Partitioning for applications

Rob H. Bisseling, Albert-Jan Yzelman, Bas Fagginger Auer

 $\begin{array}{c} {\sf Mathematical\ Institute,\ Utrecht\ University} \\ {\sf Rob\ Bisseling:\ also\ joint\ Laboratory\ CERFACS/INRIA,\ Toulouse,\ May-July} \\ 2010 \end{array}$

Albert-Jan

Bas

Outline

Meshes

Laplacian BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs SBD

Mesh-Matrix

onclusions

CERFACS Seminar Toulouse, July 13, 2010

Mesh partitioning

Laplacian operator
Bulk synchronous parallel communication cost
Diamond-shaped subdomains
3D partitioning

Matrix partitioning

Parallel sparse matrix–vector multiplication (SpMV) Visualisation by MondriaanMovie Hypergraphs
Ordering matrices for faster SpMV
Separated Block Diagonal structure

Where meshes meet matrices

Conclusions and future work

Outline

Meshes

BSP cost Diamonds

/latrices

Matrix-vector Movies Hypergraphs

Mesh-Matrix

Motivation: CFD and other applications

Fig. 7 Full annular aeronautical burner computed with AVBP (LES) for a thermo-acoustic analysis of the burner: (a) computational domain and (b) typical mesh resolution in the injector region.

 Source: N. Gourdain et al. 'High performance Parallel Computing of Flows in Complex Geometries. Part 2: Applications' Computational Science and Discovery 2009.

Outline

Meshes

Laplacian BSP cost Diamonds 3D

Matrices

Matrix-vecto Movies Hypergraphs

Mesh-Matrix

2D rectangular mesh partitioned over 8 processors

Outline

Meshes

Laplacian BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs

Mesh-Matri:

Conclusions

- In many applications, a physical domain can be partitioned naturally by assigning a contiguous subdomain to every processor.
- Communication is only needed for exchanging information across the subdomain boundaries.
- ► Grid points interact only with a set of immediate neighbours, to the north, east, south, and west.

2D Laplacian operator for $k \times k$ grid

Compute

$$\Delta_{i,j} = x_{i-1,j} + x_{i+1,j} + x_{i,j+1} + x_{i,j-1} - 4x_{i,j}, \quad \text{for } 0 \le i, j < k,$$

where $x_{i,j}$ denotes e.g. the temperature at grid point (i,j). By convention, $x_{i,j} = 0$ outside the grid.

- $x_{i+1,j} x_{i,j}$ approximates the derivative of the temperature in the *i*-direction.
- $(x_{i+1,j}-x_{i,j})-(x_{i,j}-x_{i-1,j})=x_{i-1,j}+x_{i+1,j}-2x_{i,j}$ approximates the second derivative.

Outline

Meshes

Laplacian BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs SRD

Mesh-Matrix

Lonclusions

Relation operator-matrix

Outline

Meshes

Laplacian BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs SBD

Mesh-Matrix

onclusions

$$\mathbf{u} = A\mathbf{v} \iff$$

$$\Delta_{i,j} = x_{i-1,j} + x_{i+1,j} + x_{i,j+1} + x_{i,j-1} - 4x_{i,j}, \quad \text{for } 0 \le i,j < k.$$

Finding a mesh partitioning

- ▶ We must assign each grid point to a processor.
- ▶ We assign the values $x_{i,j}$ and $\Delta_{i,j}$ to the owner of grid point (i,j).
- ► Each point of the grid has an amount of computation associated with it determined by the operator.
- Here, an interior point has 5 flops; a border point 4 flops; a corner point 3 flops.

Outline

Meshes

Laplacian BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs SBD

Mesh-Matrix

Our parallel cost model: BSP

2-relations:

- Bulk synchronous parallel (BSP) model by Valiant (1990):
 a bridging model for parallel computing
- An h-relation is a communication phase (superstep) in which every processor sends and receives at most h data words: h = max{h_{send}, h_{recv}}
- ▶ T(h) = hg + I, where g is the time per data word and I the global synchronisation time

Outline

Meshes
Laplacian
BSP cost

N.A. a. a. a.

