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Mondriaan sparse matrix partitioning

Composition with red,
yellow, blue, and black
Piet Mondriaan, 1921

4-way partitioning of
matrix impcol b

I Mondriaan is an open-source software package for sparse
matrix partitioning.

I Version 1.0, May 2002. Version 4.2.1, August 2019.
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Introduction:
computed tomography
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Tomography setup

I One projection from the point source to a detector.

I 7 X-rays penetrating the object.



Introduction

X-rays

Sparse matrix

Exact (S)

MondriaanOpt

MP

Results

Heuristic (M)

Medium-grain

Iterative refinement

Results

Geometric (L)

Bipartitioning

High resolution

Results

Conclusion and
outlook (XL)

6

Flexible CT scanner at CWI Amsterdam
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Modern art object in the scanner

I Nel Haringa and Fred Olijve: Homage to De Stijl, 2004.
Acrylic and perspex.
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One projection of the art object
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Helical cone beam

I Scanner and detector move in a circle around the object.

I Object (or scanner) moves along the rotation axis.
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Acquisition geometries and their application field

I Helical cone beam: medical imaging, rock samples

I Parallel beam: electron microscopy, synchrotrons

I Laminography: inspection of flat objects

I Tomosynthesis: mammography, airport security screening
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Solving a sparse linear system

4 projections
5× 5 detector pixels
5× 5× 5 object voxels

m = 100, n = 125
1394 nonzeros

bi =
n−1∑
j=0

aijxj , 0 ≤ i < m.

I aij is the weight of ray i in voxel j ,

I xj is the density of voxel j ,

I bi is the detector measurement for ray i .

I Not every ray hits every voxel: the system is sparse.

I Usually m < n: the system is underdetermined.
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Simultaneous Iterative Reconstruction Technique

I SIRT repeatedly multiplies the sparse matrices A and AT

with a vector until convergence.

I For low resolutions, A is small and it can be stored.

I However, for a high resolution of 40003 = 64× 109 voxels,
A has 256× 1012 nonzeros, so we have Petabytes of data.

I For large problem sizes, implementations are matrix-free:
A is too big to store, and too big to partition by a
combinatorial method.

I We can regenerate the matrix easily row by row.
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Small problems:
exact sparse matrix partitioning
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Parallel sparse matrix–vector multiplication u := Av

3 1

4 1

5 9 2

6 5 3

5 8 9

A

2 1 1 4 3 vT

6

9

22

41

64

u
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Optimal bipartitioning by MondriaanOpt

7× 7 matrix b1 ss

nz(A) = 15, V = 3

I Benchmark p = 2 because heuristic partitioners are often
based on recursive bipartitioning.

I Problem p = 2 is easier to solve than p > 2.
I Load balance criterion is

nz(Ai ) ≤ (1 + ε)

⌈
nz(A)

2

⌉
, i = 0, 1,

where ε ∈ [0, 1) is the allowed load imbalance fraction.

D. M. Pelt and R. H. Bisseling, “An exact algorithm for
sparse matrix bipartitioning”, JPDC 85 (2015) pp. 79–90.
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Branch-and-bound method

Evening – the red tree
Piet Mondriaan, 1908

I Construct a ternary tree representing all possible solutions
I Every node in the tree has 3 branches, representing a

choice for a matrix row or column:
• completely assigned to processor P(0)
• completely assigned to processor P(1)
• cut: assigned to processors P(0) and P(1)

I The tree is pruned by using lower bounds on the
communication volume or number of nonzeros
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Packing bound on communication volume

c
0
-
-
-

0 1 - - -

I Columns 3, 4, 5 have been partially assigned to P(0).

I They can only be completely assigned to P(0) or cut.

I For perfect load balance (ε = 0), we can pack at most 2
more red nonzeros into P(0).

I Thus we have to cut column 3, and one more column,
giving 2 communications.

