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Parallel sparse matrix–vector multiplication u := Av

A sparse m × n matrix, u dense m-vector, v dense n-vector

ui :=

n−1
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j=0
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4 phases: communicate, compute, communicate, compute
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Hypergraph
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Hypergraph with 9 vertices and 6 hyperedges (nets),
partitioned over 2 processors
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1D matrix partitioning using hypergraphs
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Column bipartitioning of m × n matrix

Hypergraph H = (V ,N ) ⇒ exact communication volume
in sparse matrix–vector multiplication.

Columns ≡ Vertices: 0, 1, 2, 3, 4, 5, 6.
Rows ≡ Hyperedges (nets, subsets of V):

n0 = {1, 4, 6}, n1 = {0, 3, 6}, n2 = {4, 5, 6},
n3 = {0, 2, 3}, n4 = {2, 3, 5}, n5 = {1, 4, 6}.
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Minimising communication volume
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Broken nets: n1, n2 cause one horizontal communication

Use Kernighan–Lin/Fiduccia–Mattheyses for hypergraph
bipartitioning

Multilevel scheme: merge similar columns first,
refine bipartitioning afterwards

Used in PaToH (Çatalyürek and Aykanat 1999) for 1D
matrix partitioning.
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Mondriaan 2D matrix partitioning

Block distribution (without row/column permutations) of
59 × 59 matrix impcol_b with 312 nonzeros, for p = 4

Mondriaan package v1.0 (May 2002). Originally
developed by Vastenhouw and Bisseling for partitioning
term-by-document matrices for a parallel web search
machine.
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Mondriaan 2D partitioning

⇒

⇒

⇒

Recursively split the matrix into 2 parts

Try splits in row and column directions, allowing
permutations. Each time, choose the best direction
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Fine-grain 2D partitioning

Assign each nonzero of A individually to a part.

Each nonzero becomes a vertex; each matrix row and
column a hyperedge.

Hence nz (A) vertices and m + n hyperedges.

Proposed by Çatalyürek and Aykanat, 2001.
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Matrix view of fine-grain 2D partitioning
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A F = FA

m × n matrix A with nz (A) nonzeros

(m + n) × nz (A) matrix F = FA with 2 · nz (A) nonzeros

aij is kth nonzero of A ⇔ fik, fm+j,k are nonzero in F
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Communication for fine-grain 2D partitioning
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Broken net in first m nets of hypergraph of F :
nonzeros from row ai∗ are in different parts,
hence horizontal communication in A.

Broken net in last n nets of hypergraph of F :
vertical communication in A.
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Fine-grain 2D partitioning

⇒

⇒

Recursively split the matrix into 2 parts

Assign individual nonzeros to parts
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The difficulty of hybrids — a story

The beautiful American dancer Isadora Duncan (1878–1927)
suggested to the Irish writer George Bernard Shaw
(1856–1950) that they should have a child together:

“Think of it! With your brains and my body, what a
wonder it would be."

Shaw’s reply:

“Yes, but what if it had my body and your brains?"

Source:
http://www.chiasmus.com/mastersofchiasmus/shaw.shtml
Many different versions exist. Story may be apocryphal.
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Hybrid 2D partitioning

⇒

⇒

Recursively split the matrix into 2 parts

Try splits in row and column directions, and fine-grain

Each time, choose the best of 3
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Recursive, adaptive bipartitioning algorithm

MatrixPartition(A, p, ǫ)
input: ǫ = allowed load imbalance, ǫ > 0.
output: p-way partitioning of A with imbalance ≤ ǫ.

if p > 1 then
q := log2 p;
(Ar

0, A
r
1) := h(A, row, ǫ/q); hypergraph splitting

(Ac
0, A

c
1) := h(A, col, ǫ/q);

(Af
0, A

f
1) := h(A, fine, ǫ/q);

(A0, A1) := best of (Ar
0, A

r
1), (Ac

0, A
c
1), (Af

0, A
f
1);

maxnz := nz (A)
p

(1 + ǫ);
ǫ0 := maxnz

nz (A0)
· p

2
− 1; MatrixPartition(A0, p/2, ǫ0);

ǫ1 := maxnz

nz (A1)
· p

2
− 1; MatrixPartition(A1, p/2, ǫ1);

else output A;
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Similarity metric for column merging (coarsening)

Column-scaled inner product:

M(u, v) =
1

ωuv

m−1
∑

i=0

uivi

ωuv = 1 measures overlap

ωuv =
√

dudv measures cosine of angle

ωuv = min{du, dv} measures relative overlap

ωuv = max{du, dv}
Here, du is the number of nonzeros of column u.
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Speeding up the fine-grain method
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ip = standard inner product matching

ip1 = inner product matching using an upper bound on
the overlap, e.g. du to stop searching early.
For fine-grain method, bound is sharper: 1 at first level.

ip2 = alternate between matching with overlap in top and
bottom rows.

rnd = choose a random match with overlap ≥ 1
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Web searching: which page ranks first?
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The link matrix A

Given n web pages with links between them.
We can define the sparse n × n link matrix A by

aij =

{

1 if there is a link from page j to page i

0 otherwise.