Matrix-vecto Movies Hypergraphs SBD

Mesh-Matri>

Partition into strips and blocks

▶ (a) Partition into strips: long Norwegian borders,

$$T_{\text{comm, strips}} = 2kg.$$

- ▶ (b) Boundary corrections improve load balance.
- ▶ (c) Partition into square blocks: shorter borders,

$$T_{\text{comm, squares}} = \frac{4k}{\sqrt{p}}g$$
 (for $p > 4$).

Outline

Meshes Laplacian BSP cost Diamonds

Matrices

Matrix-vector Movies Hypergraphs SBD

Mesh-Matri:

Conclusions

Surface-to-volume ratio

► The communication-to-computation ratio for square blocks is

$$\frac{T_{\rm comm, \; squares}}{T_{\rm comp, \; squares}} = \frac{4k/\sqrt{p}}{5k^2/p}g = \frac{4\sqrt{p}}{5k}g.$$

► This ratio is often called the surface-to-volume ratio, because in 3D the surface of a domain represents the communication with other processors and the volume represents the amount of computation of a processor.

Outline

Meshes Laplacian BSP cost

BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs

Mesh-Matri×

What do we do at scientific workshops?

Participants of HLPP 2001, International Workshop on High-Level Parallel Programming, Orléans, France, June 2001, studying Château de Blois.

Outline

Meshes

BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs SBD

Mesh-Matrix

onclusions

The high-level object of our study

Outline

Meshes

BSP cost Diamonds

3D

Matrices

Matrix-vector Movies Hypergraphs

Mesh-Matri

Blocks are nice, but diamonds . . .

▶ Digital diamond, or closed l₁-sphere, defined by

$$B_r(c_0, c_1) = \{(i, j) \in \mathbf{Z}^2 : |i - c_0| + |j - c_1| \le r\},\$$

for integer radius $r \ge 0$ and centre $\mathbf{c} = (c_0, c_1) \in \mathbf{Z}^2$.

▶ $B_r(\mathbf{c})$ is the set of points with Manhattan distance < r to the central point \mathbf{c} .

Meshes

Laplacian BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs SBD

Mesh-Matri>

Conclusions

Points of a diamond

r = 3

Outline

Meshes

Laplacian BSP cost Diamonds

Matrices

Matrix-vecto Movies Hypergraphs

Mesh-Matrix

onclusions

$$1+3+5+\cdots+(2r-1)+(2r+1)+(2r-1)+\cdots+1$$
= $2r^2+2r+1$.

▶ The number of neighbouring points is 4r + 4.

▶ The number of points of $B_r(\mathbf{c})$ is

This is also the number of ghost cells needed in a parallel grid computation.

Diamonds are forever

▶ For a $k \times k$ grid and p processors, we have

$$k^2 = p(2r^2 + 2r + 1) \approx 2pr^2$$
.

▶ Just on the basis of 4r + 4 receives from neighbour points, we have

$$rac{T_{
m comm, \ diamonds}}{T_{
m comp, \ diamonds}} = rac{4r+4}{5(2r^2+2r+1)}g pprox rac{2}{5r}g pprox rac{2\sqrt{2p}}{5k}g.$$

- Compare with value $\frac{4\sqrt{p}}{5k}g$ for square blocks: factor $\sqrt{2}$ less.
- This gain was caused by reuse of data: the value at a grid point is used twice but sent only once.
- ▶ Also $\sqrt{2}$ less memory for ghost cells.

