^{\mathrm{f}}, A_{1}^{\mathrm{f}}\right):=h(A, \text { fine, } \epsilon / q) ; \\
& \left(A_{0}, A_{1}\right):=\text { best of }\left(A_{0}^{\mathrm{r}}, A_{1}^{\mathrm{r}}\right),\left(A_{0}^{\mathrm{c}}, A_{1}^{\mathrm{c}}\right),\left(A_{0}^{\mathrm{f}}, A_{1}^{\mathrm{f}}\right) ; \\
& \\
& \operatorname{maxnz}:=\frac{n z(A)}{p}(1+\epsilon) ; \\
& \epsilon_{0}:=\frac{\operatorname{maxnz}}{n z\left(A_{0}\right)} \cdot \frac{p}{2}-1 ; \text { MatrixPartition }\left(A_{0}, p / 2, \epsilon_{0}\right) ; \\
& \epsilon_{1}:=\frac{m z a n z}{n z\left(A_{1}\right)} \cdot \frac{p}{2}-1 ; \text { MatrixPartition }\left(A_{1}, p / 2, \epsilon_{1}\right) ;
\end{aligned}
$$

Matrix-vector
Movie: chess
else output A;

Mondriaan matrix + PaToH hypergraph partitioner

Name	Area	p	Mon	fine	hybrid
c98a	Cryptology	4	100128	125370	97188
		16	227298	330724	225418
		64	417670	588012	407192
stanford	Web links	4	886	935	845
		16	3226	3398	3039
		64	9668	9296	8307
polyDFT	Polymers	4	8772	8841	8582
		16	34099	36480	34867
		64	73337	82544	73292
cage13	DNA	4	117124	89540	89337
		16	250480	189084	189110
		64	436944	333876	333562

Zoltan parallel hypergraph partitioning

- Matrix to be split by columns into 2 parts.
- Matrix is stored by a two-dimensional Cartesian distribution
- This ensures scalability, while keeping the data distribution still relatively simple.
- Operations such as computing column inner products require horizontal and vertical communication.

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution

- Version 3.1 September 2008 (Boman, Devine, Çatalyürek et al.)
- Zoltan includes row-based matrix partitioner Isorropia.

Vector partitioning

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
Broadway Boogie Woogie, 1942-43

- No extra communication if: $v_{j} \mapsto$ one of the owners of a nonzero in matrix column j $u_{i} \mapsto$ owner in matrix row i
- Joint work with Wouter Meesen, special issue of ETNAN combinatorial scientific computing (2005).

Combinatorial problem: balance the communication

- Reduce the bulk synchronous parallel (BSP) cost

$$
N_{\max }=\max _{0 \leq s<p} N(s)
$$

where $N(s)=\max \left(N_{\text {send }}(s), N_{\text {recv }}(s)\right)$.

- Shown NP-complete (with help of Ali Pinar).
- In practice, optimal solution for a given matrix partitioning.
- But far from perfect communication balance: $N_{\max } \leq 4 N_{\text {avg }}$ observed $(\epsilon=300 \%)$.
- Need to consider vector partitioning already during matrix partitioning (Uçar and Aykanat, SIAM Review 2007)

Vector partitioning for prime60

Outline

Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
Conclusions

Similarity metric for column matching in coarsening

Column-scaled inner product:
$W(u, v)=\frac{1}{\omega_{u v}} \sum_{i=0}^{m-1} u_{i} v_{i}=$ weight of matching u, v

- $\omega_{u v}=1$ measures overlap
- $\omega_{u v}=\sqrt{d_{u} d_{v}}$ measures cosine of angle
- $\omega_{u v}=\min \left\{d_{u}, d_{v}\right\}$ measures relative overlap

- $\omega_{u v}=\max \left\{d_{u}, d_{v}\right\}$
- $\omega_{u v}=d_{u \cup v}$, Jaccard metric from information retrieval

Here, d_{u} is the number of nonzeros of column u.

Matching problem in partitioning

Outline

Partitioning
Matrix-vector

- Open problem: what are the correct weights?
- Another problem: given vertices (representing columns), and weights for adjacent columns (those with overlap ≥ 1), compute the best matching. A vertex can only match with one other vertex. No polygamy.
- Compute the matching fast, perhaps in parallel.

Parallel edge-weighted matching

- Approximation algorithm with $\geq \frac{1}{2}$ times the optimal total weight.
- Joint work with Fredrik Manne (2008).
- Basic idea: edge (u, v) is dominating if it has the highest weight of all the edges incident to u and v.
- Maintain a set of dominating edges and deplete it, each time updating the heaviest edge of each vertex, and removing the dominated edges.

Matrix-vector
Movie: chess
Hypergraphs

- Parallel: deplete the local dominating set first; use ghost vertices.

Computation time optimal solution

- Computation time for the optimal algorithm by Harold Gabow (1990):

$$
T=\mathcal{O}\left(m n+n^{2} \log n\right)
$$

for n vertices and m edges.

