
Group theory – Exam 1

Notes:

1. Write your name and student number **clearly** on each page of written solutions you
hand in.

2. You can give solutions in English or Dutch.

3. You are expected to explain your answers.

4. You are not allowed to consult any text book, class notes, colleagues, calculators, computers etc.

5. Advice: read all questions first, then start solving the ones you already know how to solve or have
good idea on the steps to find a solution. After you have finished the ones you found easier, tackle
the harder ones.

1) a) Let α, β be elements of the symmetric group Sn. Show that if α and β commute and i ∈ {1, 2, · · · , n}
is fixed by α, i.e., α(i) = i, then β(i) is also fixed by α. (0.5 pt)

b) Show that, for n > 2, ZSn = {e}. (0.5 pt)
c) Show that, for n > 3, ZAn = {e}. (0.5 pt)
d) What is the center of A3? (0.5 pt)

Solution. a) Since α(i) = i, we have that

α(β(i)) = β(α(i)) = β(i).

b)Let β ∈ ZSn and let αi = (1 2 · · · i − 1 i + 1 · · · n). Then, since β is in the center, it commutes
with αi, hence from the first part

αi(β(i)) = β(i)

But notice that for n > 2 the only number fixed by αi is i. Since β(i) is fixed by αi we have β(i) = i.
Since this is true for all i, we get β = e and hence the center of Sn is trivial.

c) Let β ∈ ZAn . If n is even the permutations αi used above belong to An and hence the same
argument used above shows that β = e and hence ZAn = {e} for n even and greater than 2.

For n odd, consider αij = (1 2 · · · i− 1 i+ 1 · · · j− 1 j+ 1 · · ·n− 1 n). Then α(i) = i, α(j) = j and
these are the only two points fixed by αij if n > 3. Using item (a) of this exercise we see that

α(β(i)) = β(i)

so β(i) is fixed by αij , hence β(i) = i or β(i) = j.
Taing k 6= i, j, since β commutes also with αik = (1 2 · · · i− 1 i+ 1 · · · k − 1 k + 1 · · ·n− 1 n) the

same argument used above show that β(i) = i or β(i) = k.
Since (β(i) = i or β(i) = j) and (β(i) = i or β(i) = k) must be both true, we conclude that β(i) = i

for all i and hence β = e, showing that ZAn
= {e} for n odd.

d)A3 is a group with 3 elements, hence isomorphic to Z3 which is Abelian, so ZA3 = A3 = Z3.



2) For each of the lists below, determine which groups are isomorphic:
a) Z4 × Z9, Z6 × Z6, Z36 and Z2 × Z2 × Z3 × Z3. (0.75 pt)
b) A5 × Z2, S5, D30, D15 × Z2. (0.75 pt)

Solution. a) We know from lectures and the book that Zm × Zn
∼= Zmn if and only if m and n are

coprime. Hence
(Z2 × Z3)× (Z2 × Z3) ∼= Z6 × Z6

Z9 × Z4
∼= Z36

and
Z6 × Z6 6∼= Z36.

b)#D15 × Z2 = #D30 = 60 and #A5 × Z2 = #S5 = 5! = 120, so the first two groups can not be
isomorphic to the last two.

From lectures we know that Dn × Z2
∼= D2n if and only if n is odd, therefore D15 × Z2

∼= D30.
From question 1 (and from lectures) we know that ZSn

= {e} for n > 2 and ZAn
= {e} for n > 3,

hence
ZA5×Z2 = ZA5 × ZZ2 = Z2 6= ZS5 .

Therefore A5 × Z2 is not isomorphic to S5.

3) Let G be the group generated by

G = 〈a, b|an = bm = e; bab−1 = al〉

Show that if lm 6= 1 mod n then the order of a is less than n. (1 pt)

Solution. Since b has order m, we have the following equality

a = bmab−m = bm−1(bab−1)b−m+1 = bm−1alb−m+1 = (bm−1ab−m+1)l = · · · = alm

Hence alm−1 = e and therefore the order of a must divide lm− 1. If lm− 1 6= 0modn then a does not have
order n. since an = e, the order of a must be a divisor of a, hence the order of a is less than n.