Outline

Meshes
Laplacian
BSP cost
Diamonds

Matrices

Matrix-vector Movies Hypergraphs SBD

Mesh-Matrix

Alhambra: tile the whole space

Outline

Meshes

BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs

Mesh-Matrix

Conclusions

Tile the whole sky with diamonds

Diamond centres at $\mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$, $\lambda, \mu \in \mathbf{Z}$, where $\mathbf{a} = (r, r+1)$ and $\mathbf{b} = (-r-1, r)$. Good method for an infinite grid.

Outline

Meshes

Laplacian BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs SBD

Mesh-Matri

Practical method for finite grids

- Discard one layer of points from the north-eastern and south-eastern border of the diamond.
- For r = 3, the number of points decreases from 25 to 18.

Outline

Meshes

Laplacian BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs

Mesh-Matrix

12×12 computational grid: periodic partitioning

8 processors

- ► Total computation: 672 flops. Avg 84. Max 90.
- ► Communication: 104 values. Avg 13. Max 14.
- ► Total time: $90 + 14g = 90 + 14 \cdot 10 = 230$ (ignoring 21).
- ▶ 8 rectangular blocks of size 6×3 blocks: time is $87 + 15 \cdot 10 = 237$.

Outline

Meshes

BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs SBD

Mesh-Matri>

12×12 computational grid: Mondriaan partitioning

8 processors

- ► Partitioning obtained by translating into a sparse matrix. This treats the structured grid as unstructured.
- ▶ Total computation: 672 flops. Avg 84. Max 91. (allowed imbalance $\epsilon = 10\%$.)
- ► Communication: 85 values. Avg 10.525. Max 16.
- ► Total time: $91 + 16g = 91 + 16 \cdot 10 = 251$.

Meshes

Laplacian BSP cost Diamonds 3D

Matrices

Matrix-vecto Movies Hypergraphs

/lesh-Matrix

Conclusions

12×12 computational grid: challenge

8 processors

3D Matrices

BSP cost

Matrix-vector Movies Hypergraphs

Mesh-Matrix

Conclusions

► Find a better solution than can be obtained manually, using ideas from both solutions shown. Current best known solution is 199 (Bas den Heijer 2006).

Three dimensions

- If a processor has a cubic block of $N=k^3/p$ points, about $\frac{6k^2}{p^{2/3}}=6N^{2/3}$ are boundary points. In 2D, only $4N^{1/2}$.
- ► If a processor has a 10 × 10 × 10 block, 488 points are on the boundary. About half!
- ▶ Thus, communication is important in 3D.
- ▶ Based on the surface-to-volume ratio of a 3D digital diamond, we can aim for a reduction by a factor $\sqrt{3} \approx 1.73$ in communication cost.
- The prime application of diamond-shaped distributions will most likely be in 3D.

Outline

Meshes Laplacian BSP cost Diamonds

Matrices
Matrix-vector
Movies
Hypergraphs

Mesh-Matrix

Basic cell for 3D

- Basic cell: grid points in a truncated octahedron.
- ▶ For load balancing, take care with the boundaries.
- What You See, Is What You Get (WYSIWYG):
 4 hexagons and 3 squares visible at the front are included.
 Also 12 edges, 6 vertices.
- Gain factor of 1.68 achieved for $p = 2q^3$.

Outline

Meshes

Laplacian BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs

Mesh-Matrix

Universiteit Utrecht

Comparing partitioning methods in 2D and 3D

Grid	р	Rectangular	Mondriaan	Diamond
1024 × 1024	2	1024	1024	2046
	4	1024	1240	2048
	8	1280	1378	1026
	16	1024	1044	1024
	32	768	766	514
	64	512	548	512
	128	384	395	258
$64 \times 64 \times 64$	16	4096	2836	2402
	128	1024	829	626

Communication cost (in g) for a Laplacian operation on a grid. Mondriaan with $\epsilon=10\%$.

Outline

Meshes Laplacian BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs SBD

iviesn-iviatr

Parallel sparse matrix-vector multiplication $\mathbf{u} := A\mathbf{v}$

A sparse $m \times n$ matrix, **u** dense *m*-vector, **v** dense *n*-vector

$$u_i := \sum_{j=0}^{n-1} a_{ij} v_j$$

. . .

