# Parallel Tomographic Reconstruction - Where Combinatorics Meets Geometry 

Rob H. Bisseling<br>Mathematical Institute, Utrecht University

SIAM Conf. on Parallel Processing for Scientific Computing SIAM Workshop on Combinatorial Scientific Computing Seattle, February 12, 2020

Thanks to: Jan-Willem Buurlage, Timon Knigge, Daniël Pelt

Introduction: computed tomography
X-rays
Sparse tomography matrix
Small problems: exact sparse matrix partitioning
Branch-and-bound bipartitioner MondriaanOpt
Improved bipartitioner MP
Database of optimally bipartitioned matrices
Medium-size problems: heuristic sparse matrix partitioning
Medium-grain partitioning
Iterative refinement: chicken-or-egg
How far from optimal?
Large tomography problems: geometric data partitioning
Bipartitioning

Introduction
$x$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and
outlook (XL)

High resolution
Parallel speedup on GPUs
Conclusion and outlook

## Mondriaan sparse matrix partitioning



Composition with red, yellow, blue, and black Piet Mondriaan, 1921


4-way partitioning of matrix impcol_b

Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and
outlook (XL)

- Mondriaan is an open-source software package for sparse matrix partitioning.
- Version 1.0, May 2002. Version 4.2.1, August 2019.


# Sparse matrix 

## Introduction: <br> computed tomography

MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and
outlook (XL)

## Tomography setup



Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and
outlook (XL)

- One projection from the point source to a detector.
- 7 X-rays penetrating the object.


## Flexible CT scanner at CWI Amsterdam



## Introduction

$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and outlook (XL)

## Modern art object in the scanner



Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and outlook (XL)

- Nel Haringa and Fred Olijve: Homage to De Stijl, 2004. Acrylic and perspex.


## One projection of the art object



Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and outlook (XL)

## Helical cone beam



Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and
outlook (XL)

- Scanner and detector move in a circle around the object.
- Object (or scanner) moves along the rotation axis.


## Acquisition geometries and their application field

- Helical cone beam: medical imaging, rock samples
- Parallel beam: electron microscopy, synchrotrons
- Laminography: inspection of flat objects
- Tomosynthesis: mammography, airport security screening

Introduction
X-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement

## Solving a sparse linear system



- $a_{i j}$ is the weight of ray $i$ in voxel $j$,
- $x_{j}$ is the density of voxel $j$,
- $b_{i}$ is the detector measurement for ray $i$.
- Not every ray hits every voxel: the system is sparse.
- Usually $m<n$ : the system is underdetermined.

Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and
outlook (XL)

## Simultaneous Iterative Reconstruction Technique

- SIRT repeatedly multiplies the sparse matrices $A$ and $A^{\mathrm{T}}$ with a vector until convergence.
- For low resolutions, $A$ is small and it can be stored.
- However, for a high resolution of $4000^{3}=64 \times 10^{9}$ voxels, $A$ has $256 \times 10^{12}$ nonzeros, so we have Petabytes of data.
- For large problem sizes, implementations are matrix-free: $A$ is too big to store, and too big to partition by a combinatorial method.
- We can regenerate the matrix easily row by row.


## Introduction

X-rays
Sparse matrix

## Results

Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and
outlook (XL)

Introduction
$X$-rays
Sparse matrix
Exact (S)
Small problems:
exact sparse matrix partitioning

MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and
outlook (XL)

## Parallel sparse matrix-vector multiplication $\mathbf{u}:=A \mathbf{v}$



## Introduction

$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and outlook (XL)

## Optimal bipartitioning by MondriaanOpt



$$
\begin{aligned}
& 7 \times 7 \text { matrix b1_ss } \\
& n z(A)=15, V=3
\end{aligned}
$$

Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP

## Results

Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and outlook (XL)
where $\varepsilon \in[0,1)$ is the allowed load imbalance fraction.

## Branch-and-bound method



## Introduction

Evening - the red tree Piet Mondriaan, 1908

- Construct a ternary tree representing all possible solutions
- Every node in the tree has 3 branches, representing a choice for a matrix row or column:
- completely assigned to processor $P(0)$
- completely assigned to processor $P(1)$
- cut: assigned to processors $P(0)$ and $P(1)$
- The tree is pruned by using lower bounds on the communication volume or number of nonzeros


## Packing bound on communication volume



Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement

- Columns 3, 4, 5 have been partially assigned to $P(0)$.
- They can only be completely assigned to $P(0)$ or cut.
- For perfect load balance $(\varepsilon=0)$, we can pack at most 2 more red nonzeros into $P(0)$.
- Thus we have to cut column 3, and one more column, giving 2 communications.
- We call the resulting lower bound a packing bound.


