A GPU Algorithm for Greedy Graph Matching

B. O. Fagginger Auer R. H. Bisseling

Utrecht University

September 29, 2011

3

→ ∃ →

Outline

Introduction

2 CPU matching

3 GPU matching

Implementation

5 Results

► < Ξ ►</p>

< 4 ► >

• We will discuss generating greedy graph matchings on the GPU.

3

-

- ∢ ⊢⊒ →

- We will discuss generating greedy graph matchings on the GPU.
- Graph matching \approx a pairing of neighbouring vertices within a graph.

- We will discuss generating greedy graph matchings on the GPU.
- $\bullet\,$ Graph matching \approx a pairing of neighbouring vertices within a graph.
- Matching has applications in

- We will discuss generating greedy graph matchings on the GPU.
- $\bullet\,$ Graph matching \approx a pairing of neighbouring vertices within a graph.
- Matching has applications in
 - minimising wireless network power consumption,

- We will discuss generating greedy graph matchings on the GPU.
- $\bullet\,$ Graph matching \approx a pairing of neighbouring vertices within a graph.
- Matching has applications in
 - minimising wireless network power consumption,
 - Travelling salesman problem heuristics,

- We will discuss generating greedy graph matchings on the GPU.
- Graph matching \approx a pairing of neighbouring vertices within a graph.
- Matching has applications in
 - minimising wireless network power consumption,
 - Travelling salesman problem heuristics,
 - organ donation,

► < Ξ ►</p>

- We will discuss generating greedy graph matchings on the GPU.
- Graph matching \approx a pairing of neighbouring vertices within a graph.
- Matching has applications in
 - minimising wireless network power consumption,
 - Travelling salesman problem heuristics,
 - organ donation,
 - **١**

E + 4 E +

- We will discuss generating greedy graph matchings on the GPU.
- Graph matching \approx a pairing of neighbouring vertices within a graph.
- Matching has applications in
 - minimising wireless network power consumption,
 - Travelling salesman problem heuristics,
 - organ donation,
 - ▶ ...
- Our primary interest is graph coarsening, where we contract matched vertices to obtain a coarser version of the original graph.

• A graph is a pair G = (V, E) with vertices V and edges E.

- 34

・ロン ・四 ・ ・ ヨン ・ ヨン

- A graph is a pair G = (V, E) with vertices V and edges E.
- All edges $e \in E$ are of the form $e = \{v, w\}$ for vertices $v, w \in V$.

3

E + 4 E +

< 🗇 🕨 🔹

- A graph is a pair G = (V, E) with vertices V and edges E.
- All edges $e \in E$ are of the form $e = \{v, w\}$ for vertices $v, w \in V$.
- A matching is a collection $M \subseteq E$ of edges that are disjoint.

3

→ Ξ →

< (T) > <

- A graph is a pair G = (V, E) with vertices V and edges E.
- All edges $e \in E$ are of the form $e = \{v, w\}$ for vertices $v, w \in V$.
- A matching is a collection $M \subseteq E$ of edges that are disjoint.
- We will view matchings as a map $\pi: V
 ightarrow \mathbb{N}$ such that

$$\pi(\mathbf{v}) = \pi(\mathbf{w}) \qquad \Longleftrightarrow \qquad \{\mathbf{v}, \mathbf{w}\} \in M.$$

Maximal Matching

• A matching is maximal if we cannot enlarge it further by adding another edge to it.

Maximum Matching

• A matching is maximum if it possesses the largest possible number of edges, compared to all other matchings.

• If the edges are provided with weights $\omega : E \to \mathbb{R}_{>0}$, finding a matching M which maximises

$$\omega(M) = \sum_{e \in M} \omega(e),$$

is called weighted matching.

If the edges are provided with weights ω : E → ℝ_{>0}, finding a matching M which maximises

$$\omega(M) = \sum_{e \in M} \omega(e),$$

is called weighted matching.

 Greedy matching provides us with maximal matchings, but not necessarily of maximum possible weight or maximum number of vertices/edges.

• We will now look at a serial greedy algorithm which generates a maximal matching.

3

-

< 67 ▶

- We will now look at a serial greedy algorithm which generates a maximal matching.
- In random order, vertices $v \in V$ select and match neighbours one-by-one.

