Mid-term exam Mathematical Statistics

11 November 2004, 14.00-17.00 uur

Write your name and student number on each page you turn in. You may use all your lecture notes, the course literature and a simple calculator.

1. Let $\left(X_{1}, Y_{1}\right)^{T}, \ldots,\left(X_{9}, Y_{9}\right)^{T}$ be a sample from the normal distribution $N(\mu, \Sigma)$ with $\mu=\binom{1}{2}$ and $\Sigma=\left(\begin{array}{cc}1 & -1 \\ -1 & 3\end{array}\right)$. Let $Z_{i}=3 X_{i}+Y_{i}, V_{i}=2 X_{i}-3 Y_{i}, i=1, \ldots, 7, \bar{X}_{9}=\frac{1}{9} \sum_{i=1}^{9} X_{i}, \bar{Y}_{9}=\frac{1}{9} \sum_{i=1}^{9} Y_{i}$, $\bar{Z}_{7}=\frac{1}{7} \sum_{i=1}^{7} Z_{i}, \bar{V}_{7}=\frac{1}{7} \sum_{i=1}^{7} V_{i}, S_{y}^{2}=\frac{1}{8} \sum_{i=1}^{9}\left(Y_{i}-\bar{Y}_{9}\right)^{2}, S_{z}^{2}=\frac{1}{6} \sum_{i=1}^{7}\left(Z_{i}-\bar{Z}_{7}\right)^{2}, S_{v}^{2}=\frac{1}{6} \sum_{i=1}^{7}\left(V_{i}-\right.$ $\left.\bar{V}_{7}\right)^{2}$.
(a) Are X_{1}, Z_{1} independent? Are Y_{1}, Z_{1} independent? Find the joint distribution of $\left(Z_{1}, V_{1}\right)^{T}$. What is the joint distribution of $\left(\bar{V}_{7}, \frac{6 S_{v}^{2}}{\operatorname{Var}\left(V_{1}\right)}\right)^{T}$? Does vector $\left(X_{1}, Z_{1}, V_{1}\right)^{T}$ have a density?
(b) Compute $\frac{1}{5} E \bar{Z}_{7}, \frac{7}{3} \operatorname{Var}\left(\bar{Z}_{7}\right), \frac{1}{2} E S_{z}^{2}, \operatorname{Var}\left(\frac{S_{z}^{2}}{\sqrt{3}}\right), \frac{5}{43} E S_{v}^{2}, \operatorname{Var}\left(\frac{\sqrt{18}}{43} S_{v}^{2}\right)$.
(c) Compute $\frac{21}{101} \operatorname{Var}\left(7 \bar{Z}_{7}-3 \bar{X}_{9}\right), 1+\frac{1}{3} \operatorname{Var}\left(2 S_{y}^{2}-S_{z}^{2}\right), 1.8 \operatorname{Cov}\left(X_{1}, V_{1}\right), 10+\operatorname{Cov}\left(X_{1}, V_{5}\right)$ and $55 P\left(\bar{Z}_{7}>\right.$ $\left.S_{z} \frac{0.906}{\sqrt{7}}+5\right)$ (you may use here the relation $P(T \leq 0.906)=0.8$ if $T \sim t_{6}$).
2. Let X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m} be two independent samples such that $E X_{1}=E Y_{1}=\mu$ and $\operatorname{Var}\left(X_{1}\right)=$ $\sigma^{2}, \operatorname{Var}\left(Y_{1}\right)=\alpha \sigma^{2}$, with known constant $\alpha>0$. Define $\bar{X}_{n}=\sum_{i=1}^{n} X_{i} / n, \bar{Y}_{m}=\sum_{i=1}^{m} Y_{i} / m$.
(a) Denote $T_{1}=\left(n \bar{X}_{n}+m \bar{Y}_{m}\right) /(n+m)$ and $T_{2}=\left(\alpha n \bar{X}_{n}+m \bar{Y}_{m}\right) /(m+\alpha n)$. Are these estimators unbiased for μ ? Compute the MSE for both estimators. Which one is more preferable?
(b) Suppose $m=m_{n}$ in such a way that $m_{n} / n \rightarrow 2$ as $n \rightarrow \infty$. Describe the asymptotic behaviour of T_{1} and T_{2} as $n \rightarrow \infty$ (if you have troubles, just let $m=2 n$). Determine the limit distribution of $\sqrt{n}\left(\sin \left(T_{2}\right)-\sin (\mu)\right)$ as $n \rightarrow \infty$.