- For $n=10^{6}$ en $m=10^{7}, T=3 \times 10^{13}$.
- 4 hours 10 minutes on a dual-core PC of $1 \mathrm{Gflop} / \mathrm{s}$ per core. This takes too long!
- Even worse: actual speeds of graph computations are far from advertised peak flop rates.

Edge-weighted graph

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
Conclusions
$n=26$ vertices, $m=38$ edges
Total weight 120.

Fast approximation algorithm

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
Conclusions

Red edges are dominant

Fast approximation algorithm

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
Conclusions

Dominated edges disappear

Parallel and fast approximation algorithm

Outline

Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
Conclusions

The solution found

Outline

Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
Conclusions

Ordering a sparse matrix to improve cache use

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering

- Compressed Row Storage (CRS, left) and zig-zag CRS (right) orderings.
- Zig-zag CRS avoids unnecessary end-of-row jumps in cache, thus improving access to the input vector in a matrix-vector multiplication.
- Joint work with Albert-Jan Yzelman, SIAM Journal on Scientific Computing 2009.

Separated block-diagonal (SBD) structure

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering

- SBD structure is obtained by recursively partitioning the rows of a sparse matrix, each time moving the cut (mixed) rows to the middle. Columns are permuted accordingly.
- Mondriaan is used in one-dimensional mode, splitting only in the row direction.
- The cut rows are sparse and serve as a gentle transition between accesses to two different vector parts.

SBD structure for matrix memplus

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution

- Matrix is shown after 100 bipartitionings.
- The recursive, fractal-like nature makes the ordering method work, irrespective of the actual cache characteristics (e.g. sizes of L1, L2, L3 cache).
- The ordering is cache-oblivious.

Combinatorial problem: try to forget it all

- Ordering the matrix in SBD format makes the matrix-vector multiplication cache-oblivious. Forget about the exact cache hierarchy. It will always work.
- We also like to forget about the cores: core-oblivious. And then processor-oblivious (Wise 2004 at Dagstuhl), node-oblivious, totally oblivious.
- All that is needed is a good ordering of the rows and columns of the matrix, and subsequently of its nonzeros.

Partitioning
Matrix-vector
Movie: chess
Hypergraphs

- If you cut the nonzeros somewhere, there is hopefully little connection between the two parts.

Matrix lns3937 (Navier-Stokes, fluid flow)

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution

Splitting the sparse matrix lns3937 into 5 parts. Film made using MondriaanMovie by Bas Fagginger Auer, part of Mondriaan v3.0, to be released Spring 2010.

Wall clock timings on supercomputer Huygens

Outline
Partitioning
Matrix-vector Movie: chess Hypergraphs 2D
Vector
Matching
Edge-weighted
Example graph
Splitting into 1-20 parts

- Experiments on 1 core of the dual-core 4.7 GHz Power6+ processor of the Dutch national supercomputer Huygens.
- 64 kB L1 cache, 4 MB L2, 32 MB L3.
- Test matrices: 1. stanford; 2. stanford_berkeley; 3. wikipedia-20051105; 4. cage14

Ordering
SBD
Movie: LNS
Revolution

Aim: huge computations

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution

Costas Bekas (IBM Zürich), Peter Arbenz (ETH Zürich), 2008 20 minutes computation on 16384 cores, osteoporosis studies. Matrix of 1.5×10^{9} rows and columns. Parallel partitioning is the bottleneck.

Pictures of a revolution: the guillotine

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
Conclusions

King Louis XVI of France executed at the Place de la Concorde in Paris, January 23, 1793. Source:
http://www.solarnavigator.net/history/french_revolution.htm

The parallel computing revolution

Outline
Partitioning
Matrix－vector
Movie：chess
Hypergraphs

2D

Vector
Matching
Edge－weighted
Example graph
Ordering
SBD
Movie：LNS
Revolution

Intel Single－Chip Cloud computer with 48 cores，announced December 2，2009．Energy consumption from 25 to 125 Watt， depending on use．Each pair of cores has a variable clock frequency．Source：http：／／techresearch．intel．com

Conclusions

- Flop counts become less and less important.
- It's all about restricting movement: moving less data, moving fewer electrons.
- We have presented 3 combinatorial problems: partitioning, matching, ordering. Solution of these is an enabling technology for high-performance computing.
- Reordering is a promising method for oblivious computing. We have shown its utility in enhancing cache performance.

Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering
SBD
Movie: LNS
Revolution
Conclusions

Future Mondriaan work

Outline
Partitioning
Matrix-vector
Movie: chess
Hypergraphs
2D
Vector
Matching
Edge-weighted
Example graph
Ordering

- Release 3.0, scheduled Spring 2010.
- Ordering to SBD and BBD structure: cut rows in the middle, and at the end, respectively
- Visualisation through Matlab interface and MondriaanMovie
- Two metrics: $\lambda-1$ for parallelism, and cut-net for other applications
- Interface to PaToH hypergraph partitioner