- We will now look at a serial greedy algorithm which generates a maximal matching.
- In random order, vertices $v \in V$ select and match neighbours one-by-one.
- Here, we can pick

- We will now look at a serial greedy algorithm which generates a maximal matching.
- In random order, vertices $v \in V$ select and match neighbours one-by-one.
- Here, we can pick
 - the first available neighbour w of v (random matching),

- We will now look at a serial greedy algorithm which generates a maximal matching.
- In random order, vertices $v \in V$ select and match neighbours one-by-one.
- Here, we can pick
 - ▶ the first available neighbour w of v (random matching),
 - the neighbour w for which $\omega(\{v, w\})$ is maximal (weighted matching).

We will create a random matching for this graph.

- ∢ ⊢⊒ →

Consider the vertices one-by-one.

- ∢ ≣ →

Image: A matrix

Select unmatched neighbour...

- ∢ ≣ →

• • • • • • • •

... and match.

3

<ロ> (日) (日) (日) (日) (日)

Skip matched vertices.

프 에 에 프 어

Image: A matrix and a matrix

Skip already matched neighbours.

< 4 ► >

Skip already matched neighbours.

< 67 ▶

Skip already matched neighbours.

< 67 ▶

Keep matching until we have treated all vertices.

< 67 ▶

Keep matching until we have treated all vertices.

< 4 ► >

Keep matching until we have treated all vertices.

< 4 ► >

Keep matching until we have treated all vertices.

< 4 ► >

Keep matching until we have treated all vertices.

< 4 →

Keep matching until we have treated all vertices.

< 67 ▶

Keep matching until we have treated all vertices.

< 67 ▶

Keep matching until we have treated all vertices.

< 47 ▶

We have obtained a maximal matching (also maximum in this case).

- ∢ 🗇 እ

• Directly extending this to a parallel algorithm is problematic.

- Directly extending this to a parallel algorithm is problematic.
- Disjoint edges requirement leads to serialisation.

Suppose we match vertices simultaneously.

Vertices find an unmatched neighbour...

... but generate an invalid matching.

• To solve this we create two groups of vertices: blue and red.

- 一司

- To solve this we create two groups of vertices: **blue** and **red**.
- Blue vertices propose.

- To solve this we create two groups of vertices: **blue** and **red**.
- Blue vertices propose.
- **Red** vertices respond.

- To solve this we create two groups of vertices: blue and red.
- Blue vertices propose.
- Red vertices respond.
- Proposals that were responded to are matched.

• The graph (neighbour ranges, indices, and weights) is stored as a triplet of 1D textures on the GPU.

- The graph (neighbour ranges, indices, and weights) is stored as a triplet of 1D textures on the GPU.
- We create one thread for each vertex in V.

GPU implementation

- The graph (neighbour ranges, indices, and weights) is stored as a triplet of 1D textures on the GPU.
- We create one thread for each vertex in V.
- Each vertex $v \in V$ only updates
 - its colour/matching value $\pi(v)$;
 - and its proposal/response value $\sigma(v)$.

GPU implementation

- The graph (neighbour ranges, indices, and weights) is stored as a triplet of 1D textures on the GPU.
- We create one thread for each vertex in V.
- Each vertex $v \in V$ only updates
 - its colour/matching value $\pi(v)$;
 - and its proposal/response value $\sigma(v)$.
- Both π and σ are stored in 1D arrays in global memory.

Fagginger Auer, Bisseling (UU)

< ∃→ 14 / 27 September 29, 2011

< 一型

Fagginger Auer, Bisseling (UU)

< ∃→ September 29, 2011

< 1[™] >

Fagginger Auer, Bisseling (UU)

September 29, 2011

< ∃→

э

< 17 >

Fagginger Auer, Bisseling (UU)

September 29, 2011

< 🗗 ▶

→

< 🗗 ▶

→

2

14 / 27

Fagginger Auer, Bisseling (UU)

I ≡ ► September 29, 2011

< 🗗 🕨

→

2

14 / 27

Fagginger Auer, Bisseling (UU)

September 29, 2011

3

< 1[™] >

< ∃→

Fagginger Auer, Bisseling (UU)

< 1[™] >

< ∃→

< 🗇 🕨

< ∃→

< 🗇 🕨

< ∃→

2

14 / 27

Fagginger Auer, Bisseling (UU)

September 29, 2011

< 1[™] >

→

Fagginger Auer, Bisseling (UU)

September 29, 2011

< 🗇 🕨

→

Fagginger Auer, Bisseling (UU)

September 29, 2011

< 🗇 🕨

< ∃→

Matching saturation

Fraction of matched vertices as function of the number of iterations.