4) Given a group G, a subgroup H < G is called proper if H is neither {e} nor G. Find a group which is
isomorphic to one of its proper subgroups. (Hint: this is only possible for infinite groups). (1 pt)

Let G = Z and consider H < Z the subgroup formed by the even numbers. Then

ϕ : Z −→ Zeven, ϕ(n) = 2n

is a group isomorphism between Z and Zeven.
Indeed, this map is clearly surjective. Computing ϕ(m+ n) = 2m+ 2n = ϕ(m) + ϕ(n) we see that ϕ

is a group homomorphism and finally if ϕ(n) = 0 then 2n = 0 and hence n = 0, showing that ϕ is injective.

5) Let G be a group. Then the conjugacy class of an element x ∈ G is the set

Cx = {gxg−1 : g ∈ G}



and the centralizer of x, denoted by C(x) is the set of all elements in G which commute with x, i.e.,

C(x) = {g ∈ G : gxg−1 = x}

a) Show that the centralizer of x is a subgroup of G. (0.75 pt)
b) Show that, if G is finite, then index of C(x) in G, i.e., the number of elements in G/C(x), is the number
of elements in Cx, the conjugacy class of x. (0.75 pt).

Solution. G acts on itself by conjugation. For a given x ∈ G, the stabilizer of x is precisely C(x)
defined above, hence C(x) is a subgroup of G (all stabilizers are subgroups).

Further, the orbit of x by this action is the set Cx, so, by the Orbit–Stabilizer theorem,

#G = #C(x) · Cx.

or equivalently, #(G/C(x)) = #Cx.

6 a) Show that if Sn acts on a set with p elements and p > n is a prime number then the action has more
than one orbit (0.75 pt).

b) Let p be a prime. Show that the only action of Zp on a set with n < p elements is the trivial one
(0.75 pt).

Solution. a) Assume that there is an action of Sn on a set with p elements which has only one orbit.
Then, by the Orbit–Stabilizer theorem we have

n! = #Sn = #orbit ·#stabiliser = p · k,

for some k ∈ N. In particular, we conclude that p|n!. Since p is prime, if it divides a product, it must
divide one of the factors. But since p > n all the factors in n! = n · (n − 1) · (n − 2) · · · 2 · 1 are smaller
than p and hence are not divisible by p.

This contradiction proves that there is more than one orbit.
b) An action of Zp on a set with n-elements corresponds to a group homomorphism ϕ : Zp −→ Sn.

Since every element of Zp different of the identity is a generator of the group either the kernel of the
map is trivial or it is the whole of Zp. In the second case the action is trivial. So we have to show that
the first case can not happen. If the kernel of ϕ is trivial, the ϕ is an injection of Zp into Sn, hence
Zp = im(ϕ) < Sn. Since the order of any subgroup must divide the order of the group we see that p|n!,
but sincen < p this can not happen.

7) Let G be a group, S a set and ϕ : G× S −→ S be an action. Let H be the stabilizer of a point s ∈ S.
Show that the stabilizer of g · s is gHg−1. Conclude that H is a normal subgroup of G if and only if it is
the stabilizer of all the points in the orbit of s. (1.5 pt)

Solution. Let J be the stabiliser of g · s. Then for j ∈ J we have

j · g · s = g · s⇒ (g−1jg) · s = s

Therefore g−1jg ∈ H for all j ∈ J hence g−1Jg ⊂ H or, equivalently, J ⊂ gHg−1.
Conversely, given j ∈ gHg−1, there is h ∈ H such that j = ghg−1 and

j · g · · · = ghg−1g · s = gh · s = gs



so j ∈ J , showing the reverse inclusion.
Therefore J = gHg−1.
Points in the orbit of s are of the form g · s for some g ∈ G and by the above the stabiliser of such

point is gHg−1. Therefore H is the stabilizer of all points in the orbit of s if and only if H = gHg−1 for
all g ∈ G which happens if and only if H is normal.