(c) Assume that X_{1} and Y_{1} are both normally distributed. Find the MLE for $\left(\mu, \sigma^{2}\right)$. Assume that σ^{2} is known, then determine the Cramér-Rao lower bound for the estimation of μ and show that this bound is sharp. Assume that μ is known, then determine the Cramér-Rao lower bound for the estimation of σ^{2} and show that this bound is sharp (you may use here the relation $\operatorname{Var}\left(Z^{2}\right)=2 \tau^{4}$ for $Z \sim N\left(0, \tau^{2}\right)$).
(d) (Extra) Suppose $m=n$. Show that T_{2} is the best estimator (in terms of MSE) among all unbiased estimators for μ which are linear combinations of \bar{X}_{n} and \bar{Y}_{m} (i.e. estimators of the form $\left.\alpha \bar{X}_{n}+\beta \bar{Y}_{m}, \alpha, \beta \in \mathbb{R}\right)$.
3. Let X_{1}, \ldots, X_{n} be a sample form a shifted exponential distribution with the density $f_{\theta_{1}, \theta_{2}}(x)=$ $\theta_{1}^{-1} e^{-\left(x-\theta_{2}\right) / \theta_{1}} I\left\{x \geq \theta_{2}\right\}$, where $\theta_{1}>0$ and $\theta_{2} \in \mathbb{R}$. You may use here the fact that $X_{1} \stackrel{d}{=} Y+\theta_{2}$ with $Y \sim \operatorname{Exp}\left(1 / \theta_{1}\right)$ i.e. $Y \sim e^{-x / \theta_{1}} I\{x \geq 0\} / \theta_{1}, E Y=\theta_{1}, \operatorname{Var}(Y)=\theta_{1}^{2}$.
(a) Find the moment estimator $\tilde{\theta}=\left(\tilde{\theta}_{1}, \tilde{\theta}_{2}\right)$ for $\left(\theta_{1}, \theta_{2}\right)$. Is it consistent? Assume that $\theta_{1}+\theta_{2} \neq 0$ and derive the limit distribution of $\sqrt{n}\left(\left(\tilde{\theta}_{1}+\tilde{\theta}_{2}\right)^{-1}-\left(\theta_{1}+\theta_{2}\right)^{-1}\right)$ as $n \rightarrow \infty$.
(b) Show that for any fixed $\theta_{1}>0$ the likelihood function is maximized at $\hat{\theta}_{2}=X_{(1)}=\min \left\{X_{1}, \ldots, X_{n}\right\}$. Deduce that the joint MLE for $\left(\theta_{1}, \theta_{2}\right)$ is given by $\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)$ with $\hat{\theta}_{1}=\bar{X}_{n}-X_{(1)}, \bar{X}_{n}=\sum_{i=1}^{n} X_{i} / n$. Is the MLE unbiased? Is the MLE asymptotically unbiased?
(c) Derive the limit distributions of $n\left(\hat{\theta}_{2}-\theta_{2}\right)$ and $\sqrt{n}\left(\hat{\theta}_{1}-\theta_{1}\right)$. Determine the limit distribution of $\sin \left(n\left(\hat{\theta}_{2}-\theta_{2}\right)\right) / \cos \left(n^{1 / 3}\left(\hat{\theta}_{1}-\theta_{1}\right)\right)$.
(d) Assume that θ_{2} is a known constant (you can take for example $\theta_{2}=1$). Compute the Cramér-Rao lower bound for the estimation of θ_{1} and show that this bound is sharp.