Let e = (1, 1, . . . , 1)T , representing an initial uniform
importance (rank) of all web pages. Then

(Ae)i =
∑

j

aijej =
∑

j

aij

is the total number of links pointing to page i.

The vector Ae represents the importance of the pages;
A2

e takes the importance of the pointing pages into
account as well; and so on.
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The Google matrix

A web surfer chooses each of the outgoing Nj links from
page j with equal probability. Define the n × n diagonal
matrix D with djj = 1/Nj.

Let α be the probability that a surfer follows an outlink of
the current page. Typically α = 0.85. The surfer jumps to
a random page with probability 1 − α.

The Google matrix is defined by (Brin and Page 1998)

G = αAD + (1 − α)eeT /n.

The PageRank of a set of web pages is obtained by
repeated multiplication by G, involving sparse
matrix–vector multiplication by A, and some vector
operations.
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Comparing 1D, 2D fine-grain, and 2D Mondriaan

The following 1D and 2D fine-grain communication
volumes for PageRank matrices are published results
from the parallel program Parkway v2.1 (Bradley, de
Jager, Knottenbelt, Trifunović 2005).

The 2D Mondriaan volumes are results with all our
improvements (to be incorporated in v2.0), but using only
row/column partitioning, not the fine-grain option.
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Communication volume: PageRank matrix Stanford

Parkway 1D          Parkway fine−grained Mondriaan 2D        
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p = 4, 8, 16

n = 281, 903 (pages), nz (A) = 2, 594, 228 nonzeros (links).

Represents the Stanford WWW subdomain, obtained by
a web crawl in September 2002 by Sep Kamvar.

SIAM Conf. Parallel Processing for Scientfic Computing, Feb. 23, 2006 – p. 22



Communication volume: Stanford_Berkeley

Parkway 1D          Parkway fine−grained Mondriaan 2D        
0

5

10

15
x 10

4

p = 4, 8, 16

n = 683, 446, nz (A) = 8, 262, 087 nonzeros.

Represents the Stanford and Berkeley subdomains,
obtained by a web crawl in Dec. 2002 by Sep Kamvar.
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Meaning of results

Both 2D methods save an order of magnitude in
communication volume compared to 1D.

Parkway fine-grain is slightly better than Mondriaan, in
terms of partitioning quality. This may be due to a better
implementation, or due to the fine-grain method itself.
Further investigation is needed.

2D Mondriaan is much faster than fine-grain, since the
hypergraphs involved are much smaller:
7 × 105 vs. 8 × 106 vertices for Stanford_Berkeley.
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Transition matrix cage6 of Markov model

Reduced transition matrix cage6 with n = 93,
nz(A) = 785 for polymer length L = 6.

Larger matrix cage10 is included in our test set of 18
matrices representing various applications: 3 linear
programming matrices, 2 information retrieval, 2 chemical
engineering, 2 circuit simulation, 1 polymer simulation, . . .
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Average communication volume for 3 methods

2D Mondriaan Fine−grained Hybrid      
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Test set of 18 matrices (smaller than PageRank matrices).

Volume relative to original Mondriaan program, v1.02

Implementation: Mondriaan’s own hypergraph partitioner

Fine-grained method has more freedom to find a good
partitioning, but shows no gains on average
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Average communication volume for 3 methods

2D Mondriaan Fine−grained Hybrid      
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Test set of 18 matrices.

Volume relative to original Mondriaan program, v1.02

Implementation: PaToH hypergraph partitioner.
Highly optimised, and it shows.

Hybrid method shows a little gain over 2D Mondriaan

SIAM Conf. Parallel Processing for Scientfic Computing, Feb. 23, 2006 – p. 27



Conclusions and . . .

We have presented a new hybrid method which combines
two different 2D matrix partitioning methods: Mondriaan
and fine-grain. The hybrid improves upon both.

With a highly optimised hypergraph partitioner such as
PaToH as the partitioning engine, the Mondriaan 2D
method achieves almost the same quality as the hybrid
method, but much faster.

PageRank is a wonderful non-PDE application:
it affects our lives daily
it has embedded mathematical high technology
it uses the power method; only mathematicians and
computer scientists know what this really means!
it exposes the power of 2D matrix partitioning methods

SIAM Conf. Parallel Processing for Scientfic Computing, Feb. 23, 2006 – p. 28



. . . future work

We keep on improving the Mondriaan and PaToH
hypergraph partitioners.

New release of Mondriaan, v2.0, will incorporate all
improvements.

Mondriaan and PaToH are sequential.

Soon, the parallel hypergraph partitioner Zoltan will be
released by Sandia National Laboratories (Devine,
Boman, Heaphy, Bisseling, Çatalyürek 2006), with many
features from Mondriaan and PaToH, and a lot more.

First parallel partitioner Parkway 2.1 (Knottenbelt,
Trifunović 2005) is also publicly available.

Partition PageRank in parallel!
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