I We call the resulting lower bound a packing bound.
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From sparse matrix to bipartite graph

0

−

−

− 1 −

Row 2

Row 1

Row 0

Col 2

Col 1

Col 0

Row 2 has been assigned to part 0 and column 1 to part 1.

T. E. Knigge and R. H. Bisseling, “An improved exact
algorithm and an NP-completeness proof for sparse matrix
bipartitioning”, submitted.
https://github.com/TimonKnigge/matrix-partitioner

https://github.com/TimonKnigge/matrix-partitioner
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Flow bound on communication

0

−

−

− 1 c

Row 2

Row 1

Row 0

Col 2

Col 1

Col 0

Along the path from row 2 to column 1, at least one row or
column must be cut. We can model the problem with multiple
paths as a maximum-flow problem.
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Test set of 1602 SuiteSparse matrices

I Top: solution % of MondriaanOpt and MP within 24 hours
CPU-time as a function of nz .

I Bottom: solution % as a function of the runtime.

I MP solved 839 matrices, each within 24 hours.
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Sparse matrix cage6 from DNA electrophoresis

93× 93, nz = 785

I The smallest matrix that could not be solved within 1 day;
it needed 3 days.

I Communication volume V = 38.
I 397 red, 316 blue, and 72 yellow (free) nonzeros.
I The yellow nonzeros can be painted blue to give

a load imbalance of only 1%.
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Medium-size problems:
heuristic sparse matrix partitioning
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Medium-grain partitioning method

I m × n matrix A is split by a simple method into
A = Ar + Ac

I (m + n)× (m + n) matrix B is formed and partitioned by
column using a 1D method

B =

[
In (Ar )T

Ac Im

]

D. M. Pelt and R. H. Bisseling, “A medium-grain method for
fast 2D bipartitioning of sparse matrices”, Proc. IPDPS 2014,
pp. 529–539.
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From A to B : the medium-grain method

r r

c r

c c c

c c c

c c c

A

cj →

ri
↓

2 3 2 3 3

2

2

3

3

3

.

.

.

.

.

.

.

B

cj →
2 1 2 3 2 2 1 0 0 0

If ri < cj , the nonzero goes to the row part Ar , otherwise to the
column part Ac .
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1D column partitioning of B yields a
2D partitioning of A

B A

Communication volume V = 4
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Chicken-or-egg problem: which one was first?

I To partition the matrix A, we first form a matrix B.

I To form a matrix B, we need a partitioning of A.

I That’s why we start with a simple partitioning.
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Iterative refinement: repeated partitioning

A = Ar + Ac

.

.

.

.

.

.

B

cj →
2 1 2 3 2 2 1 0 0 0

Iterative refinement is combinatorial, not numerical.
It uses Kernighan–Lin refinement, 1 level.



Introduction

X-rays

Sparse matrix

Exact (S)

MondriaanOpt

MP

Results

Heuristic (M)

Medium-grain

Iterative refinement

Results

Geometric (L)

Bipartitioning

High resolution

Results

Conclusion and
outlook (XL)

28

Result for matrix from Graph Drawing contest 1997

47× 47 matrix gd97 b, nz(A) = 264

I Medium-grain method achieves optimal V = 11

I Communication volume of 1D partitioning of B =
volume of corresponding 2D partitioning of A
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Performance plot comparing volume to optimal

I IR = iterative refinement
I FG = fine-grain partitioning
I MG = medium-grain partitioning (including IR)
I PaToH = combination of Mondriaan sparse matrix

partitioner and PaToH hypergraph bipartitioner
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Geometric average of runtime and optimality ratio

Partitioner Method Runtime (in ms) Optimality ratio

Mondriaan FG 51.5 1.63
FG+IR 53.9 1.53
MG+IR 29.9 1.46

Mondriaan+PaToH FG 13.9 1.19
FG+IR 15.2 1.16
MG+IR 9.2 1.10

I Optimality ratio is ratio of communication volume and
optimal volume computed by MP.