Outline

Meshes

Laplacian BSP cost Diamonds 3D

latrices

Matrix-vector Movies Hypergraphs

Mesh-Matri

Conclusions

4 supersteps: communicate, compute, communicate, compute

Divide evenly over 4 processors

Meshes

Laplacian BSP cost Diamonds 3D

Matrices

Matrix-vector

Movies Hypergraphs SBD

Mach Matri

Matrix prime60

Outline

Meshes

Laplacian BSP cost Diamonds 3D

Vlatrices

Matrix-vector Movies Hypergraphs

/lesh-Matrix

onclusions

- Mondriaan block partitioning of 60×60 matrix prime60 with 462 nonzeros, for p = 4
- $a_{ij} \neq 0 \iff i|j \text{ or } j|i$ $(1 \le i, j \le 60)$

Avoid communication completely, if you can

Meshes

BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs

SBD

Mesh-Matrix

Conclusions

All nonzeros in a row or column have the same colour.

Permute the matrix rows/columns

Meshes

Laplacian BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs

ספט

. . . .

Conclusions

First the green rows/columns, then the blue ones.

Combinatorial problem: sparse matrix partitioning

Problem: Split the set of nonzeros A of the matrix into p subsets, $A_0, A_1, \ldots, A_{p-1}$, minimising the communication volume $V(A_0, A_1, \ldots, A_{p-1})$ under the load imbalance constraint

$$nz(A_i) \leq \frac{nz(A)}{p}(1+\epsilon), \quad 0 \leq i < p.$$

Outille

Meshes

Laplacian BSP cost Diamonds 3D

Matrices

Matrix-vector Movies

Hypergraphs BD

Mesh-Matrix

The hypergraph connection

Hypergraph with 9 vertices and 6 hyperedges (nets), partitioned over 2 processors, black and white

Outline

Meshes

Laplacian BSP cost Diamonds 3D

Matrices

Matrix-vector Movies

Hypergraphs SRD

Mesh-Matrix

1D matrix partitioning using hypergraphs

- ► Hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{N}) \Rightarrow$ exact communication volume in sparse matrix–vector multiplication.
- ► Columns \equiv Vertices: 0,1,2,3,4,5,6. Rows \equiv Hyperedges (nets, subsets of \mathcal{V}):

$$n_0 = \{1,4,6\}, \quad n_1 = \{0,3,6\}, \quad n_2 = \{4,5,6\},$$

 $n_3 = \{0,2,3\}, \quad n_4 = \{2,3,5\}, \quad n_5 = \{1,4,6\}.$

Outline

Meshes

Laplacian BSP cost Diamonds 3D

Matrices

Matrix-vector Movies

Hypergraphs

Mesh-Matrix

Conclusions

$(\lambda - 1)$ -metric for hypergraph partitioning

Matrix-vector

Movies Hypergraphs

- 138×138 symmetric matrix bcsstk22, nz = 696, p = 8
- Reordered to Bordered Block Diagonal (BBD) form
- Split of row i over λ_i processors causes

Cut-net metric for hypergraph partitioning

Meshes

BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs

Hypergraphs SBD

Aesh_Matrix

onclusions

▶ Row split has unit cost, irrespective of λ_i

Mondriaan 2D matrix partitioning

BSP cost 3D

Matrix-vector Movies Hypergraphs

• p = 4, $\epsilon = 0.2$, global non-permuted view

Fine-grain 2D matrix partitioning

BSP cost 3D

Matrix-vector Movies

Hypergraphs

► Each individual nonzero is a vertex in the hypergraph Çatalyürek and Aykanat, 2001.

