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Introduction

We will discuss generating greedy graph matchings on the GPU.

Graph matching ≈ a pairing of neighbouring vertices within a graph.

Matching has applications in

I minimising wireless network power consumption,
I Travelling salesman problem heuristics,
I organ donation,
I . . .

Our primary interest is graph coarsening, where we contract matched
vertices to obtain a coarser version of the original graph.
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Graph Matching

A graph is a pair G = (V ,E ) with vertices V and edges E .

All edges e ∈ E are of the form e = {v ,w} for vertices v ,w ∈ V .

A matching is a collection M ⊆ E of edges that are disjoint.

We will view matchings as a map π : V → N such that

π(v) = π(w) ⇐⇒ {v ,w} ∈ M.
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Maximal Matching

A matching is maximal if we cannot enlarge it further by adding
another edge to it.

Fagginger Auer, Bisseling (UU) GPU Greedy Graph Matching September 29, 2011 5 / 27



Maximum Matching

A matching is maximum if it possesses the largest possible number of
edges, compared to all other matchings.
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Graph Matching

If the edges are provided with weights ω : E → R>0, finding a
matching M which maximises

ω(M) =
∑
e∈M

ω(e),

is called weighted matching.

Greedy matching provides us with maximal matchings, but not
necessarily of maximum possible weight or maximum number of
vertices/edges.
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CPU matching

We will now look at a serial greedy algorithm which generates a
maximal matching.

In random order, vertices v ∈ V select and match neighbours
one-by-one.

Here, we can pick

I the first available neighbour w of v (random matching),
I the neighbour w for which ω({v ,w}) is maximal (weighted matching).
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CPU matching
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We will create a random matching for this graph.
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CPU matching
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Consider the vertices one-by-one.
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CPU matching
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Select unmatched neighbour. . .
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CPU matching
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. . . and match.
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CPU matching
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Skip matched vertices.
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CPU matching
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Keep matching until we have treated all vertices.
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CPU matching
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We have obtained a maximal matching (also maximum in this case).
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Problematic parallelism

Directly extending this to a parallel algorithm is problematic.

Disjoint edges requirement leads to serialisation.
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Problematic parallelism
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Suppose we match vertices simultaneously.
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Problematic parallelism
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Problematic parallelism
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. . . but generate an invalid matching.
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GPU matching

To solve this we create two groups of vertices: blue and red.

Blue vertices propose.

Red vertices respond.

Proposals that were responded to are matched.

Fagginger Auer, Bisseling (UU) GPU Greedy Graph Matching September 29, 2011 12 / 27



GPU matching

To solve this we create two groups of vertices: blue and red.

Blue vertices propose.

Red vertices respond.

Proposals that were responded to are matched.

Fagginger Auer, Bisseling (UU) GPU Greedy Graph Matching September 29, 2011 12 / 27



GPU matching

To solve this we create two groups of vertices: blue and red.

Blue vertices propose.

Red vertices respond.

Proposals that were responded to are matched.

Fagginger Auer, Bisseling (UU) GPU Greedy Graph Matching September 29, 2011 12 / 27



GPU matching

To solve this we create two groups of vertices: blue and red.

Blue vertices propose.

Red vertices respond.

Proposals that were responded to are matched.

Fagginger Auer, Bisseling (UU) GPU Greedy Graph Matching September 29, 2011 12 / 27



GPU implementation

The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

We create one thread for each vertex in V .

Each vertex v ∈ V only updates

I its colour/matching value π(v);
I and its proposal/response value σ(v).

Both π and σ are stored in 1D arrays in global memory.
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GPU matching
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Matching saturation
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Fraction of matched vertices as function of the number of iterations.
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Colouring vertices

To colour vertices v ∈ V , we use for a fixed p ∈ [0, 1]

colour(v) =

{
blue with probability p,
red with probability 1− p.

(1)

How to choose p? Maximise the number of matched vertices.

For a large random graphs, the expected fraction of matched vertices
can be approximated by (independent of edge density)

2 (1− p)
(

1− e−
p

1−p

)
. (2)
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Choosing p
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Equation (2): we should choose p ≈ 0.53406.
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Results

Created an implementation on the GPU using CUDA and on the CPU
using TBB.

We consider both random and weighted matching.

Vertex orderings are randomised and results are averaged over 32
randomisations.

Time only pertains to matching, not I/O or randomisation.