- 一司

Colouring vertices

• To colour vertices $v \in V$, we use for a fixed $p \in [0,1]$

$$\mathbf{colour}(v) = \begin{cases} \mathbf{blue} & \text{with probability } p, \\ \mathbf{red} & \text{with probability } 1 - p. \end{cases}$$

3

- < ∃ →

- 一司

(1)

Colouring vertices

• To colour vertices $v \in V$, we use for a fixed $p \in [0,1]$

$$extbf{colour}(v) = \left\{egin{array}{c} extbf{blue} & extbf{with probability } p, \ extbf{red} & extbf{with probability } 1-p. \end{array}
ight.$$

• How to choose p? Maximise the number of matched vertices.

(1)

Colouring vertices

• To colour vertices $v \in V$, we use for a fixed $p \in [0,1]$

$$\mathbf{colour}(v) = \begin{cases} \mathbf{blue} & \text{with probability } p, \\ \mathbf{red} & \text{with probability } 1 - p. \end{cases}$$
(1)

- How to choose *p*? Maximise the number of matched vertices.
- For a large random graphs, the expected fraction of matched vertices can be approximated by (independent of edge density)

$$2(1-p)\left(1-e^{-\frac{p}{1-p}}\right).$$
 (2)

Choosing p

Equation (2): we should choose $p \approx 0.53406$.

< 一型

Results

• Created an implementation on the GPU using CUDA and on the CPU using TBB.

3

- ∢ ≣ →

-

- 一司

- Created an implementation on the GPU using CUDA and on the CPU using TBB.
- We consider both random and weighted matching.

- Created an implementation on the GPU using CUDA and on the CPU using TBB.
- We consider both random and weighted matching.
- Vertex orderings are randomised and results are averaged over 32 randomisations.

- Created an implementation on the GPU using CUDA and on the CPU using TBB.
- We consider both random and weighted matching.
- Vertex orderings are randomised and results are averaged over 32 randomisations.
- Time only pertains to matching, not I/O or randomisation.

- Created an implementation on the GPU using CUDA and on the CPU using TBB.
- We consider both random and weighted matching.
- Vertex orderings are randomised and results are averaged over 32 randomisations.
- Time only pertains to matching, not I/O or randomisation.
- Test set: ongoing 10th DIMACS challenge on graph partitioning and University of Florida Sparse Matrix Collection.

- Created an implementation on the GPU using CUDA and on the CPU using TBB.
- We consider both random and weighted matching.
- Vertex orderings are randomised and results are averaged over 32 randomisations.
- Time only pertains to matching, not I/O or randomisation.
- Test set: ongoing 10th DIMACS challenge on graph partitioning and University of Florida Sparse Matrix Collection.
- Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla C2050 (thanks: the Little Green Machine project).

* E > * E >

Results (scaling)

Scaling of TBB implementation (8 physical cores + hyperthreading).

< /□ > < □

Results (vs. local random matching)

Matching size and speedup for parallel vs. serial local random matching.

Results (vs. local weighted matching)

Matching weight and speedup for parallel vs. serial local weighted matching.

Fagginger Auer, Bisseling (UU)

GPU Greedy Graph Matching

September 29, 2011 21 / 27

Results (vs. global weighted matching)

Matching weight and speedup for parallel local vs. serial global weighted matching.

Fagginger Auer, Bisseling (UU)

GPU Greedy Graph Matching

September 29, 2011 22 / 27

• We have presented a fine-grain, shared-memory parallel greedy graph algorithm, suited for GPUs.

- 一司

3

- We have presented a fine-grain, shared-memory parallel greedy graph algorithm, suited for GPUs.
- The algorithm provides similar quality random matching with speedups up to 6.8 for large graphs.

- We have presented a fine-grain, shared-memory parallel greedy graph algorithm, suited for GPUs.
- The algorithm provides similar quality random matching with speedups up to 6.8 for large graphs.
- The algorithm provides better quality than local weighted matchings with speedups up to 5.6.

- We have presented a fine-grain, shared-memory parallel greedy graph algorithm, suited for GPUs.
- The algorithm provides similar quality random matching with speedups up to 6.8 for large graphs.
- The algorithm provides better quality than local weighted matchings with speedups up to 5.6.
- Compared to a global greedy weighted matching algorithm quality is worse, but speedups up to 37 are achieved.