Mondriaan 2.0, Released July 14, 2008

- New algorithms for vector partitioning.
- ▶ Much faster, by a factor of 10 compared to version 1.0.
- ▶ 10% better quality of the matrix partitioning.
- Inclusion of fine-grain partitioning method
- ► Inclusion of hybrid between original Mondriaan and fine-grain methods.
- ► Can also handle $p \neq 2^q$.

Outline

Meshes

Laplacian BSP cost Diamonds 3D

Matrix-vector

Movies Hypergraphs

Asab Matri

onclusions

Matrix 1ns3937 (Navier-Stokes, fluid flow)

Meshes

BSP cost Diamonds

Matrices

Matrix-vector Movies Hypergraphs

Hypergraphs SBD

Mesh-Matri>

Conclusions

Splitting the 3937 \times 3937 sparse matrix <code>lns3937</code> into 5 parts.

Recursive, adaptive bipartitioning algorithm

```
MatrixPartition(A, p, \epsilon)
input: p = \text{number of processors}, p = 2^q
            \epsilon = allowed load imbalance, \epsilon > 0.
output: p-way partitioning of A with imbalance \leq \epsilon.
            if p > 1 then
                        a := \log_2 p:
                         (A_0^{\rm r}, A_1^{\rm r}) := h(A, {\rm row}, \epsilon/q); hypergraph splitting
                         (A_0^{\rm c}, A_1^{\rm c}) := h(A, {\rm col}, \epsilon/q);
                         (A_0^{\mathrm{f}}, A_1^{\mathrm{f}}) := h(A, \mathrm{fine}, \epsilon/q);
                        (A_0, A_1) := \text{best of } (A_0^r, A_1^r), (A_0^c, A_1^c), (A_0^f, A_1^f);
                        maxnz := \frac{nz(A)}{2}(1+\epsilon);
                        \epsilon_0 := \frac{maxnz}{nz(A_0)} \cdot \frac{p}{2} - 1; MatrixPartition(A_0, p/2, \epsilon_0);
                        \epsilon_1 := \frac{\max z}{nz(A_1)} \cdot \frac{p}{2} - 1; MatrixPartition(A_1, p/2, \epsilon_1);
```

Outline

Meshes

Laplacian BSP cost Diamonds

// Atrices

Matrix-vector

Hypergraphs

Mach_Matrix

onclusions

Universiteit Utrecht

else output A;

Mondriaan version 1 vs. 3 (Preliminary)

N		1 0	2 0
Name	р	v1.0	v3.0
df1001	4	1484	1404
	16	3713	3631
	64	6224	6071
cre_b	4	1872	1437
	16	4698	4144
	64	9214	9011
tbdmatlab	4	10857	10041
	16	28041	25117
	64	52467	50116
nug30	4	55924	47984
	16	126255	110433
	64	212303	194083
tbdlinux	4	30667	29764
	16	73240	68132
	64	146771	139720

utline

Laplacian BSP cost

3D

Movies

Matrices Matrix-vector

Hypergraphs SBD

/lesh-Matrix

Mondriaan 3.0 coming soon

 Ordering of matrices to SBD and BBD structure: cut rows are placed in the middle, and at the end, respectively.

- Visualisation through Matlab interface, MondriaanPlot, and MondriaanMovie
- ▶ Library-callable, so you can link it to your own program
- Hypergraph metrics: $\lambda-1$ for parallelism, and cut-net for other applications
- Interface to PaToH hypergraph partitioner

Outline

Meshes

BSP cost Diamonds

Matrix-vector

Movies Hypergraphs

SBD

Mesh-Matrix

Conclusions

Separated block-diagonal (SBD) structure

- ► SBD structure is obtained by recursively partitioning the columns of a sparse matrix, each time moving the cut (mixed) rows to the middle. Columns are permuted accordingly.
- ► The cut rows are sparse and serve as a gentle cache transition between accesses to two different vector parts.
- Mondriaan is used in one-dimensional mode, splitting only in the column direction.

