Mid-term exam Mathematical Statistics

11 November 2004, 14.00-17.00 uur

Write your name and student number on each page you turn in. You may use all your lecture notes, the course literature and a simple calculator.

- 1. Let $(X_1, Y_1)^T, \dots, (X_9, Y_9)^T$ be a sample from the normal distribution $N(\mu, \Sigma)$ with $\mu = \begin{pmatrix} 1\\2 \end{pmatrix}$ and $\Sigma = \begin{pmatrix} 1 & -1\\-1 & 3 \end{pmatrix}$. Let $Z_i = 3X_i + Y_i$, $V_i = 2X_i - 3Y_i$, $i = 1, \dots, 7$, $\bar{X}_9 = \frac{1}{9} \sum_{i=1}^9 X_i$, $\bar{Y}_9 = \frac{1}{9} \sum_{i=1}^9 Y_i$, $\bar{Z}_7 = \frac{1}{7} \sum_{i=1}^7 Z_i$, $\bar{V}_7 = \frac{1}{7} \sum_{i=1}^7 V_i$, $S_y^2 = \frac{1}{8} \sum_{i=1}^9 (Y_i - \bar{Y}_9)^2$, $S_z^2 = \frac{1}{6} \sum_{i=1}^7 (Z_i - \bar{Z}_7)^2$, $S_v^2 = \frac{1}{6} \sum_{i=1}^7 (V_i - \bar{V}_7)^2$.
 - (a) Are X_1, Z_1 independent? Are Y_1, Z_1 independent? Find the joint distribution of $(Z_1, V_1)^T$. What is the joint distribution of $(\bar{V}_7, \frac{6S_v^2}{\operatorname{Var}(V_1)})^T$? Does vector $(X_1, Z_1, V_1)^T$ have a density?
 - (b) Compute $\frac{1}{5}E\bar{Z}_7, \frac{7}{3}\operatorname{Var}(\bar{Z}_7), \frac{1}{2}ES_z^2, \operatorname{Var}(\frac{S_z^2}{\sqrt{3}}), \frac{5}{43}ES_v^2, \operatorname{Var}(\frac{\sqrt{18}}{43}S_v^2).$
 - (c) Compute $\frac{21}{101}$ Var $(7\bar{Z}_7 3\bar{X}_9)$, $1 + \frac{1}{3}$ Var $(2S_y^2 S_z^2)$, 1.8 Cov (X_1, V_1) , 10 +Cov (X_1, V_5) and $55P(\bar{Z}_7 > S_z \frac{0.906}{\sqrt{7}} + 5)$ (you may use here the relation $P(T \le 0.906) = 0.8$ if $T \sim t_6$).
- 2. Let X_1, \ldots, X_n and Y_1, \ldots, Y_m be two independent samples such that $EX_1 = EY_1 = \mu$ and $Var(X_1) = \sigma^2$, $Var(Y_1) = \alpha\sigma^2$, with known constant $\alpha > 0$. Define $\bar{X}_n = \sum_{i=1}^n X_i/n$, $\bar{Y}_m = \sum_{i=1}^m Y_i/m$.
 - (a) Denote $T_1 = (n\bar{X}_n + m\bar{Y}_m)/(n+m)$ and $T_2 = (\alpha n\bar{X}_n + m\bar{Y}_m)/(m+\alpha n)$. Are these estimators unbiased for μ ? Compute the MSE for both estimators. Which one is more preferable?
 - (b) Suppose $m = m_n$ in such a way that $m_n/n \to 2$ as $n \to \infty$. Describe the asymptotic behaviour of T_1 and T_2 as $n \to \infty$ (if you have troubles, just let m = 2n). Determine the limit distribution of $\sqrt{n}(\sin(T_2) \sin(\mu))$ as $n \to \infty$.
 - (c) Assume that X_1 and Y_1 are both normally distributed. Find the MLE for (μ, σ^2) . Assume that σ^2 is known, then determine the Cramér-Rao lower bound for the estimation of μ and show that this bound is sharp. Assume that μ is known, then determine the Cramér-Rao lower bound for the estimation of σ^2 and show that this bound is sharp (you may use here the relation $\operatorname{Var}(Z^2) = 2\tau^4$ for $Z \sim N(0, \tau^2)$).
 - (d) (Extra) Suppose m = n. Show that T_2 is the best estimator (in terms of MSE) among all unbiased estimators for μ which are linear combinations of \bar{X}_n and \bar{Y}_m (i.e. estimators of the form $\alpha \bar{X}_n + \beta \bar{Y}_m, \alpha, \beta \in \mathbb{R}$).
- 3. Let X_1, \ldots, X_n be a sample form a shifted exponential distribution with the density $f_{\theta_1,\theta_2}(x) = \theta_1^{-1} e^{-(x-\theta_2)/\theta_1} I\{x \ge \theta_2\}$, where $\theta_1 > 0$ and $\theta_2 \in \mathbb{R}$. You may use here the fact that $X_1 \stackrel{d}{=} Y + \theta_2$ with $Y \sim \operatorname{Exp}(1/\theta_1)$ i.e. $Y \sim e^{-x/\theta_1} I\{x \ge 0\}/\theta_1$, $EY = \theta_1$, $\operatorname{Var}(Y) = \theta_1^2$.
 - (a) Find the moment estimator $\tilde{\theta} = (\tilde{\theta}_1, \tilde{\theta}_2)$ for (θ_1, θ_2) . Is it consistent? Assume that $\theta_1 + \theta_2 \neq 0$ and derive the limit distribution of $\sqrt{n} ((\tilde{\theta}_1 + \tilde{\theta}_2)^{-1} (\theta_1 + \theta_2)^{-1})$ as $n \to \infty$.
 - (b) Show that for any fixed $\theta_1 > 0$ the likelihood function is maximized at $\hat{\theta}_2 = X_{(1)} = \min\{X_1, \dots, X_n\}$. Deduce that the joint MLE for (θ_1, θ_2) is given by $(\hat{\theta}_1, \hat{\theta}_2)$ with $\hat{\theta}_1 = \bar{X}_n - X_{(1)}, \ \bar{X}_n = \sum_{i=1}^n X_i/n$. Is the MLE unbiased? Is the MLE asymptotically unbiased?
 - (c) Derive the limit distributions of $n(\hat{\theta}_2 \theta_2)$ and $\sqrt{n}(\hat{\theta}_1 \theta_1)$. Determine the limit distribution of $\sin(n(\hat{\theta}_2 \theta_2))/\cos(n^{1/3}(\hat{\theta}_1 \theta_1))$.
 - (d) Assume that θ_2 is a known constant (you can take for example $\theta_2 = 1$). Compute the Cramér-Rao lower bound for the estimation of θ_1 and show that this bound is sharp.