Exercises for "het Project 2007"

Martin Bootsma
25-09-2007

Exercise 1

(a) Draw the compartments for the SIR-model in a closed population and convince yourself that under the assumption of exponentially distributed waiting times and homogenenous mixing, this results in the following set of differential equations:

$$
\begin{aligned}
\frac{d}{d t} S(t) & =-\lambda(t) S(t) \\
\frac{d}{d t} I(t) & =\lambda(t) S(t)-\alpha I(t) \\
\frac{d}{d t} R(t) & =\alpha I(t)
\end{aligned}
$$

with $\lambda(t)=\beta I(t)$.
(b) Determine the basic reproduction number R_{0} and the real-time exponential growth rate r on the basis of this model.
(c) Show that $\frac{\alpha}{\beta} \log S-S-I$ is a conserved quantity. (Hint: Consider $\frac{d I}{d S}$ and seperate variables.)
(d) Derive an equation for the final size of the epidemic. (Hint, what is $S(-\infty)$ and $S(\infty) ?$)
(e) Analyze this final size equation graphically. Both for $R_{0}>1$ and $R_{0}<1$.
(f) What will change in the box diagram and in the differential equations if birth and death is added? and how do R_{0} and r change?
(g) Calculate the equilibria for this system including birth and death. Are all equilibria biologically relevant?
(h) Can you say something about stability of the equilibra?

Exercise 2: The Reed-Frost model

We consider the spread of an infectious disease, e.g., common cold, in a population of N individuals where N is small. We assume an SIR-structure and we look at the spread in discrete time, more specifically, on a generation basis. This is a realistic assumption if the latency period is much longer than the infectious period. If this is the case, new infections will occur in generations. We consider a Markovian model, i.e., the event probabilities in a generation only depend on the state of the epidemic in the previous generation. Let X_{j} and Y_{j} be the number of susceptibles and infectives respectively at time (or generation) j. The number of recovered individuals at time j is given by $N-X_{j}-Y_{j}$ and all infectious individuals will be recovered on etimestep later. The conditional probabilities for the chain-binomial Reed-Frost model are given by:

$$
\begin{aligned}
& P\left(Y_{j+1}=y_{j+1} \mid X_{0}=x_{0}, Y_{0}=y_{0}, \ldots, X_{j}=x_{j}, Y_{j}=y_{j}\right)= \\
& P\left(Y_{j+1}=y_{j+1} \mid X_{j}=x_{j}, Y_{j}=y_{j}\right)=\binom{x_{j}}{y_{j+1}}\left(1-q^{y_{j}}\right)^{y_{j+1}}\left(q^{y_{j}}\right)^{x_{j}-y_{j+1}}
\end{aligned}
$$

(a) What is the biological meaning of q and explain the biological meaning of this formula.
(b) What happens if $y_{j}=0$?
(c) Define $Z=\sum_{j=1}^{\infty} Y_{j}$. What is the meaning of Z ? Calculate $P\left(Z=0 \mid X_{0}=\right.$ 10, $\left.Y_{0}=1\right), P\left(Z=1 \mid X_{0}=10, Y_{0}=1\right), P\left(Z=2 \mid X_{0}=10, Y_{0}=1\right)$, and $P\left(Z=3 \mid X_{0}=10, Y_{0}=1\right)$. Note that this model is not suitable when Z becomes large.
Exercise 3 Fitting a model to data
(a) Consider the following data for a measles epidemic (data from Aycock). Assume that a Reed-Frost type model is suitable to analyse this data set.

t	0	1	2	3	4	5
X_{t}	117	108	86	25	12	12
Y_{t}	1	9	22	61	13	0

(a) Calculate how likely each transition from time t to time $t+1$ is as a function of q according to the model.
(b) Calculate at each time step which value of q gives the maximum likelihood
(c) Assume q is constant throughout all time intervals. Determine numerically which value of q yields the maximum likelihood.
(d) Optional: How well do the data fit the model?

Exercise 4 Heterogeneity
Consider a population divided into two subpopulations, which are indicated the the labels 1 and 2 . We look at a sexually transmitted disease, with sexual intercourse as a contact at which the disease will spread if one of the partners has the disease. Assume that population 1 consists of promiscuous individuals who have $c_{1}=100$ contacts per year, while individuals of population 2 have $c_{2}=10$ contacts per year. Assume there are $N_{1}=10^{5}$ individuals of type 1 and $N_{2}=10^{7}$ individuals of type 2. Assume that a fraction $\frac{c_{2} N_{2}}{c_{1} N_{1}+c_{2} N_{2}}$ of the contacts of a 1-individual are with 2 -individuals and a fraction $\frac{c_{1} N_{1}}{c_{1} N_{1}+c_{2} N_{2}}$ of the contacts of a 2 -individual are with 1individuals. Assume the infectious period is exactly 1 year. What is R_{0} ?
(a) Calculate the mean number of contacts per year in this population.
(b) How many infections does an infectious 1-individual generate among 1- and among 2-individuals if all of his contacts are susceptible? And how many infections does a 2 -individual generate among both groups?
(c) Calculate R_{0}.
(d) What is the effect of heterogeneity? Can you relate this to a 'real' disease?
(e) Make a graph (numerically) how the fraction of S, I and R-individuals is changing during the epidemic when at time $t=0 S_{1}=9999, I_{1}=1, R_{1}=0, S_{2}=10^{7}$, $I_{2}=R_{2}=0$. Do this for 1-individuals, 2-individuals and for the population as a whole.