Outline

Meshes

BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs

/lesh-Matrix

onclusions

Partition the columns till the end, p = n = 59

Meshes

Laplacian BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs SBD

.

Mesh-Matrix

Conclusions

► The recursive, fractal-like nature makes the ordering method work, irrespective of the actual cache characteristics (e.g. sizes of L1, L2, L3 cache).

The ordering is cache-oblivious.

Wall clock timings of SpMV on Huygens

Splitting into 1–20 parts

- SRD

- Experiments on 1 core of the dual-core 4.7 GHz Power6+ processor of the Dutch national supercomputer Huygens.
- 64 kB L1 cache, 4 MB L2, 32 MB L3.
- Test matrices: 1. stanford; 2. stanford_berkeley;
 - 3. wikipedia-20051105; 4. cage14

Screenshot of Matlab interface

Matrix rhpentium, split over 30 processors

Outline

Meshes

BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs SBD

Mesh_Matrix

Where meshes meet matrices

Fig. 8 Example of an unstructured grid with its associated dual graph and partitioning process (a) and the related sparse matrix (b).

- Unstructured grid and its sparse matrix
- Source: N. Gourdain et al. 'High performance Parallel Computing of Flows in Complex Geometries. Part 1: Methods' Computational Science and Discovery 2009.

Outline

Meshes

BSP cost Diamonds 3D

// Atrices

Matrix-vector Movies Hypergraphs SBD

Mesh-Matrix

Apply Mondriaan matrix partitioning

- ▶ Use Mondriaan in 1D mode, not in full 2D mode.
- Advantage: no need to change data structure, while still giving almost the same communication volume (for FEM matrices).
- Advantage: hypergraph partitioning leads to less ghost cells, and less communication, especially in 3D.

Outline

Meshes Laplacian BSP cost

BSP cost Diamonds 3D

Matrices

Matrix-vector Movies Hypergraphs

Mesh-Matrix

Apply Mondriaan matrix partitioning

Meshes

BSP cost Diamonds

Matrices

Matrix-vecto Movies Hypergraphs

Mesh-Matrix

Conclusions

- Advantage: Mondriaan is open-source, can be changed by yourself or by us for your needs, and is an ongoing research project with much attention for software engineering.
- Disadvantage: hypergraph partioner Mondriaan itself takes more time and memory than graph partitioners (such a Scotch or Metis).

Conclusions on regular meshes

- ► To achieve a good partitioning with a low surface-to-volume ratio, all dimensions must be cut. For regular grids in 2D, this gives square subdomains; in 3D, cubic.
- In 2D, an even better method is to use digital diamonds. This basic cell tiles a rectangular domain in a straightforward manner. Best performance is obtained for p = 2q².
- In 3D, the best method is to use truncated octahedra with WYSIWYG tie breaking at the boundaries. Best performance is obtained for p = 2q³.

Outline

Meshes Laplacian BSP cost Diamonds

Matrices

Matrix-vector Movies Hypergraphs SBD

Mesh-Matrix

Conclusions on irregular meshes

- ► For unstructured grids, the same gains can be obtained by using hypergraph partitioning, which minimises the exact amount of communication and number of ghost cells.
- ▶ Using graph partitioning and the edge-cut metric will lead to $\sqrt{3}$ more communication and ghost memory usage.

Outline

Meshes Laplacian BSP cost Diamonds

Matrices

Matrix-vector Movies Hypergraphs

Mesh-Matrix

Current/future work

- Mondriaan 3.0, to be released soon, contains improved methods for sparse matrix partitioning, which can also be used to partition meshes.
- ► We are working on a converter for reading meshes directly, translating them to matrices, partitioning them, and writing the result back as a mesh.
- ► We hope to be able to build a Mondriaan hypergraph partitioning option into AVBP.

Outline

Meshes Laplacian BSP cost

Matricas

Matrix-vector Movies Hypergraphs SBD

Mesh-Matrix