## From sparse matrix to bipartite graph



Row 2 has been assigned to part 0 and column 1 to part 1 .

Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and outlook (XL)

T- T. E. Knigge and R. H. Bisseling, "An improved exact algorithm and an NP-completeness proof for sparse matrix bipartitioning", submitted.
https://github.com/TimonKnigge/matrix-partitioner

Universiteit Utrecht

## Flow bound on communication



Along the path from row 2 to column 1, at least one row or column must be cut. We can model the problem with multiple paths as a maximum-flow problem.

## Test set of 1602 SuiteSparse matrices




Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and
outlook (XL)

- Top: solution \% of MondriaanOpt and MP within 24 hours CPU-time as a function of $n z$.
- Bottom: solution \% as a function of the runtime.
- MP solved 839 matrices, each within 24 hours.


## Sparse matrix cage6 from DNA electrophoresis


$93 \times 93, n z=785$
Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution

- The smallest matrix that could not be solved within 1 day; it needed 3 days.

Conclusion and

- Communication volume $V=38$.
- 397 red, 316 blue, and 72 yellow (free) nonzeros.
- The yellow nonzeros can be painted blue to give a load imbalance of only $1 \%$.

Introduction
$X$-rays
Sparse matrix
Exact (S)

## Medium-size problems:

 heuristic sparse matrix partitioningMondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and
outlook (XL)

## Medium-grain partitioning method



- $m \times n$ matrix $A$ is split by a simple method into $A=A^{r}+A^{c}$
- $(m+n) \times(m+n)$ matrix $B$ is formed and partitioned by column using a 1D method

$$
B=\left[\begin{array}{cc}
I_{n} & \left(A^{r}\right)^{\mathrm{T}} \\
A^{c} & I_{m}
\end{array}\right]
$$

Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and outlook (XL)
( D. M. Pelt and R. H. Bisseling, "A medium-grain method for fast 2D bipartitioning of sparse matrices", Proc. IPDPS 2014, pp. 529-539.

From $A$ to $B$ : the medium-grain method


Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and
outlook (XL)

If $r_{i}<c_{j}$, the nonzero goes to the row part $A^{r}$, otherwise to the column part $A^{c}$.

## 1D column partitioning of $B$ yields a 2D partitioning of $A$




Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and outlook (XL)

Communication volume $V=4$

## Chicken-or-egg problem: which one was first?

- To partition the matrix $A$, we first form a matrix $B$.
- To form a matrix $B$, we need a partitioning of $A$.
- That's why we start with a simple partitioning.

Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt

## Iterative refinement: repeated partitioning



Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and
outlook (XL)

Iterative refinement is combinatorial, not numerical. It uses Kernighan-Lin refinement, 1 level.

## Result for matrix from Graph Drawing contest 1997



- Medium-grain method achieves optimal $V=11$
- Communication volume of 1D partitioning of $B=$ volume of corresponding 2D partitioning of $A$

Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP

## Results

Heuristic (M)
Medium-grain
Iterative refinement Results

Geometric (L)
Bipartitioning
High resolution
Results

## Performance plot comparing volume to optimal



Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and
outlook (XL)

- $\mathrm{IR}=$ iterative refinement
- FG = fine-grain partitioning
- $\mathrm{MG}=$ medium-grain partitioning (including IR)
- PaToH = combination of Mondriaan sparse matrix partitioner and PaToH hypergraph bipartitioner


## Geometric average of runtime and optimality ratio

| Partitioner | Method | Runtime (in ms) | Optimality | ratioduction |
| :---: | :---: | :---: | :---: | :---: |
| Mondriaan | FG | 51.5 | 1.63 | ${ }_{\text {Spascs ma }}$ |
|  | FG+IR | 53.9 | 1.53 | Exact (S) |
|  | MG+IR | 29.9 | 1.46 |  |
| Mondriaan+PaToH | FG | 13.9 | 1.19 |  |
|  | FG+IR | 15.2 | 1.16 | Heuristic Medium-grain |
|  | MG+IR | 9.2 | 1.10 | Resuls |

- Optimality ratio is ratio of communication volume and optimal volume computed by MP.

Geometric (L)

Conclusion and

- Based on 839 matrices with $n z \leq 100,000$.
U. Ü. V. Çatalyürek and C. Aykanat, "A Fine-Grain Hypergraph Model for 2D Decomposition of Sparse Matrices", Proc. Irregular 200 pp. 118.


