Differentiable manifolds – exercise sheet 3

Whenever necessary, you can assume that the Čech cohomology $\check{H}^k(M; \mathbb{R}; \mathfrak{U})$ is independent of \mathfrak{U} as long as \mathfrak{U} is a good cover of M.

Exercise 1. Show that if \mathfrak{U} is a good cover of M and \mathfrak{V} is a good cover of N, then

$$\mathfrak{U} \times \mathfrak{V} = \{ U \times V : U \in \mathfrak{U} \text{ and } V \in \mathfrak{V} \}$$

is a good cover of $M \times N$.

Exercise 2 (Homeomorphism invariance). Let $f : M \longrightarrow N$ be continuous and surjective and let $\mathfrak{U} = \{U_{\alpha} : \alpha \in A\}$ be an open cover of N. Show that

$$f^{-1}(\mathfrak{U}) = \{ f^{-1}(U_{\alpha}) : \alpha \in A \}$$

is an open cover of M and define a map

$$f^*: \check{C}^k(N; \mathbb{R}; \mathfrak{U}) \longrightarrow \check{C}^k(M; \mathbb{R}; f^{-1}(\mathfrak{U})), \qquad (f^*c)_{\mathbf{a}} = c_{\mathbf{a}} \circ f,$$

where $c \in \check{C}^k(N; \mathbb{R}; \mathfrak{U})$ and a is an ordered multiindex of size k + 1, so that $c_a : U_a \longrightarrow G$.

Show that f^* defined above is an isomorphism of Abelian groups for every k and that it commutes with differentials, that is,

$$f^*\delta = \delta f^*.$$

Conclude that the Čech cohomologies of M and N with respect to the covers \mathfrak{U} and $f^{-1}(\mathfrak{U})$ are isomorphic. Conclude further that if f is an homeomorphism, then M and N have isomorphic Čech cohomologies with respect to any good cover of these manifolds.

Remark: In fact the exercise above shows that if $f: M \longrightarrow N$ is smooth, surjective and $f^{-1}(\mathfrak{U})$ is a good cover of M for some good cover of N, then the cohomologies of M and N are isomorphic. An example where one can use this more general statement is with the map

$$f: \mathbb{C}^* \longrightarrow S^1, \qquad f(z) = \frac{z}{|z|}.$$

Exercise 3 (Euler characteristic). Let $\{V^k : 0 \le k \le n\}$ be a family of finite dimensional vector spaces where $n \in \mathbb{N}$ is some fixed number. Whenever necessary, let $V_{-1} = V_{n+1} = \{0\}$. Let $d_k : V^k \longrightarrow V^{k+1}$ be linear maps such that $d_{k+1} \circ d_k = 0$ for all i and define

$$H^k = \frac{\ker(d_k)}{\operatorname{Im}(d_{k-1})}.$$

Show that

$$\sum (-1)^k \dim(V^k) = \sum (-1)^k \dim(H^k).$$

Conclude that if \mathfrak{U} is a finite open cover of a manifold then

$$\sum (-1)^k \dim(\check{C}^k(M;\mathbb{R};\mathfrak{U})) = \sum (-1)^k \dim(\check{H}^k(M;\mathbb{R};\mathfrak{U})).$$

Hint: Use the rank nullity theorem from linear algebra, namely, if $A: V \longrightarrow W$ is a linear map,

$$\dim(V) = \dim(\operatorname{Im}(A)) + \dim(\ker(A)).$$

Figure 1: Tetrahedral decomposition of the sphere.

Definition 4. For a cover \mathfrak{U} of M, the Euler characteristic of M with respect to the cover \mathfrak{U} is the number

$$\chi(M;\mathfrak{U})=\sum(-1)^k\dim(\check{H}^k(M;\mathbb{R};\mathfrak{U}))$$

The Euler characteristic of M, denoted by $\chi(M)$, is $\chi(M; \mathfrak{U})$ where \mathfrak{U} is any finite good cover of M.

Exercise 5. Cover the sphere S^2 with four open sets obtained by slightly enlarging the tetrahedral triagulation of the sphere (see Figure 1). Compute the Euler characteristic of S^2 with respect to this open cover.

Exercise 6. Consider S^1 as the interval [0,1] with the ends identified. Cover S^1 by the open sets $U_0 = (0,2/3), U_1 = (1/3,1)$ and $U_2 = (2/3,1) \cup (0,1/3)$. Compute the Euler characteristic of S^1 from this cover.

Exercise 7. Assuming that the Čech cohomology $\check{H}^k(M; \mathbb{R}; \mathfrak{U})$ is independent of \mathfrak{U} as long as \mathfrak{U} is a good cover of M show that S^2 is not diffeomorphic to $S^1 \times S^1$ (first you will need to find a good cover for $S^1 \times S^1$).