I Based on 839 matrices with nz ≤ 100, 000.

Ü. V. Çatalyürek and C. Aykanat, “A Fine-Grain Hypergraph Model
for 2D Decomposition of Sparse Matrices”, Proc. Irregular 2001,
pp. 118.
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Large problems:
geometric data partitioning
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Geometric bipartitioning of a voxel block V

y1

y2

y3

I 2D: line sweep along each coordinate. (3D: plane sweep.)

I Sort the points of entrance (�) and exit (×) of a ray.

I Cut as few rays as possible. Keep the work load balanced
(based on line densities).
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Theorem on greedy p-way recursive bipartitioning

Theorem
Let V = V0 ∪ . . . ∪ Vp−1 be a block partitioning. Then, for any
acquisition geometry, the communication volume V satisfies:

V (V0,V1, . . . ,Vp−1) = V (V0,V1, . . . ,Vp−2∪Vp−1)+V (Vp−2,Vp−1).

I Same theorem as with sparse matrix partitioning for
parallel SpMV.

J. W. Buurlage, R. H. Bisseling, K. J. Batenburg, “A geometric
partitioning method for distributed tomographic reconstruction”,
Parallel Computing 81 (2019) pp. 104–121.
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Communication volume:
geometric vs. combinatorial partitioning

geometric (voxels) combinatorial (Mondriaan)

p Slab GRCB 1D col 1D row 2D MG

16 111,248 111,207 108,741 139,216 101,402
32 233,095 216,620 210,330 292,833 188,294
64 3,928,222 2,505,646 2,604,930 3,987,888 2,210,671

I 643 voxels, 64 projections. Narrow cone angle.

I Slab = standard geometric partitioning into slabs

I GRCB = geometric recursive coordinate bisection

I MG = medium-grain with iterative refinement

I Partitioning voxels (1D col) has 35% lower communication
volume than partitioning rays (1D row).

I 2D MG is 15% better than GRCB, but not practical.
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Partitioning for helical cone beam, 64 processors

front bottom
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Partitioning for helical cone beam, 256 processors
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Partitionings for various acquisition geometries


GRCB.mp4
Media File (video/mp4)
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Projection-based partitioning for high resolution

I For a given split of the object volume, the total area of
overlapping shadows gives the communication volume.

I Fast overlap computations are based on geometric
algorithms.

J. W. Buurlage, R. H. Bisseling, W. J. Palenstijn, K. J. Batenburg, “A
projection-based data partitioning method for distributed tomographic
reconstruction”, Proc. SIAMPP 2020, pp. 58-68.
Talk by Jan-Willem Buurlage in CP7, Feb. 13, 3.45 PM.
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Scalability on 32 GPUs

8 16 32
p

0.0

50.0

100.0

150.0

200.0

T
(s
)

ccbn (Pleiades)
ccbw (Pleiades)
hcb (Pleiades)
ccbn (ASTRA-MPI)
ccbw (ASTRA-MPI)

I 20483 voxels, 1024 projections. Time of 3 iterations.
I ASTRA toolbox: state-of-the-art, slab partitioning, only for

circular cone beam (CCB). MPI for communication.
I Pleiades extension of ASTRA: projection-based

partitioning, for any acquisition geometry.
BSP/C++ library Bulk for communication.
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Reconstructed art object Homage to De Stijl

A slab of the reconstruction. Thanks to: Sophia Coban.
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Conclusion and outlook

I We presented a method for exact matrix bipartitioning that
solved 839 out of 2833 SuiteSparse matrices optimally.

I The best heuristic partitioner, a combination
Mondriaan+PaToH, is within 10% of optimal for p = 2.

I Targeting p > 2, we still want to improve the bipartitioner:
for p = 256, a factor of (1.10)8 ≈ 2.14 from optimal.

I We presented a geometric method for partitioning the
object space of a flexible CT scanner.

I The method can handle XL problems in a real production
environment.
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Thank you!
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