- We have presented a fine-grain, shared-memory parallel greedy graph algorithm, suited for GPUs.
- The algorithm provides similar quality random matching with speedups up to 6.8 for large graphs.
- The algorithm provides better quality than local weighted matchings with speedups up to 5.6.
- Compared to a global greedy weighted matching algorithm quality is worse, but speedups up to 37 are achieved.
- We look forward to employ this algorithm in (hyper)graph coarsening.

Questions

 \exists any questions?

3

<ロ> (日) (日) (日) (日) (日)

• We should maximise the relative number of matched vertices each round.

- (A 🖓

3

- We should maximise the relative number of matched vertices each round.
- The number of matched vertices equals twice the number of red vertices that receive at least one proposal: maximise $\frac{2N}{|V|}$, where

N := number of **red** vertices receiving at least one proposal.

- We should maximise the relative number of matched vertices each round.
- The number of matched vertices equals twice the number of red vertices that receive at least one proposal: maximise $\frac{2N}{|V|}$, where

N := number of **red** vertices receiving at least one proposal.

• For a random graph with *n* vertices, we can approximate (independent of edge density)

$$\lim_{n\to\infty}\frac{2E(N(n))}{n}\approx 2\left(1-p\right)\left(1-e^{-\frac{p}{1-p}}\right).$$
(3)

Let $G = (\{1, \ldots, n\}, E)$ with $P(\{v, w\} \in E) = d$ for $d \in]0, 1]$. Then E(N(n)) is given by

イロト 不得 トイヨト イヨト 二日

Let $G = (\{1, \ldots, n\}, E)$ with $P(\{v, w\} \in E) = d$ for $d \in]0, 1]$. Then E(N(n)) is given by

$$\sum_{v \in V} P(\pi(v) = \operatorname{red}) P(v \text{ is proposed to } | \pi(v) = \operatorname{red})$$

イロト 不得 トイヨト イヨト 二日

Let $G = (\{1, ..., n\}, E)$ with $P(\{v, w\} \in E) = d$ for $d \in]0, 1]$. Then E(N(n)) is given by

 $\sum_{v \in V} P(\pi(v) = \operatorname{red}) P(v \text{ is proposed to } | \pi(v) = \operatorname{red})$

$$=\sum_{v\in V} P(\pi(v) = \operatorname{red}) \left(1 - \prod_{w\in V\setminus\{v\}} (1 - P(w \text{ proposes to } v \mid \pi(v) = \operatorname{red}))\right)$$

Let $G = (\{1, ..., n\}, E)$ with $P(\{v, w\} \in E) = d$ for $d \in]0, 1]$. Then E(N(n)) is given by

$$\sum_{v \in V} P(\pi(v) = \operatorname{red}) P(v \text{ is proposed to } | \pi(v) = \operatorname{red})$$

$$= \sum_{v \in V} P(\pi(v) = \operatorname{red}) \left(1 - \prod_{w \in V \setminus \{v\}} (1 - P(w \text{ proposes to } v | \pi(v) = \operatorname{red})) \right)$$

$$= \sum_{v \in V} P(\pi(v) = \operatorname{red}) \left(1 - \prod_{w \in V \setminus \{v\}} \left(1 - \frac{P(\pi(w) = \operatorname{blue}) P(\{v, w\} \in E)}{\operatorname{nr. of red neighb. of } w} \right) \right)$$

イロト 不得下 イヨト イヨト 二日

September 29, 2011

26 / 27

Let $G = (\{1, \ldots, n\}, E)$ with $P(\{v, w\} \in E) = d$ for $d \in]0, 1]$. Then E(N(n)) is given by

$$\sum_{v \in V} P(\pi(v) = \operatorname{red}) P(v \text{ is proposed to } | \pi(v) = \operatorname{red})$$

$$= \sum_{v \in V} P(\pi(v) = \operatorname{red}) \left(1 - \prod_{w \in V \setminus \{v\}} (1 - P(w \text{ proposes to } v | \pi(v) = \operatorname{red})) \right)$$

$$= \sum_{v \in V} P(\pi(v) = \operatorname{red}) \left(1 - \prod_{w \in V \setminus \{v\}} \left(1 - \frac{P(\pi(w) = \operatorname{blue}) P(\{v, w\} \in E)}{\operatorname{nr. of red neighb. of } w} \right) \right)$$

$$\approx n(1 - p) \left(1 - \left(1 - \frac{p d}{1 + (1 - p) (d (n - 1) - 1)} \right)^{n - 1} \right).$$

イロト 不得下 イヨト イヨト 二日

NVIDIA visual profiler

3

イロト イヨト イヨト イヨト