Test set: ongoing 10th DIMACS challenge on graph partitioning and
University of Florida Sparse Matrix Collection.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).

Fagginger Auer, Bisseling (UU) GPU Greedy Graph Matching September 29, 2011 18 / 27



Results

Created an implementation on the GPU using CUDA and on the CPU
using TBB.

We consider both random and weighted matching.

Vertex orderings are randomised and results are averaged over 32
randomisations.

Time only pertains to matching, not I/O or randomisation.

Test set: ongoing 10th DIMACS challenge on graph partitioning and
University of Florida Sparse Matrix Collection.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).

Fagginger Auer, Bisseling (UU) GPU Greedy Graph Matching September 29, 2011 18 / 27



Results

Created an implementation on the GPU using CUDA and on the CPU
using TBB.

We consider both random and weighted matching.

Vertex orderings are randomised and results are averaged over 32
randomisations.

Time only pertains to matching, not I/O or randomisation.

Test set: ongoing 10th DIMACS challenge on graph partitioning and
University of Florida Sparse Matrix Collection.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).

Fagginger Auer, Bisseling (UU) GPU Greedy Graph Matching September 29, 2011 18 / 27



Results

Created an implementation on the GPU using CUDA and on the CPU
using TBB.

We consider both random and weighted matching.

Vertex orderings are randomised and results are averaged over 32
randomisations.

Time only pertains to matching, not I/O or randomisation.

Test set: ongoing 10th DIMACS challenge on graph partitioning and
University of Florida Sparse Matrix Collection.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).

Fagginger Auer, Bisseling (UU) GPU Greedy Graph Matching September 29, 2011 18 / 27



Results

Created an implementation on the GPU using CUDA and on the CPU
using TBB.

We consider both random and weighted matching.

Vertex orderings are randomised and results are averaged over 32
randomisations.

Time only pertains to matching, not I/O or randomisation.

Test set: ongoing 10th DIMACS challenge on graph partitioning and
University of Florida Sparse Matrix Collection.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).

Fagginger Auer, Bisseling (UU) GPU Greedy Graph Matching September 29, 2011 18 / 27



Results

Created an implementation on the GPU using CUDA and on the CPU
using TBB.

We consider both random and weighted matching.

Vertex orderings are randomised and results are averaged over 32
randomisations.

Time only pertains to matching, not I/O or randomisation.

Test set: ongoing 10th DIMACS challenge on graph partitioning and
University of Florida Sparse Matrix Collection.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).

Fagginger Auer, Bisseling (UU) GPU Greedy Graph Matching September 29, 2011 18 / 27



Results (scaling)
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Scaling of TBB implementation (8 physical cores + hyperthreading).
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Results (vs. local random matching)
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Results (vs. local weighted matching)
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Results (vs. global weighted matching)
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Conclusion

We have presented a fine-grain, shared-memory parallel greedy graph
algorithm, suited for GPUs.

The algorithm provides similar quality random matching with
speedups up to 6.8 for large graphs.

The algorithm provides better quality than local weighted matchings
with speedups up to 5.6.

Compared to a global greedy weighted matching algorithm quality is
worse, but speedups up to 37 are achieved.

We look forward to employ this algorithm in (hyper)graph coarsening.
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Questions

∃ any questions?
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Choosing p

We should maximise the relative number of matched vertices each
round.

The number of matched vertices equals twice the number of red
vertices that receive at least one proposal: maximise 2N

|V | , where

N := number of red vertices receiving at least one proposal.

For a random graph with n vertices, we can approximate
(independent of edge density)

lim
n→∞

2E (N(n))

n
≈ 2 (1− p)

(
1− e−

p
1−p

)
. (3)
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Choosing p

Let G = ({1, . . . , n},E ) with P({v ,w} ∈ E ) = d for d ∈]0, 1]. Then
E (N(n)) is given by

∑
v∈V

P(π(v) = red)P(v is proposed to | π(v) = red)

=
∑
v∈V

P(π(v) = red)

1−
∏

w∈V\{v}

(1− P(w proposes to v | π(v) = red))


=
∑
v∈V

P(π(v) = red)

1−
∏

w∈V\{v}

(
1− P(π(w) = blue)P({v ,w} ∈ E )

nr. of red neighb. of w

)
≈ n (1− p)

(
1−

(
1− p d

1 + (1− p) (d (n − 1)− 1)

)n−1
)
.
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NVIDIA visual profiler
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