## Large problems:

 geometric data partitioningMondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and
outlook (XL)

## Geometric bipartitioning of a voxel block $\mathcal{V}$



Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution

- 2D: line sweep along each coordinate. (3D: plane sweep.)
- Sort the points of entrance ( $\square$ ) and exit $(\times)$ of a ray.
- Cut as few rays as possible. Keep the work load balanced (based on line densities).


## Theorem on greedy $p$-way recursive bipartitioning

Theorem
Let $\mathcal{V}=\mathcal{V}_{0} \cup \ldots \cup \mathcal{V}_{p-1}$ be a block partitioning. Then, for any acquisition geometry, the communication volume $V$ satisfies:

Introduction
$X$-rays
Sparse matrix
$V\left(\mathcal{V}_{0}, \mathcal{V}_{1}, \ldots, \mathcal{V}_{p-1}\right)=V\left(\mathcal{V}_{0}, \mathcal{V}_{1}, \ldots, \mathcal{V}_{p-2} \cup \mathcal{V}_{p-1}\right)+V\left(\mathcal{V}_{p-2}, \mathcal{V}_{p-1}\right)$.
Medium-grain

- Same theorem as with sparse matrix partitioning for parallel SpMV.

R J. W. Buurlage, R. H. Bisseling, K. J. Batenburg, "A geometric partitioning method for distributed tomographic reconstruction", Parallel Computing 81 (2019) pp. 104-121.

## Communication volume:

 geometric vs. combinatorial partitioning|  | geometric (voxels) |  | combinatorial (Mondriaan) |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $p$ | Slab | GRCB | 1D col | 1D row | 2D MG |
| 16 | 111,248 | 111,207 | 108,741 | 139,216 | 101,402 |
| 32 | 233,095 | 216,620 | 210,330 | 292,833 | 188,294 |
| 64 | $3,928,222$ | $2,505,646$ | $2,604,930$ | $3,987,888$ | $2,210,671$ | X-rays Exarse matrix

Exact (S)
MondriaanOpt
Results
Heuristic (M)

- $64^{3}$ voxels, 64 projections. Narrow cone angle.
- Slab $=$ standard geometric partitioning into slabs

Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and
outlook (XL)

- MG = medium-grain with iterative refinement
- Partitioning voxels (1D col) has 35\% lower communication volume than partitioning rays (1D row).
- 2D MG is $15 \%$ better than GRCB, but not practical.


## Partitioning for helical cone beam, 64 processors



Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning


High resolution
Results
Conclusion and outlook (XL)

## Partitioning for helical cone beam, 256 processors



## Introduction

$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and outlook (XL)

## Partitionings for various acquisition geometries



Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and
outlook (XL)

## Projection-based partitioning for high resolution



- For a given split of the object volume, the total area of overlapping shadows gives the communication volume.
- Fast overlap computations are based on geometric algorithms.

Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and outlook (XL)

圊 J. W. Buurlage, R. H. Bisseling, W. J. Palenstijn, K. J. Batenburg, "A projection-based data partitioning method for distributed tomographic reconstruction", Proc. SIAMPP 2020, pp. 58-68.
Talk by Jan-Willem Buurlage in CP7, Feb. 13, 3.45 PM.

## Scalability on 32 GPUs



Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results

- $2048^{3}$ voxels, 1024 projections. Time of 3 iterations.
- ASTRA toolbox: state-of-the-art, slab partitioning, only for circular cone beam (CCB). MPI for communication.

Conclusion and outlook (XL)

- Pleiades extension of ASTRA: projection-based partitioning, for any acquisition geometry. $\mathrm{BSP} / \mathrm{C}_{+}+$library Bulk for communication.


## Reconstructed art object Homage to De Stijl



Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and outlook (XL)

A slab of the reconstruction. Thanks to: Sophia Coban.

## Conclusion and outlook

- We presented a method for exact matrix bipartitioning that solved 839 out of 2833 SuiteSparse matrices optimally.
- The best heuristic partitioner, a combination Mondriaan+PaToH, is within $10 \%$ of optimal for $p=2$.
- Targeting $p>2$, we still want to improve the bipartitioner: for $p=256$, a factor of $(1.10)^{8} \approx 2.14$ from optimal.
- We presented a geometric method for partitioning the object space of a flexible CT scanner.
- The method can handle XL problems in a real production environment.

Introduction
$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and outlook (XL)

## Thank you!



## Introduction

$X$-rays
Sparse matrix
Exact (S)
MondriaanOpt
MP
Results
Heuristic (M)
Medium-grain
Iterative refinement
Results
Geometric (L)
Bipartitioning
High resolution
Results
Conclusion and outlook (XL)

